| 1 | !WRF:MODEL_LAYER:PHYSICS |
|---|
| 2 | |
|---|
| 3 | !--- The code is based on Lin and Colle (A New Bulk Microphysical Scheme |
|---|
| 4 | ! that Includes Riming Intensity and Temperature Dependent Ice Characteristics, 2011, MWR) |
|---|
| 5 | ! and Lin et al. (Parameterization of riming intensity and its impact on ice fall speed using ARM data, 2011, MWR) |
|---|
| 6 | !--- NOTE: 1) Prognose variables are: qi,PI(precipitating ice, qs, which includes snow, partially rimed snow and graupel),qw,qr |
|---|
| 7 | !--- 2) Sedimentation flux is based on Prudue Lin scheme |
|---|
| 8 | !--- 2) PI has varying properties depending on riming intensity (Ri, diagnosed currently following Lin et al. (2011, MWR) and T |
|---|
| 9 | !--- 3) Autoconverion is based on Liu and Daum (2004) |
|---|
| 10 | !--- 4) PI size distribution assuming Gamma distribution, but mu_s=0 (Exponential) currently |
|---|
| 11 | !--- 5) No density dependent fall speed since the V-D is derived using Best number approach, which already includes density effect |
|---|
| 12 | !--- 6) Future work will include radar equivalent reflectivity using the new PI property (A-D, M-D, N(D)). If you use RIP for reflectivity |
|---|
| 13 | !--- computation, please note that snow is (1-Ri)*qs and graupel is Ri*qs. Otherwise, reflectivity will be underestimated. |
|---|
| 14 | !--- 7) The Liu and Daum autoconverion is quite sensitive on Nt_c. For mixed-phase cloud and marine environment, Nt_c of 10 or 20 is suggested. |
|---|
| 15 | !--- default value is 10E.6. Change accordingly for your use. |
|---|
| 16 | !--- 8) Eq.7 and 8 are not in SI units and need to be converted in the code. the |
|---|
| 17 | ! paper treats the units in Eq.7 and 8 as cgs, and so need 1e-2^(2-ba) in |
|---|
| 18 | ! the code, and that would give the plots in the paper. However, there is |
|---|
| 19 | ! large uncertainty with this parameter, and one could argue that the units |
|---|
| 20 | ! for these equations could be mm-g-s instead, which would mean 1e-3^(2-ba) |
|---|
| 21 | ! in the code. This increases the snow fallspeed and gives an even |
|---|
| 22 | ! better comparison of aa and ba with obs in paper. |
|---|
| 23 | |
|---|
| 24 | |
|---|
| 25 | MODULE module_mp_sbu_ylin |
|---|
| 26 | USE module_wrf_error |
|---|
| 27 | ! |
|---|
| 28 | !..Parameters user might change based on their need |
|---|
| 29 | REAL, PARAMETER, PRIVATE :: RH = 1.0 |
|---|
| 30 | REAL, PARAMETER, PRIVATE :: xnor = 8.0e6 |
|---|
| 31 | REAL, PARAMETER, PRIVATE :: Nt_c = 10.E6 |
|---|
| 32 | !..Water vapor and air gas constants at constant pressure |
|---|
| 33 | REAL, PARAMETER, PRIVATE :: Rvapor = 461.5 |
|---|
| 34 | REAL, PARAMETER, PRIVATE :: oRv = 1./Rvapor |
|---|
| 35 | REAL, PARAMETER, PRIVATE :: Rair = 287.04 |
|---|
| 36 | REAL, PARAMETER, PRIVATE :: Cp = 1004.0 |
|---|
| 37 | REAL, PARAMETER, PRIVATE :: grav = 9.81 |
|---|
| 38 | REAL, PARAMETER, PRIVATE :: rhowater = 1000.0 |
|---|
| 39 | REAL, PARAMETER, PRIVATE :: rhosnow = 100.0 |
|---|
| 40 | |
|---|
| 41 | REAL, PARAMETER, PRIVATE :: SVP1=0.6112 |
|---|
| 42 | REAL, PARAMETER, PRIVATE :: SVP2=17.67 |
|---|
| 43 | REAL, PARAMETER, PRIVATE :: SVP3=29.65 |
|---|
| 44 | REAL, PARAMETER, PRIVATE :: SVPT0=273.15 |
|---|
| 45 | REAL, PARAMETER, PRIVATE :: EP1=Rvapor/Rair-1. |
|---|
| 46 | REAL, PARAMETER, PRIVATE :: EP2=Rair/Rvapor |
|---|
| 47 | !..Enthalpy of sublimation, vaporization, and fusion at 0C. |
|---|
| 48 | REAL, PARAMETER, PRIVATE :: XLS = 2.834E6 |
|---|
| 49 | REAL, PARAMETER, PRIVATE :: XLV = 2.5E6 |
|---|
| 50 | REAL, PARAMETER, PRIVATE :: XLF = XLS - XLV |
|---|
| 51 | |
|---|
| 52 | ! |
|---|
| 53 | REAL, PARAMETER, PRIVATE :: & |
|---|
| 54 | qi0 = 1.0e-3, & !--- ice aggregation to snow threshold |
|---|
| 55 | xmi50 = 4.8e-10, xmi40 = 2.46e-10, & |
|---|
| 56 | xni0 = 1.0e-2, xmnin = 1.05e-18, bni = 0.5, & |
|---|
| 57 | di50 = 1.0e-4, xmi = 4.19e-13, & !--- parameters used in BF process |
|---|
| 58 | bv_r = 0.8, bv_i = 0.25, & |
|---|
| 59 | o6 = 1./6., cdrag = 0.6, & |
|---|
| 60 | avisc = 1.49628e-6, adiffwv = 8.7602e-5, & |
|---|
| 61 | axka = 1.4132e3, cw = 4.187e3, ci = 2.093e3 |
|---|
| 62 | CONTAINS |
|---|
| 63 | |
|---|
| 64 | !------------------------------------------------------------------- |
|---|
| 65 | ! Lin et al., 1983, JAM, 1065-1092, and |
|---|
| 66 | ! Rutledge and Hobbs, 1984, JAS, 2949-2972 |
|---|
| 67 | !------------------------------------------------------------------- |
|---|
| 68 | SUBROUTINE sbu_ylin(th & |
|---|
| 69 | ,qv, ql, qr & |
|---|
| 70 | ,qi, qs, Ri3D & |
|---|
| 71 | ,rho, pii, p & |
|---|
| 72 | ,dt_in & |
|---|
| 73 | ,z,ht, dz8w & |
|---|
| 74 | ,RAINNC, RAINNCV & |
|---|
| 75 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 76 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 77 | ,its,ite, jts,jte, kts,kte & |
|---|
| 78 | ) |
|---|
| 79 | !------------------------------------------------------------------- |
|---|
| 80 | IMPLICIT NONE |
|---|
| 81 | !------------------------------------------------------------------- |
|---|
| 82 | ! |
|---|
| 83 | ! |
|---|
| 84 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 85 | ims,ime, jms,jme, kms,kme , & |
|---|
| 86 | its,ite, jts,jte, kts,kte |
|---|
| 87 | |
|---|
| 88 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 89 | INTENT(INOUT) :: & |
|---|
| 90 | th, & |
|---|
| 91 | qv, & |
|---|
| 92 | qi,ql, & |
|---|
| 93 | qs,qr |
|---|
| 94 | |
|---|
| 95 | ! YLIN |
|---|
| 96 | ! Adding RI3D as a variable to the interface |
|---|
| 97 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), & |
|---|
| 98 | INTENT(INOUT) :: Ri3D |
|---|
| 99 | |
|---|
| 100 | |
|---|
| 101 | ! |
|---|
| 102 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 103 | INTENT(IN ) :: & |
|---|
| 104 | rho, & |
|---|
| 105 | pii, & |
|---|
| 106 | z,p, & |
|---|
| 107 | dz8w |
|---|
| 108 | |
|---|
| 109 | |
|---|
| 110 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN) :: ht |
|---|
| 111 | REAL, INTENT(IN ) :: dt_in |
|---|
| 112 | |
|---|
| 113 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 114 | INTENT(INOUT) :: RAINNC, & |
|---|
| 115 | RAINNCV |
|---|
| 116 | |
|---|
| 117 | ! LOCAL VAR |
|---|
| 118 | |
|---|
| 119 | INTEGER :: min_q, max_q |
|---|
| 120 | |
|---|
| 121 | REAL, DIMENSION( its:ite , jts:jte ) & |
|---|
| 122 | :: rain, snow,ice |
|---|
| 123 | |
|---|
| 124 | REAL, DIMENSION( kts:kte ) :: qvz, qlz, qrz, & |
|---|
| 125 | qiz, qsz, qgz, & |
|---|
| 126 | thz, & |
|---|
| 127 | tothz, rhoz, & |
|---|
| 128 | orhoz, sqrhoz, & |
|---|
| 129 | prez, zz, & |
|---|
| 130 | dzw |
|---|
| 131 | |
|---|
| 132 | ! Added vertical profile of Ri (riz) as a variable |
|---|
| 133 | REAL, DIMENSION( kts:kte ) :: riz |
|---|
| 134 | |
|---|
| 135 | ! |
|---|
| 136 | REAL :: dt, pptice, pptrain, pptsnow, pptgraul, rhoe_s |
|---|
| 137 | |
|---|
| 138 | INTEGER :: i,j,k |
|---|
| 139 | |
|---|
| 140 | dt=dt_in |
|---|
| 141 | rhoe_s=1.29 |
|---|
| 142 | |
|---|
| 143 | j_loop: DO j = jts, jte |
|---|
| 144 | i_loop: DO i = its, ite |
|---|
| 145 | ! |
|---|
| 146 | !- write data from 3-D to 1-D |
|---|
| 147 | ! |
|---|
| 148 | DO k = kts, kte |
|---|
| 149 | qvz(k)=qv(i,k,j) |
|---|
| 150 | qlz(k)=ql(i,k,j) |
|---|
| 151 | qrz(k)=qr(i,k,j) |
|---|
| 152 | qiz(k)=qi(i,k,j) |
|---|
| 153 | qsz(k)=qs(i,k,j) |
|---|
| 154 | thz(k)=th(i,k,j) |
|---|
| 155 | rhoz(k)=rho(i,k,j) |
|---|
| 156 | orhoz(k)=1./rhoz(k) |
|---|
| 157 | prez(k)=p(i,k,j) |
|---|
| 158 | ! sqrhoz(k)=sqrt(rhoe_s*orhoz(k)) |
|---|
| 159 | ! no density dependence of fall speed as Note #5, you can turn it on to increase fall speed at low pressure. |
|---|
| 160 | sqrhoz(k)=1.0 |
|---|
| 161 | tothz(k)=pii(i,k,j) |
|---|
| 162 | zz(k)=z(i,k,j) |
|---|
| 163 | dzw(k)=dz8w(i,k,j) |
|---|
| 164 | END DO |
|---|
| 165 | ! |
|---|
| 166 | pptrain=0. |
|---|
| 167 | pptsnow=0. |
|---|
| 168 | pptice =0. |
|---|
| 169 | |
|---|
| 170 | ! CALL wrf_debug ( 100 , 'microphysics_driver: calling clphy1d_ylin' ) |
|---|
| 171 | |
|---|
| 172 | CALL clphy1d_ylin( dt, qvz, qlz, qrz, qiz, qsz, & |
|---|
| 173 | thz, tothz, rhoz, orhoz, sqrhoz, & |
|---|
| 174 | prez, zz, dzw, ht(I,J), & |
|---|
| 175 | pptrain, pptsnow, pptice, & |
|---|
| 176 | kts, kte, i, j, riz ) |
|---|
| 177 | |
|---|
| 178 | ! |
|---|
| 179 | ! Precipitation from cloud microphysics -- only for one time step |
|---|
| 180 | ! |
|---|
| 181 | ! unit is transferred from m to mm |
|---|
| 182 | ! |
|---|
| 183 | rain(i,j)= pptrain |
|---|
| 184 | snow(i,j)= pptsnow |
|---|
| 185 | ice(i,j) = pptice |
|---|
| 186 | ! |
|---|
| 187 | RAINNCV(i,j)= pptrain + pptsnow + pptice |
|---|
| 188 | RAINNC(i,j) = RAINNC(i,j) + pptrain + pptsnow + pptice |
|---|
| 189 | |
|---|
| 190 | ! |
|---|
| 191 | !- update data from 1-D back to 3-D |
|---|
| 192 | ! |
|---|
| 193 | DO k = kts, kte |
|---|
| 194 | qv(i,k,j)=qvz(k) |
|---|
| 195 | ql(i,k,j)=qlz(k) |
|---|
| 196 | qr(i,k,j)=qrz(k) |
|---|
| 197 | th(i,k,j)=thz(k) |
|---|
| 198 | qi(i,k,j)=qiz(k) |
|---|
| 199 | qs(i,k,j)=qsz(k) |
|---|
| 200 | ri3d(i,k,j)=riz(k) |
|---|
| 201 | END DO |
|---|
| 202 | ! |
|---|
| 203 | ENDDO i_loop |
|---|
| 204 | ENDDO j_loop |
|---|
| 205 | |
|---|
| 206 | END SUBROUTINE sbu_ylin |
