| 1 | !************************************************************************ |
|---|
| 2 | ! This computer software was prepared by Battelle Memorial Institute, |
|---|
| 3 | ! hereinafter the Contractor, under Contract No. DE-AC05-76RL0 1830 with |
|---|
| 4 | ! the Department of Energy (DOE). NEITHER THE GOVERNMENT NOR THE |
|---|
| 5 | ! CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY |
|---|
| 6 | ! LIABILITY FOR THE USE OF THIS SOFTWARE. |
|---|
| 7 | ! |
|---|
| 8 | ! MOSAIC module: see chem/module_mosaic_driver.F for references and terms |
|---|
| 9 | ! of use |
|---|
| 10 | !************************************************************************ |
|---|
| 11 | |
|---|
| 12 | MODULE module_mixactivate |
|---|
| 13 | PRIVATE |
|---|
| 14 | PUBLIC prescribe_aerosol_mixactivate, mixactivate |
|---|
| 15 | CONTAINS |
|---|
| 16 | |
|---|
| 17 | |
|---|
| 18 | !---------------------------------------------------------------------- |
|---|
| 19 | !---------------------------------------------------------------------- |
|---|
| 20 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
|---|
| 21 | ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3) |
|---|
| 22 | subroutine prescribe_aerosol_mixactivate ( & |
|---|
| 23 | grid_id, ktau, dtstep, naer, & |
|---|
| 24 | rho_phy, th_phy, pi_phy, w, cldfra, cldfra_old, & |
|---|
| 25 | z, dz8w, p_at_w, t_at_w, exch_h, & |
|---|
| 26 | qv, qc, qi, qndrop3d, & |
|---|
| 27 | nsource, & |
|---|
| 28 | ids,ide, jds,jde, kds,kde, & |
|---|
| 29 | ims,ime, jms,jme, kms,kme, & |
|---|
| 30 | its,ite, jts,jte, kts,kte, & |
|---|
| 31 | f_qc, f_qi ) |
|---|
| 32 | |
|---|
| 33 | ! USE module_configure |
|---|
| 34 | |
|---|
| 35 | ! wrapper to call mixactivate for mosaic description of aerosol |
|---|
| 36 | |
|---|
| 37 | implicit none |
|---|
| 38 | |
|---|
| 39 | ! subr arguments |
|---|
| 40 | integer, intent(in) :: & |
|---|
| 41 | grid_id, ktau, & |
|---|
| 42 | ids, ide, jds, jde, kds, kde, & |
|---|
| 43 | ims, ime, jms, jme, kms, kme, & |
|---|
| 44 | its, ite, jts, jte, kts, kte |
|---|
| 45 | |
|---|
| 46 | real, intent(in) :: dtstep |
|---|
| 47 | real, intent(inout) :: naer ! aerosol number (/kg) |
|---|
| 48 | |
|---|
| 49 | real, intent(in), & |
|---|
| 50 | dimension( ims:ime, kms:kme, jms:jme ) :: & |
|---|
| 51 | rho_phy, th_phy, pi_phy, w, & |
|---|
| 52 | z, dz8w, p_at_w, t_at_w, exch_h |
|---|
| 53 | |
|---|
| 54 | real, intent(inout), & |
|---|
| 55 | dimension( ims:ime, kms:kme, jms:jme ) :: cldfra, cldfra_old |
|---|
| 56 | |
|---|
| 57 | real, intent(in), & |
|---|
| 58 | dimension( ims:ime, kms:kme, jms:jme ) :: & |
|---|
| 59 | qv, qc, qi |
|---|
| 60 | |
|---|
| 61 | real, intent(inout), & |
|---|
| 62 | dimension( ims:ime, kms:kme, jms:jme ) :: & |
|---|
| 63 | qndrop3d |
|---|
| 64 | |
|---|
| 65 | real, intent(out), & |
|---|
| 66 | dimension( ims:ime, kms:kme, jms:jme) :: nsource |
|---|
| 67 | |
|---|
| 68 | LOGICAL, OPTIONAL :: f_qc, f_qi |
|---|
| 69 | |
|---|
| 70 | ! local vars |
|---|
| 71 | integer maxd_aphase, maxd_atype, maxd_asize, maxd_acomp, max_chem |
|---|
| 72 | parameter (maxd_aphase=2,maxd_atype=1,maxd_asize=1,maxd_acomp=1, max_chem=10) |
|---|
| 73 | real ddvel(its:ite, jts:jte, max_chem) ! dry deposition velosity |
|---|
| 74 | real qsrflx(ims:ime, jms:jme, max_chem) ! dry deposition flux of aerosol |
|---|
| 75 | real chem(ims:ime, kms:kme, jms:jme, max_chem) ! chem array |
|---|
| 76 | integer i,j,k,l,m,n,p |
|---|
| 77 | real hygro( its:ite, kts:kte, jts:jte, maxd_asize, maxd_atype ) ! bulk |
|---|
| 78 | integer ntype_aer, nsize_aer(maxd_atype),ncomp_aer(maxd_atype), nphase_aer |
|---|
| 79 | integer massptr_aer( maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ), & |
|---|
| 80 | waterptr_aer( maxd_asize, maxd_atype ), & |
|---|
| 81 | numptr_aer( maxd_asize, maxd_atype, maxd_aphase ), & |
|---|
| 82 | ai_phase, cw_phase |
|---|
| 83 | real dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) |
|---|
| 84 | dhi_sect( maxd_asize, maxd_atype ), & ! maximum size of section (cm) |
|---|
| 85 | sigmag_aer(maxd_asize, maxd_atype), & ! geometric standard deviation of aerosol size dist |
|---|
| 86 | dgnum_aer(maxd_asize, maxd_atype), & ! median diameter (cm) of number distrib of mode |
|---|
| 87 | dens_aer( maxd_acomp, maxd_atype), & ! density (g/cm3) of material |
|---|
| 88 | mw_aer( maxd_acomp, maxd_atype), & ! molecular weight (g/mole) |
|---|
| 89 | dpvolmean_aer(maxd_asize, maxd_atype) ! mean-volume diameter (cm) of mode |
|---|
| 90 | ! terminology: (pi/6) * (mean-volume diameter)**3 == |
|---|
| 91 | ! (volume mixing ratio of section/mode)/(number mixing ratio) |
|---|
| 92 | real, dimension(ims:ime,kms:kme,jms:jme) :: & |
|---|
| 93 | ccn1,ccn2,ccn3,ccn4,ccn5,ccn6 ! number conc of aerosols activated at supersat |
|---|
| 94 | integer idrydep_onoff |
|---|
| 95 | real, dimension(ims:ime,kms:kme,jms:jme) :: t_phy |
|---|
| 96 | integer msectional |
|---|
| 97 | |
|---|
| 98 | |
|---|
| 99 | integer ptr |
|---|
| 100 | real maer |
|---|
| 101 | |
|---|
| 102 | if(naer.lt.1.)then |
|---|
| 103 | naer=1000.e6 ! #/kg default value |
|---|
| 104 | endif |
|---|
| 105 | ai_phase=1 |
|---|
| 106 | cw_phase=2 |
|---|
| 107 | idrydep_onoff = 0 |
|---|
| 108 | msectional = 0 |
|---|
| 109 | |
|---|
| 110 | t_phy(its:ite,kts:kte,jts:jte)=th_phy(its:ite,kts:kte,jts:jte)*pi_phy(its:ite,kts:kte,jts:jte) |
|---|
| 111 | |
|---|
| 112 | ntype_aer=maxd_atype |
|---|
| 113 | do n=1,ntype_aer |
|---|
| 114 | nsize_aer(n)=maxd_asize |
|---|
| 115 | ncomp_aer(n)=maxd_acomp |
|---|
| 116 | end do |
|---|
| 117 | nphase_aer=maxd_aphase |
|---|
| 118 | |
|---|
| 119 | ! set properties for each type and size |
|---|
| 120 | do n=1,ntype_aer |
|---|
| 121 | do m=1,nsize_aer(n) |
|---|
| 122 | dlo_sect( m,n )=0.01e-4 ! minimum size of section (cm) |
|---|
| 123 | dhi_sect( m,n )=0.5e-4 ! maximum size of section (cm) |
|---|
| 124 | sigmag_aer(m,n)=2. ! geometric standard deviation of aerosol size dist |
|---|
| 125 | dgnum_aer(m,n)=0.1e-4 ! median diameter (cm) of number distrib of mode |
|---|
| 126 | dpvolmean_aer(m,n) = dgnum_aer(m,n) * exp( 1.5 * (log(sigmag_aer(m,n)))**2 ) |
|---|
| 127 | end do |
|---|
| 128 | do l=1,ncomp_aer(n) |
|---|
| 129 | dens_aer( l, n)=1.0 ! density (g/cm3) of material |
|---|
| 130 | mw_aer( l, n)=132. ! molecular weight (g/mole) |
|---|
| 131 | end do |
|---|
| 132 | end do |
|---|
| 133 | ptr=0 |
|---|
| 134 | do p=1,nphase_aer |
|---|
| 135 | do n=1,ntype_aer |
|---|
| 136 | do m=1,nsize_aer(n) |
|---|
| 137 | ptr=ptr+1 |
|---|
| 138 | numptr_aer( m, n, p )=ptr |
|---|
| 139 | if(p.eq.ai_phase)then |
|---|
| 140 | chem(its:ite,kts:kte,jts:jte,ptr)=naer |
|---|
| 141 | else |
|---|
| 142 | chem(its:ite,kts:kte,jts:jte,ptr)=0. |
|---|
| 143 | endif |
|---|
| 144 | end do ! size |
|---|
| 145 | end do ! type |
|---|
| 146 | end do ! phase |
|---|
| 147 | do p=1,maxd_aphase |
|---|
| 148 | do n=1,ntype_aer |
|---|
| 149 | do m=1,nsize_aer(n) |
|---|
| 150 | do l=1,ncomp_aer(n) |
|---|
| 151 | ptr=ptr+1 |
|---|
| 152 | if(ptr.gt.max_chem)then |
|---|
| 153 | write(6,*)'ptr,max_chem=',ptr,max_chem,' in prescribe_aerosol_mixactivate' |
|---|
| 154 | call wrf_error_fatal("1") |
|---|
| 155 | endif |
|---|
| 156 | massptr_aer(l, m, n, p)=ptr |
|---|
| 157 | ! maer is ug/kg-air; naer is #/kg-air; dgnum is cm; dens_aer is g/cm3 |
|---|
| 158 | ! 1.e6 factor converts g to ug |
|---|
| 159 | maer= 1.0e6 * naer * dens_aer(l,n) * ( (3.1416/6.) * & |
|---|
| 160 | (dgnum_aer(m,n)**3) * exp( 4.5*((log(sigmag_aer(m,n)))**2) ) ) |
|---|
| 161 | if(p.eq.ai_phase)then |
|---|
| 162 | chem(its:ite,kts:kte,jts:jte,ptr)=maer |
|---|
| 163 | else |
|---|
| 164 | chem(its:ite,kts:kte,jts:jte,ptr)=0. |
|---|
| 165 | endif |
|---|
| 166 | end do |
|---|
| 167 | end do ! size |
|---|
| 168 | end do ! type |
|---|
| 169 | end do ! phase |
|---|
| 170 | do n=1,ntype_aer |
|---|
| 171 | do m=1,nsize_aer(n) |
|---|
| 172 | ptr=ptr+1 |
|---|
| 173 | if(ptr.gt.max_chem)then |
|---|
| 174 | write(6,*)'ptr,max_chem=',ptr,max_chem,' in prescribe_aerosol_mixactivate' |
|---|
| 175 | call wrf_error_fatal("1") |
|---|
| 176 | endif |
|---|
| 177 | !wig waterptr_aer(m, n)=ptr |
|---|
| 178 | waterptr_aer(m, n)=-1 |
|---|
| 179 | end do ! size |
|---|
| 180 | end do ! type |
|---|
| 181 | ddvel(its:ite,jts:jte,:)=0. |
|---|
| 182 | hygro(its:ite,kts:kte,jts:jte,:,:) = 0.5 |
|---|
| 183 | |
|---|
| 184 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
|---|
| 185 | call mixactivate( msectional, & |
|---|
| 186 | chem,max_chem,qv,qc,qi,qndrop3d, & |
|---|
| 187 | t_phy, w, ddvel, idrydep_onoff, & |
|---|
| 188 | maxd_acomp, maxd_asize, maxd_atype, maxd_aphase, & |
|---|
| 189 | ncomp_aer, nsize_aer, ntype_aer, nphase_aer, & |
|---|
| 190 | numptr_aer, massptr_aer, dlo_sect, dhi_sect, sigmag_aer, dpvolmean_aer, & |
|---|
| 191 | dens_aer, mw_aer, & |
|---|
| 192 | waterptr_aer, hygro, ai_phase, cw_phase, & |
|---|
| 193 | ids,ide, jds,jde, kds,kde, & |
|---|
| 194 | ims,ime, jms,jme, kms,kme, & |
|---|
| 195 | its,ite, jts,jte, kts,kte, & |
|---|
| 196 | rho_phy, z, dz8w, p_at_w, t_at_w, exch_h, & |
|---|
| 197 | cldfra, cldfra_old, qsrflx, & |
|---|
| 198 | ccn1, ccn2, ccn3, ccn4, ccn5, ccn6, nsource, & |
|---|
| 199 | grid_id, ktau, dtstep, & |
|---|
| 200 | F_QC=f_qc, F_QI=f_qi ) |
|---|
| 201 | |
|---|
| 202 | |
|---|
| 203 | end subroutine prescribe_aerosol_mixactivate |
|---|
| 204 | |
|---|
| 205 | !---------------------------------------------------------------------- |
|---|
| 206 | !---------------------------------------------------------------------- |
|---|
| 207 | ! nov-04 sg ! replaced amode with aer and expanded aerosol dimension to include type and phase |
|---|
| 208 | |
|---|
| 209 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
|---|
| 210 | ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3) |
|---|
| 211 | subroutine mixactivate( msectional, & |
|---|
| 212 | chem, num_chem, qv, qc, qi, qndrop3d, & |
|---|
| 213 | temp, w, ddvel, idrydep_onoff, & |
|---|
| 214 | maxd_acomp, maxd_asize, maxd_atype, maxd_aphase, & |
|---|
| 215 | ncomp_aer, nsize_aer, ntype_aer, nphase_aer, & |
|---|
| 216 | numptr_aer, massptr_aer, dlo_sect, dhi_sect, sigmag_aer, dpvolmean_aer, & |
|---|
| 217 | dens_aer, mw_aer, & |
|---|
| 218 | waterptr_aer, hygro, ai_phase, cw_phase, & |
|---|
| 219 | ids,ide, jds,jde, kds,kde, & |
|---|
| 220 | ims,ime, jms,jme, kms,kme, & |
|---|
| 221 | its,ite, jts,jte, kts,kte, & |
|---|
| 222 | rho, zm, dz8w, p_at_w, t_at_w, kvh, & |
|---|
| 223 | cldfra, cldfra_old, qsrflx, & |
|---|
| 224 | ccn1, ccn2, ccn3, ccn4, ccn5, ccn6, nsource, & |
|---|
| 225 | grid_id, ktau, dtstep, & |
|---|
| 226 | f_qc, f_qi ) |
|---|
| 227 | |
|---|
| 228 | |
|---|
| 229 | ! vertical diffusion and nucleation of cloud droplets |
|---|
| 230 | ! assume cloud presence controlled by cloud fraction |
|---|
| 231 | ! doesn't distinguish between warm, cold clouds |
|---|
| 232 | |
|---|
| 233 | USE module_model_constants, only: g, rhowater, xlv, cp, rvovrd, r_d, r_v, mwdry, ep_2 |
|---|
| 234 | USE module_radiation_driver, only: cal_cldfra |
|---|
| 235 | |
|---|
| 236 | implicit none |
|---|
| 237 | |
|---|
| 238 | ! input |
|---|
| 239 | |
|---|
| 240 | INTEGER, intent(in) :: grid_id, ktau |
|---|
| 241 | INTEGER, intent(in) :: num_chem |
|---|
| 242 | integer, intent(in) :: ids,ide, jds,jde, kds,kde, & |
|---|
| 243 | ims,ime, jms,jme, kms,kme, & |
|---|
| 244 | its,ite, jts,jte, kts,kte |
|---|
| 245 | |
|---|
| 246 | integer maxd_aphase, nphase_aer, maxd_atype, ntype_aer |
|---|
| 247 | integer maxd_asize, maxd_acomp, nsize_aer(maxd_atype) |
|---|
| 248 | integer, intent(in) :: & |
|---|
| 249 | ncomp_aer( maxd_atype ), & |
|---|
| 250 | massptr_aer( maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ), & |
|---|
| 251 | waterptr_aer( maxd_asize, maxd_atype ), & |
|---|
| 252 | numptr_aer( maxd_asize, maxd_atype, maxd_aphase), & |
|---|
| 253 | ai_phase, cw_phase |
|---|
| 254 | integer, intent(in) :: msectional ! 1 for sectional, 0 for modal |
|---|
| 255 | integer, intent(in) :: idrydep_onoff |
|---|
| 256 | real, intent(in) :: & |
|---|
| 257 | dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) |
|---|
| 258 | dhi_sect( maxd_asize, maxd_atype ), & ! maximum size of section (cm) |
|---|
| 259 | sigmag_aer(maxd_asize, maxd_atype), & ! geometric standard deviation of aerosol size dist |
|---|
| 260 | dens_aer( maxd_acomp, maxd_atype), & ! density (g/cm3) of material |
|---|
| 261 | mw_aer( maxd_acomp, maxd_atype), & ! molecular weight (g/mole) |
|---|
| 262 | dpvolmean_aer(maxd_asize, maxd_atype) ! mean-volume diameter (cm) of mode |