|---|
| 207 | |
|---|
| 208 | |
|---|
| 209 | !----------------------------------------------------------------------- |
|---|
| 210 | SUBROUTINE clphy1d_ylin(dt, qvz, qlz, qrz, qiz, qsz, & |
|---|
| 211 | thz, tothz, rho, orho, sqrho, & |
|---|
| 212 | prez, zz, dzw, zsfc, pptrain, pptsnow,pptice, & |
|---|
| 213 | kts, kte, i, j,riz ) |
|---|
| 214 | !----------------------------------------------------------------------- |
|---|
| 215 | IMPLICIT NONE |
|---|
| 216 | !----------------------------------------------------------------------- |
|---|
| 217 | ! This program handles the vertical 1-D cloud micphysics |
|---|
| 218 | !----------------------------------------------------------------------- |
|---|
| 219 | ! avisc: constant in empirical formular for dynamic viscosity of air |
|---|
| 220 | ! =1.49628e-6 [kg/m/s] = 1.49628e-5 [g/cm/s] |
|---|
| 221 | ! adiffwv: constant in empirical formular for diffusivity of water |
|---|
| 222 | ! vapor in air |
|---|
| 223 | ! = 8.7602e-5 [kgm/s3] = 8.7602 [gcm/s3] |
|---|
| 224 | ! axka: constant in empirical formular for thermal conductivity of air |
|---|
| 225 | ! = 1.4132e3 [m2/s2/K] = 1.4132e7 [cm2/s2/K] |
|---|
| 226 | ! qi0: mixing ratio threshold for cloud ice aggregation [kg/kg] |
|---|
| 227 | ! xmi50: mass of a 50 micron ice crystal |
|---|
| 228 | ! = 4.8e-10 [kg] =4.8e-7 [g] |
|---|
| 229 | ! xmi40: mass of a 40 micron ice crystal |
|---|
| 230 | ! = 2.46e-10 [kg] = 2.46e-7 [g] |
|---|
| 231 | ! di50: diameter of a 50 micro (radius) ice crystal |
|---|
| 232 | ! =1.0e-4 [m] |
|---|
| 233 | ! xmi: mass of one cloud ice crystal |
|---|
| 234 | ! =4.19e-13 [kg] = 4.19e-10 [g] |
|---|
| 235 | ! oxmi=1.0/xmi |
|---|
| 236 | ! |
|---|
| 237 | ! xni0=1.0e-2 [m-3] The value given in Lin et al. is wrong.(see |
|---|
| 238 | ! Hsie et al.(1980) and Rutledge and Hobbs(1983) ) |
|---|
| 239 | ! bni=0.5 [K-1] |
|---|
| 240 | ! xmnin: mass of a natural ice nucleus |
|---|
| 241 | ! = 1.05e-18 [kg] = 1.05e-15 [g] This values is suggested by |
|---|
| 242 | ! Hsie et al. (1980) |
|---|
| 243 | ! = 1.0e-12 [kg] suggested by Rutlegde and Hobbs (1983) |
|---|
| 244 | |
|---|
| 245 | ! av_r: av_r in empirical formular for terminal |
|---|
| 246 | ! velocity of raindrop |
|---|
| 247 | ! =2115.0 [cm**(1-b)/s] = 2115.0*0.01**(1-b) [m**(1-b)/s] |
|---|
| 248 | ! bv_r: bv_r in empirical formular for terminal |
|---|
| 249 | ! velocity of raindrop |
|---|
| 250 | ! =0.8 |
|---|
| 251 | ! av_i: av_i in empirical formular for terminal |
|---|
| 252 | ! velocity of snow |
|---|
| 253 | ! =152.93 [cm**(1-d)/s] = 152.93*0.01**(1-d) [m**(1-d)/s] |
|---|
| 254 | ! bv_i: bv_i in empirical formular for terminal |
|---|
| 255 | ! velocity of snow |
|---|
| 256 | ! =0.25 |
|---|
| 257 | ! vf1r: ventilation factors for rain =0.78 |
|---|
| 258 | ! vf2r: ventilation factors for rain =0.31 |
|---|
| 259 | ! vf1s: ventilation factors for snow =0.65 |
|---|
| 260 | ! vf2s: ventilation factors for snow =0.44 |
|---|
| 261 | ! |
|---|
| 262 | !---------------------------------------------------------------------- |
|---|
| 263 | |
|---|
| 264 | INTEGER, INTENT(IN ) :: kts, kte, i, j |
|---|
| 265 | |
|---|
| 266 | REAL, DIMENSION( kts:kte ), & |
|---|
| 267 | INTENT(INOUT) :: qvz, qlz, qrz, qiz, qsz, & |
|---|
| 268 | thz |
|---|
| 269 | |
|---|
| 270 | REAL, DIMENSION( kts:kte ), & |
|---|
| 271 | INTENT(IN ) :: tothz, rho, orho, sqrho, & |
|---|
| 272 | prez, zz, dzw |
|---|
| 273 | |
|---|
| 274 | |
|---|
| 275 | REAL, INTENT(INOUT) :: pptrain, pptsnow, pptice |
|---|
| 276 | |
|---|
| 277 | REAL, INTENT(IN ) :: dt, zsfc |
|---|
| 278 | |
|---|
| 279 | ! local vars |
|---|
| 280 | |
|---|
| 281 | REAL :: obp4, bp3, bp5, bp6, odp4, & |
|---|
| 282 | dp3, dp5, dp5o2 |
|---|
| 283 | |
|---|
| 284 | ! temperary vars |
|---|
| 285 | |
|---|
| 286 | REAL :: tmp, tmp0, tmp1, tmp2,tmp3, & |
|---|
| 287 | tmp4, tmpa,tmpb,tmpc,tmpd,alpha1, & |
|---|
| 288 | qic, abi,abr, abg, odtberg, & |
|---|
| 289 | vti50,eiw,eri,esi,esr, esw, & |
|---|
| 290 | erw,delrs,term0,term1, & |
|---|
| 291 | Ap, Bp, & |
|---|
| 292 | factor, tmp_r, tmp_s,tmp_g, & |
|---|
| 293 | qlpqi, rsat, a1, a2, xnin |
|---|
| 294 | |
|---|
| 295 | ! |
|---|
| 296 | REAL, DIMENSION( kts:kte ) :: oprez, tem, temcc, theiz, qswz, & |
|---|
| 297 | qsiz, qvoqswz, qvoqsiz, qvzodt, & |
|---|
| 298 | qlzodt, qizodt, qszodt, qrzodt |
|---|
| 299 | |
|---|
| 300 | !--- microphysical processes |
|---|
| 301 | |
|---|
| 302 | REAL, DIMENSION( kts:kte ) :: psnow, psaut, psfw, psfi, praci, & |
|---|
| 303 | piacr, psaci, psacw, psdep, pssub, & |
|---|
| 304 | pracs, psacr, psmlt, psmltevp, & |
|---|
| 305 | prain, praut, pracw, prevp, pvapor, & |
|---|
| 306 | pclw, pladj, pcli, pimlt, pihom, & |
|---|
| 307 | pidw, piadj, pgfr, & |
|---|
| 308 | qschg |
|---|
| 309 | ! |
|---|
| 310 | |
|---|
| 311 | REAL, DIMENSION( kts:kte ) :: qvsbar, rs0, viscmu, visc, diffwv, & |
|---|
| 312 | schmidt, xka |
|---|
| 313 | !---- new snow parameters |
|---|
| 314 | |
|---|
| 315 | REAL, DIMENSION( kts:kte ):: ab_s,ab_r,ab_riming,lamc |
|---|
| 316 | REAL, DIMENSION( kts:kte ):: cap_s !---- capacitance of snow |
|---|
| 317 | |
|---|
| 318 | REAL, PARAMETER :: vf1s = 0.65, vf2s = 0.44, vf1r =0.78 , vf2r = 0.31 |
|---|
| 319 | |
|---|
| 320 | REAL, PARAMETER :: am_c1=0.004, am_c2= 6e-5, am_c3=0.15 |
|---|
| 321 | REAL, PARAMETER :: bm_c1=1.85, bm_c2= 0.003, bm_c3=1.25 |
|---|
| 322 | REAL, PARAMETER :: aa_c1=1.28, aa_c2= -0.012, aa_c3=-0.6 |
|---|
| 323 | REAL, PARAMETER :: ba_c1=1.5, ba_c2= 0.0075, ba_c3=0.5 |
|---|
| 324 | |
|---|
| 325 | REAL, PARAMETER :: best_a=1.08 , best_b = 0.499 |
|---|
| 326 | REAL, DIMENSION(kts:kte):: am_s,bm_s,av_s,bv_s,Ri,N0_s,tmp_ss,lams |
|---|
| 327 | REAL, DIMENSION(kts:kte):: aa_s,ba_s,tmp_sa |
|---|
| 328 | REAL, PARAMETER :: mu_s=0.,mu_i=0.,mu_r=0. |
|---|
| 329 | |
|---|
| 330 | REAL :: tc0, disp, Dc_liu, eta, mu_c, R6c !--- for Liu's autoconversion |
|---|
| 331 | |
|---|
| 332 | ! Adding variable Riz, which will duplicate Ri but be a copy passed upward |
|---|
| 333 | |
|---|
| 334 | REAL, DIMENSION(kts:kte) :: Riz |
|---|
| 335 | |
|---|
| 336 | REAL, DIMENSION( kts:kte ) :: vtr, vts, & |
|---|
| 337 | vtrold, vtsold, vtiold, & |
|---|
| 338 | xlambdar, xlambdas, & |
|---|
| 339 | olambdar, olambdas |
|---|
| 340 | |
|---|
| 341 | REAL :: episp0k, dtb, odtb, pi, pio4, & |
|---|
| 342 | pio6, oxLf, xLvocp, xLfocp, av_r, & |
|---|
| 343 | av_i, ocdrag, gambp4, gamdp4, & |
|---|
| 344 | gam4pt5, Cpor, oxmi, gambp3, gamdp3,& |
|---|
| 345 | gambp6, gam3pt5, gam2pt75, gambp5o2,& |
|---|
| 346 | gamdp5o2, cwoxlf, ocp, xni50, es |
|---|
| 347 | ! |
|---|
| 348 | REAL :: qvmin=1.e-20 |
|---|
| 349 | REAL :: temc1,save1,save2,xni50mx |
|---|
| 350 | |
|---|
| 351 | ! for terminal velocity flux |
|---|
| 352 | |
|---|
| 353 | INTEGER :: min_q, max_q, max_ri_k, k |
|---|
| 354 | REAL :: max_ri |
|---|
| 355 | REAL :: t_del_tv, del_tv, flux, fluxin, fluxout ,tmpqrz |
|---|
| 356 | LOGICAL :: notlast |
|---|
| 357 | ! |
|---|
| 358 | mu_c = AMIN1(15., (1000.E6/Nt_c + 2.)) |
|---|
| 359 | R6c = 10.0E-6 !---- 10 micron, threshold radius of cloud droplet |
|---|
| 360 | dtb=dt |
|---|
| 361 | odtb=1./dtb |
|---|
| 362 | pi =acos(-1.) |
|---|
| 363 | pio4=acos(-1.)/4. |
|---|
| 364 | pio6=acos(-1.)/6. |
|---|
| 365 | ocp=1./cp |
|---|
| 366 | oxLf=1./xLf |
|---|
| 367 | xLvocp=xLv/cp |
|---|
| 368 | xLfocp=xLf/cp |
|---|
| 369 | Cpor=cp/Rair |
|---|
| 370 | oxmi=1.0/xmi |
|---|
| 371 | cwoxlf=cw/xlf |
|---|
| 372 | av_r=2115.0*0.01**(1-bv_r) |
|---|
| 373 | av_i=152.93*0.01**(1-bv_i) |
|---|
| 374 | ocdrag=1./Cdrag |
|---|
| 375 | episp0k=RH*ep2*1000.*svp1 |
|---|
| 376 | ! |
|---|
| 377 | gambp4=ggamma(bv_r+4.) |
|---|
| 378 | gamdp4=ggamma(bv_i+4.) |
|---|
| 379 | gambp3=ggamma(bv_r+3.) |
|---|
| 380 | gambp6=ggamma(bv_r+6) |
|---|
| 381 | gambp5o2=ggamma((bv_r+5.)/2.) |
|---|
| 382 | gamdp5o2=ggamma((bv_i+5.)/2.) |
|---|
| 383 | ! |
|---|
| 384 | ! oprez 1./prez ( prez : pressure) |
|---|
| 385 | ! qsw saturated mixing ratio on water surface |
|---|
| 386 | ! qsi saturated mixing ratio on ice surface |
|---|
| 387 | ! episp0k RH*e*saturated pressure at 273.15 K = 611.2 hPa (Rogers and Yau 1989) |
|---|
| 388 | ! qvoqsw qv/qsw |
|---|
| 389 | ! qvoqsi qv/qsi |
|---|
| 390 | ! qvzodt qv/dt |
|---|
| 391 | ! qlzodt ql/dt |
|---|
| 392 | ! qizodt qi/dt |
|---|
| 393 | ! qszodt qs/dt |
|---|
| 394 | ! qrzodt qr/dt |
|---|
| 395 | ! temcc temperature in dregee C |
|---|
| 396 | ! |
|---|
| 397 | |
|---|
| 398 | obp4=1.0/(bv_r+4.0) |
|---|
| 399 | bp3=bv_r+3.0 |
|---|
| 400 | bp5=bv_r+5.0 |
|---|
| 401 | bp6=bv_r+6.0 |
|---|
| 402 | odp4=1.0/(bv_i+4.0) |
|---|
| 403 | dp3=bv_i+3.0 |
|---|
| 404 | dp5=bv_i+5.0 |
|---|
| 405 | dp5o2=0.5*(bv_i+5.0) |
|---|
| 406 | ! |
|---|
| 407 | do k=kts,kte |
|---|
| 408 | oprez(k)=1./prez(k) |
|---|
| 409 | qlz(k)=amax1( 0.0,qlz(k) ) |
|---|
| 410 | qiz(k)=amax1( 0.0,qiz(k) ) |
|---|
| 411 | qvz(k)=amax1( qvmin,qvz(k) ) |
|---|
| 412 | qsz(k)=amax1( 0.0,qsz(k) ) |
|---|
| 413 | qrz(k)=amax1( 0.0,qrz(k) ) |
|---|
| 414 | tem(k)=thz(k)*tothz(k) |
|---|
| 415 | temcc(k)=tem(k)-273.15 |
|---|
| 416 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) !--- RY89 Eq(2.17) |
|---|
| 417 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 418 | if (tem(k) .lt. 273.15 ) then |
|---|
| 419 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 420 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 421 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
|---|
| 422 | else |
|---|
| 423 | qsiz(k)=qswz(k) |
|---|
| 424 | endif |
|---|
| 425 | ! |
|---|
| 426 | qvoqswz(k)=qvz(k)/qswz(k) |
|---|
| 427 | qvoqsiz(k)=qvz(k)/qsiz(k) |
|---|
| 428 | qvzodt(k)=amax1( 0.0,odtb*qvz(k) ) |
|---|
| 429 | qlzodt(k)=amax1( 0.0,odtb*qlz(k) ) |
|---|
| 430 | qizodt(k)=amax1( 0.0,odtb*qiz(k) ) |
|---|
| 431 | qszodt(k)=amax1( 0.0,odtb*qsz(k) ) |
|---|
| 432 | qrzodt(k)=amax1( 0.0,odtb*qrz(k) ) |
|---|
| 433 | theiz(k)=thz(k)+(xlvocp*qvz(k)-xlfocp*qiz(k))/tothz(k) |
|---|
| 434 | enddo |
|---|
| 435 | |
|---|
| 436 | do k=kts,kte |
|---|
| 437 | |
|---|
| 438 | psnow(k)=0.0 |
|---|
| 439 | psaut(k)=0.0 |
|---|
| 440 | psfw(k)=0.0 |
|---|
| 441 | psfi(k)=0.0 |
|---|
| 442 | praci(k)=0.0 |
|---|
| 443 | piacr(k)=0.0 |
|---|
| 444 | psaci(k)=0.0 |
|---|
| 445 | psacw(k)=0.0 |
|---|
| 446 | psdep(k)=0.0 |
|---|
| 447 | pssub(k)=0.0 |
|---|
| 448 | pracs(k)=0.0 |
|---|
| 449 | psacr(k)=0.0 |
|---|
| 450 | psmlt(k)=0.0 |
|---|
| 451 | psmltevp(k)=0.0 |
|---|
| 452 | |
|---|
| 453 | prain(k)=0.0 |
|---|
| 454 | praut(k)=0.0 |
|---|
| 455 | pracw(k)=0.0 |
|---|
| 456 | prevp(k)=0.0 |
|---|
| 457 | pgfr(k)=0.0 |
|---|
| 458 | |
|---|
| 459 | pvapor(k)=0.0 |
|---|
| 460 | |
|---|
| 461 | pclw(k)=0.0 |
|---|
| 462 | pladj(k)=0.0 |
|---|
| 463 | |
|---|
| 464 | pcli(k)=0.0 |
|---|
| 465 | pimlt(k)=0.0 |
|---|
| 466 | pihom(k)=0.0 |
|---|
| 467 | pidw(k)=0.0 |
|---|
| 468 | piadj(k)=0.0 |
|---|
| 469 | |
|---|
| 470 | qschg(k)=0. |
|---|
| 471 | |
|---|
| 472 | enddo |
|---|
| 473 | |
|---|
| 474 | !*********************************************************************** |
|---|
| 475 | !***** compute viscosity,difusivity,thermal conductivity, and ****** |
|---|
| 476 | !***** Schmidt number ****** |
|---|
| 477 | !*********************************************************************** |
|---|
| 478 | !c------------------------------------------------------------------ |
|---|
| 479 | !c viscmu: dynamic viscosity of air kg/m/s |
|---|
| 480 | !c visc: kinematic viscosity of air = viscmu/rho (m2/s) |
|---|
| 481 | !c avisc=1.49628e-6 kg/m/s=1.49628e-5 g/cm/s |
|---|
| 482 | !c viscmu=1.718e-5 kg/m/s in RH |
|---|
| 483 | !c diffwv: Diffusivity of water vapor in air |
|---|
| 484 | !c adiffwv = 8.7602e-5 (8.794e-5 in MM5) kgm/s3 |
|---|
| 485 | !c = 8.7602 (8.794 in MM5) gcm/s3 |
|---|
| 486 | !c diffwv(k)=2.26e-5 m2/s |
|---|
| 487 | !c schmidt: Schmidt number=visc/diffwv |
|---|
| 488 | !c xka: thermal conductivity of air J/m/s/K (Kgm/s3/K) |
|---|
| 489 | !c xka(k)=2.43e-2 J/m/s/K in RH |
|---|
| 490 | !c axka=1.4132e3 (1.414e3 in MM5) m2/s2/k = 1.4132e7 cm2/s2/k |
|---|
| 491 | !c------------------------------------------------------------------ |
|---|
| 492 | DO k=kts,kte |
|---|
| 493 | viscmu(k)=avisc*tem(k)**1.5/(tem(k)+120.0) |
|---|
| 494 | visc(k)=viscmu(k)*orho(k) |
|---|
| 495 | diffwv(k)=adiffwv*tem(k)**1.81*oprez(k) |
|---|
| 496 | schmidt(k)=visc(k)/diffwv(k) |
|---|
| 497 | xka(k)=axka*viscmu(k) |
|---|
| 498 | rs0(k)=ep2*1000.*svp1/(prez(k)-1000.*svp1) |
|---|
| 499 | END DO |
|---|
| 500 | ! |
|---|
| 501 | ! ---- YLIN, set snow variables |
|---|
| 502 | ! |
|---|
| 503 | !---- A+B in depositional growth, the first try just take from Rogers and Yau(1989) |
|---|
| 504 | ! ab_s(k) = lsub*lsub*orv/(tcond(k)*temp(k))+& |
|---|
| 505 | ! rv*temp(k)/(diffu(k)*qvsi(k)) |
|---|
| 506 | |
|---|
| 507 | do k = kts, kte |
|---|
| 508 | tc0 = tem(k)-273.15 |
|---|
| 509 | if (rho(k)*qlz(k) .gt. 1e-5 .AND. rho(k)*qsz(k) .gt. 1e-5) then |
|---|
| 510 | Ri(k) = 1.0/(1.0+6e-5/(rho(k)**1.170*qlz(k)*qsz(k)**0.170)) |
|---|
| 511 | else |
|---|
| 512 | Ri(k) = 0 |
|---|
| 513 | endif |
|---|
| 514 | enddo |
|---|
| 515 | ! |
|---|
| 516 | !--- make sure Ri does not decrease downward in a column |
|---|
| 517 | ! |
|---|
| 518 | max_ri_k = MAXLOC(Ri,dim=1) |
|---|
| 519 | max_ri = MAXVAL(Ri) |
|---|
| 520 | |
|---|
| 521 | do k = kts, max_ri_k |
|---|
| 522 | Ri(k) = max_ri |
|---|
| 523 | enddo |
|---|
| 524 | |
|---|
| 525 | !--- YLIN, get PI properties |
|---|
| 526 | do k = kts, kte |
|---|
| 527 | Ri(k) = AMAX1(0.,AMIN1(Ri(k),1.0)) |
|---|
| 528 | ! Store the value of Ri(k) as Riz(k) |
|---|
| 529 | Riz(k) = Ri(k) |
|---|
| 530 | |
|---|
| 531 | cap_s(k)= 0.25*(1+Ri(k)) |
|---|
| 532 | tc0 = AMIN1(-0.1, tem(k)-273.15) |
|---|
| 533 | N0_s(k) = amin1(2.0E8, 2.0E6*exp(-0.12*tc0)) |
|---|
| 534 | am_s(k) = am_c1+am_c2*tc0+am_c3*Ri(k)*Ri(k) !--- Heymsfield 2007 |
|---|
| 535 | am_s(k) = AMAX1(0.000023,am_s(k)) !--- use the a_min in table 1 of Heymsfield |
|---|
| 536 | bm_s(k) = bm_c1+bm_c2*tc0+bm_c3*Ri(k) |
|---|
| 537 | bm_s(k) = AMIN1(bm_s(k),3.0) !---- capped by 3 |
|---|
| 538 | !--- converting from cgs to SI unit |
|---|
| 539 | am_s(k) = 10**(2*bm_s(k)-3.0)*am_s(k) |
|---|
| 540 | aa_s(k) = aa_c1 + aa_c2*tc0 + aa_c3*Ri(k) |
|---|
| 541 | ba_s(k) = ba_c1 + ba_c2*tc0 + ba_c3*Ri(k) |
|---|
| 542 | !--- convert from mm.g.s to SI unit (this will give larger PI fall speed than in the paper) |
|---|
| 543 | aa_s(k) = (1e-3)**(2.0-ba_s(k))*aa_s(k) |
|---|
| 544 | !---- get v from Mitchell 1996 |
|---|
| 545 | av_s(k) = best_a*viscmu(k)*(2*grav*am_s(k)/rho(k)/aa_s(k)/(viscmu(k)**2))**best_b |
|---|
| 546 | bv_s(k) = best_b*(bm_s(k)-ba_s(k)+2)-1 |
|---|
| 547 | |
|---|
| 548 | tmp_ss(k)= bm_s(k)+mu_s+1 |
|---|
| 549 | tmp_sa(k)= ba_s(k)+mu_s+1 |
|---|
| 550 | |
|---|
| 551 | enddo |
|---|
| 552 | |
|---|
| 553 | ! |
|---|
| 554 | !*********************************************************************** |
|---|
| 555 | ! Calculate precipitation fluxes due to terminal velocities. |
|---|
| 556 | !*********************************************************************** |
|---|
| 557 | ! |
|---|
| 558 | !- Calculate termianl velocity (vt?) of precipitation q?z |
|---|
| 559 | !- Find maximum vt? to determine the small delta t |
|---|
| 560 | ! |
|---|
| 561 | !-- rain |
|---|
| 562 | ! |
|---|
| 563 | ! CALL wrf_debug ( 100 , 'module_ylin, start precip fluxes' ) |
|---|
| 564 | |
|---|
| 565 | t_del_tv=0. |
|---|
| 566 | del_tv=dtb |
|---|
| 567 | notlast=.true. |
|---|
| 568 | |
|---|
| 569 | DO while (notlast) |
|---|
| 570 | ! |
|---|
| 571 | min_q=kte |
|---|
| 572 | max_q=kts-1 |
|---|
| 573 | ! |
|---|
| 574 | do k=kts,kte-1 |
|---|
| 575 | if (qrz(k) .gt. 1.0e-8) then |
|---|
| 576 | min_q=min0(min_q,k) |
|---|
| 577 | max_q=max0(max_q,k) |
|---|
| 578 | tmp1=sqrt(pi*rhowater*xnor/rho(k)/qrz(k)) |
|---|
| 579 | tmp1=sqrt(tmp1) |
|---|
| 580 | vtrold(k)=o6*av_r*gambp4*sqrho(k)/tmp1**bv_r |
|---|
| 581 | if (k .eq. 1) then |
|---|
| 582 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtrold(k)) |
|---|
| 583 | else |
|---|
| 584 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtrold(k)) |
|---|
| 585 | endif |
|---|
| 586 | else |
|---|
| 587 | vtrold(k)=0. |
|---|
| 588 | endif |
|---|
| 589 | enddo |
|---|
| 590 | |
|---|
| 591 | if (max_q .ge. min_q) then |
|---|
| 592 | ! |
|---|
| 593 | !- Check if the summation of the small delta t >= big delta t |
|---|
| 594 | ! (t_del_tv) (del_tv) (dtb) |
|---|
| 595 | |
|---|
| 596 | t_del_tv=t_del_tv+del_tv |
|---|
| 597 | ! |
|---|
| 598 | if ( t_del_tv .ge. dtb ) then |
|---|
| 599 | notlast=.false. |
|---|
| 600 | del_tv=dtb+del_tv-t_del_tv |
|---|
| 601 | endif |
|---|
| 602 | ! |
|---|
| 603 | fluxin=0. |
|---|
| 604 | do k=max_q,min_q,-1 |
|---|
| 605 | fluxout=rho(k)*vtrold(k)*qrz(k) |
|---|
| 606 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
|---|
| 607 | tmpqrz=qrz(k) |
|---|
| 608 | qrz(k)=qrz(k)+del_tv*flux |
|---|
| 609 | fluxin=fluxout |
|---|
| 610 | enddo |
|---|
| 611 | if (min_q .eq. 1) then |
|---|
| 612 | pptrain=pptrain+fluxin*del_tv |
|---|
| 613 | else |
|---|
| 614 | qrz(min_q-1)=qrz(min_q-1)+del_tv* & |
|---|
| 615 | fluxin/rho(min_q-1)/dzw(min_q-1) |
|---|
| 616 | endif |
|---|
| 617 | ! |
|---|
| 618 | else |
|---|
| 619 | notlast=.false. |
|---|
| 620 | endif |
|---|
| 621 | ENDDO |
|---|
| 622 | |
|---|
| 623 | ! |
|---|
| 624 | !-- snow |
|---|
| 625 | ! |
|---|
| 626 | t_del_tv=0. |
|---|
| 627 | del_tv=dtb |
|---|
| 628 | notlast=.true. |
|---|
| 629 | |
|---|
| 630 | DO while (notlast) |
|---|
| 631 | ! |
|---|
| 632 | min_q=kte |
|---|
| 633 | max_q=kts-1 |
|---|
| 634 | ! |
|---|
| 635 | do k=kts,kte-1 |
|---|
| 636 | if (qsz(k) .gt. 1.0e-8) then |
|---|
| 637 | min_q=min0(min_q,k) |
|---|
| 638 | max_q=max0(max_q,k) |
|---|
| 639 | |
|---|
| 640 | tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))& |
|---|
| 641 | **(1./tmp_ss(k)) |
|---|
| 642 | |
|---|
| 643 | vtsold(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ & |
|---|
| 644 | ggamma(tmp_ss(k))/(tmp1**bv_s(k)) |
|---|
| 645 | |
|---|
| 646 | if (k .eq. 1) then |
|---|
| 647 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtsold(k)) |
|---|
| 648 | else |
|---|
| 649 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtsold(k)) |
|---|
| 650 | endif |
|---|
| 651 | else |
|---|