|---|
| 263 | ! terminology: (pi/6) * (mean-volume diameter)**3 == |
|---|
| 264 | ! (volume mixing ratio of section/mode)/(number mixing ratio) |
|---|
| 265 | |
|---|
| 266 | |
|---|
| 267 | REAL, intent(inout), DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ) :: & |
|---|
| 268 | chem ! aerosol molar mixing ratio (ug/kg or #/kg) |
|---|
| 269 | |
|---|
| 270 | REAL, intent(in), DIMENSION( ims:ime, kms:kme, jms:jme ) :: & |
|---|
| 271 | qv, qc, qi ! water species (vapor, cloud drops, cloud ice) mixing ratio (g/g) |
|---|
| 272 | |
|---|
| 273 | LOGICAL, OPTIONAL :: f_qc, f_qi |
|---|
| 274 | |
|---|
| 275 | REAL, intent(inout), DIMENSION( ims:ime, kms:kme, jms:jme ) :: & |
|---|
| 276 | qndrop3d ! water species mixing ratio (g/g) |
|---|
| 277 | |
|---|
| 278 | real, intent(in) :: dtstep ! time step for microphysics (s) |
|---|
| 279 | real, intent(in) :: temp(ims:ime, kms:kme, jms:jme) ! temperature (K) |
|---|
| 280 | real, intent(in) :: w(ims:ime, kms:kme, jms:jme) ! vertical velocity (m/s) |
|---|
| 281 | real, intent(in) :: rho(ims:ime, kms:kme, jms:jme) ! density at mid-level (kg/m3) |
|---|
| 282 | REAL, intent(in) :: ddvel( its:ite, jts:jte, num_chem ) ! deposition velocity (m/s) |
|---|
| 283 | real, intent(in) :: zm(ims:ime, kms:kme, jms:jme) ! geopotential height of level (m) |
|---|
| 284 | real, intent(in) :: dz8w(ims:ime, kms:kme, jms:jme) ! layer thickness (m) |
|---|
| 285 | real, intent(in) :: p_at_w(ims:ime, kms:kme, jms:jme) ! pressure at layer interface (Pa) |
|---|
| 286 | real, intent(in) :: t_at_w(ims:ime, kms:kme, jms:jme) ! temperature at layer interface (K) |
|---|
| 287 | real, intent(in) :: kvh(ims:ime, kms:kme, jms:jme) ! vertical diffusivity (m2/s) |
|---|
| 288 | real, intent(inout) :: cldfra_old(ims:ime, kms:kme, jms:jme)! cloud fraction on previous time step |
|---|
| 289 | real, intent(inout) :: cldfra(ims:ime, kms:kme, jms:jme) ! cloud fraction |
|---|
| 290 | real, intent(in) :: hygro( its:ite, kts:kte, jts:jte, maxd_asize, maxd_atype ) ! bulk hygroscopicity & |
|---|
| 291 | |
|---|
| 292 | REAL, intent(out), DIMENSION( ims:ime, jms:jme, num_chem ) :: qsrflx ! dry deposition rate for aerosol |
|---|
| 293 | real, intent(out), dimension(ims:ime,kms:kme,jms:jme) :: nsource, & ! droplet number source (#/kg/s) |
|---|
| 294 | ccn1,ccn2,ccn3,ccn4,ccn5,ccn6 ! number conc of aerosols activated at supersat |
|---|
| 295 | |
|---|
| 296 | |
|---|
| 297 | !--------------------Local storage------------------------------------- |
|---|
| 298 | ! |
|---|
| 299 | real :: dgnum_aer(maxd_asize, maxd_atype) ! median diameter (cm) of number distrib of mode |
|---|
| 300 | real :: qndrop(kms:kme) ! cloud droplet number mixing ratio (#/kg) |
|---|
| 301 | real :: lcldfra(kms:kme) ! liquid cloud fraction |
|---|
| 302 | real :: lcldfra_old(kms:kme) ! liquid cloud fraction for previous timestep |
|---|
| 303 | real :: wtke(kms:kme) ! turbulent vertical velocity at base of layer k (m2/s) |
|---|
| 304 | real zn(kms:kme) ! g/pdel (m2/g) for layer |
|---|
| 305 | real zs(kms:kme) ! inverse of distance between levels (m) |
|---|
| 306 | real, parameter :: zkmin = 0.01 |
|---|
| 307 | real, parameter :: zkmax = 100. |
|---|
| 308 | real cs(kms:kme) ! air density (kg/m3) at layer center |
|---|
| 309 | real csbot(kms:kme) ! air density (kg/m3) at layer bottom |
|---|
| 310 | real csbot_cscen(kms:kme) ! csbot(k)/cs(k) |
|---|
| 311 | real dz(kms:kme) ! geometric thickness of layers (m) |
|---|
| 312 | |
|---|
| 313 | real wdiab ! diabatic vertical velocity |
|---|
| 314 | ! real, parameter :: wmixmin = 0.1 ! minimum turbulence vertical velocity (m/s) |
|---|
| 315 | real, parameter :: wmixmin = 0.2 ! minimum turbulence vertical velocity (m/s) |
|---|
| 316 | ! real, parameter :: wmixmin = 1.0 ! minimum turbulence vertical velocity (m/s) |
|---|
| 317 | real :: qndrop_new(kms:kme) ! droplet number nucleated on cloud boundaries |
|---|
| 318 | real :: ekd(kms:kme) ! diffusivity for droplets (m2/s) |
|---|
| 319 | real :: ekk(kms:kme) ! density*diffusivity for droplets (kg/m3 m2/s) |
|---|
| 320 | real :: srcn(kms:kme) ! droplet source rate (/s) |
|---|
| 321 | real, parameter :: sq2pi = 2.5066282746 |
|---|
| 322 | real dtinv |
|---|
| 323 | |
|---|
| 324 | integer km1,kp1 |
|---|
| 325 | real wbar,wmix,wmin,wmax |
|---|
| 326 | real dum |
|---|
| 327 | real tmpa, tmpb, tmpc, tmpc1, tmpc2, tmpd, tmpe, tmpf |
|---|
| 328 | real tmpcourno |
|---|
| 329 | real dact |
|---|
| 330 | real fluxntot ! (#/cm2/s) |
|---|
| 331 | real fac_srflx |
|---|
| 332 | real depvel_drop, depvel_tmp |
|---|
| 333 | real, parameter :: depvel_uplimit = 1.0 ! upper limit for dep vels (m/s) |
|---|
| 334 | real :: surfrate(num_chem) ! surface exchange rate (/s) |
|---|
| 335 | real surfratemax ! max surfrate for all species treated here |
|---|
| 336 | real surfrate_drop ! surfade exchange rate for droplelts |
|---|
| 337 | real dtmin,tinv,dtt |
|---|
| 338 | integer nsubmix,nsubmix_bnd |
|---|
| 339 | integer i,j,k,m,n,nsub |
|---|
| 340 | real dtmix |
|---|
| 341 | real alogarg |
|---|
| 342 | real qcld |
|---|
| 343 | real pi |
|---|
| 344 | integer nnew,nsav,ntemp |
|---|
| 345 | real :: overlapp(kms:kme),overlapm(kms:kme) ! cloud overlap |
|---|
| 346 | real :: ekkp(kms:kme),ekkm(kms:kme) ! zn*zs*density*diffusivity |
|---|
| 347 | ! integer, save :: count_submix(100)=0 ! wig: Note that this is a no-no for tile threads with OMP |
|---|
| 348 | |
|---|
| 349 | integer lnum,lnumcw,l,lmass,lmasscw,lsfc,lsfccw,ltype,lsig,lwater |
|---|
| 350 | integer :: ntype(maxd_asize) |
|---|
| 351 | |
|---|
| 352 | real :: naerosol(maxd_asize, maxd_atype) ! interstitial aerosol number conc (/m3) |
|---|
| 353 | real :: naerosolcw(maxd_asize, maxd_atype) ! activated number conc (/m3) |
|---|
| 354 | real :: maerosol(maxd_acomp,maxd_asize, maxd_atype) ! interstit mass conc (kg/m3) |
|---|
| 355 | real :: maerosolcw(maxd_acomp,maxd_asize, maxd_atype) ! activated mass conc (kg/m3) |
|---|
| 356 | real :: maerosol_tot(maxd_asize, maxd_atype) ! species-total interstit mass conc (kg/m3) |
|---|
| 357 | real :: maerosol_totcw(maxd_asize, maxd_atype) ! species-total activated mass conc (kg/m3) |
|---|
| 358 | real :: vaerosol(maxd_asize, maxd_atype) ! interstit+activated aerosol volume conc (m3/m3) |
|---|
| 359 | real :: vaerosolcw(maxd_asize, maxd_atype) ! activated aerosol volume conc (m3/m3) |
|---|
| 360 | real :: raercol(kms:kme,num_chem,2) ! aerosol mass, number mixing ratios |
|---|
| 361 | real :: source(kms:kme) ! |
|---|
| 362 | |
|---|
| 363 | real :: fn(maxd_asize, maxd_atype) ! activation fraction for aerosol number |
|---|
| 364 | real :: fs(maxd_asize, maxd_atype) ! activation fraction for aerosol sfcarea |
|---|
| 365 | real :: fm(maxd_asize, maxd_atype) ! activation fraction for aerosol mass |
|---|
| 366 | integer :: ncomp(maxd_atype) |
|---|
| 367 | |
|---|
| 368 | real :: fluxn(maxd_asize, maxd_atype) ! number activation fraction flux (m/s) |
|---|
| 369 | real :: fluxs(maxd_asize, maxd_atype) ! sfcarea activation fraction flux (m/s) |
|---|
| 370 | real :: fluxm(maxd_asize, maxd_atype) ! mass activation fraction flux (m/s) |
|---|
| 371 | real :: flux_fullact(kms:kme) ! 100% activation fraction flux (m/s) |
|---|
| 372 | ! note: activation fraction fluxes are defined as |
|---|
| 373 | ! fluxn = [flux of activated aero. number into cloud (#/m2/s)] |
|---|
| 374 | ! / [aero. number conc. in updraft, just below cloudbase (#/m3)] |
|---|
| 375 | |
|---|
| 376 | real :: nact(kms:kme,maxd_asize, maxd_atype) ! fractional aero. number activation rate (/s) |
|---|
| 377 | real :: mact(kms:kme,maxd_asize, maxd_atype) ! fractional aero. mass activation rate (/s) |
|---|
| 378 | real :: npv(maxd_asize, maxd_atype) ! number per volume concentration (/m3) |
|---|
| 379 | real scale |
|---|
| 380 | |
|---|
| 381 | real :: hygro_aer(maxd_asize, maxd_atype) ! hygroscopicity of aerosol mode |
|---|
| 382 | real :: exp45logsig ! exp(4.5*alogsig**2) |
|---|
| 383 | real :: alogsig(maxd_asize, maxd_atype) ! natl log of geometric standard dev of aerosol |
|---|
| 384 | integer, parameter :: psat=6 ! number of supersaturations to calc ccn concentration |
|---|
| 385 | real ccn(kts:kte,psat) ! number conc of aerosols activated at supersat |
|---|
| 386 | real, parameter :: supersat(psat)= &! supersaturation (%) to determine ccn concentration |
|---|
| 387 | (/0.02,0.05,0.1,0.2,0.5,1.0/) |
|---|
| 388 | real super(psat) ! supersaturation |
|---|
| 389 | real, parameter :: surften = 0.076 ! surface tension of water w/respect to air (N/m) |
|---|
| 390 | real :: ccnfact(psat,maxd_asize, maxd_atype) |
|---|
| 391 | real :: amcube(maxd_asize, maxd_atype) ! cube of dry mode radius (m) |
|---|
| 392 | real :: argfactor(maxd_asize, maxd_atype) |
|---|
| 393 | real aten ! surface tension parameter |
|---|
| 394 | real t0 ! reference temperature |
|---|
| 395 | real sm ! critical supersaturation |
|---|
| 396 | real arg |
|---|
| 397 | |
|---|
| 398 | integer,parameter :: icheck_colmass = 0 |
|---|
| 399 | ! icheck_colmass > 0 turns on mass/number conservation checking |
|---|
| 400 | ! values of 1, 10, 100 produce less to more diagnostics |
|---|
| 401 | integer :: colmass_worst_ij( 2, 0:maxd_acomp, maxd_asize, maxd_atype ) |
|---|
| 402 | integer :: colmass_maxworst_i(3) |
|---|
| 403 | real :: colmass_bgn( 0:maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ) |
|---|
| 404 | real :: colmass_end( 0:maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ) |
|---|
| 405 | real :: colmass_sfc( 0:maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ) |
|---|
| 406 | real :: colmass_worst( 0:maxd_acomp, maxd_asize, maxd_atype ) |
|---|
| 407 | real :: colmass_maxworst_r |
|---|
| 408 | real :: rhodz( kts:kte ), rhodzsum |
|---|
| 409 | |
|---|
| 410 | !!$#if (defined AIX) |
|---|
| 411 | !!$#define ERF erf |
|---|
| 412 | !!$#define ERFC erfc |
|---|
| 413 | !!$#else |
|---|
| 414 | !!$#define ERF erf |
|---|
| 415 | !!$ real erf |
|---|
| 416 | !!$#define ERFC erfc |
|---|
| 417 | !!$ real erfc |
|---|
| 418 | !!$#endif |
|---|
| 419 | |
|---|
| 420 | character*8, parameter :: ccn_name(psat)=(/'CCN1','CCN2','CCN3','CCN4','CCN5','CCN6'/) |
|---|
| 421 | |
|---|
| 422 | |
|---|
| 423 | colmass_worst(:,:,:) = 0.0 |
|---|
| 424 | colmass_worst_ij(:,:,:,:) = -1 |
|---|
| 425 | |
|---|
| 426 | |
|---|
| 427 | arg = 1.0 |
|---|
| 428 | if (abs(0.8427-ERF_ALT(arg))/0.8427>0.001) then |
|---|
| 429 | write (6,*) 'erf_alt(1.0) = ',ERF_ALT(arg) |
|---|
| 430 | call wrf_error_fatal('dropmixnuc: Error function error') |
|---|
| 431 | endif |
|---|
| 432 | arg = 0.0 |
|---|
| 433 | if (ERF_ALT(arg) /= 0.0) then |
|---|
| 434 | write (6,*) 'erf_alt(0.0) = ',ERF_ALT(arg) |
|---|
| 435 | call wrf_error_fatal('dropmixnuc: Error function error') |
|---|
| 436 | endif |
|---|
| 437 | |
|---|
| 438 | pi = 4.*atan(1.0) |
|---|
| 439 | dtinv=1./dtstep |
|---|
| 440 | |
|---|
| 441 | depvel_drop = 0.1 ! prescribed here rather than getting it from dry_dep_driver |
|---|
| 442 | if (idrydep_onoff .le. 0) depvel_drop = 0.0 |
|---|
| 443 | depvel_drop = min(depvel_drop,depvel_uplimit) |
|---|
| 444 | |
|---|
| 445 | do n=1,ntype_aer |
|---|
| 446 | do m=1,nsize_aer(n) |
|---|
| 447 | ncomp(n)=ncomp_aer(n) |
|---|
| 448 | alogsig(m,n)=alog(sigmag_aer(m,n)) |
|---|
| 449 | dgnum_aer(m,n) = dpvolmean_aer(m,n) * exp( -1.5*alogsig(m,n)*alogsig(m,n) ) |
|---|
| 450 | ! print *,'sigmag_aer,dgnum_aer=',sigmag_aer(m,n),dgnum_aer(m,n) |
|---|
| 451 | ! npv is used only if number is diagnosed from volume |
|---|
| 452 | npv(m,n)=6./(pi*(0.01*dgnum_aer(m,n))**3*exp(4.5*alogsig(m,n)*alogsig(m,n))) |
|---|
| 453 | end do |
|---|
| 454 | end do |
|---|
| 455 | t0=273.15 !wig, 1-Mar-2009: Added .15 |
|---|
| 456 | aten=2.*surften/(r_v*t0*rhowater) |
|---|
| 457 | super(:)=0.01*supersat(:) |
|---|
| 458 | do n=1,ntype_aer |
|---|
| 459 | do m=1,nsize_aer(n) |
|---|
| 460 | exp45logsig=exp(4.5*alogsig(m,n)*alogsig(m,n)) |
|---|
| 461 | argfactor(m,n)=2./(3.*sqrt(2.)*alogsig(m,n)) |
|---|
| 462 | amcube(m,n)=3./(4.*pi*exp45logsig*npv(m,n)) |
|---|
| 463 | enddo |
|---|
| 464 | enddo |
|---|
| 465 | |
|---|
| 466 | IF( PRESENT(F_QC) .AND. PRESENT ( F_QI ) ) THEN |
|---|
| 467 | CALL cal_cldfra(CLDFRA,qc,qi,f_qc,f_qi, & |
|---|
| 468 | ids,ide, jds,jde, kds,kde, & |
|---|
| 469 | ims,ime, jms,jme, kms,kme, & |
|---|
| 470 | its,ite, jts,jte, kts,kte ) |
|---|
| 471 | END IF |
|---|
| 472 | |
|---|
| 473 | qsrflx(its:ite,jts:jte,:) = 0. |
|---|
| 474 | |
|---|
| 475 | ! start loop over columns |
|---|
| 476 | |
|---|
| 477 | OVERALL_MAIN_J_LOOP: do j=jts,jte |
|---|