| 652 | vtsold(k)=0. |
|---|
| 653 | endif |
|---|
| 654 | enddo |
|---|
| 655 | |
|---|
| 656 | if (max_q .ge. min_q) then |
|---|
| 657 | ! |
|---|
| 658 | ! |
|---|
| 659 | !- Check if the summation of the small delta t >= big delta t |
|---|
| 660 | ! (t_del_tv) (del_tv) (dtb) |
|---|
| 661 | |
|---|
| 662 | t_del_tv=t_del_tv+del_tv |
|---|
| 663 | |
|---|
| 664 | if ( t_del_tv .ge. dtb ) then |
|---|
| 665 | notlast=.false. |
|---|
| 666 | del_tv=dtb+del_tv-t_del_tv |
|---|
| 667 | endif |
|---|
| 668 | ! |
|---|
| 669 | fluxin=0. |
|---|
| 670 | do k=max_q,min_q,-1 |
|---|
| 671 | fluxout=rho(k)*vtsold(k)*qsz(k) |
|---|
| 672 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
|---|
| 673 | qsz(k)=qsz(k)+del_tv*flux |
|---|
| 674 | qsz(k)=amax1(0.,qsz(k)) |
|---|
| 675 | fluxin=fluxout |
|---|
| 676 | enddo |
|---|
| 677 | if (min_q .eq. 1) then |
|---|
| 678 | pptsnow=pptsnow+fluxin*del_tv |
|---|
| 679 | else |
|---|
| 680 | qsz(min_q-1)=qsz(min_q-1)+del_tv* & |
|---|
| 681 | fluxin/rho(min_q-1)/dzw(min_q-1) |
|---|
| 682 | endif |
|---|
| 683 | ! |
|---|
| 684 | else |
|---|
| 685 | notlast=.false. |
|---|
| 686 | endif |
|---|
| 687 | |
|---|
| 688 | ENDDO |
|---|
| 689 | |
|---|
| 690 | ! |
|---|
| 691 | !-- cloud ice (03/21/02) using Heymsfield and Donner (1990) Vi=3.29*qi^0.16 |
|---|
| 692 | ! |
|---|
| 693 | t_del_tv=0. |
|---|
| 694 | del_tv=dtb |
|---|
| 695 | notlast=.true. |
|---|
| 696 | ! |
|---|
| 697 | DO while (notlast) |
|---|
| 698 | ! |
|---|
| 699 | min_q=kte |
|---|
| 700 | max_q=kts-1 |
|---|
| 701 | ! |
|---|
| 702 | do k=kts,kte-1 |
|---|
| 703 | if (qiz(k) .gt. 1.0e-8) then |
|---|
| 704 | min_q=min0(min_q,k) |
|---|
| 705 | max_q=max0(max_q,k) |
|---|
| 706 | vtiold(k)= 3.29 * (rho(k)* qiz(k))** 0.16 ! Heymsfield and Donner |
|---|
| 707 | if (k .eq. 1) then |
|---|
| 708 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtiold(k)) |
|---|
| 709 | else |
|---|
| 710 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtiold(k)) |
|---|
| 711 | endif |
|---|
| 712 | else |
|---|
| 713 | vtiold(k)=0. |
|---|
| 714 | endif |
|---|
| 715 | enddo |
|---|
| 716 | |
|---|
| 717 | if (max_q .ge. min_q) then |
|---|
| 718 | ! |
|---|
| 719 | !- Check if the summation of the small delta t >= big delta t |
|---|
| 720 | ! (t_del_tv) (del_tv) (dtb) |
|---|
| 721 | |
|---|
| 722 | t_del_tv=t_del_tv+del_tv |
|---|
| 723 | |
|---|
| 724 | if ( t_del_tv .ge. dtb ) then |
|---|
| 725 | notlast=.false. |
|---|
| 726 | del_tv=dtb+del_tv-t_del_tv |
|---|
| 727 | endif |
|---|
| 728 | |
|---|
| 729 | fluxin=0. |
|---|
| 730 | do k=max_q,min_q,-1 |
|---|
| 731 | fluxout=rho(k)*vtiold(k)*qiz(k) |
|---|
| 732 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
|---|
| 733 | qiz(k)=qiz(k)+del_tv*flux |
|---|
| 734 | qiz(k)=amax1(0.,qiz(k)) |
|---|
| 735 | fluxin=fluxout |
|---|
| 736 | enddo |
|---|
| 737 | if (min_q .eq. 1) then |
|---|
| 738 | pptice=pptice+fluxin*del_tv |
|---|
| 739 | else |
|---|
| 740 | qiz(min_q-1)=qiz(min_q-1)+del_tv* & |
|---|
| 741 | fluxin/rho(min_q-1)/dzw(min_q-1) |
|---|
| 742 | endif |
|---|
| 743 | ! |
|---|
| 744 | else |
|---|
| 745 | notlast=.false. |
|---|
| 746 | endif |
|---|
| 747 | ! |
|---|
| 748 | ENDDO |
|---|
| 749 | |
|---|
| 750 | ! CALL wrf_debug ( 100 , 'module_ylin: end precip flux' ) |
|---|
| 751 | |
|---|
| 752 | ! Microphpysics processes |
|---|
| 753 | |
|---|
| 754 | DO 2000 k=kts,kte |
|---|
| 755 | ! |
|---|
| 756 | qvzodt(k)=amax1( 0.0,odtb*qvz(k) ) |
|---|
| 757 | qlzodt(k)=amax1( 0.0,odtb*qlz(k) ) |
|---|
| 758 | qizodt(k)=amax1( 0.0,odtb*qiz(k) ) |
|---|
| 759 | qszodt(k)=amax1( 0.0,odtb*qsz(k) ) |
|---|
| 760 | qrzodt(k)=amax1( 0.0,odtb*qrz(k) ) |
|---|
| 761 | |
|---|
| 762 | !*********************************************************************** |
|---|
| 763 | !***** diagnose mixing ratios (qrz,qsz), terminal ***** |
|---|
| 764 | !***** velocities (vtr,vts), and slope parameters in size ***** |
|---|
| 765 | !***** distribution(xlambdar,xlambdas) of rain and snow ***** |
|---|
| 766 | !***** follows Nagata and Ogura, 1991, MWR, 1309-1337. Eq (A7) ***** |
|---|
| 767 | !*********************************************************************** |
|---|
| 768 | ! |
|---|
| 769 | !**** assuming no cloud water can exist in the top two levels due to |
|---|
| 770 | !**** radiation consideration |
|---|
| 771 | ! |
|---|
| 772 | !! if |
|---|
| 773 | !! unsaturated, |
|---|
| 774 | !! no cloud water, rain, ice, snow |
|---|
| 775 | !! then |
|---|
| 776 | !! skip these processes and jump to line 2000 |
|---|
| 777 | ! |
|---|
| 778 | ! |
|---|
| 779 | tmp=qiz(k)+qlz(k)+qsz(k)+qrz(k) |
|---|
| 780 | if( qvz(k)+qlz(k)+qiz(k) .lt. qsiz(k) & |
|---|
| 781 | .and. tmp .eq. 0.0 ) go to 2000 |
|---|
| 782 | ! |
|---|
| 783 | !! calculate terminal velocity of rain |
|---|
| 784 | ! |
|---|
| 785 | if (qrz(k) .gt. 1.0e-8) then |
|---|
| 786 | tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) |
|---|
| 787 | xlambdar(k)=sqrt(tmp1) |
|---|
| 788 | olambdar(k)=1.0/xlambdar(k) |
|---|
| 789 | vtrold(k)=o6*av_r*gambp4*sqrho(k)*olambdar(k)**bv_r |
|---|
| 790 | else |
|---|
| 791 | vtrold(k)=0. |
|---|
| 792 | olambdar(k)=0. |
|---|
| 793 | endif |
|---|
| 794 | ! |
|---|
| 795 | if (qrz(k) .gt. 1.0e-8) then |
|---|
| 796 | tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) |
|---|
| 797 | xlambdar(k)=sqrt(tmp1) |
|---|
| 798 | olambdar(k)=1.0/xlambdar(k) |
|---|
| 799 | vtr(k)=o6*av_r*gambp4*sqrho(k)*olambdar(k)**bv_r |
|---|
| 800 | else |
|---|
| 801 | vtr(k)=0. |
|---|
| 802 | olambdar(k)=0. |
|---|
| 803 | endif |
|---|
| 804 | ! |
|---|
| 805 | !! calculate terminal velocity of snow |
|---|
| 806 | ! |
|---|
| 807 | if (qsz(k) .gt. 1.0e-8) then |
|---|
| 808 | tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))& |
|---|
| 809 | **(1./tmp_ss(k)) |
|---|
| 810 | olambdas(k)=1.0/tmp1 |
|---|
| 811 | vtsold(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ & |
|---|
| 812 | ggamma(tmp_ss(k))/(tmp1**bv_s(k)) |
|---|
| 813 | |
|---|
| 814 | else |
|---|
| 815 | vtsold(k)=0. |
|---|
| 816 | olambdas(k)=0. |
|---|
| 817 | endif |
|---|
| 818 | ! |
|---|
| 819 | if (qsz(k) .gt. 1.0e-8) then |
|---|
| 820 | tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))& |
|---|
| 821 | **(1./tmp_ss(k)) |
|---|
| 822 | olambdas(k)=1.0/tmp1 |
|---|
| 823 | vts(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ & |
|---|
| 824 | ggamma(tmp_ss(k))/(tmp1**bv_s(k)) |
|---|
| 825 | |
|---|
| 826 | else |
|---|
| 827 | vts(k)=0. |
|---|
| 828 | olambdas(k)=0. |
|---|
| 829 | endif |
|---|
| 830 | |
|---|
| 831 | !---------- start of snow/ice processes below freezing |
|---|
| 832 | |
|---|
| 833 | if (tem(k) .lt. 273.15) then |
|---|
| 834 | |
|---|
| 835 | ! |
|---|
| 836 | !*********************************************************************** |
|---|
| 837 | !********* snow production processes for T < 0 C ********** |
|---|
| 838 | !*********************************************************************** |
|---|
| 839 | !c |
|---|
| 840 | !c (1) ICE CRYSTAL AGGREGATION TO SNOW (Psaut): Lin (21) |
|---|
| 841 | !c! psaut=alpha1*(qi-qi0) |
|---|
| 842 | !c! alpha1=1.0e-3*exp(0.025*(T-T0)) |
|---|
| 843 | !c |
|---|
| 844 | alpha1=1.0e-3*exp( 0.025*temcc(k) ) |
|---|
| 845 | ! |
|---|
| 846 | if(temcc(k) .lt. -20.0) then |
|---|
| 847 | tmp1=-7.6+4.0*exp( -0.2443e-3*(abs(temcc(k))-20)**2.455 ) |
|---|
| 848 | qic=1.0e-3*exp(tmp1)*orho(k) |
|---|
| 849 | else |
|---|
| 850 | qic=qi0 |
|---|
| 851 | end if |
|---|
| 852 | |
|---|
| 853 | tmp1=odtb*(qiz(k)-qic)*(1.0-exp(-alpha1*dtb)) |
|---|
| 854 | psaut(k)=amax1( 0.0,tmp1 ) |
|---|
| 855 | |
|---|
| 856 | !c |
|---|
| 857 | !c (2) BERGERON PROCESS TRANSFER OF CLOUD WATER TO SNOW (Psfw) |
|---|
| 858 | !c this process only considered when -31 C < T < 0 C |
|---|
| 859 | !c Lin (33) and Hsie (17) |
|---|
| 860 | !c |
|---|
| 861 | !c! |
|---|
| 862 | !c! parama1 and parama2 functions must be user supplied |
|---|
| 863 | !c! |
|---|
| 864 | |
|---|
| 865 | if( qlz(k) .gt. 1.0e-10 ) then |
|---|
| 866 | temc1=amax1(-30.99,temcc(k)) |
|---|
| 867 | a1=parama1( temc1 ) |
|---|
| 868 | a2=parama2( temc1 ) |
|---|
| 869 | tmp1=1.0-a2 |
|---|
| 870 | !! change unit from cgs to mks |
|---|
| 871 | a1=a1*0.001**tmp1 |
|---|
| 872 | !! dtberg is the time needed for a crystal to grow from 40 to 50 um |
|---|
| 873 | !! odtberg=1.0/dtberg |
|---|
| 874 | odtberg=(a1*tmp1)/(xmi50**tmp1-xmi40**tmp1) |
|---|
| 875 | ! |
|---|
| 876 | !! compute terminal velocity of a 50 micron ice cystal |
|---|
| 877 | ! |
|---|
| 878 | vti50=av_i*di50**bv_i*sqrho(k) |
|---|
| 879 | ! |
|---|
| 880 | eiw=1.0 |
|---|
| 881 | save1=a1*xmi50**a2 |
|---|
| 882 | save2=0.25*pi*eiw*rho(k)*di50*di50*vti50 |
|---|
| 883 | ! |
|---|
| 884 | tmp2=( save1 + save2*qlz(k) ) |
|---|
| 885 | ! |
|---|
| 886 | !! maximum number of 50 micron crystals limited by the amount |
|---|
| 887 | !! of supercool water |
|---|
| 888 | ! |
|---|
| 889 | xni50mx=qlzodt(k)/tmp2 |
|---|
| 890 | ! |
|---|
| 891 | !! number of 50 micron crystals produced |
|---|
| 892 | ! |
|---|
| 893 | xni50=qiz(k)*( 1.0-exp(-dtb*odtberg) )/xmi50 |
|---|
| 894 | xni50=amin1(xni50,xni50mx) |
|---|
| 895 | ! |
|---|