| 478 | OVERALL_MAIN_I_LOOP: do i=its,ite |
|---|
| 479 | |
|---|
| 480 | ! load number nucleated into qndrop on cloud boundaries |
|---|
| 481 | |
|---|
| 482 | ! initialization for current i ......................................... |
|---|
| 483 | |
|---|
| 484 | do k=kts+1,kte |
|---|
| 485 | zs(k)=1./(zm(i,k,j)-zm(i,k-1,j)) |
|---|
| 486 | enddo |
|---|
| 487 | zs(kts)=zs(kts+1) |
|---|
| 488 | zs(kte+1)=0. |
|---|
| 489 | |
|---|
| 490 | do k=kts,kte |
|---|
| 491 | !!$ if(qndrop3d(i,k,j).lt.-10.e6.or.qndrop3d(i,k,j).gt.1.E20)then |
|---|
| 492 | !!$! call wrf_error_fatal("1") |
|---|
| 493 | !!$ endif |
|---|
| 494 | if(f_qi)then |
|---|
| 495 | qcld=qc(i,k,j)+qi(i,k,j) |
|---|
| 496 | else |
|---|
| 497 | qcld=qc(i,k,j) |
|---|
| 498 | endif |
|---|
| 499 | if(qcld.lt.-1..or.qcld.gt.1.)then |
|---|
| 500 | write(6,'(a,g12.2,a,3i5)')'qcld=',qcld,' for i,k,j=',i,k,j |
|---|
| 501 | call wrf_error_fatal("1") |
|---|
| 502 | endif |
|---|
| 503 | if(qcld.gt.1.e-20)then |
|---|
| 504 | lcldfra(k)=cldfra(i,k,j)*qc(i,k,j)/qcld |
|---|
| 505 | lcldfra_old(k)=cldfra_old(i,k,j)*qc(i,k,j)/qcld |
|---|
| 506 | else |
|---|
| 507 | lcldfra(k)=0. |
|---|
| 508 | lcldfra_old(k)=0. |
|---|
| 509 | endif |
|---|
| 510 | qndrop(k)=qndrop3d(i,k,j) |
|---|
| 511 | ! qndrop(k)=1.e5 |
|---|
| 512 | cs(k)=rho(i,k,j) ! air density (kg/m3) |
|---|
| 513 | dz(k)=dz8w(i,k,j) |
|---|
| 514 | do n=1,ntype_aer |
|---|
| 515 | do m=1,nsize_aer(n) |
|---|
| 516 | nact(k,m,n)=0. |
|---|
| 517 | mact(k,m,n)=0. |
|---|
| 518 | enddo |
|---|
| 519 | enddo |
|---|
| 520 | zn(k)=1./(cs(k)*dz(k)) |
|---|
| 521 | if(k>kts)then |
|---|
| 522 | ekd(k)=kvh(i,k,j) |
|---|
| 523 | ekd(k)=max(ekd(k),zkmin) |
|---|
| 524 | ekd(k)=min(ekd(k),zkmax) |
|---|
| 525 | else |
|---|
| 526 | ekd(k)=0 |
|---|
| 527 | endif |
|---|
| 528 | ! diagnose subgrid vertical velocity from diffusivity |
|---|
| 529 | if(k.eq.kts)then |
|---|
| 530 | wtke(k)=sq2pi*depvel_drop |
|---|
| 531 | ! wtke(k)=sq2pi*kvh(i,k,j) |
|---|
| 532 | ! wtke(k)=max(wtke(k),wmixmin) |
|---|
| 533 | else |
|---|
| 534 | wtke(k)=sq2pi*ekd(k)/dz(k) |
|---|
| 535 | endif |
|---|
| 536 | wtke(k)=max(wtke(k),wmixmin) |
|---|
| 537 | nsource(i,k,j)=0. |
|---|
| 538 | enddo |
|---|
| 539 | nsource(i,kte+1,j) = 0. |
|---|
| 540 | qndrop(kte+1) = 0. |
|---|
| 541 | zn(kte+1) = 0. |
|---|
| 542 | |
|---|
| 543 | do k = kts+1, kte |
|---|
| 544 | tmpa = dz(k-1) ; tmpb = dz(k) |
|---|
| 545 | tmpc = tmpa/(tmpa + tmpb) |
|---|
| 546 | csbot(k) = cs(k-1)*(1.0-tmpc) + cs(k)*tmpc |
|---|
| 547 | csbot_cscen(k) = csbot(k)/cs(k) |
|---|
| 548 | end do |
|---|
| 549 | csbot(kts) = cs(kts) |
|---|
| 550 | csbot_cscen(kts) = 1.0 |
|---|
| 551 | csbot(kte+1) = cs(kte) |
|---|
| 552 | csbot_cscen(kte+1) = 1.0 |
|---|
| 553 | |
|---|
| 554 | ! calculate surface rate and mass mixing ratio for aerosol |
|---|
| 555 | |
|---|
| 556 | surfratemax = 0.0 |
|---|
| 557 | nsav=1 |
|---|
| 558 | nnew=2 |
|---|
| 559 | surfrate_drop=depvel_drop/dz(kts) |
|---|
| 560 | surfratemax = max( surfratemax, surfrate_drop ) |
|---|
| 561 | do n=1,ntype_aer |
|---|
| 562 | do m=1,nsize_aer(n) |
|---|
| 563 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 564 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 565 | if(lnum>0)then |
|---|
| 566 | depvel_tmp = max( 0.0, min( ddvel(i,j,lnum), depvel_uplimit ) ) |
|---|
| 567 | surfrate(lnum)=depvel_tmp/dz(kts) |
|---|
| 568 | surfrate(lnumcw)=surfrate_drop |
|---|
| 569 | surfratemax = max( surfratemax, surfrate(lnum) ) |
|---|
| 570 | ! scale = 1000./mwdry ! moles/kg |
|---|
| 571 | scale = 1. |
|---|
| 572 | raercol(kts:kte,lnumcw,nsav)=chem(i,kts:kte,j,lnumcw)*scale ! #/kg |
|---|
| 573 | raercol(kts:kte,lnum,nsav)=chem(i,kts:kte,j,lnum)*scale |
|---|
| 574 | endif |
|---|
| 575 | do l=1,ncomp(n) |
|---|
| 576 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 577 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 578 | ! scale = mw_aer(l,n)/mwdry |
|---|
| 579 | scale = 1.e-9 ! kg/ug |
|---|
| 580 | depvel_tmp = max( 0.0, min( ddvel(i,j,lmass), depvel_uplimit ) ) |
|---|
| 581 | surfrate(lmass)=depvel_tmp/dz(kts) |
|---|
| 582 | surfrate(lmasscw)=surfrate_drop |
|---|
| 583 | surfratemax = max( surfratemax, surfrate(lmass) ) |
|---|
| 584 | raercol(kts:kte,lmasscw,nsav)=chem(i,kts:kte,j,lmasscw)*scale ! kg/kg |
|---|
| 585 | raercol(kts:kte,lmass,nsav)=chem(i,kts:kte,j,lmass)*scale ! kg/kg |
|---|
| 586 | enddo |
|---|
| 587 | lwater=waterptr_aer(m,n) |
|---|
| 588 | if(lwater>0)then |
|---|
| 589 | depvel_tmp = max( 0.0, min( ddvel(i,j,lwater), depvel_uplimit ) ) |
|---|
| 590 | surfrate(lwater)=depvel_tmp/dz(kts) |
|---|
| 591 | surfratemax = max( surfratemax, surfrate(lwater) ) |
|---|
| 592 | raercol(kts:kte,lwater,nsav)=chem(i,kts:kte,j,lwater) ! don't bother to convert units, |
|---|
| 593 | ! because it doesn't contribute to aerosol mass |
|---|
| 594 | endif |
|---|
| 595 | enddo ! size |
|---|
| 596 | enddo ! type |
|---|
| 597 | |
|---|
| 598 | |
|---|
| 599 | ! mass conservation checking |
|---|
| 600 | if (icheck_colmass > 0) then |
|---|
| 601 | |
|---|
| 602 | ! calc initial column burdens |
|---|
| 603 | colmass_bgn(:,:,:,:) = 0.0 |
|---|
| 604 | colmass_end(:,:,:,:) = 0.0 |
|---|
| 605 | colmass_sfc(:,:,:,:) = 0.0 |
|---|
| 606 | rhodz(kts:kte) = 1.0/zn(kts:kte) |
|---|
| 607 | rhodzsum = sum( rhodz(kts:kte) ) |
|---|
| 608 | do n=1,ntype_aer |
|---|
| 609 | do m=1,nsize_aer(n) |
|---|
| 610 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 611 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 612 | if(lnum>0)then |
|---|
| 613 | colmass_bgn(0,m,n,1) = sum( chem(i,kts:kte,j,lnum )*rhodz(kts:kte) ) |
|---|
| 614 | colmass_bgn(0,m,n,2) = sum( chem(i,kts:kte,j,lnumcw)*rhodz(kts:kte) ) |
|---|
| 615 | endif |
|---|
| 616 | do l=1,ncomp(n) |
|---|
| 617 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 618 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 619 | colmass_bgn(l,m,n,1) = sum( chem(i,kts:kte,j,lmass )*rhodz(kts:kte) ) |
|---|
| 620 | colmass_bgn(l,m,n,2) = sum( chem(i,kts:kte,j,lmasscw)*rhodz(kts:kte) ) |
|---|
| 621 | enddo |
|---|
| 622 | enddo ! size |
|---|
| 623 | enddo ! type |
|---|
| 624 | endif ! (icheck_colmass > 0) |
|---|
| 625 | |
|---|
| 626 | |
|---|
| 627 | ! droplet nucleation/aerosol activation |
|---|
| 628 | |
|---|
| 629 | ! k-loop for growing/shrinking cloud calcs ............................. |
|---|
| 630 | GROW_SHRINK_MAIN_K_LOOP: do k=kts,kte |
|---|
| 631 | km1=max0(k-1,1) |
|---|
| 632 | kp1=min0(k+1,kde-1) |
|---|
| 633 | |
|---|
| 634 | |
|---|
| 635 | ! if(lcldfra(k)-lcldfra_old(k).gt.0.01)then ! this line is the "old" criterion |
|---|
| 636 | ! go to 10 |
|---|
| 637 | |
|---|
| 638 | ! growing cloud PLUS |
|---|
| 639 | ! upwards vertical advection when lcldfra(k-1) < lcldfra(k) |
|---|
| 640 | ! |
|---|
| 641 | ! tmpc1 = cloud fraction increase from previous time step |
|---|
| 642 | tmpc1 = max( (lcldfra(k)-lcldfra_old(k)), 0.0 ) |
|---|
| 643 | if (k > kts) then |
|---|
| 644 | ! tmpc2 = fraction of layer for which vertical advection from below |
|---|
| 645 | ! (over dtstep) displaces cloudy air with clear air |
|---|
| 646 | ! = (courant number using upwards w at layer bottom)*(difference in cloud fraction) |
|---|
| 647 | tmpcourno = dtstep*max(w(i,k,j),0.0)/dz(k) |
|---|
| 648 | tmpc2 = max( (lcldfra(k)-lcldfra(km1)), 0.0 ) * tmpcourno |
|---|
| 649 | tmpc2 = min( tmpc2, 1.0 ) |
|---|
| 650 | ! tmpc2 = 0.0 ! this turns off the vertical advect part |
|---|
| 651 | else |
|---|
| 652 | tmpc2 = 0.0 |
|---|
| 653 | endif |
|---|
| 654 | |
|---|
| 655 | if ((tmpc1 > 0.001) .or. (tmpc2 > 0.001)) then |
|---|
| 656 | |
|---|
| 657 | ! wmix=wtke(k) |
|---|
| 658 | wbar=w(i,k,j)+wtke(k) |
|---|
| 659 | wmix=0. |
|---|
| 660 | wmin=0. |
|---|
| 661 | ! 06-nov-2005 rce - increase wmax from 10 to 50 (deep convective clouds) |
|---|
| 662 | wmax=50. |
|---|
| 663 | wdiab=0 |
|---|
| 664 | |
|---|
| 665 | ! load aerosol properties, assuming external mixtures |
|---|
| 666 | do n=1,ntype_aer |
|---|
| 667 | do m=1,nsize_aer(n) |
|---|
| 668 | call loadaer(raercol(1,1,nsav),k,kms,kme,num_chem, & |
|---|
| 669 | cs(k), npv(m,n), dlo_sect(m,n),dhi_sect(m,n), & |
|---|
| 670 | maxd_acomp, ncomp(n), & |
|---|
| 671 | grid_id, ktau, i, j, m, n, & |
|---|
| 672 | numptr_aer(m,n,ai_phase),numptr_aer(m,n,cw_phase), & |
|---|
| 673 | dens_aer(1,n), & |
|---|
| 674 | massptr_aer(1,m,n,ai_phase), massptr_aer(1,m,n,cw_phase), & |
|---|
| 675 | maerosol(1,m,n), maerosolcw(1,m,n), & |
|---|
| 676 | maerosol_tot(m,n), maerosol_totcw(m,n), & |
|---|
| 677 | naerosol(m,n), naerosolcw(m,n), & |
|---|
| 678 | vaerosol(m,n), vaerosolcw(m,n) ) |
|---|
| 679 | |
|---|
| 680 | hygro_aer(m,n)=hygro(i,k,j,m,n) |
|---|
| 681 | enddo |
|---|
| 682 | enddo |
|---|
| 683 | |
|---|
| 684 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
|---|
| 685 | call activate(wbar,wmix,wdiab,wmin,wmax,temp(i,k,j),cs(k), & |
|---|
| 686 | msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & |
|---|
| 687 | naerosol, vaerosol, & |
|---|
| 688 | dlo_sect,dhi_sect,sigmag_aer,hygro_aer, & |
|---|
| 689 | fn,fs,fm,fluxn,fluxs,fluxm,flux_fullact(k), grid_id, ktau, i, j, k ) |
|---|
| 690 | |
|---|
| 691 | do n = 1,ntype_aer |
|---|
| 692 | do m = 1,nsize_aer(n) |
|---|
| 693 | lnum = numptr_aer(m,n,ai_phase) |
|---|
| 694 | lnumcw = numptr_aer(m,n,cw_phase) |
|---|
| 695 | if (tmpc1 > 0.0) then |
|---|
| 696 | dact = tmpc1*fn(m,n)*raercol(k,lnum,nsav) ! interstitial only |
|---|
| 697 | else |
|---|
| 698 | dact = 0.0 |
|---|
| 699 | endif |
|---|
| 700 | if (tmpc2 > 0.0) then |
|---|
| 701 | dact = dact + tmpc2*fn(m,n)*raercol(km1,lnum,nsav) ! interstitial only |
|---|
| 702 | endif |
|---|
| 703 | dact = min( dact, 0.99*raercol(k,lnum,nsav) ) |
|---|
| 704 | raercol(k,lnumcw,nsav) = raercol(k,lnumcw,nsav)+dact |
|---|
| 705 | raercol(k,lnum, nsav) = raercol(k,lnum, nsav)-dact |
|---|
| 706 | qndrop(k) = qndrop(k)+dact |
|---|
| 707 | nsource(i,k,j) = nsource(i,k,j)+dact*dtinv |
|---|
| 708 | do l = 1,ncomp(n) |
|---|
| 709 | lmass = massptr_aer(l,m,n,ai_phase) |
|---|
| 710 | lmasscw = massptr_aer(l,m,n,cw_phase) |
|---|
| 711 | if (tmpc1 > 0.0) then |
|---|
| 712 | dact = tmpc1*fm(m,n)*raercol(k,lmass,nsav) ! interstitial only |
|---|
| 713 | else |
|---|
| 714 | dact = 0.0 |
|---|
| 715 | endif |
|---|
| 716 | if (tmpc2 > 0.0) then |
|---|
| 717 | dact = dact + tmpc2*fm(m,n)*raercol(km1,lmass,nsav) ! interstitial only |
|---|
| 718 | endif |
|---|
| 719 | dact = min( dact, 0.99*raercol(k,lmass,nsav) ) |
|---|
| 720 | raercol(k,lmasscw,nsav) = raercol(k,lmasscw,nsav)+dact |
|---|
| 721 | raercol(k,lmass, nsav) = raercol(k,lmass, nsav)-dact |
|---|
| 722 | enddo |
|---|
| 723 | enddo |
|---|
| 724 | enddo |
|---|
| 725 | ! 10 continue |
|---|
| 726 | endif ! ((tmpc1 > 0.001) .or. (tmpc2 > 0.001)) |
|---|
| 727 | |
|---|
| 728 | |
|---|
| 729 | if(lcldfra(k) < lcldfra_old(k) .and. lcldfra_old(k) > 1.e-20)then ! this line is the "old" criterion |
|---|
| 730 | ! go to 20 |
|---|
| 731 | |
|---|
| 732 | ! shrinking cloud ...................................................... |
|---|
| 733 | |
|---|
| 734 | ! droplet loss in decaying cloud |
|---|
| 735 | nsource(i,k,j)=nsource(i,k,j)+qndrop(k)*(lcldfra(k)-lcldfra_old(k))*dtinv |
|---|
| 736 | qndrop(k)=qndrop(k)*(1.+lcldfra(k)-lcldfra_old(k)) |
|---|
| 737 | ! convert activated aerosol to interstitial in decaying cloud |
|---|
| 738 | |
|---|
| 739 | tmpc = (lcldfra(k)-lcldfra_old(k))/lcldfra_old(k) |
|---|
| 740 | do n=1,ntype_aer |
|---|
| 741 | do m=1,nsize_aer(n) |
|---|
| 742 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 743 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 744 | if(lnum.gt.0)then |
|---|
| 745 | dact=raercol(k,lnumcw,nsav)*tmpc |
|---|
| 746 | raercol(k,lnumcw,nsav)=raercol(k,lnumcw,nsav)+dact |
|---|
| 747 | raercol(k,lnum,nsav)=raercol(k,lnum,nsav)-dact |
|---|
| 748 | endif |
|---|
| 749 | do l=1,ncomp(n) |
|---|
| 750 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 751 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 752 | dact=raercol(k,lmasscw,nsav)*tmpc |
|---|
| 753 | raercol(k,lmasscw,nsav)=raercol(k,lmasscw,nsav)+dact |
|---|
| 754 | raercol(k,lmass,nsav)=raercol(k,lmass,nsav)-dact |
|---|
| 755 | enddo |
|---|
| 756 | enddo |
|---|
| 757 | enddo |
|---|
| 758 | ! 20 continue |
|---|
| 759 | endif |
|---|
| 760 | |
|---|
| 761 | enddo GROW_SHRINK_MAIN_K_LOOP |
|---|
| 762 | ! end of k-loop for growing/shrinking cloud calcs ...................... |
|---|
| 763 | |
|---|
| 764 | |
|---|
| 765 | |
|---|
| 766 | ! ...................................................................... |
|---|
| 767 | ! start of main k-loop for calc of old cloud activation tendencies .......... |
|---|
| 768 | ! this loop does "set up" for the nsubmix loop |
|---|
| 769 | ! |
|---|
| 770 | ! rce-comment |
|---|
| 771 | ! changed this part of code to use current cloud fraction (lcldfra) exclusively |
|---|
| 772 | |
|---|
| 773 | OLD_CLOUD_MAIN_K_LOOP: do k=kts,kte |
|---|
| 774 | km1=max0(k-1,kts) |
|---|
| 775 | kp1=min0(k+1,kde-1) |
|---|
| 776 | flux_fullact(k) = 0.0 |
|---|
| 777 | if(lcldfra(k).gt.0.01)then |
|---|
| 778 | ! go to 30 |
|---|
| 779 | |
|---|
| 780 | ! old cloud |
|---|
| 781 | if(lcldfra(k)-lcldfra(km1).gt.0.01.or.k.eq.kts)then |
|---|
| 782 | |
|---|
| 783 | ! interior cloud |
|---|
| 784 | ! cloud base |
|---|
| 785 | |
|---|
| 786 | wdiab=0 |
|---|
| 787 | wmix=wtke(k) ! spectrum of updrafts |
|---|
| 788 | wbar=w(i,k,j) ! spectrum of updrafts |
|---|
| 789 | ! wmix=0. ! single updraft |
|---|
| 790 | ! wbar=wtke(k) ! single updraft |
|---|
| 791 | ! 06-nov-2005 rce - increase wmax from 10 to 50 (deep convective clouds) |
|---|
| 792 | wmax=50. |
|---|
| 793 | ekd(k)=wtke(k)*dz(k)/sq2pi |
|---|
| 794 | alogarg=max(1.e-20,1/lcldfra(k)-1.) |
|---|
| 795 | wmin=wbar+wmix*0.25*sq2pi*alog(alogarg) |
|---|
| 796 | |
|---|
| 797 | do n=1,ntype_aer |
|---|
| 798 | do m=1,nsize_aer(n) |
|---|
| 799 | call loadaer(raercol(1,1,nsav),km1,kms,kme,num_chem, & |
|---|
| 800 | cs(k), npv(m,n),dlo_sect(m,n),dhi_sect(m,n), & |
|---|
| 801 | maxd_acomp, ncomp(n), & |
|---|
| 802 | grid_id, ktau, i, j, m, n, & |
|---|
| 803 | numptr_aer(m,n,ai_phase),numptr_aer(m,n,cw_phase), & |
|---|
| 804 | dens_aer(1,n), & |
|---|
| 805 | massptr_aer(1,m,n,ai_phase), massptr_aer(1,m,n,cw_phase), & |
|---|
| 806 | maerosol(1,m,n), maerosolcw(1,m,n), & |
|---|
| 807 | maerosol_tot(m,n), maerosol_totcw(m,n), & |
|---|
| 808 | naerosol(m,n), naerosolcw(m,n), & |
|---|
| 809 | vaerosol(m,n), vaerosolcw(m,n) ) |
|---|
| 810 | |
|---|
| 811 | hygro_aer(m,n)=hygro(i,k,j,m,n) |
|---|
| 812 | |
|---|
| 813 | enddo |
|---|
| 814 | enddo |
|---|
| 815 | ! print *,'old cloud wbar,wmix=',wbar,wmix |
|---|
| 816 | |
|---|
| 817 | call activate(wbar,wmix,wdiab,wmin,wmax,temp(i,k,j),cs(k), & |
|---|
| 818 | msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & |
|---|
| 819 | naerosol, vaerosol, & |
|---|
| 820 | dlo_sect,dhi_sect, sigmag_aer,hygro_aer, & |
|---|
| 821 | fn,fs,fm,fluxn,fluxs,fluxm,flux_fullact(k), grid_id, ktau, i, j, k ) |
|---|
| 822 | |
|---|
| 823 | ! rce-comment |
|---|
| 824 | ! the activation-fraction fluxes (fluxn, fluxm) from subr activate assume that |
|---|
| 825 | ! wbar << wmix, which is valid for global-model scale but not mesoscale |
|---|
| 826 | ! for wrf-chem application, divide these by flux_fullact to get a |
|---|
| 827 | ! "flux-weighted-average" activation fraction, then multiply by (ekd(k)*zs(k)) |
|---|
| 828 | ! which is the local "turbulent vertical-mixing velocity" |
|---|
| 829 | if (k > kts) then |
|---|
| 830 | if (flux_fullact(k) > 1.0e-20) then |
|---|
| 831 | tmpa = ekd(k)*zs(k) |
|---|
| 832 | tmpf = flux_fullact(k) |
|---|
| 833 | do n=1,ntype_aer |
|---|
| 834 | do m=1,nsize_aer(n) |
|---|
| 835 | tmpb = max( fluxn(m,n), 0.0 ) / max( fluxn(m,n), tmpf ) |
|---|
| 836 | fluxn(m,n) = tmpa*tmpb |
|---|
| 837 | tmpb = max( fluxm(m,n), 0.0 ) / max( fluxm(m,n), tmpf ) |
|---|
| 838 | fluxm(m,n) = tmpa*tmpb |
|---|
| 839 | enddo |
|---|
| 840 | enddo |
|---|
| 841 | else |
|---|
| 842 | fluxn(:,:) = 0.0 |
|---|
| 843 | fluxm(:,:) = 0.0 |
|---|
| 844 | endif |
|---|
| 845 | endif |
|---|
| 846 | |
|---|
| 847 | if(k.gt.kts)then |
|---|
| 848 | tmpc = lcldfra(k)-lcldfra(km1) |
|---|
| 849 | else |
|---|
| 850 | tmpc=lcldfra(k) |
|---|
| 851 | endif |
|---|
| 852 | ! rce-comment |
|---|
| 853 | ! flux of activated mass into layer k (in kg/m2/s) |
|---|
| 854 | ! = "actmassflux" = dumc*fluxm*raercol(kp1,lmass)*csbot(k) |
|---|
| 855 | ! source of activated mass (in kg/kg/s) = flux divergence |
|---|
| 856 | ! = actmassflux/(cs(i,k)*dz(i,k)) |
|---|
| 857 | ! so need factor of csbot_cscen = csbot(k)/cs(i,k) |
|---|
| 858 | ! tmpe=1./(dz(k)) |
|---|
| 859 | tmpe = csbot_cscen(k)/(dz(k)) |
|---|
| 860 | fluxntot=0. |
|---|
| 861 | do n=1,ntype_aer |
|---|
| 862 | do m=1,nsize_aer(n) |
|---|
| 863 | fluxn(m,n)=fluxn(m,n)*tmpc |
|---|
| 864 | ! fluxs(m,n)=fluxs(m,n)*tmpc |
|---|
| 865 | fluxm(m,n)=fluxm(m,n)*tmpc |
|---|
| 866 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 867 | fluxntot=fluxntot+fluxn(m,n)*raercol(km1,lnum,nsav) |
|---|
| 868 | ! print *,'fn=',fn(m,n),' for m,n=',m,n |
|---|
| 869 | ! print *,'old cloud tmpc=',tmpc,' fn=',fn(m,n),' for m,n=',m,n |
|---|
| 870 | nact(k,m,n)=nact(k,m,n)+fluxn(m,n)*tmpe |
|---|
| 871 | mact(k,m,n)=mact(k,m,n)+fluxm(m,n)*tmpe |
|---|
| 872 | enddo |
|---|
| 873 | enddo |
|---|
| 874 | flux_fullact(k) = flux_fullact(k)*tmpe |
|---|
| 875 | nsource(i,k,j)=nsource(i,k,j)+fluxntot*zs(k) |
|---|
| 876 | fluxntot=fluxntot*cs(k) |
|---|
| 877 | endif |
|---|
| 878 | ! 30 continue |
|---|
| 879 | |
|---|
| 880 | else |
|---|
| 881 | ! go to 40 |
|---|
| 882 | ! no cloud |
|---|
| 883 | if(qndrop(k).gt.10000.e6)then |
|---|
| 884 | print *,'i,k,j,lcldfra,qndrop=',i,k,j,lcldfra(k),qndrop(k) |
|---|
| 885 | print *,'cldfra,ql,qi',cldfra(i,k,j),qc(i,k,j),qi(i,k,j) |
|---|
| 886 | endif |
|---|
| 887 | nsource(i,k,j)=nsource(i,k,j)-qndrop(k)*dtinv |
|---|
| 888 | qndrop(k)=0. |
|---|
| 889 | ! convert activated aerosol to interstitial in decaying cloud |
|---|
| 890 | do n=1,ntype_aer |
|---|
| 891 | do m=1,nsize_aer(n) |
|---|
| 892 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 893 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 894 | if(lnum.gt.0)then |
|---|
| 895 | raercol(k,lnum,nsav)=raercol(k,lnum,nsav)+raercol(k,lnumcw,nsav) |
|---|
| 896 | raercol(k,lnumcw,nsav)=0. |
|---|
| 897 | endif |
|---|
| 898 | do l=1,ncomp(n) |
|---|
| 899 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 900 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 901 | raercol(k,lmass,nsav)=raercol(k,lmass,nsav)+raercol(k,lmasscw,nsav) |
|---|
| 902 | raercol(k,lmasscw,nsav)=0. |
|---|
| 903 | enddo |
|---|
| 904 | enddo |
|---|
| 905 | enddo |
|---|
| 906 | ! 40 continue |
|---|
| 907 | endif |
|---|
| 908 | |
|---|
| 909 | enddo OLD_CLOUD_MAIN_K_LOOP |
|---|
| 910 | |
|---|
| 911 | ! cycle OVERALL_MAIN_I_LOOP |
|---|
| 912 | |
|---|
| 913 | |
|---|
| 914 | ! switch nsav, nnew so that nnew is the updated aerosol |
|---|
| 915 | |
|---|
| 916 | ntemp=nsav |
|---|
| 917 | nsav=nnew |
|---|
| 918 | nnew=ntemp |
|---|
| 919 | |
|---|
| 920 | ! load new droplets in layers above, below clouds |
|---|
| 921 | |
|---|
| 922 | dtmin=dtstep |
|---|
| 923 | ekk(kts)=0.0 |
|---|
| 924 | ! rce-comment -- ekd(k) is eddy-diffusivity at k/k-1 interface |
|---|
| 925 | ! want ekk(k) = ekd(k) * (density at k/k-1 interface) |
|---|
| 926 | do k=kts+1,kte |
|---|
| 927 | ekk(k)=ekd(k)*csbot(k) |
|---|
| 928 | enddo |
|---|
| 929 | ekk(kte+1)=0.0 |
|---|
| 930 | do k=kts,kte |
|---|
| 931 | ekkp(k)=zn(k)*ekk(k+1)*zs(k+1) |
|---|
| 932 | ekkm(k)=zn(k)*ekk(k)*zs(k) |
|---|
| 933 | tinv=ekkp(k)+ekkm(k) |
|---|
| 934 | if(k.eq.kts)tinv=tinv+surfratemax |
|---|
| 935 | if(tinv.gt.1.e-6)then |
|---|
| 936 | dtt=1./tinv |
|---|
| 937 | dtmin=min(dtmin,dtt) |
|---|
| 938 | endif |
|---|
| 939 | enddo |
|---|
| 940 | dtmix=0.9*dtmin |
|---|
| 941 | nsubmix=dtstep/dtmix+1 |
|---|
| 942 | if(nsubmix>100)then |
|---|
| 943 | nsubmix_bnd=100 |
|---|
| 944 | else |
|---|
| 945 | nsubmix_bnd=nsubmix |
|---|
| 946 | endif |
|---|
| 947 | ! count_submix(nsubmix_bnd)=count_submix(nsubmix_bnd)+1 |
|---|
| 948 | dtmix=dtstep/nsubmix |
|---|
| 949 | fac_srflx = -1.0/(zn(1)*nsubmix) |
|---|
| 950 | |
|---|
| 951 | do k=kts,kte |
|---|
| 952 | kp1=min(k+1,kde-1) |
|---|
| 953 | km1=max(k-1,1) |
|---|
| 954 | if(lcldfra(kp1).gt.0)then |
|---|
| 955 | overlapp(k)=min(lcldfra(k)/lcldfra(kp1),1.) |
|---|
| 956 | else |
|---|
| 957 | overlapp(k)=1. |
|---|
| 958 | endif |
|---|
| 959 | if(lcldfra(km1).gt.0)then |
|---|
| 960 | overlapm(k)=min(lcldfra(k)/lcldfra(km1),1.) |
|---|
| 961 | else |
|---|
| 962 | overlapm(k)=1. |
|---|
| 963 | endif |
|---|
| 964 | enddo |
|---|
| 965 | |
|---|
| 966 | |
|---|
| 967 | |
|---|
| 968 | ! ...................................................................... |
|---|
| 969 | ! start of nsubmix-loop for calc of old cloud activation tendencies .... |
|---|
| 970 | OLD_CLOUD_NSUBMIX_LOOP: do nsub=1,nsubmix |
|---|
| 971 | qndrop_new(kts:kte)=qndrop(kts:kte) |
|---|
| 972 | ! switch nsav, nnew so that nsav is the updated aerosol |
|---|
| 973 | ntemp=nsav |
|---|
| 974 | nsav=nnew |
|---|
| 975 | nnew=ntemp |
|---|
| 976 | srcn(:)=0.0 |
|---|
| 977 | do n=1,ntype_aer |
|---|
| 978 | do m=1,nsize_aer(n) |
|---|
| 979 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 980 | ! update droplet source |
|---|
| 981 | ! rce-comment - activation source in layer k involves particles from k-1 |
|---|
| 982 | ! srcn(kts :kte)=srcn(kts :kte)+nact(kts :kte,m,n)*(raercol(kts:kte ,lnum,nsav)) |
|---|
| 983 | srcn(kts+1:kte)=srcn(kts+1:kte)+nact(kts+1:kte,m,n)*(raercol(kts:kte-1,lnum,nsav)) |
|---|
| 984 | ! rce-comment - new formulation for k=kts should be implemented |
|---|
| 985 | srcn(kts )=srcn(kts )+nact(kts ,m,n)*(raercol(kts ,lnum,nsav)) |
|---|
| 986 | enddo |
|---|
| 987 | enddo |
|---|
| 988 | call explmix(qndrop,srcn,ekkp,ekkm,overlapp,overlapm, & |
|---|
| 989 | qndrop_new,surfrate_drop,kms,kme,kts,kte,dtmix,.false.) |
|---|
| 990 | do n=1,ntype_aer |
|---|
| 991 | do m=1,nsize_aer(n) |
|---|
| 992 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 993 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 994 | if(lnum>0)then |
|---|
| 995 | ! rce-comment - activation source in layer k involves particles from k-1 |
|---|
| 996 | ! source(kts :kte)= nact(kts :kte,m,n)*(raercol(kts:kte ,lnum,nsav)) |
|---|
| 997 | source(kts+1:kte)= nact(kts+1:kte,m,n)*(raercol(kts:kte-1,lnum,nsav)) |
|---|
| 998 | ! rce-comment - new formulation for k=kts should be implemented |
|---|
| 999 | source(kts )= nact(kts ,m,n)*(raercol(kts ,lnum,nsav)) |
|---|
| 1000 | call explmix(raercol(1,lnumcw,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
|---|
| 1001 | raercol(1,lnumcw,nsav),surfrate(lnumcw),kms,kme,kts,kte,dtmix,& |
|---|
| 1002 | .false.) |
|---|
| 1003 | call explmix(raercol(1,lnum,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
|---|
| 1004 | raercol(1,lnum,nsav),surfrate(lnum),kms,kme,kts,kte,dtmix, & |
|---|
| 1005 | .true.,raercol(1,lnumcw,nsav)) |
|---|
| 1006 | qsrflx(i,j,lnum) = qsrflx(i,j,lnum) + fac_srflx* & |
|---|
| 1007 | raercol(kts,lnum,nsav)*surfrate(lnum) |
|---|
| 1008 | qsrflx(i,j,lnumcw) = qsrflx(i,j,lnumcw) + fac_srflx* & |
|---|
| 1009 | raercol(kts,lnumcw,nsav)*surfrate(lnumcw) |
|---|
| 1010 | if (icheck_colmass > 0) then |
|---|
| 1011 | tmpf = dtmix*rhodz(kts) |
|---|
| 1012 | colmass_sfc(0,m,n,1) = colmass_sfc(0,m,n,1) & |
|---|
| 1013 | + raercol(kts,lnum ,nsav)*surfrate(lnum )*tmpf |
|---|
| 1014 | colmass_sfc(0,m,n,2) = colmass_sfc(0,m,n,2) & |
|---|
| 1015 | + raercol(kts,lnumcw,nsav)*surfrate(lnumcw)*tmpf |
|---|
| 1016 | endif |
|---|
| 1017 | endif |
|---|
| 1018 | do l=1,ncomp(n) |
|---|
| 1019 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 1020 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 1021 | ! rce-comment - activation source in layer k involves particles from k-1 |
|---|
| 1022 | ! source(kts :kte)= mact(kts :kte,m,n)*(raercol(kts:kte ,lmass,nsav)) |
|---|
| 1023 | source(kts+1:kte)= mact(kts+1:kte,m,n)*(raercol(kts:kte-1,lmass,nsav)) |
|---|
| 1024 | ! rce-comment - new formulation for k=kts should be implemented |
|---|
| 1025 | source(kts )= mact(kts ,m,n)*(raercol(kts ,lmass,nsav)) |
|---|
| 1026 | call explmix(raercol(1,lmasscw,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
|---|
| 1027 | raercol(1,lmasscw,nsav),surfrate(lmasscw),kms,kme,kts,kte,dtmix, & |
|---|
| 1028 | .false.) |
|---|
| 1029 | call explmix(raercol(1,lmass,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
|---|
| 1030 | raercol(1,lmass,nsav),surfrate(lmass),kms,kme,kts,kte,dtmix, & |
|---|
| 1031 | .true.,raercol(1,lmasscw,nsav)) |
|---|
| 1032 | qsrflx(i,j,lmass) = qsrflx(i,j,lmass) + fac_srflx* & |
|---|
| 1033 | raercol(kts,lmass,nsav)*surfrate(lmass) |
|---|
| 1034 | qsrflx(i,j,lmasscw) = qsrflx(i,j,lmasscw) + fac_srflx* & |
|---|
| 1035 | raercol(kts,lmasscw,nsav)*surfrate(lmasscw) |
|---|
| 1036 | if (icheck_colmass > 0) then |
|---|
| 1037 | ! colmass_sfc calculation |
|---|