| 896 | tmp3=odtb*tmp2/save2*( 1.0-exp(-save2*xni50*dtb) ) |
|---|
| 897 | psfw(k)=amin1( tmp3,qlzodt(k) ) |
|---|
| 898 | !c |
|---|
| 899 | !c (3) REDUCTION OF CLOUD ICE BY BERGERON PROCESS (Psfi): Lin (34) |
|---|
| 900 | !c this process only considered when -31 C < T < 0 C |
|---|
| 901 | !c |
|---|
| 902 | tmp1=xni50*xmi50-psfw(k) |
|---|
| 903 | psfi(k)=amin1(tmp1,qizodt(k)) |
|---|
| 904 | end if |
|---|
| 905 | ! |
|---|
| 906 | ! |
|---|
| 907 | if(qrz(k) .le. 0.0) go to 1000 |
|---|
| 908 | ! |
|---|
| 909 | ! Processes (4) and (5) only need when qrz > 0.0 |
|---|
| 910 | ! |
|---|
| 911 | !c |
|---|
| 912 | !c (4) CLOUD ICE ACCRETION BY RAIN (Praci): Lin (25) |
|---|
| 913 | !c produce PI |
|---|
| 914 | !c |
|---|
| 915 | eri=1.0 |
|---|
| 916 | save1=pio4*eri*xnor*av_r*sqrho(k) |
|---|
| 917 | tmp1=save1*gambp3*olambdar(k)**bp3 |
|---|
| 918 | praci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 919 | |
|---|
| 920 | !c |
|---|
| 921 | !c (5) RAIN ACCRETION BY CLOUD ICE (Piacr): Lin (26) |
|---|
| 922 | !c |
|---|
| 923 | tmp2=qiz(k)*save1*rho(k)*pio6*rhowater*gambp6*oxmi* & |
|---|
| 924 | olambdar(k)**bp6 |
|---|
| 925 | piacr(k)=amin1( tmp2,qrzodt(k) ) |
|---|
| 926 | |
|---|
| 927 | ! |
|---|
| 928 | 1000 continue |
|---|
| 929 | ! |
|---|
| 930 | if(qsz(k) .le. 0.0) go to 1200 |
|---|
| 931 | ! |
|---|
| 932 | ! Compute the following processes only when qsz > 0.0 |
|---|
| 933 | ! |
|---|
| 934 | !c |
|---|
| 935 | !c (6) ICE CRYSTAL ACCRETION BY SNOW (Psaci): Lin (22) |
|---|
| 936 | !c |
|---|
| 937 | esi=exp( 0.025*temcc(k) ) |
|---|
| 938 | save1 = aa_s(k)*sqrho(k)*N0_s(k)* & |
|---|
| 939 | ggamma(bv_s(k)+tmp_sa(k))*olambdas(k)**(bv_s(k)+tmp_sa(k)) |
|---|
| 940 | |
|---|
| 941 | tmp1=esi*save1 |
|---|
| 942 | psaci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 943 | |
|---|
| 944 | !c |
|---|
| 945 | !c (7) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) |
|---|
| 946 | !c |
|---|
| 947 | esw=1.0 |
|---|
| 948 | tmp1=esw*save1 |
|---|
| 949 | psacw(k)=qlzodt(K)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 950 | |
|---|
| 951 | !c |
|---|
| 952 | !c (8) DEPOSITION/SUBLIMATION OF SNOW (Psdep/Pssub): Lin (31) |
|---|
| 953 | !c includes consideration of ventilation effect |
|---|
| 954 | !c |
|---|
| 955 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 956 | tmpb=xls*xls*rho(k)*qsiz(k)*diffwv(k) |
|---|
| 957 | tmpc=tmpa*qsiz(k)*diffwv(k) |
|---|
| 958 | abi=4.0*pi*cap_s(k)*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) |
|---|
| 959 | tmp1=av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k) |
|---|
| 960 | |
|---|
| 961 | !---- YLIN, here there is some approximation assuming mu_s =1, so gamma(2)=1, etc. |
|---|
| 962 | |
|---|
| 963 | tmp2= abi*N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ & |
|---|
| 964 | vf2s*schmidt(k)**0.33334* & |
|---|
| 965 | ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) ) |
|---|
| 966 | |
|---|
| 967 | tmp3=odtb*( qvz(k)-qsiz(k) ) |
|---|
| 968 | ! |
|---|
| 969 | if( tmp2 .le. 0.0) then |
|---|
| 970 | tmp2=amax1( tmp2,tmp3) |
|---|
| 971 | pssub(k)=amax1( tmp2,-qszodt(k) ) |
|---|
| 972 | psdep(k)=0.0 |
|---|
| 973 | else |
|---|
| 974 | psdep(k)=amin1( tmp2,tmp3 ) |
|---|
| 975 | pssub(k)=0.0 |
|---|
| 976 | end if |
|---|
| 977 | |
|---|
| 978 | ! |
|---|
| 979 | if(qrz(k) .le. 0.0) go to 1200 |
|---|
| 980 | ! |
|---|
| 981 | ! Compute processes (9) and (10) only when qsz > 0.0 and qrz > 0.0 |
|---|
| 982 | ! these two terms need to be refined in the future, they should be equal |
|---|
| 983 | !c |
|---|
| 984 | !c (9) ACCRETION OF SNOW BY RAIN (Pracs): Lin (27) |
|---|
| 985 | !c |
|---|
| 986 | esr=1.0 |
|---|
| 987 | tmpa=olambdar(k)*olambdar(k) |
|---|
| 988 | tmpb=olambdas(k)*olambdas(k) |
|---|
| 989 | tmpc=olambdar(k)*olambdas(k) |
|---|
| 990 | tmp1=pi*pi*esr*xnor*N0_s(k)*abs( vtr(k)-vts(k) )*orho(k) |
|---|
| 991 | tmp2=tmpb*tmpb*olambdar(k)*(5.0*tmpb+2.0*tmpc+0.5*tmpa) |
|---|
| 992 | tmp3=tmp1*rhosnow*tmp2 |
|---|
| 993 | pracs(k)=amin1( tmp3,qszodt(k) ) |
|---|
| 994 | pracs(k)=0.0 |
|---|
| 995 | !c |
|---|
| 996 | !c (10) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) |
|---|
| 997 | !c |
|---|
| 998 | tmp3=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 999 | tmp4=tmp1*rhowater*tmp3 |
|---|
| 1000 | psacr(k)=amin1( tmp4,qrzodt(k) ) |
|---|
| 1001 | ! |
|---|
| 1002 | !c |
|---|
| 1003 | !c (2) FREEZING OF RAIN TO FORM GRAUPEL (pgfr): Lin (45), added to PI |
|---|
| 1004 | !c positive value |
|---|
| 1005 | !c Constant in Bigg freezing Aplume=Ap=0.66 /k |
|---|
| 1006 | !c Constant in raindrop freezing equ. Bplume=Bp=100./m/m/m/s |
|---|
| 1007 | ! |
|---|
| 1008 | |
|---|
| 1009 | if (qrz(k) .gt. 1.e-8 ) then |
|---|
| 1010 | Bp=100. |
|---|
| 1011 | Ap=0.66 |
|---|
| 1012 | tmp1=olambdar(k)*olambdar(k)*olambdar(k) |
|---|
| 1013 | tmp2=20.*pi*pi*Bp*xnor*rhowater*orho(k)* & |
|---|
| 1014 | (exp(-Ap*temcc(k))-1.0)*tmp1*tmp1*olambdar(k) |
|---|
| 1015 | pgfr(k)=amin1( tmp2,qrzodt(k) ) |
|---|
| 1016 | else |
|---|
| 1017 | pgfr(k)=0 |
|---|
| 1018 | endif |
|---|
| 1019 | |
|---|
| 1020 | 1200 continue |
|---|
| 1021 | ! |
|---|
| 1022 | |
|---|
| 1023 | else |
|---|
| 1024 | |
|---|
| 1025 | ! |
|---|
| 1026 | !*********************************************************************** |
|---|
| 1027 | !********* snow production processes for T > 0 C ********** |
|---|
| 1028 | !*********************************************************************** |
|---|
| 1029 | ! |
|---|
| 1030 | if (qsz(k) .le. 0.0) go to 1400 |
|---|
| 1031 | !c |
|---|
| 1032 | !c (1) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) |
|---|
| 1033 | !c |
|---|
| 1034 | esw=1.0 |
|---|
| 1035 | |
|---|
| 1036 | save1 =aa_s(k)*sqrho(k)*N0_s(k)* & |
|---|
| 1037 | ggamma(bv_s(k)+tmp_sa(k))*olambdas(k)**(bv_s(k)+tmp_sa(k)) |
|---|
| 1038 | |
|---|
| 1039 | tmp1=esw*save1 |
|---|
| 1040 | psacw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 1041 | |
|---|
| 1042 | !c |
|---|
| 1043 | !c (2) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) |
|---|
| 1044 | !c |
|---|
| 1045 | esr=1.0 |
|---|
| 1046 | tmpa=olambdar(k)*olambdar(k) |
|---|
| 1047 | tmpb=olambdas(k)*olambdas(k) |
|---|
| 1048 | tmpc=olambdar(k)*olambdas(k) |
|---|
| 1049 | tmp1=pi*pi*esr*xnor*N0_s(k)*abs( vtr(k)-vts(k) )*orho(k) |
|---|
| 1050 | tmp2=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 1051 | tmp3=tmp1*rhowater*tmp2 |
|---|
| 1052 | psacr(k)=amin1( tmp3,qrzodt(k) ) |
|---|
| 1053 | !c |
|---|
| 1054 | !c (3) MELTING OF SNOW (Psmlt): Lin (32) |
|---|
| 1055 | !c Psmlt is negative value |
|---|
| 1056 | ! |
|---|
| 1057 | delrs=rs0(k)-qvz(k) |
|---|
| 1058 | term1=2.0*pi*orho(k)*( xlv*diffwv(k)*rho(k)*delrs- & |
|---|
| 1059 | xka(k)*temcc(k) ) |
|---|
| 1060 | tmp1= av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k) |
|---|
| 1061 | tmp2= N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ & |
|---|
| 1062 | vf2s*schmidt(k)**0.33334* & |
|---|
| 1063 | ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) ) |
|---|
| 1064 | tmp3=term1*oxlf*tmp2-cwoxlf*temcc(k)*( psacw(k)+psacr(k) ) |
|---|
| 1065 | tmp4=amin1(0.0,tmp3) |
|---|
| 1066 | psmlt(k)=amax1( tmp4,-qszodt(k) ) |
|---|
| 1067 | !c |
|---|
| 1068 | !c (4) EVAPORATION OF MELTING SNOW (Psmltevp): HR (A27) |
|---|
| 1069 | !c but use Lin et al. coefficience |
|---|
| 1070 | !c Psmltevp is a negative value |
|---|
| 1071 | !c |
|---|
| 1072 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 1073 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
|---|
| 1074 | tmpc=tmpa*qswz(k)*diffwv(k) |
|---|
| 1075 | tmpd=amin1( 0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb ) |
|---|
| 1076 | |
|---|
| 1077 | abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
|---|
| 1078 | ! |
|---|
| 1079 | !**** allow evaporation to occur when RH less than 90% |
|---|
| 1080 | !**** here not using 100% because the evaporation cooling |
|---|
| 1081 | !**** of temperature is not taking into account yet; hence, |
|---|
| 1082 | !**** the qsw value is a little bit larger. This will avoid |
|---|
| 1083 | !**** evaporation can generate cloud. |
|---|
| 1084 | ! |
|---|
| 1085 | tmp1=av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k) |
|---|
| 1086 | tmp2= N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ & |
|---|
| 1087 | vf2s*schmidt(k)**0.33334* & |
|---|
| 1088 | ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) ) |
|---|
| 1089 | tmp3=amin1(0.0,tmp2) |
|---|
| 1090 | tmp3=amax1( tmp3,tmpd ) |
|---|
| 1091 | psmltevp(k)=amax1( tmp3,-qszodt(k) ) |
|---|
| 1092 | 1400 continue |
|---|
| 1093 | ! |
|---|
| 1094 | end if !---- end of snow/ice processes |
|---|
| 1095 | |
|---|
| 1096 | ! CALL wrf_debug ( 100 , 'module_ylin: finish ice/snow processes' ) |
|---|
| 1097 | |
|---|
| 1098 | |
|---|
| 1099 | !*********************************************************************** |
|---|
| 1100 | !********* rain production processes ********** |
|---|
| 1101 | !*********************************************************************** |
|---|
| 1102 | |
|---|
| 1103 | !c |
|---|
| 1104 | !c (1) AUTOCONVERSION OF RAIN (Praut): using Liu and Daum (2004) |
|---|
| 1105 | !c |
|---|
| 1106 | |
|---|