| 1038 | ! colmass_bgn/end = bgn/end column burden = sum.over.k.of{ rho(k)*dz(k)*chem(k,l) } |
|---|
| 1039 | ! colmass_sfc = surface loss over dtstep |
|---|
| 1040 | ! = sum.over.nsubmix.substeps{ depvel(l)*rho(kts)*chem(kts,l)*dtmix } |
|---|
| 1041 | ! surfrate(l) = depvel(l)/dz(kts) so need to multiply by dz(kts) |
|---|
| 1042 | ! for mass, raercol(k,l) = chem(k,l)*1.0e-9, so need to multiply by 1.0e9 |
|---|
| 1043 | tmpf = dtmix*rhodz(kts)*1.0e9 |
|---|
| 1044 | colmass_sfc(l,m,n,1) = colmass_sfc(l,m,n,1) & |
|---|
| 1045 | + raercol(kts,lmass ,nsav)*surfrate(lmass )*tmpf |
|---|
| 1046 | colmass_sfc(l,m,n,2) = colmass_sfc(l,m,n,2) & |
|---|
| 1047 | + raercol(kts,lmasscw,nsav)*surfrate(lmasscw)*tmpf |
|---|
| 1048 | endif |
|---|
| 1049 | enddo |
|---|
| 1050 | lwater=waterptr_aer(m,n) ! aerosol water |
|---|
| 1051 | if(lwater>0)then |
|---|
| 1052 | source(:)=0. |
|---|
| 1053 | call explmix( raercol(1,lwater,nnew),source,ekkp,ekkm,overlapp,overlapm, & |
|---|
| 1054 | raercol(1,lwater,nsav),surfrate(lwater),kms,kme,kts,kte,dtmix, & |
|---|
| 1055 | .true.,source) |
|---|
| 1056 | endif |
|---|
| 1057 | enddo ! size |
|---|
| 1058 | enddo ! type |
|---|
| 1059 | |
|---|
| 1060 | enddo OLD_CLOUD_NSUBMIX_LOOP |
|---|
| 1061 | |
|---|
| 1062 | ! cycle OVERALL_MAIN_I_LOOP |
|---|
| 1063 | |
|---|
| 1064 | ! evaporate particles again if no cloud |
|---|
| 1065 | |
|---|
| 1066 | do k=kts,kte |
|---|
| 1067 | if(lcldfra(k).eq.0.)then |
|---|
| 1068 | |
|---|
| 1069 | ! no cloud |
|---|
| 1070 | |
|---|
| 1071 | qndrop(k)=0. |
|---|
| 1072 | ! convert activated aerosol to interstitial in decaying cloud |
|---|
| 1073 | do n=1,ntype_aer |
|---|
| 1074 | do m=1,nsize_aer(n) |
|---|
| 1075 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 1076 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 1077 | if(lnum.gt.0)then |
|---|
| 1078 | raercol(k,lnum,nnew)=raercol(k,lnum,nnew)+raercol(k,lnumcw,nnew) |
|---|
| 1079 | raercol(k,lnumcw,nnew)=0. |
|---|
| 1080 | endif |
|---|
| 1081 | do l=1,ncomp(n) |
|---|
| 1082 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 1083 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 1084 | raercol(k,lmass,nnew)=raercol(k,lmass,nnew)+raercol(k,lmasscw,nnew) |
|---|
| 1085 | raercol(k,lmasscw,nnew)=0. |
|---|
| 1086 | enddo |
|---|
| 1087 | enddo |
|---|
| 1088 | enddo |
|---|
| 1089 | endif |
|---|
| 1090 | enddo |
|---|
| 1091 | |
|---|
| 1092 | ! cycle OVERALL_MAIN_I_LOOP |
|---|
| 1093 | |
|---|
| 1094 | ! droplet number |
|---|
| 1095 | |
|---|
| 1096 | do k=kts,kte |
|---|
| 1097 | ! if(lcldfra(k).gt.0.1)then |
|---|
| 1098 | ! write(6,'(a,3i5,f12.1)')'i,j,k,qndrop=',i,j,k,qndrop(k) |
|---|
| 1099 | ! endif |
|---|
| 1100 | if(qndrop(k).lt.-10.e6.or.qndrop(k).gt.1.e12)then |
|---|
| 1101 | write(6,'(a,g12.2,a,3i5)')'after qndrop=',qndrop(k),' for i,k,j=',i,k,j |
|---|
| 1102 | endif |
|---|
| 1103 | |
|---|
| 1104 | qndrop3d(i,k,j) = max(qndrop(k),1.e-6) |
|---|
| 1105 | |
|---|
| 1106 | if(qndrop3d(i,k,j).lt.-10.e6.or.qndrop3d(i,k,j).gt.1.E20)then |
|---|
| 1107 | write(6,'(a,g12.2,a,3i5)')'after qndrop3d=',qndrop3d(i,k,j),' for i,k,j=',i,k,j |
|---|
| 1108 | endif |
|---|
| 1109 | if(qc(i,k,j).lt.-1..or.qc(i,k,j).gt.1.)then |
|---|
| 1110 | write(6,'(a,g12.2,a,3i5)')'qc=',qc(i,k,j),' for i,k,j=',i,k,j |
|---|
| 1111 | call wrf_error_fatal("1") |
|---|
| 1112 | endif |
|---|
| 1113 | if(qi(i,k,j).lt.-1..or.qi(i,k,j).gt.1.)then |
|---|
| 1114 | write(6,'(a,g12.2,a,3i5)')'qi=',qi(i,k,j),' for i,k,j=',i,k,j |
|---|
| 1115 | call wrf_error_fatal("1") |
|---|
| 1116 | endif |
|---|
| 1117 | if(qv(i,k,j).lt.-1..or.qv(i,k,j).gt.1.)then |
|---|
| 1118 | write(6,'(a,g12.2,a,3i5)')'qv=',qv(i,k,j),' for i,k,j=',i,k,j |
|---|
| 1119 | call wrf_error_fatal("1") |
|---|
| 1120 | endif |
|---|
| 1121 | cldfra_old(i,k,j) = cldfra(i,k,j) |
|---|
| 1122 | ! if(k.gt.6.and.k.lt.11)cldfra_old(i,k,j)=1. |
|---|
| 1123 | enddo |
|---|
| 1124 | |
|---|
| 1125 | ! cycle OVERALL_MAIN_I_LOOP |
|---|
| 1126 | |
|---|
| 1127 | ! update chem and convert back to mole/mole |
|---|
| 1128 | |
|---|
| 1129 | ccn(:,:) = 0. |
|---|
| 1130 | do n=1,ntype_aer |
|---|
| 1131 | do m=1,nsize_aer(n) |
|---|
| 1132 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 1133 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 1134 | if(lnum.gt.0)then |
|---|
| 1135 | ! scale=mwdry*0.001 |
|---|
| 1136 | scale = 1. |
|---|
| 1137 | chem(i,kts:kte,j,lnumcw)= raercol(kts:kte,lnumcw,nnew)*scale |
|---|
| 1138 | chem(i,kts:kte,j,lnum)= raercol(kts:kte,lnum,nnew)*scale |
|---|
| 1139 | endif |
|---|
| 1140 | do l=1,ncomp(n) |
|---|
| 1141 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 1142 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 1143 | ! scale = mwdry/mw_aer(l,n) |
|---|
| 1144 | scale = 1.e9 |
|---|
| 1145 | chem(i,kts:kte,j,lmasscw)=raercol(kts:kte,lmasscw,nnew)*scale ! ug/kg |
|---|
| 1146 | chem(i,kts:kte,j,lmass)=raercol(kts:kte,lmass,nnew)*scale ! ug/kg |
|---|
| 1147 | enddo |
|---|
| 1148 | lwater=waterptr_aer(m,n) |
|---|
| 1149 | if(lwater>0)chem(i,kts:kte,j,lwater)=raercol(kts:kte,lwater,nnew) ! don't convert units |
|---|
| 1150 | do k=kts,kte |
|---|
| 1151 | sm=2.*aten*sqrt(aten/(27.*hygro(i,k,j,m,n)*amcube(m,n))) |
|---|
| 1152 | do l=1,psat |
|---|
| 1153 | arg=argfactor(m,n)*log(sm/super(l)) |
|---|
| 1154 | if(arg<2)then |
|---|
| 1155 | if(arg<-2)then |
|---|
| 1156 | ccnfact(l,m,n)=1.e-6 ! convert from #/m3 to #/cm3 |
|---|
| 1157 | else |
|---|
| 1158 | ccnfact(l,m,n)=1.e-6*0.5*ERFC_NUM_RECIPES(arg) |
|---|
| 1159 | endif |
|---|
| 1160 | else |
|---|
| 1161 | ccnfact(l,m,n) = 0. |
|---|
| 1162 | endif |
|---|
| 1163 | ! ccn concentration as diagnostic |
|---|
| 1164 | ! assume same hygroscopicity and ccnfact for cloud-phase and aerosol phase particles |
|---|
| 1165 | ccn(k,l)=ccn(k,l)+(raercol(k,lnum,nnew)+raercol(k,lnumcw,nnew))*cs(k)*ccnfact(l,m,n) |
|---|
| 1166 | enddo |
|---|
| 1167 | enddo |
|---|
| 1168 | enddo |
|---|
| 1169 | enddo |
|---|
| 1170 | do l=1,psat |
|---|
| 1171 | !wig, 22-Nov-2006: added vertical bounds to prevent out-of-bounds at top |
|---|
| 1172 | if(l.eq.1)ccn1(i,kts:kte,j)=ccn(:,l) |
|---|
| 1173 | if(l.eq.2)ccn2(i,kts:kte,j)=ccn(:,l) |
|---|
| 1174 | if(l.eq.3)ccn3(i,kts:kte,j)=ccn(:,l) |
|---|
| 1175 | if(l.eq.4)ccn4(i,kts:kte,j)=ccn(:,l) |
|---|
| 1176 | if(l.eq.5)ccn5(i,kts:kte,j)=ccn(:,l) |
|---|
| 1177 | if(l.eq.6)ccn6(i,kts:kte,j)=ccn(:,l) |
|---|
| 1178 | end do |
|---|
| 1179 | |
|---|
| 1180 | ! mass conservation checking |
|---|
| 1181 | if (icheck_colmass > 0) then |
|---|
| 1182 | ! calc final column burdens |
|---|
| 1183 | do n=1,ntype_aer |
|---|
| 1184 | do m=1,nsize_aer(n) |
|---|
| 1185 | lnum=numptr_aer(m,n,ai_phase) |
|---|
| 1186 | lnumcw=numptr_aer(m,n,cw_phase) |
|---|
| 1187 | if(lnum>0)then |
|---|
| 1188 | colmass_end(0,m,n,1) = sum( chem(i,kts:kte,j,lnum )*rhodz(kts:kte) ) |
|---|
| 1189 | colmass_end(0,m,n,2) = sum( chem(i,kts:kte,j,lnumcw)*rhodz(kts:kte) ) |
|---|
| 1190 | endif |
|---|
| 1191 | do l=1,ncomp(n) |
|---|
| 1192 | lmass=massptr_aer(l,m,n,ai_phase) |
|---|
| 1193 | lmasscw=massptr_aer(l,m,n,cw_phase) |
|---|
| 1194 | colmass_end(l,m,n,1) = sum( chem(i,kts:kte,j,lmass )*rhodz(kts:kte) ) |
|---|
| 1195 | colmass_end(l,m,n,2) = sum( chem(i,kts:kte,j,lmasscw)*rhodz(kts:kte) ) |
|---|
| 1196 | enddo |
|---|
| 1197 | enddo ! size |
|---|
| 1198 | enddo ! type |
|---|
| 1199 | ! calc burden change errors for each interstitial/activated pair |
|---|
| 1200 | do n=1,ntype_aer |
|---|
| 1201 | do m=1,nsize_aer(n) |
|---|
| 1202 | do l=0,ncomp(n) |
|---|
| 1203 | ! tmpa & tmpb = beginning & ending column burden divided by rhodzsum, |
|---|
| 1204 | ! = beginning & ending column-mean mixing ratios |
|---|
| 1205 | ! tmpc = loss to surface divided by rhodzsum, |
|---|
| 1206 | tmpa = ( colmass_bgn(l,m,n,1) + colmass_bgn(l,m,n,2) )/rhodzsum |
|---|
| 1207 | tmpb = ( colmass_end(l,m,n,1) + colmass_end(l,m,n,2) )/rhodzsum |
|---|
| 1208 | tmpc = ( colmass_sfc(l,m,n,1) + colmass_sfc(l,m,n,2) )/rhodzsum |
|---|
| 1209 | |
|---|
| 1210 | ! tmpd = ((final burden) + (sfc loss)) - (initial burden) |
|---|
| 1211 | ! = burden change error |
|---|
| 1212 | tmpd = (tmpb + tmpc) - tmpa |
|---|
| 1213 | tmpe = max( tmpa, 1.0e-20 ) |
|---|
| 1214 | |
|---|
| 1215 | ! tmpf = (burden change error) / (initial burden) |
|---|
| 1216 | if (abs(tmpd) < 1.0e5*tmpe) then |
|---|
| 1217 | tmpf = tmpd/tmpe |
|---|
| 1218 | else if (tmpf < 0.0) then |
|---|
| 1219 | tmpf = -1.0e5 |
|---|
| 1220 | else |
|---|
| 1221 | tmpf = 1.0e5 |
|---|
| 1222 | end if |
|---|
| 1223 | if (abs(tmpf) > abs(colmass_worst(l,m,n))) then |
|---|
| 1224 | colmass_worst(l,m,n) = tmpf |
|---|
| 1225 | colmass_worst_ij(1,l,m,n) = i |
|---|
| 1226 | colmass_worst_ij(2,l,m,n) = j |
|---|
| 1227 | endif |
|---|
| 1228 | enddo |
|---|
| 1229 | enddo ! size |
|---|
| 1230 | enddo ! type |
|---|
| 1231 | endif ! (icheck_colmass > 0) |
|---|
| 1232 | |
|---|
| 1233 | |
|---|
| 1234 | enddo OVERALL_MAIN_I_LOOP ! end of main loop over i |
|---|
| 1235 | enddo OVERALL_MAIN_J_LOOP ! end of main loop over j |
|---|
| 1236 | |
|---|
| 1237 | |
|---|
| 1238 | ! mass conservation checking |
|---|
| 1239 | if (icheck_colmass > 0) then |
|---|
| 1240 | if (icheck_colmass >= 100) write(*,'(a)') & |
|---|
| 1241 | 'mixactivate colmass worst errors bgn - type, size, comp, err, i, j' |
|---|
| 1242 | colmass_maxworst_r = 0.0 |
|---|
| 1243 | colmass_maxworst_i(:) = -1 |
|---|
| 1244 | do n=1,ntype_aer |
|---|
| 1245 | do m=1,nsize_aer(n) |
|---|
| 1246 | do l=0,ncomp(n) |
|---|
| 1247 | if (icheck_colmass >= 100) & |
|---|
| 1248 | write(*,'(3i3,1p,e10.2,2i4)') n, m, l, & |
|---|
| 1249 | colmass_worst(l,m,n), colmass_worst_ij(1:2,l,m,n) |
|---|
| 1250 | if (abs(colmass_worst(l,m,n)) > abs(colmass_maxworst_r)) then |
|---|
| 1251 | colmass_maxworst_r = colmass_worst(l,m,n) |
|---|
| 1252 | colmass_maxworst_i(1) = n |
|---|
| 1253 | colmass_maxworst_i(2) = m |
|---|
| 1254 | colmass_maxworst_i(3) = l |
|---|
| 1255 | end if |
|---|
| 1256 | enddo |
|---|
| 1257 | enddo ! size |
|---|
| 1258 | enddo ! type |
|---|
| 1259 | if ((icheck_colmass >= 10) .or. (abs(colmass_maxworst_r) >= 1.0e-6)) & |
|---|
| 1260 | write(*,'(a,3i3,1p,e10.2)') 'mixactivate colmass maxworst', & |
|---|
| 1261 | colmass_maxworst_i(1:3), colmass_maxworst_r |
|---|
| 1262 | endif ! (icheck_colmass > 0) |
|---|
| 1263 | |
|---|
| 1264 | |
|---|
| 1265 | return |
|---|
| 1266 | end subroutine mixactivate |
|---|
| 1267 | |
|---|
| 1268 | |
|---|
| 1269 | !---------------------------------------------------------------------- |
|---|
| 1270 | !---------------------------------------------------------------------- |
|---|
| 1271 | subroutine explmix( q, src, ekkp, ekkm, overlapp, overlapm, & |
|---|
| 1272 | qold, surfrate, kms, kme, kts, kte, dt, & |
|---|
| 1273 | is_unact, qactold ) |
|---|
| 1274 | |
|---|
| 1275 | ! explicit integration of droplet/aerosol mixing |
|---|
| 1276 | ! with source due to activation/nucleation |
|---|
| 1277 | |
|---|
| 1278 | |
|---|
| 1279 | implicit none |
|---|
| 1280 | integer, intent(in) :: kms,kme ! number of levels for array definition |
|---|
| 1281 | integer, intent(in) :: kts,kte ! number of levels for looping |
|---|
| 1282 | real, intent(inout) :: q(kms:kme) ! mixing ratio to be updated |
|---|
| 1283 | real, intent(in) :: qold(kms:kme) ! mixing ratio from previous time step |
|---|
| 1284 | real, intent(in) :: src(kms:kme) ! source due to activation/nucleation (/s) |
|---|
| 1285 | real, intent(in) :: ekkp(kms:kme) ! zn*zs*density*diffusivity (kg/m3 m2/s) at interface |
|---|
| 1286 | ! below layer k (k,k+1 interface) |
|---|
| 1287 | real, intent(in) :: ekkm(kms:kme) ! zn*zs*density*diffusivity (kg/m3 m2/s) at interface |
|---|
| 1288 | ! above layer k (k,k+1 interface) |
|---|
| 1289 | real, intent(in) :: overlapp(kms:kme) ! cloud overlap below |
|---|
| 1290 | real, intent(in) :: overlapm(kms:kme) ! cloud overlap above |
|---|
| 1291 | real, intent(in) :: surfrate ! surface exchange rate (/s) |
|---|
| 1292 | real, intent(in) :: dt ! time step (s) |
|---|
| 1293 | logical, intent(in) :: is_unact ! true if this is an unactivated species |
|---|
| 1294 | real, intent(in),optional :: qactold(kms:kme) |
|---|
| 1295 | ! mixing ratio of ACTIVATED species from previous step |
|---|
| 1296 | ! *** this should only be present |
|---|
| 1297 | ! if the current species is unactivated number/sfc/mass |
|---|
| 1298 | |
|---|
| 1299 | integer k,kp1,km1 |
|---|
| 1300 | |
|---|
| 1301 | if ( is_unact ) then |
|---|
| 1302 | ! the qactold*(1-overlap) terms are resuspension of activated material |
|---|
| 1303 | do k=kts,kte |
|---|
| 1304 | kp1=min(k+1,kte) |
|---|
| 1305 | km1=max(k-1,kts) |
|---|
| 1306 | q(k) = qold(k) + dt*( - src(k) + ekkp(k)*(qold(kp1) - qold(k) + & |
|---|
| 1307 | qactold(kp1)*(1.0-overlapp(k))) & |
|---|
| 1308 | + ekkm(k)*(qold(km1) - qold(k) + & |
|---|
| 1309 | qactold(km1)*(1.0-overlapm(k))) ) |
|---|
| 1310 | ! if(q(k)<-1.e-30)then ! force to non-negative |
|---|
| 1311 | ! print *,'q=',q(k),' in explmix' |
|---|
| 1312 | q(k)=max(q(k),0.) |
|---|
| 1313 | ! endif |
|---|
| 1314 | end do |
|---|
| 1315 | |
|---|
| 1316 | else |
|---|
| 1317 | do k=kts,kte |
|---|
| 1318 | kp1=min(k+1,kte) |
|---|
| 1319 | km1=max(k-1,kts) |
|---|
| 1320 | q(k) = qold(k) + dt*(src(k) + ekkp(k)*(overlapp(k)*qold(kp1)-qold(k)) + & |
|---|
| 1321 | ekkm(k)*(overlapm(k)*qold(km1)-qold(k)) ) |
|---|
| 1322 | ! if(q(k)<-1.e-30)then ! force to non-negative |
|---|
| 1323 | ! print *,'q=',q(k),' in explmix' |
|---|
| 1324 | q(k)=max(q(k),0.) |
|---|
| 1325 | ! endif |
|---|
| 1326 | end do |
|---|
| 1327 | end if |
|---|
| 1328 | |
|---|
| 1329 | ! dry deposition loss at base of lowest layer |
|---|
| 1330 | q(kts)=q(kts)-surfrate*qold(kts)*dt |
|---|
| 1331 | ! if(q(kts)<-1.e-30)then ! force to non-negative |
|---|
| 1332 | ! print *,'q=',q(kts),' in explmix' |
|---|
| 1333 | q(kts)=max(q(kts),0.) |
|---|
| 1334 | ! endif |
|---|
| 1335 | |
|---|
| 1336 | return |
|---|
| 1337 | end subroutine explmix |
|---|
| 1338 | |
|---|
| 1339 | !---------------------------------------------------------------------- |
|---|
| 1340 | !---------------------------------------------------------------------- |
|---|
| 1341 | ! 06-nov-2005 rce - grid_id & ktau added to arg list |
|---|
| 1342 | subroutine activate(wbar, sigw, wdiab, wminf, wmaxf, tair, rhoair, & |
|---|
| 1343 | msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & |
|---|
| 1344 | na, volc, dlo_sect,dhi_sect,sigman, hygro, & |
|---|
| 1345 | fn, fs, fm, fluxn, fluxs, fluxm, flux_fullact, & |
|---|
| 1346 | grid_id, ktau, ii, jj, kk ) |
|---|
| 1347 | |
|---|
| 1348 | ! calculates number, surface, and mass fraction of aerosols activated as CCN |
|---|
| 1349 | ! calculates flux of cloud droplets, surface area, and aerosol mass into cloud |
|---|
| 1350 | ! assumes an internal mixture within each of aerosol mode. |
|---|
| 1351 | ! A sectional treatment within each type is assumed if ntype_aer >7. |
|---|
| 1352 | ! A gaussiam spectrum of updrafts can be treated. |
|---|
| 1353 | |
|---|
| 1354 | ! mks units |
|---|
| 1355 | |
|---|
| 1356 | ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. |
|---|
| 1357 | ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. |
|---|
| 1358 | |
|---|
| 1359 | USE module_model_constants, only: g,rhowater, xlv, cp, rvovrd, r_d, r_v, & |
|---|
| 1360 | mwdry,svp1,svp2,svp3,ep_2 |
|---|
| 1361 | |
|---|
| 1362 | implicit none |
|---|
| 1363 | |
|---|
| 1364 | |
|---|
| 1365 | ! input |
|---|
| 1366 | |
|---|
| 1367 | integer,intent(in) :: maxd_atype ! dimension of types |
|---|
| 1368 | integer,intent(in) :: maxd_asize ! dimension of sizes |
|---|
| 1369 | integer,intent(in) :: ntype_aer ! number of types |
|---|
| 1370 | integer,intent(in) :: nsize_aer(maxd_atype) ! number of sizes for type |
|---|
| 1371 | integer,intent(in) :: msectional ! 1 for sectional, 0 for modal |
|---|
| 1372 | integer,intent(in) :: grid_id ! WRF grid%id |
|---|
| 1373 | integer,intent(in) :: ktau ! WRF time step count |
|---|
| 1374 | integer,intent(in) :: ii, jj, kk ! i,j,k of current grid cell |
|---|
| 1375 | real,intent(in) :: wbar ! grid cell mean vertical velocity (m/s) |
|---|
| 1376 | real,intent(in) :: sigw ! subgrid standard deviation of vertical vel (m/s) |
|---|
| 1377 | real,intent(in) :: wdiab ! diabatic vertical velocity (0 if adiabatic) |
|---|
| 1378 | real,intent(in) :: wminf ! minimum updraft velocity for integration (m/s) |
|---|
| 1379 | real,intent(in) :: wmaxf ! maximum updraft velocity for integration (m/s) |
|---|
| 1380 | real,intent(in) :: tair ! air temperature (K) |
|---|
| 1381 | real,intent(in) :: rhoair ! air density (kg/m3) |
|---|
| 1382 | real,intent(in) :: na(maxd_asize,maxd_atype) ! aerosol number concentration (/m3) |
|---|
| 1383 | real,intent(in) :: sigman(maxd_asize,maxd_atype) ! geometric standard deviation of aerosol size distribution |
|---|
| 1384 | real,intent(in) :: hygro(maxd_asize,maxd_atype) ! bulk hygroscopicity of aerosol mode |
|---|
| 1385 | real,intent(in) :: volc(maxd_asize,maxd_atype) ! total aerosol volume concentration (m3/m3) |
|---|
| 1386 | real,intent(in) :: dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) |
|---|
| 1387 | dhi_sect( maxd_asize, maxd_atype ) ! maximum size of section (cm) |
|---|
| 1388 | |
|---|
| 1389 | ! output |
|---|
| 1390 | |
|---|
| 1391 | real,intent(inout) :: fn(maxd_asize,maxd_atype) ! number fraction of aerosols activated |
|---|
| 1392 | real,intent(inout) :: fs(maxd_asize,maxd_atype) ! surface fraction of aerosols activated |
|---|
| 1393 | real,intent(inout) :: fm(maxd_asize,maxd_atype) ! mass fraction of aerosols activated |
|---|
| 1394 | real,intent(inout) :: fluxn(maxd_asize,maxd_atype) ! flux of activated aerosol number fraction into cloud (m/s) |
|---|
| 1395 | real,intent(inout) :: fluxs(maxd_asize,maxd_atype) ! flux of activated aerosol surface fraction (m/s) |
|---|
| 1396 | real,intent(inout) :: fluxm(maxd_asize,maxd_atype) ! flux of activated aerosol mass fraction into cloud (m/s) |
|---|
| 1397 | real,intent(inout) :: flux_fullact ! flux when activation fraction = 100% (m/s) |
|---|
| 1398 | |
|---|
| 1399 | ! local |
|---|
| 1400 | |
|---|
| 1401 | !!$ external erf,erfc |
|---|
| 1402 | !!$ real erf,erfc |
|---|
| 1403 | ! external qsat_water |
|---|
| 1404 | integer, parameter:: nx=200 |
|---|
| 1405 | integer iquasisect_option, isectional |
|---|
| 1406 | real integ,integf |
|---|
| 1407 | real, parameter :: surften = 0.076 ! surface tension of water w/respect to air (N/m) |
|---|
| 1408 | real, parameter :: p0 = 1013.25e2 ! reference pressure (Pa) |
|---|
| 1409 | real, parameter :: t0 = 273.15 ! reference temperature (K) |
|---|
| 1410 | real ylo(maxd_asize,maxd_atype),yhi(maxd_asize,maxd_atype) ! 1-particle volume at section interfaces |
|---|
| 1411 | real ymean(maxd_asize,maxd_atype) ! 1-particle volume at r=rmean |
|---|
| 1412 | real ycut, lnycut, betayy, betayy2, gammayy, phiyy |
|---|
| 1413 | real surfc(maxd_asize,maxd_atype) ! surface concentration (m2/m3) |
|---|
| 1414 | real sign(maxd_asize,maxd_atype) ! geometric standard deviation of size distribution |
|---|
| 1415 | real alnsign(maxd_asize,maxd_atype) ! natl log of geometric standard dev of aerosol |
|---|
| 1416 | real am(maxd_asize,maxd_atype) ! number mode radius of dry aerosol (m) |
|---|
| 1417 | real lnhygro(maxd_asize,maxd_atype) ! ln(b) |
|---|
| 1418 | real f1(maxd_asize,maxd_atype) ! array to hold parameter for maxsat |
|---|
| 1419 | real pres ! pressure (Pa) |
|---|
| 1420 | real path ! mean free path (m) |
|---|
| 1421 | real diff ! diffusivity (m2/s) |
|---|
| 1422 | real conduct ! thermal conductivity (Joule/m/sec/deg) |
|---|
| 1423 | real diff0,conduct0 |
|---|
| 1424 | real es ! saturation vapor pressure |
|---|
| 1425 | real qs ! water vapor saturation mixing ratio |
|---|
| 1426 | real dqsdt ! change in qs with temperature |
|---|
| 1427 | real dqsdp ! change in qs with pressure |
|---|
| 1428 | real gg ! thermodynamic function (m2/s) |
|---|
| 1429 | real sqrtg ! sqrt(gg) |
|---|
| 1430 | real sm(maxd_asize,maxd_atype) ! critical supersaturation for number mode radius |
|---|
| 1431 | real lnsm(maxd_asize,maxd_atype) ! ln( sm ) |
|---|
| 1432 | real zeta, eta(maxd_asize,maxd_atype) |
|---|
| 1433 | real lnsmax ! ln(smax) |
|---|
| 1434 | real alpha |
|---|
| 1435 | real gamma |
|---|
| 1436 | real beta |
|---|
| 1437 | real gaus |
|---|
| 1438 | logical :: top ! true if cloud top, false if cloud base or new cloud |
|---|
| 1439 | real asub(maxd_asize,maxd_atype),bsub(maxd_asize,maxd_atype) ! coefficients of submode size distribution N=a+bx |
|---|
| 1440 | real totn(maxd_atype) ! total aerosol number concentration |
|---|
| 1441 | real aten ! surface tension parameter |
|---|
| 1442 | real gmrad(maxd_atype) ! geometric mean radius |
|---|
| 1443 | real gmradsq(maxd_atype) ! geometric mean of radius squared |
|---|
| 1444 | real gmlnsig(maxd_atype) ! geometric standard deviation |
|---|
| 1445 | real gmsm(maxd_atype) ! critical supersaturation at radius gmrad |
|---|
| 1446 | real sumflxn(maxd_asize,maxd_atype) |
|---|
| 1447 | real sumflxs(maxd_asize,maxd_atype) |
|---|
| 1448 | real sumflxm(maxd_asize,maxd_atype) |
|---|
| 1449 | real sumflx_fullact |
|---|
| 1450 | real sumfn(maxd_asize,maxd_atype) |
|---|
| 1451 | real sumfs(maxd_asize,maxd_atype) |
|---|
| 1452 | real sumfm(maxd_asize,maxd_atype) |
|---|
| 1453 | real sumns(maxd_atype) |
|---|
| 1454 | real fnold(maxd_asize,maxd_atype) ! number fraction activated |
|---|
| 1455 | real fsold(maxd_asize,maxd_atype) ! surface fraction activated |
|---|
| 1456 | real fmold(maxd_asize,maxd_atype) ! mass fraction activated |
|---|
| 1457 | real wold,gold |
|---|
| 1458 | real alogten,alog2,alog3,alogaten |
|---|
| 1459 | real alogam |
|---|
| 1460 | real rlo(maxd_asize,maxd_atype), rhi(maxd_asize,maxd_atype) |
|---|
| 1461 | real rmean(maxd_asize,maxd_atype) |
|---|
| 1462 | ! mean radius (m) for the section (not used with modal) |
|---|
| 1463 | ! calculated from current volume & number |
|---|
| 1464 | real ccc |
|---|
| 1465 | real dumaa,dumbb |
|---|
| 1466 | real wmin,wmax,w,dw,dwmax,dwmin,wnuc,dwnew,wb |
|---|
| 1467 | real dfmin,dfmax,fnew,fold,fnmin,fnbar,fsbar,fmbar |
|---|
| 1468 | real alw,sqrtalw |
|---|
| 1469 | real smax |
|---|
| 1470 | real x,arg |
|---|
| 1471 | real xmincoeff,xcut |
|---|
| 1472 | real z,z1,z2,wf1,wf2,zf1,zf2,gf1,gf2,gf |
|---|
| 1473 | real etafactor1,etafactor2(maxd_asize,maxd_atype),etafactor2max |
|---|
| 1474 | integer m,n,nw,nwmax |
|---|
| 1475 | |
|---|
| 1476 | ! numerical integration parameters |
|---|
| 1477 | real, parameter :: eps = 0.3 |
|---|
| 1478 | real, parameter :: fmax = 0.99 |
|---|
| 1479 | real, parameter :: sds = 3. |
|---|
| 1480 | |
|---|
| 1481 | ! mathematical constants |
|---|
| 1482 | real third, twothird, sixth, zero, one, two, three |
|---|
| 1483 | |
|---|
| 1484 | real, parameter :: sq2 = 1.4142135624 |
|---|
| 1485 | real, parameter :: sqpi = 1.7724538509 |
|---|
| 1486 | real, parameter :: pi = 3.1415926536 |
|---|
| 1487 | |
|---|
| 1488 | ! integer, save :: ndist(nx) ! accumulates frequency distribution of integration bins required |
|---|
| 1489 | ! data ndist/nx*0/ |
|---|
| 1490 | |
|---|
| 1491 | ! for nsize_aer>7, a sectional approach is used and isectional = iquasisect_option |
|---|
| 1492 | ! activation fractions (fn,fs,fm) are computed as follows |
|---|
| 1493 | ! iquasisect_option = 1,3 - each section treated as a narrow lognormal |
|---|
| 1494 | ! iquasisect_option = 2,4 - within-section dn/dx = a + b*x, x = ln(r) |
|---|
| 1495 | ! smax is computed as follows (when explicit activation is OFF) |
|---|
| 1496 | ! iquasisect_option = 1,2 - razzak-ghan modal parameterization with |
|---|
| 1497 | ! single mode having same ntot, dgnum, sigmag as the combined sections |
|---|
| 1498 | ! iquasisect_option = 3,4 - razzak-ghan sectional parameterization |
|---|
| 1499 | ! for nsize_aer=<9, a modal approach is used and isectional = 0 |
|---|
| 1500 | |
|---|
| 1501 | ! rce 08-jul-2005 |
|---|
| 1502 | ! if either (na(n,m) < nsmall) or (volc(n,m) < vsmall) |
|---|
| 1503 | ! then treat bin/mode (n,m) as being empty, and set its fn/fs/fm=0.0 |
|---|
| 1504 | ! (for single precision, gradual underflow starts around 1.0e-38, |
|---|
| 1505 | ! and strange things can happen when in that region) |
|---|
| 1506 | real, parameter :: nsmall = 1.0e-20 ! aer number conc in #/m3 |
|---|
| 1507 | real, parameter :: vsmall = 1.0e-37 ! aer volume conc in m3/m3 |
|---|
| 1508 | logical bin_is_empty(maxd_asize,maxd_atype), all_bins_empty |
|---|
| 1509 | logical bin_is_narrow(maxd_asize,maxd_atype) |
|---|
| 1510 | |
|---|
| 1511 | integer idiagaa, ipass_nwloop |
|---|
| 1512 | integer idiag_dndy_neg, idiag_fnsm_prob |
|---|
| 1513 | |
|---|
| 1514 | ! The flag for cloud top is no longer used so set it to false. This is an |
|---|
| 1515 | ! antiquated feature related to radiation enhancing mass fluxes at cloud |
|---|
| 1516 | ! top. It is currently, as of Feb. 2009, set to false in the CAM version |
|---|
| 1517 | ! as well. |
|---|
| 1518 | top = .false. |
|---|
| 1519 | |
|---|
| 1520 | !....................................................................... |