| 1107 | !---- YLIN, autoconversion use Liu and Daum (2004), unit = g cm-3 s-1, in the scheme kg/kg s-1, so |
|---|
| 1108 | |
|---|
| 1109 | if (qlz(k) .gt. 1e-6) then |
|---|
| 1110 | lamc(k) = (Nt_c*rhowater*pi*ggamma(4.+mu_c)/(6.*rho(k)*qlz(k))/ & !--- N(D) = N0*D^mu*exp(-lamc*D) |
|---|
| 1111 | ggamma(1+mu_c))**0.3333 |
|---|
| 1112 | Dc_liu = (ggamma(6+1+mu_c)/ggamma(1+mu_c))**(1./6.)/lamc(k) !----- R6 in m |
|---|
| 1113 | |
|---|
| 1114 | if (Dc_liu .gt. R6c) then |
|---|
| 1115 | disp = 1./(mu_c+1.) !--- square of relative dispersion |
|---|
| 1116 | eta = (0.75/pi/(1e-3*rhowater))**2*1.9e11*((1+3*disp)*(1+4*disp)*& |
|---|
| 1117 | (1+5*disp)/(1+disp)/(1+2*disp)) |
|---|
| 1118 | praut(k) = eta*(1e-3*rho(k)*qlz(k))**3/(1e-6*Nt_c) !--- g cm-3 s-1 |
|---|
| 1119 | praut(k) = praut(k)/(1e-3*rho(k)) !--- kg kg-1 s-1 |
|---|
| 1120 | else |
|---|
| 1121 | praut(k) = 0.0 |
|---|
| 1122 | endif |
|---|
| 1123 | else |
|---|
| 1124 | praut(k) = 0.0 |
|---|
| 1125 | endif |
|---|
| 1126 | |
|---|
| 1127 | !c |
|---|
| 1128 | !c (2) ACCRETION OF CLOUD WATER BY RAIN (Pracw): Lin (51) |
|---|
| 1129 | !c |
|---|
| 1130 | erw=1.0 |
|---|
| 1131 | |
|---|
| 1132 | tmp1=pio4*erw*xnor*av_r*sqrho(k)* & |
|---|
| 1133 | gambp3*olambdar(k)**bp3 |
|---|
| 1134 | pracw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 1135 | |
|---|
| 1136 | !c |
|---|
| 1137 | !c (3) EVAPORATION OF RAIN (Prevp): Lin (52) |
|---|
| 1138 | !c Prevp is negative value |
|---|
| 1139 | !c |
|---|
| 1140 | !c Sw=qvoqsw : saturation ratio |
|---|
| 1141 | !c |
|---|
| 1142 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 1143 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
|---|
| 1144 | tmpc=tmpa*qswz(k)*diffwv(k) |
|---|
| 1145 | tmpd=amin1(0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb) |
|---|
| 1146 | |
|---|
| 1147 | abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
|---|
| 1148 | tmp1=av_r*sqrho(k)*olambdar(k)**bp5/visc(k) |
|---|
| 1149 | tmp2=abr*xnor*( vf1r*olambdar(k)*olambdar(k)+ & |
|---|
| 1150 | vf2r*schmidt(k)**0.33334*gambp5o2*sqrt(tmp1) ) |
|---|
| 1151 | tmp3=amin1( 0.0,tmp2 ) |
|---|
| 1152 | tmp3=amax1( tmp3,tmpd ) |
|---|
| 1153 | prevp(k)=amax1( tmp3,-qrzodt(k) ) |
|---|
| 1154 | |
|---|
| 1155 | ! CALL wrf_debug ( 100 , 'module_ylin: finish rain processes' ) |
|---|
| 1156 | |
|---|
| 1157 | !c |
|---|
| 1158 | !c********************************************************************** |
|---|
| 1159 | !c***** combine all processes together and avoid negative ***** |
|---|
| 1160 | !c***** water substances |
|---|
| 1161 | !*********************************************************************** |
|---|
| 1162 | !c |
|---|
| 1163 | if ( temcc(k) .lt. 0.0) then |
|---|
| 1164 | !c |
|---|
| 1165 | !c combined water vapor depletions |
|---|
| 1166 | !c |
|---|
| 1167 | tmp=psdep(k) |
|---|
| 1168 | if ( tmp .gt. qvzodt(k) ) then |
|---|
| 1169 | factor=qvzodt(k)/tmp |
|---|
| 1170 | psdep(k)=psdep(k)*factor |
|---|
| 1171 | end if |
|---|
| 1172 | !c |
|---|
| 1173 | !c combined cloud water depletions |
|---|
| 1174 | !c |
|---|
| 1175 | tmp=praut(k)+psacw(k)+psfw(k)+pracw(k) |
|---|
| 1176 | if ( tmp .gt. qlzodt(k) ) then |
|---|
| 1177 | factor=qlzodt(k)/tmp |
|---|
| 1178 | praut(k)=praut(k)*factor |
|---|
| 1179 | psacw(k)=psacw(k)*factor |
|---|
| 1180 | psfw(k)=psfw(k)*factor |
|---|
| 1181 | pracw(k)=pracw(k)*factor |
|---|
| 1182 | end if |
|---|
| 1183 | !c |
|---|
| 1184 | !c combined cloud ice depletions |
|---|
| 1185 | !c |
|---|
| 1186 | tmp=psaut(k)+psaci(k)+praci(k)+psfi(k) |
|---|
| 1187 | if (tmp .gt. qizodt(k) ) then |
|---|
| 1188 | factor=qizodt(k)/tmp |
|---|
| 1189 | psaut(k)=psaut(k)*factor |
|---|
| 1190 | psaci(k)=psaci(k)*factor |
|---|
| 1191 | praci(k)=praci(k)*factor |
|---|
| 1192 | psfi(k)=psfi(k)*factor |
|---|
| 1193 | endif |
|---|
| 1194 | !c |
|---|
| 1195 | !c combined all rain processes |
|---|
| 1196 | !c |
|---|
| 1197 | tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k)+pgfr(k) |
|---|
| 1198 | if (tmp_r .gt. qrzodt(k) ) then |
|---|
| 1199 | factor=qrzodt(k)/tmp_r |
|---|
| 1200 | piacr(k)=piacr(k)*factor |
|---|
| 1201 | psacr(k)=psacr(k)*factor |
|---|
| 1202 | prevp(k)=prevp(k)*factor |
|---|
| 1203 | pgfr(k)=pgfr(k)*factor |
|---|
| 1204 | endif |
|---|
| 1205 | !c |
|---|
| 1206 | !c combined all snow processes |
|---|
| 1207 | !c |
|---|
| 1208 | tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+pgfr(k)+ & |
|---|
| 1209 | psfi(k)+praci(k)+piacr(k)+ & |
|---|
| 1210 | psdep(k)+psacr(k)-pracs(k)) |
|---|
| 1211 | if ( tmp_s .gt. qszodt(k) ) then |
|---|
| 1212 | factor=qszodt(k)/tmp_s |
|---|
| 1213 | pssub(k)=pssub(k)*factor |
|---|
| 1214 | Pracs(k)=Pracs(k)*factor |
|---|
| 1215 | endif |
|---|
| 1216 | |
|---|
| 1217 | !c |
|---|
| 1218 | !c calculate new water substances, thetae, tem, and qvsbar |
|---|
| 1219 | !c |
|---|
| 1220 | |
|---|
| 1221 | pvapor(k)=-pssub(k)-psdep(k)-prevp(k) |
|---|
| 1222 | qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k) ) |
|---|
| 1223 | pclw(k)=-praut(k)-pracw(k)-psacw(k)-psfw(k) |
|---|
| 1224 | qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) |
|---|
| 1225 | pcli(k)=-psaut(k)-psfi(k)-psaci(k)-praci(k) |
|---|
| 1226 | qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) |
|---|
| 1227 | tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k)+pgfr(k)-pracs(k) |
|---|
| 1228 | prain(k)=-tmp_r |
|---|
| 1229 | qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) |
|---|
| 1230 | tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+pgfr(k)+ & |
|---|
| 1231 | psfi(k)+praci(k)+piacr(k)+ & |
|---|
| 1232 | psdep(k)+psacr(k)-pracs(k)) |
|---|
| 1233 | psnow(k)=-tmp_s |
|---|
| 1234 | qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) |
|---|
| 1235 | |
|---|
| 1236 | qschg(k)=qschg(k)+psnow(k) |
|---|
| 1237 | qschg(k)=psnow(k) |
|---|
| 1238 | |
|---|
| 1239 | tmp=ocp/tothz(k)*xLf*qschg(k) |
|---|
| 1240 | theiz(k)=theiz(k)+dtb*tmp |
|---|
| 1241 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 1242 | tem(k)=thz(k)*tothz(k) |
|---|
| 1243 | |
|---|
| 1244 | temcc(k)=tem(k)-273.15 |
|---|
| 1245 | |
|---|
| 1246 | if( temcc(k) .lt. -40.0 ) qswz(k)=qsiz(k) |
|---|
| 1247 | qlpqi=qlz(k)+qiz(k) |
|---|
| 1248 | if ( qlpqi .eq. 0.0 ) then |
|---|
| 1249 | qvsbar(k)=qsiz(k) |
|---|
| 1250 | else |
|---|
| 1251 | qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
|---|
| 1252 | endif |
|---|
| 1253 | |
|---|
| 1254 | ! |
|---|
| 1255 | else !>0 C |
|---|
| 1256 | !c |
|---|
| 1257 | !c combined cloud water depletions |
|---|
| 1258 | !c |
|---|
| 1259 | tmp=praut(k)+psacw(k)+pracw(k) |
|---|
| 1260 | if ( tmp .gt. qlzodt(k) ) then |
|---|
| 1261 | factor=qlzodt(k)/tmp |
|---|
| 1262 | praut(k)=praut(k)*factor |
|---|
| 1263 | psacw(k)=psacw(k)*factor |
|---|
| 1264 | pracw(k)=pracw(k)*factor |
|---|
| 1265 | end if |
|---|
| 1266 | !c |
|---|
| 1267 | !c combined all snow processes |
|---|
| 1268 | !c |
|---|
| 1269 | tmp_s=-(psmlt(k)+psmltevp(k)) |
|---|
| 1270 | if (tmp_s .gt. qszodt(k) ) then |
|---|
| 1271 | factor=qszodt(k)/tmp_s |
|---|
| 1272 | psmlt(k)=psmlt(k)*factor |
|---|
| 1273 | psmltevp(k)=psmltevp(k)*factor |
|---|
| 1274 | endif |
|---|
| 1275 | !c |
|---|
| 1276 | !c combined all rain processes |
|---|
| 1277 | !c |
|---|
| 1278 | tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) |
|---|
| 1279 | if (tmp_r .gt. qrzodt(k) ) then |
|---|
| 1280 | factor=qrzodt(k)/tmp_r |
|---|
| 1281 | prevp(k)=prevp(k)*factor |
|---|
| 1282 | endif |
|---|
| 1283 | !c |
|---|
| 1284 | !c calculate new water substances and thetae |
|---|
| 1285 | !c |
|---|
| 1286 | pvapor(k)=-psmltevp(k)-prevp(k) |
|---|
| 1287 | qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k)) |
|---|
| 1288 | pclw(k)=-praut(k)-pracw(k)-psacw(k) |
|---|
| 1289 | qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) |
|---|
| 1290 | pcli(k)=0.0 |
|---|
| 1291 | qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) |
|---|
| 1292 | tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) |
|---|
| 1293 | prain(k)=-tmp_r |
|---|
| 1294 | tmpqrz=qrz(k) |
|---|
| 1295 | qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) |
|---|
| 1296 | tmp_s=-(psmlt(k)+psmltevp(k)) |
|---|
| 1297 | psnow(k)=-tmp_s |
|---|
| 1298 | qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) |
|---|
| 1299 | qschg(k)=psnow(k) |
|---|
| 1300 | ! |
|---|
| 1301 | tmp=ocp/tothz(k)*xLf*qschg(k) |
|---|
| 1302 | theiz(k)=theiz(k)+dtb*tmp |
|---|
| 1303 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 1304 | |
|---|
| 1305 | tem(k)=thz(k)*tothz(k) |
|---|
| 1306 | temcc(k)=tem(k)-273.15 |
|---|
| 1307 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 1308 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 1309 | qsiz(k)=qswz(k) |
|---|
| 1310 | qvsbar(k)=qswz(k) |
|---|
| 1311 | ! |
|---|
| 1312 | end if |
|---|
| 1313 | ! CALL wrf_debug ( 100 , 'module_ylin: finish sum of all processes' ) |
|---|
| 1314 | |
|---|
| 1315 | ! |
|---|
| 1316 | !*********************************************************************** |
|---|
| 1317 | !********** saturation adjustment ********** |
|---|
| 1318 | !*********************************************************************** |
|---|
| 1319 | ! |
|---|
| 1320 | ! allow supersaturation exits linearly from 0% at 500 mb to 50% |
|---|
| 1321 | ! above 300 mb |
|---|
| 1322 | ! 5.0e-5=1.0/(500mb-300mb) |
|---|
| 1323 | ! |
|---|
| 1324 | rsat=1.0 |
|---|
| 1325 | if( qvz(k)+qlz(k)+qiz(k) .lt. rsat*qvsbar(k) ) then |
|---|
| 1326 | |
|---|
| 1327 | !c |
|---|
| 1328 | !c unsaturated |
|---|
| 1329 | !c |
|---|
| 1330 | qvz(k)=qvz(k)+qlz(k)+qiz(k) |
|---|
| 1331 | qlz(k)=0.0 |
|---|
| 1332 | qiz(k)=0.0 |
|---|
| 1333 | |
|---|
| 1334 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 1335 | tem(k)=thz(k)*tothz(k) |
|---|
| 1336 | temcc(k)=tem(k)-273.15 |
|---|
| 1337 | |
|---|
| 1338 | go to 1800 |
|---|
| 1339 | ! |
|---|
| 1340 | else |
|---|
| 1341 | !c |
|---|
| 1342 | !c saturated |
|---|
| 1343 | !c |
|---|
| 1344 | pladj(k)=qlz(k) |
|---|
| 1345 | piadj(k)=qiz(k) |
|---|
| 1346 | ! |
|---|
| 1347 | |
|---|
| 1348 | CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & |
|---|
| 1349 | k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0) |
|---|
| 1350 | |
|---|
| 1351 | ! |
|---|
| 1352 | pladj(k)=odtb*(qlz(k)-pladj(k)) |
|---|
| 1353 | piadj(k)=odtb*(qiz(k)-piadj(k)) |
|---|
| 1354 | ! |
|---|
| 1355 | pclw(k)=pclw(k)+pladj(k) |
|---|
| 1356 | pcli(k)=pcli(k)+piadj(k) |
|---|
| 1357 | pvapor(k)=pvapor(k)-( pladj(k)+piadj(k) ) |
|---|
| 1358 | ! |
|---|
| 1359 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 1360 | tem(k)=thz(k)*tothz(k) |
|---|
| 1361 | |
|---|
| 1362 | temcc(k)=tem(k)-273.15 |
|---|
| 1363 | |
|---|
| 1364 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 1365 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 1366 | if (tem(k) .lt. 273.15 ) then |
|---|
| 1367 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 1368 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 1369 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
|---|
| 1370 | else |
|---|
| 1371 | qsiz(k)=qswz(k) |
|---|
| 1372 | endif |
|---|
| 1373 | qlpqi=qlz(k)+qiz(k) |
|---|
| 1374 | if ( qlpqi .eq. 0.0 ) then |
|---|
| 1375 | qvsbar(k)=qsiz(k) |
|---|
| 1376 | else |
|---|
| 1377 | qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
|---|
| 1378 | endif |
|---|
| 1379 | |
|---|
| 1380 | end if |
|---|
| 1381 | |
|---|
| 1382 | ! |
|---|
| 1383 | !*********************************************************************** |
|---|
| 1384 | !***** melting and freezing of cloud ice and cloud water ***** |
|---|
| 1385 | !*********************************************************************** |
|---|
| 1386 | qlpqi=qlz(k)+qiz(k) |
|---|
| 1387 | if(qlpqi .le. 0.0) go to 1800 |
|---|
| 1388 | ! |
|---|
| 1389 | !c |
|---|
| 1390 | !c (1) HOMOGENEOUS NUCLEATION WHEN T< -40 C (Pihom) |
|---|
| 1391 | !c |
|---|
| 1392 | if(temcc(k) .lt. -40.0) pihom(k)=qlz(k)*odtb |
|---|
| 1393 | !c |
|---|
| 1394 | !c (2) MELTING OF ICE CRYSTAL WHEN T> 0 C (Pimlt) |
|---|
| 1395 | !c |
|---|
| 1396 | if(temcc(k) .gt. 0.0) pimlt(k)=qiz(k)*odtb |
|---|
| 1397 | !c |
|---|
| 1398 | !c (3) PRODUCTION OF CLOUD ICE BY BERGERON PROCESS (Pidw): Hsie (p957) |
|---|
| 1399 | !c this process only considered when -31 C < T < 0 C |
|---|
| 1400 | !c |
|---|
| 1401 | if(temcc(k) .lt. 0.0 .and. temcc(k) .gt. -31.0) then |
|---|
| 1402 | !c! |
|---|
| 1403 | !c! parama1 and parama2 functions must be user supplied |
|---|
| 1404 | !c! |
|---|
| 1405 | a1=parama1( temcc(k) ) |
|---|
| 1406 | a2=parama2( temcc(k) ) |
|---|
| 1407 | !! change unit from cgs to mks |
|---|
| 1408 | a1=a1*0.001**(1.0-a2) |
|---|
| 1409 | xnin=xni0*exp(-bni*temcc(k)) |
|---|
| 1410 | pidw(k)=xnin*orho(k)*(a1*xmnin**a2) |
|---|
| 1411 | end if |
|---|
| 1412 | ! |
|---|
| 1413 | pcli(k)=pcli(k)+pihom(k)-pimlt(k)+pidw(k) |
|---|
| 1414 | pclw(k)=pclw(k)-pihom(k)+pimlt(k)-pidw(k) |
|---|
| 1415 | qlz(k)=amax1( 0.0,qlz(k)+dtb*(-pihom(k)+pimlt(k)-pidw(k)) ) |
|---|
| 1416 | qiz(k)=amax1( 0.0,qiz(k)+dtb*(pihom(k)-pimlt(k)+pidw(k)) ) |
|---|
| 1417 | |
|---|
| 1418 | ! |
|---|
| 1419 | CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & |
|---|
| 1420 | k, xLvocp, xLfocp, episp0k ,EP2,SVP1,SVP2,SVP3,SVPT0) |
|---|
| 1421 | |
|---|
| 1422 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 1423 | tem(k)=thz(k)*tothz(k) |
|---|
| 1424 | |
|---|
| 1425 | temcc(k)=tem(k)-273.15 |
|---|
| 1426 | |
|---|
| 1427 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 1428 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 1429 | |
|---|
| 1430 | if (tem(k) .lt. 273.15 ) then |
|---|
| 1431 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 1432 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 1433 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
|---|
| 1434 | else |
|---|
| 1435 | qsiz(k)=qswz(k) |
|---|
| 1436 | endif |
|---|
| 1437 | qlpqi=qlz(k)+qiz(k) |
|---|
| 1438 | |
|---|
| 1439 | if ( qlpqi .eq. 0.0 ) then |
|---|
| 1440 | qvsbar(k)=qsiz(k) |
|---|
| 1441 | else |
|---|
| 1442 | qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
|---|
| 1443 | endif |
|---|
| 1444 | |
|---|
| 1445 | 1800 continue |
|---|
| 1446 | ! |
|---|
| 1447 | !*********************************************************************** |
|---|
| 1448 | !********** integrate the productions of rain and snow ********** |
|---|
| 1449 | !*********************************************************************** |
|---|
| 1450 | ! |
|---|
| 1451 | 2000 continue |
|---|
| 1452 | |
|---|
| 1453 | ! |
|---|
| 1454 | !**** below if qv < qvmin then qv=qvmin, ql=0.0, and qi=0.0 |
|---|
| 1455 | ! |
|---|
| 1456 | do k=kts+1,kte |
|---|
| 1457 | if ( qvz(k) .lt. qvmin ) then |
|---|
| 1458 | qlz(k)=0.0 |
|---|
| 1459 | qiz(k)=0.0 |
|---|
| 1460 | qvz(k)=amax1( qvmin,qvz(k)+qlz(k)+qiz(k) ) |
|---|
| 1461 | end if |
|---|
| 1462 | enddo |
|---|
| 1463 | ! |
|---|
| 1464 | |
|---|
| 1465 | ! CALL wrf_debug ( 100 , 'module_ylin: finish saturation adjustment' ) |
|---|
| 1466 | |
|---|
| 1467 | END SUBROUTINE clphy1d_ylin |
|---|
| 1468 | |
|---|
| 1469 | |
|---|
| 1470 | |
|---|
| 1471 | |
|---|
| 1472 | !--------------------------------------------------------------------- |
|---|
| 1473 | ! SATURATED ADJUSTMENT |
|---|
| 1474 | !--------------------------------------------------------------------- |
|---|
| 1475 | SUBROUTINE satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, & |
|---|
| 1476 | kts, kte, k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0) |
|---|
| 1477 | !--------------------------------------------------------------------- |
|---|
| 1478 | IMPLICIT NONE |
|---|
| 1479 | !--------------------------------------------------------------------- |
|---|
| 1480 | ! This program use Newton's method for finding saturated temperature |
|---|
| 1481 | ! and saturation mixing ratio. |
|---|
| 1482 | ! |
|---|
| 1483 | ! In this saturation adjustment scheme we assume |
|---|
| 1484 | ! (1) the saturation mixing ratio is the mass weighted average of |
|---|
| 1485 | ! saturation values over liquid water (qsw), and ice (qsi) |
|---|
| 1486 | ! following Lord et al., 1984 and Tao, 1989 |
|---|
| 1487 | ! |
|---|
| 1488 | ! (2) the percentage of cloud liquid and cloud ice will |
|---|
| 1489 | ! be fixed during the saturation calculation |
|---|
| 1490 | !--------------------------------------------------------------------- |
|---|
| 1491 | ! |
|---|
| 1492 | |
|---|
| 1493 | INTEGER, INTENT(IN ) :: kts, kte, k |
|---|
| 1494 | |
|---|
| 1495 | REAL, DIMENSION( kts:kte ), & |
|---|
| 1496 | INTENT(INOUT) :: qvz, qlz, qiz |
|---|
| 1497 | ! |
|---|
| 1498 | REAL, DIMENSION( kts:kte ), & |
|---|
| 1499 | INTENT(IN ) :: prez, theiz, tothz |
|---|
| 1500 | |
|---|
| 1501 | REAL, INTENT(IN ) :: xLvocp, xLfocp, episp0k |
|---|
| 1502 | REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0 |
|---|
| 1503 | |
|---|
| 1504 | ! LOCAL VARS |
|---|
| 1505 | |
|---|
| 1506 | INTEGER :: n |
|---|
| 1507 | |
|---|
| 1508 | REAL, DIMENSION( kts:kte ) :: thz, tem, temcc, qsiz, & |
|---|
| 1509 | qswz, qvsbar |
|---|
| 1510 | |
|---|
| 1511 | REAL :: qsat, qlpqi, ratql, t0, t1, tmp1, ratqi, tsat, absft, & |
|---|
| 1512 | denom1, denom2, dqvsbar, ftsat, dftsat, qpz,es |
|---|
| 1513 | ! |
|---|
| 1514 | !--------------------------------------------------------------------- |
|---|
| 1515 | |
|---|
| 1516 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 1517 | |
|---|
| 1518 | tem(k)=tothz(k)*thz(k) |
|---|
| 1519 | if (tem(k) .gt. 273.15) then |
|---|
| 1520 | ! qsat=episp0k/prez(k)* & |
|---|
| 1521 | ! exp( svp2*(tem(k)-273.15)/(tem(k)-svp3) ) |
|---|
| 1522 | es=1000.*svp1*exp( svp2*(tem(k)-svpt0)/(tem(k)-svp3) ) |
|---|
| 1523 | qsat=ep2*es/(prez(k)-es) |
|---|
| 1524 | else |
|---|
| 1525 | qsat=episp0k/prez(k)* & |
|---|
| 1526 | exp( 21.8745584*(tem(k)-273.15)/(tem(k)-7.66) ) |
|---|
| 1527 | end if |
|---|
| 1528 | qpz=qvz(k)+qlz(k)+qiz(k) |
|---|
| 1529 | if (qpz .lt. qsat) then |
|---|
| 1530 | qvz(k)=qpz |
|---|
| 1531 | qiz(k)=0.0 |
|---|
| 1532 | qlz(k)=0.0 |
|---|
| 1533 | go to 400 |
|---|
| 1534 | end if |
|---|
| 1535 | qlpqi=qlz(k)+qiz(k) |
|---|
| 1536 | if( qlpqi .ge. 1.0e-5) then |
|---|
| 1537 | ratql=qlz(k)/qlpqi |
|---|
| 1538 | ratqi=qiz(k)/qlpqi |
|---|
| 1539 | else |
|---|
| 1540 | t0=273.15 |
|---|
| 1541 | ! t1=233.15 |
|---|
| 1542 | t1=248.15 |