|---|
| 1521 | ! |
|---|
| 1522 | ! start calc. of modal or sectional activation properties (start of section 1) |
|---|
| 1523 | ! |
|---|
| 1524 | !....................................................................... |
|---|
| 1525 | idiag_dndy_neg = 1 ! set this to 0 to turn off |
|---|
| 1526 | ! warnings about dn/dy < 0 |
|---|
| 1527 | idiag_fnsm_prob = 1 ! set this to 0 to turn off |
|---|
| 1528 | ! warnings about fn/fs/fm misbehavior |
|---|
| 1529 | |
|---|
| 1530 | iquasisect_option = 2 |
|---|
| 1531 | if(msectional.gt.0)then |
|---|
| 1532 | isectional = iquasisect_option |
|---|
| 1533 | else |
|---|
| 1534 | isectional = 0 |
|---|
| 1535 | endif |
|---|
| 1536 | |
|---|
| 1537 | do n=1,ntype_aer |
|---|
| 1538 | ! print *,'ntype_aer,n,nsize_aer(n)=',ntype_aer,n,nsize_aer(n) |
|---|
| 1539 | |
|---|
| 1540 | if(ntype_aer.eq.1.and.nsize_aer(n).eq.1.and.na(1,1).lt.1.e-20)then |
|---|
| 1541 | fn(1,1)=0. |
|---|
| 1542 | fs(1,1)=0. |
|---|
| 1543 | fm(1,1)=0. |
|---|
| 1544 | fluxn(1,1)=0. |
|---|
| 1545 | fluxs(1,1)=0. |
|---|
| 1546 | fluxm(1,1)=0. |
|---|
| 1547 | flux_fullact=0. |
|---|
| 1548 | return |
|---|
| 1549 | endif |
|---|
| 1550 | enddo |
|---|
| 1551 | |
|---|
| 1552 | zero = 0.0 |
|---|
| 1553 | one = 1.0 |
|---|
| 1554 | two = 2.0 |
|---|
| 1555 | three = 3.0 |
|---|
| 1556 | third = 1.0/3.0 |
|---|
| 1557 | twothird = 2.0/3.0 !wig, 1-Mar-2009: Corrected value from 2/6 |
|---|
| 1558 | sixth = 1.0/6.0 |
|---|
| 1559 | |
|---|
| 1560 | pres=r_d*rhoair*tair |
|---|
| 1561 | diff0=0.211e-4*(p0/pres)*(tair/t0)**1.94 |
|---|
| 1562 | conduct0=(5.69+0.017*(tair-t0))*4.186e2*1.e-5 ! convert to J/m/s/deg |
|---|
| 1563 | es=1000.*svp1*exp( svp2*(tair-t0)/(tair-svp3) ) |
|---|
| 1564 | qs=ep_2*es/(pres-es) |
|---|
| 1565 | dqsdt=xlv/(r_v*tair*tair)*qs |
|---|
| 1566 | alpha=g*(xlv/(cp*r_v*tair*tair)-1./(r_d*tair)) |
|---|
| 1567 | gamma=(1+xlv/cp*dqsdt)/(rhoair*qs) |
|---|
| 1568 | gg=1./(rhowater/(diff0*rhoair*qs)+xlv*rhowater/(conduct0*tair)*(xlv/(r_v*tair)-1.)) |
|---|
| 1569 | sqrtg=sqrt(gg) |
|---|
| 1570 | beta=4.*pi*rhowater*gg*gamma |
|---|
| 1571 | aten=2.*surften/(r_v*tair*rhowater) |
|---|
| 1572 | alogaten=log(aten) |
|---|
| 1573 | alog2=log(two) |
|---|
| 1574 | alog3=log(three) |
|---|
| 1575 | ccc=4.*pi*third |
|---|
| 1576 | etafactor2max=1.e10/(alpha*wmaxf)**1.5 ! this should make eta big if na is very small. |
|---|
| 1577 | |
|---|
| 1578 | all_bins_empty = .true. |
|---|
| 1579 | do n=1,ntype_aer |
|---|
| 1580 | totn(n)=0. |
|---|
| 1581 | gmrad(n)=0. |
|---|
| 1582 | gmradsq(n)=0. |
|---|
| 1583 | sumns(n)=0. |
|---|
| 1584 | do m=1,nsize_aer(n) |
|---|
| 1585 | alnsign(m,n)=log(sigman(m,n)) |
|---|
| 1586 | ! internal mixture of aerosols |
|---|
| 1587 | |
|---|
| 1588 | bin_is_empty(m,n) = .true. |
|---|
| 1589 | if (volc(m,n).gt.vsmall .and. na(m,n).gt.nsmall) then |
|---|
| 1590 | bin_is_empty(m,n) = .false. |
|---|
| 1591 | all_bins_empty = .false. |
|---|
| 1592 | lnhygro(m,n)=log(hygro(m,n)) |
|---|
| 1593 | ! number mode radius (m,n) |
|---|
| 1594 | ! write(6,*)'alnsign,volc,na=',alnsign(m,n),volc(m,n),na(m,n) |
|---|
| 1595 | am(m,n)=exp(-1.5*alnsign(m,n)*alnsign(m,n))* & |
|---|
| 1596 | (3.*volc(m,n)/(4.*pi*na(m,n)))**third |
|---|
| 1597 | |
|---|
| 1598 | if (isectional .gt. 0) then |
|---|
| 1599 | ! sectional model. |
|---|
| 1600 | ! need to use bulk properties because parameterization doesn't |
|---|
| 1601 | ! work well for narrow bins. |
|---|
| 1602 | totn(n)=totn(n)+na(m,n) |
|---|
| 1603 | alogam=log(am(m,n)) |
|---|
| 1604 | gmrad(n)=gmrad(n)+na(m,n)*alogam |
|---|
| 1605 | gmradsq(n)=gmradsq(n)+na(m,n)*alogam*alogam |
|---|
| 1606 | endif |
|---|
| 1607 | etafactor2(m,n)=1./(na(m,n)*beta*sqrtg) |
|---|
| 1608 | |
|---|
| 1609 | if(hygro(m,n).gt.1.e-10)then |
|---|
| 1610 | sm(m,n)=2.*aten/(3.*am(m,n))*sqrt(aten/(3.*hygro(m,n)*am(m,n))) |
|---|
| 1611 | else |
|---|
| 1612 | sm(m,n)=100. |
|---|
| 1613 | endif |
|---|
| 1614 | ! write(6,*)'sm,hygro,am=',sm(m,n),hygro(m,n),am(m,n) |
|---|
| 1615 | else |
|---|
| 1616 | sm(m,n)=1. |
|---|
| 1617 | etafactor2(m,n)=etafactor2max ! this should make eta big if na is very small. |
|---|
| 1618 | |
|---|
| 1619 | endif |
|---|
| 1620 | lnsm(m,n)=log(sm(m,n)) |
|---|
| 1621 | if ((isectional .eq. 3) .or. (isectional .eq. 4)) then |
|---|
| 1622 | sumns(n)=sumns(n)+na(m,n)/sm(m,n)**twothird |
|---|
| 1623 | endif |
|---|
| 1624 | ! write(6,'(a,i4,6g12.2)')'m,na,am,hygro,lnhygro,sm,lnsm=',m,na(m,n),am(m,n),hygro(m,n),lnhygro(m,n),sm(m,n),lnsm(m,n) |
|---|
| 1625 | end do ! size |
|---|
| 1626 | end do ! type |
|---|
| 1627 | |
|---|
| 1628 | ! if all bins are empty, set all activation fractions to zero and exit |
|---|
| 1629 | if ( all_bins_empty ) then |
|---|
| 1630 | do n=1,ntype_aer |
|---|
| 1631 | do m=1,nsize_aer(n) |
|---|
| 1632 | fluxn(m,n)=0. |
|---|
| 1633 | fn(m,n)=0. |
|---|
| 1634 | fluxs(m,n)=0. |
|---|
| 1635 | fs(m,n)=0. |
|---|
| 1636 | fluxm(m,n)=0. |
|---|
| 1637 | fm(m,n)=0. |
|---|
| 1638 | end do |
|---|
| 1639 | end do |
|---|
| 1640 | flux_fullact=0. |
|---|
| 1641 | return |
|---|
| 1642 | endif |
|---|
| 1643 | |
|---|
| 1644 | |
|---|
| 1645 | |
|---|
| 1646 | if (isectional .le. 0) then |
|---|
| 1647 | ! Initialize maxsat at this cell and timestep for the |
|---|
| 1648 | ! modal setup (the sectional case is handled below). |
|---|
| 1649 | call maxsat_init(maxd_atype, ntype_aer, & |
|---|
| 1650 | maxd_asize, nsize_aer, alnsign, f1) |
|---|
| 1651 | |
|---|
| 1652 | goto 30000 |
|---|
| 1653 | end if |
|---|
| 1654 | |
|---|
| 1655 | do n=1,ntype_aer |
|---|
| 1656 | !wig 19-Oct-2006: Add zero trap based May 2006 e-mail from |
|---|
| 1657 | !Ghan. Transport can clear out a cell leading to |
|---|
| 1658 | !inconsistencies with the mass. |
|---|
| 1659 | gmrad(n)=gmrad(n)/max(totn(n),1e-20) |
|---|
| 1660 | gmlnsig=gmradsq(n)/totn(n)-gmrad(n)*gmrad(n) ! [ln(sigmag)]**2 |
|---|
| 1661 | gmlnsig(n)=sqrt( max( 1.e-4, gmlnsig(n) ) ) |
|---|
| 1662 | gmrad(n)=exp(gmrad(n)) |
|---|
| 1663 | if ((isectional .eq. 3) .or. (isectional .eq. 4)) then |
|---|
| 1664 | gmsm(n)=totn(n)/sumns(n) |
|---|
| 1665 | gmsm(n)=gmsm(n)*gmsm(n)*gmsm(n) |
|---|
| 1666 | gmsm(n)=sqrt(gmsm(n)) |
|---|
| 1667 | else |
|---|
| 1668 | ! gmsm(n)=2.*aten/(3.*gmrad(n))*sqrt(aten/(3.*hygro(1,n)*gmrad(n))) |
|---|
| 1669 | gmsm(n)=2.*aten/(3.*gmrad(n))*sqrt(aten/(3.*hygro(nsize_aer(n),n)*gmrad(n))) |
|---|
| 1670 | endif |
|---|
| 1671 | enddo |
|---|
| 1672 | |
|---|
| 1673 | ! Initialize maxsat at this cell and timestep for the |
|---|
| 1674 | ! sectional setup (the modal case is handled above)... |
|---|
| 1675 | call maxsat_init(maxd_atype, ntype_aer, & |
|---|
| 1676 | maxd_asize, (/1/), gmlnsig, f1) |
|---|
| 1677 | |
|---|
| 1678 | !....................................................................... |
|---|
| 1679 | ! calculate sectional "sub-bin" size distribution |
|---|
| 1680 | ! |
|---|
| 1681 | ! dn/dy = nt*( a + b*y ) for ylo < y < yhi |
|---|
| 1682 | ! |
|---|
| 1683 | ! nt = na(m,n) = number mixing ratio of the bin |
|---|
| 1684 | ! y = v/vhi |
|---|
| 1685 | ! v = (4pi/3)*r**3 = particle volume |
|---|
| 1686 | ! vhi = v at r=rhi (upper bin boundary) |
|---|
| 1687 | ! ylo = y at lower bin boundary = vlo/vhi = (rlo/rhi)**3 |
|---|
| 1688 | ! yhi = y at upper bin boundary = 1.0 |
|---|
| 1689 | ! |
|---|
| 1690 | ! dv/dy = v * dn/dy = nt*vhi*( a*y + b*y*y ) |
|---|
| 1691 | ! |
|---|
| 1692 | !....................................................................... |
|---|
| 1693 | ! 02-may-2006 - this dn/dy replaces the previous |
|---|
| 1694 | ! dn/dx = a + b*x where l = ln(r) |
|---|
| 1695 | ! the old dn/dx was overly complicated for cases of rmean near rlo or rhi |
|---|
| 1696 | ! the new dn/dy is consistent with that used in the movesect routine, |
|---|
| 1697 | ! which does continuous growth by condensation and aqueous chemistry |
|---|
| 1698 | !....................................................................... |
|---|
| 1699 | do 25002 n = 1,ntype_aer |
|---|
| 1700 | do 25000 m = 1,nsize_aer(n) |
|---|
| 1701 | |
|---|
| 1702 | ! convert from diameter in cm to radius in m |
|---|
| 1703 | rlo(m,n) = 0.5*0.01*dlo_sect(m,n) |
|---|
| 1704 | rhi(m,n) = 0.5*0.01*dhi_sect(m,n) |
|---|
| 1705 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
|---|
| 1706 | yhi(m,n) = 1.0 |
|---|
| 1707 | |
|---|
| 1708 | ! 04-nov-2005 - extremely narrow bins will be treated using 0/1 activation |
|---|
| 1709 | ! this is to avoid potential numerical problems |
|---|
| 1710 | bin_is_narrow(m,n) = .false. |
|---|
| 1711 | if ((rhi(m,n)/rlo(m,n)) .le. 1.01) bin_is_narrow(m,n) = .true. |
|---|
| 1712 | |
|---|
| 1713 | ! rmean is mass mean radius for the bin; xmean = log(rmean) |
|---|
| 1714 | ! just use section midpoint if bin is empty |
|---|
| 1715 | if ( bin_is_empty(m,n) ) then |
|---|
| 1716 | rmean(m,n) = sqrt(rlo(m,n)*rhi(m,n)) |
|---|
| 1717 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
|---|
| 1718 | goto 25000 |
|---|
| 1719 | end if |
|---|
| 1720 | |
|---|
| 1721 | rmean(m,n) = (volc(m,n)/(ccc*na(m,n)))**third |
|---|
| 1722 | rmean(m,n) = max( rlo(m,n), min( rhi(m,n), rmean(m,n) ) ) |
|---|
| 1723 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
|---|
| 1724 | if ( bin_is_narrow(m,n) ) goto 25000 |
|---|
| 1725 | |
|---|
| 1726 | ! if rmean is extremely close to either rlo or rhi, |
|---|
| 1727 | ! treat the bin as extremely narrow |
|---|
| 1728 | if ((rhi(m,n)/rmean(m,n)) .le. 1.01) then |
|---|
| 1729 | bin_is_narrow(m,n) = .true. |
|---|
| 1730 | rlo(m,n) = min( rmean(m,n), (rhi(m,n)/1.01) ) |
|---|
| 1731 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
|---|
| 1732 | goto 25000 |
|---|
| 1733 | else if ((rmean(m,n)/rlo(m,n)) .le. 1.01) then |
|---|
| 1734 | bin_is_narrow(m,n) = .true. |
|---|
| 1735 | rhi(m,n) = max( rmean(m,n), (rlo(m,n)*1.01) ) |
|---|
| 1736 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
|---|
| 1737 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
|---|
| 1738 | goto 25000 |
|---|
| 1739 | endif |
|---|
| 1740 | |
|---|
| 1741 | ! if rmean is somewhat close to either rlo or rhi, then dn/dy will be |
|---|
| 1742 | ! negative near the upper or lower bin boundary |
|---|
| 1743 | ! in these cases, assume that all the particles are in a subset of the full bin, |
|---|
| 1744 | ! and adjust rlo or rhi so that rmean will be near the center of this subset |
|---|
| 1745 | ! note that the bin is made narrower LOCALLY/TEMPORARILY, |
|---|
| 1746 | ! just for the purposes of the activation calculation |
|---|
| 1747 | gammayy = (ymean(m,n)-ylo(m,n)) / (yhi(m,n)-ylo(m,n)) |
|---|
| 1748 | if (gammayy .lt. 0.34) then |
|---|
| 1749 | dumaa = ylo(m,n) + (yhi(m,n)-ylo(m,n))*(gammayy/0.34) |
|---|
| 1750 | rhi(m,n) = rhi(m,n)*(dumaa**third) |
|---|
| 1751 | ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 |
|---|
| 1752 | ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 |
|---|
| 1753 | else if (gammayy .ge. 0.66) then |
|---|
| 1754 | dumaa = ylo(m,n) + (yhi(m,n)-ylo(m,n))*((gammayy-0.66)/0.34) |
|---|
| 1755 | ylo(m,n) = dumaa |
|---|
| 1756 | rlo(m,n) = rhi(m,n)*(dumaa**third) |
|---|
| 1757 | end if |
|---|
| 1758 | if ((rhi(m,n)/rlo(m,n)) .le. 1.01) then |
|---|
| 1759 | bin_is_narrow(m,n) = .true. |
|---|
| 1760 | goto 25000 |
|---|
| 1761 | end if |
|---|
| 1762 | |
|---|
| 1763 | betayy = ylo(m,n)/yhi(m,n) |
|---|
| 1764 | betayy2 = betayy*betayy |
|---|
| 1765 | bsub(m,n) = (12.0*ymean(m,n) - 6.0*(1.0+betayy)) / & |
|---|
| 1766 | (4.0*(1.0-betayy2*betayy) - 3.0*(1.0-betayy2)*(1.0+betayy)) |
|---|
| 1767 | asub(m,n) = (1.0 - bsub(m,n)*(1.0-betayy2)*0.5) / (1.0-betayy) |
|---|
| 1768 | |
|---|
| 1769 | if ( asub(m,n)+bsub(m,n)*ylo(m,n) .lt. 0. ) then |
|---|
| 1770 | if (idiag_dndy_neg .gt. 0) then |
|---|
| 1771 | print *,'dndy<0 at lower boundary' |
|---|
| 1772 | print *,'n,m=',n,m |
|---|
| 1773 | print *,'na=',na(m,n),' volc=',volc(m,n) |
|---|
| 1774 | print *,'volc/(na*pi*4/3)=', (volc(m,n)/(na(m,n)*ccc)) |
|---|
| 1775 | print *,'rlo(m,n),rhi(m,n)=',rlo(m,n),rhi(m,n) |
|---|
| 1776 | print *,'dlo_sect/2,dhi_sect/2=', & |
|---|
| 1777 | (0.005*dlo_sect(m,n)),(0.005*dhi_sect(m,n)) |
|---|
| 1778 | print *,'asub,bsub,ylo,yhi=',asub(m,n),bsub(m,n),ylo(m,n),yhi(m,n) |
|---|
| 1779 | print *,'asub+bsub*ylo=', & |
|---|
| 1780 | (asub(m,n)+bsub(m,n)*ylo(m,n)) |
|---|
| 1781 | print *,'subr activate error 11 - i,j,k =', ii, jj, kk |
|---|
| 1782 | endif |
|---|
| 1783 | endif |
|---|
| 1784 | if ( asub(m,n)+bsub(m,n)*yhi(m,n) .lt. 0. ) then |
|---|
| 1785 | if (idiag_dndy_neg .gt. 0) then |
|---|