|---|
| 1543 | tmp1=( t0-tem(k) )/(t0-t1) |
|---|
| 1544 | tmp1=amin1(1.0,tmp1) |
|---|
| 1545 | tmp1=amax1(0.0,tmp1) |
|---|
| 1546 | ratqi=tmp1 |
|---|
| 1547 | ratql=1.0-tmp1 |
|---|
| 1548 | end if |
|---|
| 1549 | ! |
|---|
| 1550 | ! |
|---|
| 1551 | !-- saturation mixing ratios over water and ice |
|---|
| 1552 | !-- at the outset we will follow Bolton 1980 MWR for |
|---|
| 1553 | !-- the water and Murray JAS 1967 for the ice |
|---|
| 1554 | ! |
|---|
| 1555 | !-- dqvsbar=d(qvsbar)/dT |
|---|
| 1556 | !-- ftsat=F(Tsat) |
|---|
| 1557 | !-- dftsat=d(F(T))/dT |
|---|
| 1558 | ! |
|---|
| 1559 | ! First guess of tsat |
|---|
| 1560 | |
|---|
| 1561 | tsat=tem(k) |
|---|
| 1562 | absft=1.0 |
|---|
| 1563 | ! |
|---|
| 1564 | do 200 n=1,20 |
|---|
| 1565 | denom1=1.0/(tsat-svp3) |
|---|
| 1566 | denom2=1.0/(tsat-7.66) |
|---|
| 1567 | ! qswz(k)=episp0k/prez(k)* & |
|---|
| 1568 | ! exp( svp2*denom1*(tsat-273.15) ) |
|---|
| 1569 | es=1000.*svp1*exp( svp2*denom1*(tsat-svpt0) ) |
|---|
| 1570 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 1571 | if (tem(k) .lt. 273.15) then |
|---|
| 1572 | ! qsiz(k)=episp0k/prez(k)* & |
|---|
| 1573 | ! exp( 21.8745584*denom2*(tsat-273.15) ) |
|---|
| 1574 | es=1000.*svp1*exp( 21.8745584*denom2*(tsat-273.15) ) |
|---|
| 1575 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 1576 | if (tem(k) .lt. 233.15) qswz(k)=qsiz(k) |
|---|
| 1577 | else |
|---|
| 1578 | qsiz(k)=qswz(k) |
|---|
| 1579 | endif |
|---|
| 1580 | qvsbar(k)=ratql*qswz(k)+ratqi*qsiz(k) |
|---|
| 1581 | ! |
|---|
| 1582 | ! if( absft .lt. 0.01 .and. n .gt. 3 ) go to 300 |
|---|
| 1583 | if( absft .lt. 0.01 ) go to 300 |
|---|
| 1584 | ! |
|---|
| 1585 | dqvsbar=ratql*qswz(k)*svp2*243.5*denom1*denom1+ & |
|---|
| 1586 | ratqi*qsiz(k)*21.8745584*265.5*denom2*denom2 |
|---|
| 1587 | ftsat=tsat+(xlvocp+ratqi*xlfocp)*qvsbar(k)- & |
|---|
| 1588 | tothz(k)*theiz(k)-xlfocp*ratqi*(qvz(k)+qlz(k)+qiz(k)) |
|---|
| 1589 | dftsat=1.0+(xlvocp+ratqi*xlfocp)*dqvsbar |
|---|
| 1590 | tsat=tsat-ftsat/dftsat |
|---|
| 1591 | absft=abs(ftsat) |
|---|
| 1592 | |
|---|
| 1593 | 200 continue |
|---|
| 1594 | 9020 format(1x,'point can not converge, absft,n=',e12.5,i5) |
|---|
| 1595 | 300 continue |
|---|
| 1596 | |
|---|
| 1597 | if( qpz .gt. qvsbar(k) ) then |
|---|
| 1598 | qvz(k)=qvsbar(k) |
|---|
| 1599 | qiz(k)=ratqi*( qpz-qvz(k) ) |
|---|
| 1600 | qlz(k)=ratql*( qpz-qvz(k) ) |
|---|
| 1601 | else |
|---|
| 1602 | qvz(k)=qpz |
|---|
| 1603 | qiz(k)=0.0 |
|---|
| 1604 | qlz(k)=0.0 |
|---|
| 1605 | end if |
|---|
| 1606 | 400 continue |
|---|
| 1607 | |
|---|
| 1608 | END SUBROUTINE satadj |
|---|
| 1609 | |
|---|
| 1610 | |
|---|
| 1611 | !---------------------------------------------------------------- |
|---|
| 1612 | REAL FUNCTION parama1(temp) |
|---|
| 1613 | !---------------------------------------------------------------- |
|---|
| 1614 | IMPLICIT NONE |
|---|
| 1615 | !---------------------------------------------------------------- |
|---|
| 1616 | ! This program calculate the parameter for crystal growth rate |
|---|
| 1617 | ! in Bergeron process |
|---|
| 1618 | !---------------------------------------------------------------- |
|---|
| 1619 | |
|---|
| 1620 | REAL, INTENT (IN ) :: temp |
|---|
| 1621 | REAL, DIMENSION(32) :: a1 |
|---|
| 1622 | INTEGER :: i1, i1p1 |
|---|
| 1623 | REAL :: ratio |
|---|
| 1624 | |
|---|
| 1625 | data a1/0.100e-10,0.7939e-7,0.7841e-6,0.3369e-5,0.4336e-5, & |
|---|
| 1626 | 0.5285e-5,0.3728e-5,0.1852e-5,0.2991e-6,0.4248e-6, & |
|---|
| 1627 | 0.7434e-6,0.1812e-5,0.4394e-5,0.9145e-5,0.1725e-4, & |
|---|
| 1628 | 0.3348e-4,0.1725e-4,0.9175e-5,0.4412e-5,0.2252e-5, & |
|---|
| 1629 | 0.9115e-6,0.4876e-6,0.3473e-6,0.4758e-6,0.6306e-6, & |
|---|
| 1630 | 0.8573e-6,0.7868e-6,0.7192e-6,0.6513e-6,0.5956e-6, & |
|---|
| 1631 | 0.5333e-6,0.4834e-6/ |
|---|
| 1632 | |
|---|
| 1633 | i1=int(-temp)+1 |
|---|
| 1634 | i1p1=i1+1 |
|---|
| 1635 | ratio=-(temp)-float(i1-1) |
|---|
| 1636 | parama1=a1(i1)+ratio*( a1(i1p1)-a1(i1) ) |
|---|
| 1637 | |
|---|
| 1638 | END FUNCTION parama1 |
|---|
| 1639 | |
|---|
| 1640 | !---------------------------------------------------------------- |
|---|
| 1641 | REAL FUNCTION parama2(temp) |
|---|
| 1642 | !---------------------------------------------------------------- |
|---|
| 1643 | IMPLICIT NONE |
|---|
| 1644 | !---------------------------------------------------------------- |
|---|
| 1645 | ! This program calculate the parameter for crystal growth rate |
|---|
| 1646 | ! in Bergeron process |
|---|
| 1647 | !---------------------------------------------------------------- |
|---|
| 1648 | |
|---|
| 1649 | REAL, INTENT (IN ) :: temp |
|---|
| 1650 | REAL, DIMENSION(32) :: a2 |
|---|
| 1651 | INTEGER :: i1, i1p1 |
|---|
| 1652 | REAL :: ratio |
|---|
| 1653 | |
|---|
| 1654 | data a2/0.0100,0.4006,0.4831,0.5320,0.5307,0.5319,0.5249, & |
|---|
| 1655 | 0.4888,0.3849,0.4047,0.4318,0.4771,0.5183,0.5463, & |
|---|
| 1656 | 0.5651,0.5813,0.5655,0.5478,0.5203,0.4906,0.4447, & |
|---|
| 1657 | 0.4126,0.3960,0.4149,0.4320,0.4506,0.4483,0.4460, & |
|---|
| 1658 | 0.4433,0.4413,0.4382,0.4361/ |
|---|
| 1659 | i1=int(-temp)+1 |
|---|
| 1660 | i1p1=i1+1 |
|---|
| 1661 | ratio=-(temp)-float(i1-1) |
|---|
| 1662 | parama2=a2(i1)+ratio*( a2(i1p1)-a2(i1) ) |
|---|
| 1663 | |
|---|
| 1664 | END FUNCTION parama2 |
|---|
| 1665 | |
|---|
| 1666 | !+---+-----------------------------------------------------------------+ |
|---|
| 1667 | ! THIS FUNCTION CALCULATES THE LIQUID SATURATION VAPOR MIXING RATIO AS |
|---|
| 1668 | ! A FUNCTION OF TEMPERATURE AND PRESSURE |
|---|
| 1669 | ! |
|---|
| 1670 | REAL FUNCTION RSLF(P,T) |
|---|
| 1671 | |
|---|
| 1672 | IMPLICIT NONE |
|---|
| 1673 | REAL, INTENT(IN):: P, T |
|---|
| 1674 | REAL:: ESL,X |
|---|
| 1675 | REAL, PARAMETER:: C0= .611583699E03 |
|---|
| 1676 | REAL, PARAMETER:: C1= .444606896E02 |
|---|
| 1677 | REAL, PARAMETER:: C2= .143177157E01 |
|---|
| 1678 | REAL, PARAMETER:: C3= .264224321E-1 |
|---|
| 1679 | REAL, PARAMETER:: C4= .299291081E-3 |
|---|
| 1680 | REAL, PARAMETER:: C5= .203154182E-5 |
|---|
| 1681 | REAL, PARAMETER:: C6= .702620698E-8 |
|---|
| 1682 | REAL, PARAMETER:: C7= .379534310E-11 |
|---|
| 1683 | REAL, PARAMETER:: C8=-.321582393E-13 |
|---|
| 1684 | |
|---|
| 1685 | X=MAX(-80.,T-273.16) |
|---|
| 1686 | |
|---|
| 1687 | ! ESL=612.2*EXP(17.67*X/(T-29.65)) |
|---|
| 1688 | ESL=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) |
|---|
| 1689 | RSLF=.622*ESL/(P-ESL) |
|---|
| 1690 | |
|---|
| 1691 | END FUNCTION RSLF |
|---|
| 1692 | ! |
|---|
| 1693 | !+---+-----------------------------------------------------------------+ |
|---|
| 1694 | ! THIS FUNCTION CALCULATES THE ICE SATURATION VAPOR MIXING RATIO AS A |
|---|
| 1695 | ! FUNCTION OF TEMPERATURE AND PRESSURE |
|---|
| 1696 | ! |
|---|
| 1697 | REAL FUNCTION RSIF(P,T) |
|---|
| 1698 | |
|---|
| 1699 | IMPLICIT NONE |
|---|
| 1700 | REAL, INTENT(IN):: P, T |
|---|
| 1701 | REAL:: ESI,X |
|---|
| 1702 | REAL, PARAMETER:: C0= .609868993E03 |
|---|
| 1703 | REAL, PARAMETER:: C1= .499320233E02 |
|---|
| 1704 | REAL, PARAMETER:: C2= .184672631E01 |
|---|
| 1705 | REAL, PARAMETER:: C3= .402737184E-1 |
|---|
| 1706 | REAL, PARAMETER:: C4= .565392987E-3 |
|---|
| 1707 | REAL, PARAMETER:: C5= .521693933E-5 |
|---|
| 1708 | REAL, PARAMETER:: C6= .307839583E-7 |
|---|
| 1709 | REAL, PARAMETER:: C7= .105785160E-9 |
|---|
| 1710 | REAL, PARAMETER:: C8= .161444444E-12 |
|---|
| 1711 | |
|---|
| 1712 | X=MAX(-80.,T-273.16) |
|---|
| 1713 | ESI=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) |
|---|
| 1714 | RSIF=.622*ESI/(P-ESI) |
|---|
| 1715 | |
|---|
| 1716 | END FUNCTION RSIF |
|---|
| 1717 | !+---+-----------------------------------------------------------------+ |
|---|
| 1718 | |
|---|
| 1719 | !---------------------------------------------------------------- |
|---|
| 1720 | REAL FUNCTION ggamma(X) |
|---|
| 1721 | !---------------------------------------------------------------- |
|---|
| 1722 | IMPLICIT NONE |
|---|
| 1723 | !---------------------------------------------------------------- |
|---|
| 1724 | REAL, INTENT(IN ) :: x |
|---|
| 1725 | REAL, DIMENSION(8) :: B |
|---|
| 1726 | INTEGER ::j, K1 |
|---|
| 1727 | REAL ::PF, G1TO2 ,TEMP |
|---|
| 1728 | |
|---|
| 1729 | DATA B/-.577191652,.988205891,-.897056937,.918206857, & |
|---|
| 1730 | -.756704078,.482199394,-.193527818,.035868343/ |
|---|
| 1731 | |
|---|
| 1732 | PF=1. |
|---|
| 1733 | TEMP=X |
|---|
| 1734 | DO 10 J=1,200 |
|---|
| 1735 | IF (TEMP .LE. 2) GO TO 20 |
|---|
| 1736 | TEMP=TEMP-1. |
|---|
| 1737 | 10 PF=PF*TEMP |
|---|
| 1738 | ! 100 FORMAT(//,5X,'module_mp_lin: INPUT TO GAMMA FUNCTION TOO LARGE, X=',E12.5) |
|---|
| 1739 | ! WRITE(wrf_err_message,100)X |
|---|
| 1740 | ! CALL wrf_error_fatal(wrf_err_message) |
|---|
| 1741 | 20 G1TO2=1. |
|---|
| 1742 | TEMP=TEMP - 1. |
|---|
| 1743 | DO 30 K1=1,8 |
|---|
| 1744 | 30 G1TO2=G1TO2 + B(K1)*TEMP**K1 |
|---|
| 1745 | ggamma=PF*G1TO2 |
|---|
| 1746 | |
|---|
| 1747 | END FUNCTION ggamma |
|---|
| 1748 | |
|---|
| 1749 | !---------------------------------------------------------------- |
|---|
| 1750 | |
|---|
| 1751 | END MODULE module_mp_sbu_ylin |
|---|
| 1752 | |
|---|