| 1786 | print *,'dndy<0 at upper boundary' |
|---|
| 1787 | print *,'n,m=',n,m |
|---|
| 1788 | print *,'na=',na(m,n),' volc=',volc(m,n) |
|---|
| 1789 | print *,'volc/(na*pi*4/3)=', (volc(m,n)/(na(m,n)*ccc)) |
|---|
| 1790 | print *,'rlo(m,n),rhi(m,n)=',rlo(m,n),rhi(m,n) |
|---|
| 1791 | print *,'dlo_sect/2,dhi_sect/2=', & |
|---|
| 1792 | (0.005*dlo_sect(m,n)),(0.005*dhi_sect(m,n)) |
|---|
| 1793 | print *,'asub,bsub,ylo,yhi=',asub(m,n),bsub(m,n),ylo(m,n),yhi(m,n) |
|---|
| 1794 | print *,'asub+bsub*yhi=', & |
|---|
| 1795 | (asub(m,n)+bsub(m,n)*yhi(m,n)) |
|---|
| 1796 | print *,'subr activate error 12 - i,j,k =', ii, jj, kk |
|---|
| 1797 | endif |
|---|
| 1798 | endif |
|---|
| 1799 | |
|---|
| 1800 | 25000 continue ! m=1,nsize_aer(n) |
|---|
| 1801 | 25002 continue ! n=1,ntype_aer |
|---|
| 1802 | |
|---|
| 1803 | |
|---|
| 1804 | 30000 continue |
|---|
| 1805 | !....................................................................... |
|---|
| 1806 | ! |
|---|
| 1807 | ! end calc. of modal or sectional activation properties (end of section 1) |
|---|
| 1808 | ! |
|---|
| 1809 | !....................................................................... |
|---|
| 1810 | |
|---|
| 1811 | |
|---|
| 1812 | |
|---|
| 1813 | ! sjg 7-16-98 upward |
|---|
| 1814 | ! print *,'wbar,sigw=',wbar,sigw |
|---|
| 1815 | |
|---|
| 1816 | if(sigw.le.1.e-5) goto 50000 |
|---|
| 1817 | |
|---|
| 1818 | !....................................................................... |
|---|
| 1819 | ! |
|---|
| 1820 | ! start calc. of activation fractions/fluxes |
|---|
| 1821 | ! for spectrum of updrafts (start of section 2) |
|---|
| 1822 | ! |
|---|
| 1823 | !....................................................................... |
|---|
| 1824 | ipass_nwloop = 1 |
|---|
| 1825 | idiagaa = 0 |
|---|
| 1826 | ! 06-nov-2005 rce - set idiagaa=1 for testing/debugging |
|---|
| 1827 | ! if ((grid_id.eq.1) .and. (ktau.eq.167) .and. & |
|---|
| 1828 | ! (ii.eq.24) .and. (jj.eq. 1) .and. (kk.eq.14)) idiagaa = 1 |
|---|
| 1829 | |
|---|
| 1830 | 40000 continue |
|---|
| 1831 | if(top)then |
|---|
| 1832 | wmax=0. |
|---|
| 1833 | wmin=min(zero,-wdiab) |
|---|
| 1834 | else |
|---|
| 1835 | wmax=min(wmaxf,wbar+sds*sigw) |
|---|
| 1836 | wmin=max(wminf,-wdiab) |
|---|
| 1837 | endif |
|---|
| 1838 | wmin=max(wmin,wbar-sds*sigw) |
|---|
| 1839 | w=wmin |
|---|
| 1840 | dwmax=eps*sigw |
|---|
| 1841 | dw=dwmax |
|---|
| 1842 | dfmax=0.2 |
|---|
| 1843 | dfmin=0.1 |
|---|
| 1844 | if(wmax.le.w)then |
|---|
| 1845 | do n=1,ntype_aer |
|---|
| 1846 | do m=1,nsize_aer(n) |
|---|
| 1847 | fluxn(m,n)=0. |
|---|
| 1848 | fn(m,n)=0. |
|---|
| 1849 | fluxs(m,n)=0. |
|---|
| 1850 | fs(m,n)=0. |
|---|
| 1851 | fluxm(m,n)=0. |
|---|
| 1852 | fm(m,n)=0. |
|---|
| 1853 | end do |
|---|
| 1854 | end do |
|---|
| 1855 | flux_fullact=0. |
|---|
| 1856 | return |
|---|
| 1857 | endif |
|---|
| 1858 | do n=1,ntype_aer |
|---|
| 1859 | do m=1,nsize_aer(n) |
|---|
| 1860 | sumflxn(m,n)=0. |
|---|
| 1861 | sumfn(m,n)=0. |
|---|
| 1862 | fnold(m,n)=0. |
|---|
| 1863 | sumflxs(m,n)=0. |
|---|
| 1864 | sumfs(m,n)=0. |
|---|
| 1865 | fsold(m,n)=0. |
|---|
| 1866 | sumflxm(m,n)=0. |
|---|
| 1867 | sumfm(m,n)=0. |
|---|
| 1868 | fmold(m,n)=0. |
|---|
| 1869 | enddo |
|---|
| 1870 | enddo |
|---|
| 1871 | sumflx_fullact=0. |
|---|
| 1872 | |
|---|
| 1873 | fold=0 |
|---|
| 1874 | gold=0 |
|---|
| 1875 | ! 06-nov-2005 rce - set wold=w here |
|---|
| 1876 | ! wold=0 |
|---|
| 1877 | wold=w |
|---|
| 1878 | |
|---|
| 1879 | |
|---|
| 1880 | ! 06-nov-2005 rce - define nwmax; calc dwmin from nwmax |
|---|
| 1881 | nwmax = 200 |
|---|
| 1882 | ! dwmin = min( dwmax, 0.01 ) |
|---|
| 1883 | dwmin = (wmax - wmin)/(nwmax-1) |
|---|
| 1884 | dwmin = min( dwmax, dwmin ) |
|---|
| 1885 | dwmin = max( 0.01, dwmin ) |
|---|
| 1886 | |
|---|
| 1887 | ! |
|---|
| 1888 | ! loop over updrafts, incrementing sums as you go |
|---|
| 1889 | ! the "200" is (arbitrary) upper limit for number of updrafts |
|---|
| 1890 | ! if integration finishes before this, OK; otherwise, ERROR |
|---|
| 1891 | ! |
|---|
| 1892 | if (idiagaa.gt.0) then |
|---|
| 1893 | write(*,94700) ktau, grid_id, ii, jj, kk, nwmax |
|---|
| 1894 | write(*,94710) 'wbar,sigw,wdiab=', wbar, sigw, wdiab |
|---|
| 1895 | write(*,94710) 'wmin,wmax,dwmin,dwmax=', wmin, wmax, dwmin, dwmax |
|---|
| 1896 | write(*,94720) -1, w, wold, dw |
|---|
| 1897 | end if |
|---|
| 1898 | 94700 format( / 'activate 47000 - ktau,id,ii,jj,kk,nwmax=', 6i5 ) |
|---|
| 1899 | 94710 format( 'activate 47000 - ', a, 6(1x,f11.5) ) |
|---|
| 1900 | 94720 format( 'activate 47000 - nw,w,wold,dw=', i5, 3(1x,f11.5) ) |
|---|
| 1901 | |
|---|
| 1902 | do 47000 nw = 1, nwmax |
|---|
| 1903 | 41000 wnuc=w+wdiab |
|---|
| 1904 | |
|---|
| 1905 | if (idiagaa.gt.0) write(*,94720) nw, w, wold, dw |
|---|
| 1906 | |
|---|
| 1907 | ! write(6,*)'wnuc=',wnuc |
|---|
| 1908 | alw=alpha*wnuc |
|---|
| 1909 | sqrtalw=sqrt(alw) |
|---|
| 1910 | zeta=2.*sqrtalw*aten/(3.*sqrtg) |
|---|
| 1911 | etafactor1=2.*alw*sqrtalw |
|---|
| 1912 | if (isectional .gt. 0) then |
|---|
| 1913 | ! sectional model. |
|---|
| 1914 | ! use bulk properties |
|---|
| 1915 | |
|---|
| 1916 | do n=1,ntype_aer |
|---|
| 1917 | if(totn(n).gt.1.e-10)then |
|---|
| 1918 | eta(1,n)=etafactor1/(totn(n)*beta*sqrtg) |
|---|
| 1919 | else |
|---|
| 1920 | eta(1,n)=1.e10 |
|---|
| 1921 | endif |
|---|
| 1922 | enddo |
|---|
| 1923 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
|---|
| 1924 | maxd_asize,(/1/),gmsm,gmlnsig,f1,smax) |
|---|
| 1925 | lnsmax=log(smax) |
|---|
| 1926 | x=2*(log(gmsm(1))-lnsmax)/(3*sq2*gmlnsig(1)) |
|---|
| 1927 | fnew=0.5*(1.-ERF_ALT(x)) |
|---|
| 1928 | |
|---|
| 1929 | else |
|---|
| 1930 | |
|---|
| 1931 | do n=1,ntype_aer |
|---|
| 1932 | do m=1,nsize_aer(n) |
|---|
| 1933 | eta(m,n)=etafactor1*etafactor2(m,n) |
|---|
| 1934 | enddo |
|---|
| 1935 | enddo |
|---|
| 1936 | |
|---|
| 1937 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
|---|
| 1938 | maxd_asize,nsize_aer,sm,alnsign,f1,smax) |
|---|
| 1939 | ! write(6,*)'w,smax=',w,smax |
|---|
| 1940 | |
|---|
| 1941 | lnsmax=log(smax) |
|---|
| 1942 | |
|---|
| 1943 | x=2*(lnsm(nsize_aer(1),1)-lnsmax)/(3*sq2*alnsign(nsize_aer(1),1)) |
|---|
| 1944 | fnew=0.5*(1.-ERF_ALT(x)) |
|---|
| 1945 | |
|---|
| 1946 | endif |
|---|
| 1947 | |
|---|
| 1948 | dwnew = dw |
|---|
| 1949 | ! 06-nov-2005 rce - "n" here should be "nw" (?) |
|---|
| 1950 | ! if(fnew-fold.gt.dfmax.and.n.gt.1)then |
|---|
| 1951 | if(fnew-fold.gt.dfmax.and.nw.gt.1)then |
|---|
| 1952 | ! reduce updraft increment for greater accuracy in integration |
|---|
| 1953 | if (dw .gt. 1.01*dwmin) then |
|---|
| 1954 | dw=0.7*dw |
|---|
| 1955 | dw=max(dw,dwmin) |
|---|
| 1956 | w=wold+dw |
|---|
| 1957 | go to 41000 |
|---|
| 1958 | else |
|---|
| 1959 | dwnew = dwmin |
|---|
| 1960 | endif |
|---|
| 1961 | endif |
|---|
| 1962 | |
|---|
| 1963 | if(fnew-fold.lt.dfmin)then |
|---|
| 1964 | ! increase updraft increment to accelerate integration |
|---|
| 1965 | dwnew=min(1.5*dw,dwmax) |
|---|
| 1966 | endif |
|---|
| 1967 | fold=fnew |
|---|
| 1968 | |
|---|
| 1969 | z=(w-wbar)/(sigw*sq2) |
|---|
| 1970 | gaus=exp(-z*z) |
|---|
| 1971 | fnmin=1. |
|---|
| 1972 | xmincoeff=alogaten-2.*third*(lnsmax-alog2)-alog3 |
|---|
| 1973 | ! write(6,*)'xmincoeff=',xmincoeff |
|---|
| 1974 | |
|---|
| 1975 | |
|---|
| 1976 | do 44002 n=1,ntype_aer |
|---|
| 1977 | do 44000 m=1,nsize_aer(n) |
|---|
| 1978 | if ( bin_is_empty(m,n) ) then |
|---|
| 1979 | fn(m,n)=0. |
|---|
| 1980 | fs(m,n)=0. |
|---|
| 1981 | fm(m,n)=0. |
|---|
| 1982 | else if ((isectional .eq. 2) .or. (isectional .eq. 4)) then |
|---|
| 1983 | ! sectional |
|---|
| 1984 | ! within-section dn/dx = a + b*x |
|---|
| 1985 | xcut=xmincoeff-third*lnhygro(m,n) |
|---|
| 1986 | ! ycut=(exp(xcut)/rhi(m,n))**3 |
|---|
| 1987 | ! 07-jul-2006 rce - the above line gave a (rare) overflow when smax=1.0e-20 |
|---|
| 1988 | ! if (ycut > yhi), then actual value of ycut is unimportant, |
|---|
| 1989 | ! so do the following to avoid overflow |
|---|
| 1990 | lnycut = 3.0 * ( xcut - log(rhi(m,n)) ) |
|---|
| 1991 | lnycut = min( lnycut, log(yhi(m,n)*1.0e5) ) |
|---|
| 1992 | ycut=exp(lnycut) |
|---|
| 1993 | ! write(6,*)'m,n,rcut,rlo,rhi=',m,n,exp(xcut),rlo(m,n),rhi(m,n) |
|---|
| 1994 | ! if(lnsmax.lt.lnsmn(m,n))then |
|---|
| 1995 | if(ycut.gt.yhi(m,n))then |
|---|
| 1996 | fn(m,n)=0. |
|---|
| 1997 | fs(m,n)=0. |
|---|
| 1998 | fm(m,n)=0. |
|---|
| 1999 | elseif(ycut.lt.ylo(m,n))then |
|---|
| 2000 | fn(m,n)=1. |
|---|
| 2001 | fs(m,n)=1. |
|---|
| 2002 | fm(m,n)=1. |
|---|
| 2003 | elseif ( bin_is_narrow(m,n) ) then |
|---|
| 2004 | ! 04-nov-2005 rce - for extremely narrow bins, |
|---|
| 2005 | ! do zero activation if xcut>xmean, 100% activation otherwise |
|---|
| 2006 | if (ycut.gt.ymean(m,n)) then |
|---|
| 2007 | fn(m,n)=0. |
|---|
| 2008 | fs(m,n)=0. |
|---|
| 2009 | fm(m,n)=0. |
|---|
| 2010 | else |
|---|
| 2011 | fn(m,n)=1. |
|---|
| 2012 | fs(m,n)=1. |
|---|
| 2013 | fm(m,n)=1. |
|---|
| 2014 | endif |
|---|
| 2015 | else |
|---|
| 2016 | phiyy=ycut/yhi(m,n) |
|---|
| 2017 | fn(m,n) = asub(m,n)*(1.0-phiyy) + 0.5*bsub(m,n)*(1.0-phiyy*phiyy) |
|---|
| 2018 | if (fn(m,n).lt.zero .or. fn(m,n).gt.one) then |
|---|
| 2019 | if (idiag_fnsm_prob .gt. 0) then |
|---|
| 2020 | print *,'fn(',m,n,')=',fn(m,n),' outside 0,1 - activate err21' |
|---|
| 2021 | print *,'na,volc =', na(m,n), volc(m,n) |
|---|
| 2022 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
|---|
| 2023 | print *,'yhi,ycut =', yhi(m,n), ycut |
|---|
| 2024 | endif |
|---|
| 2025 | endif |
|---|
| 2026 | |
|---|
| 2027 | if (fn(m,n) .le. zero) then |
|---|
| 2028 | ! 10-nov-2005 rce - if fn=0, then fs & fm must be 0 |
|---|
| 2029 | fn(m,n)=zero |
|---|
| 2030 | fs(m,n)=zero |
|---|
| 2031 | fm(m,n)=zero |
|---|
| 2032 | else if (fn(m,n) .ge. one) then |
|---|
| 2033 | ! 10-nov-2005 rce - if fn=1, then fs & fm must be 1 |
|---|
| 2034 | fn(m,n)=one |
|---|
| 2035 | fs(m,n)=one |
|---|
| 2036 | fm(m,n)=one |
|---|
| 2037 | else |
|---|
| 2038 | ! 10-nov-2005 rce - otherwise, calc fm and check it |
|---|
| 2039 | fm(m,n) = (yhi(m,n)/ymean(m,n)) * (0.5*asub(m,n)*(1.0-phiyy*phiyy) + & |
|---|
| 2040 | third*bsub(m,n)*(1.0-phiyy*phiyy*phiyy)) |
|---|
| 2041 | if (fm(m,n).lt.fn(m,n) .or. fm(m,n).gt.one) then |
|---|
| 2042 | if (idiag_fnsm_prob .gt. 0) then |
|---|
| 2043 | print *,'fm(',m,n,')=',fm(m,n),' outside fn,1 - activate err22' |
|---|
| 2044 | print *,'na,volc,fn =', na(m,n), volc(m,n), fn(m,n) |
|---|
| 2045 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
|---|
| 2046 | print *,'yhi,ycut =', yhi(m,n), ycut |
|---|
| 2047 | endif |
|---|
| 2048 | endif |
|---|
| 2049 | if (fm(m,n) .le. fn(m,n)) then |
|---|
| 2050 | ! 10-nov-2005 rce - if fm=fn, then fs must =fn |
|---|
| 2051 | fm(m,n)=fn(m,n) |
|---|
| 2052 | fs(m,n)=fn(m,n) |
|---|
| 2053 | else if (fm(m,n) .ge. one) then |
|---|
| 2054 | ! 10-nov-2005 rce - if fm=1, then fs & fn must be 1 |
|---|
| 2055 | fm(m,n)=one |
|---|
| 2056 | fs(m,n)=one |
|---|
| 2057 | fn(m,n)=one |
|---|
| 2058 | else |
|---|
| 2059 | ! 10-nov-2005 rce - these two checks assure that the mean size |
|---|
| 2060 | ! of the activated & interstitial particles will be between rlo & rhi |
|---|
| 2061 | dumaa = fn(m,n)*(yhi(m,n)/ymean(m,n)) |
|---|
| 2062 | fm(m,n) = min( fm(m,n), dumaa ) |
|---|
| 2063 | dumaa = 1.0 + (fn(m,n)-1.0)*(ylo(m,n)/ymean(m,n)) |
|---|
| 2064 | fm(m,n) = min( fm(m,n), dumaa ) |
|---|
| 2065 | ! 10-nov-2005 rce - now calculate fs and bound it by fn, fm |
|---|
| 2066 | betayy = ylo(m,n)/yhi(m,n) |
|---|
| 2067 | dumaa = phiyy**twothird |
|---|
| 2068 | dumbb = betayy**twothird |
|---|
| 2069 | fs(m,n) = & |
|---|
| 2070 | (asub(m,n)*(1.0-phiyy*dumaa) + & |
|---|
| 2071 | 0.625*bsub(m,n)*(1.0-phiyy*phiyy*dumaa)) / & |
|---|
| 2072 | (asub(m,n)*(1.0-betayy*dumbb) + & |
|---|
| 2073 | 0.625*bsub(m,n)*(1.0-betayy*betayy*dumbb)) |
|---|
| 2074 | fs(m,n)=max(fs(m,n),fn(m,n)) |
|---|
| 2075 | fs(m,n)=min(fs(m,n),fm(m,n)) |
|---|
| 2076 | endif |
|---|
| 2077 | endif |
|---|
| 2078 | endif |
|---|
| 2079 | |
|---|
| 2080 | else |
|---|
| 2081 | ! modal |
|---|
| 2082 | x=2*(lnsm(m,n)-lnsmax)/(3*sq2*alnsign(m,n)) |
|---|
| 2083 | fn(m,n)=0.5*(1.-ERF_ALT(x)) |
|---|
| 2084 | arg=x-sq2*alnsign(m,n) |
|---|
| 2085 | fs(m,n)=0.5*(1.-ERF_ALT(arg)) |
|---|
| 2086 | arg=x-1.5*sq2*alnsign(m,n) |
|---|
| 2087 | fm(m,n)=0.5*(1.-ERF_ALT(arg)) |
|---|
| 2088 | ! print *,'w,x,fn,fs,fm=',w,x,fn(m,n),fs(m,n),fm(m,n) |
|---|
| 2089 | endif |
|---|
| 2090 | |
|---|
| 2091 | ! fn(m,n)=1. !test |
|---|
| 2092 | ! fs(m,n)=1. |
|---|
| 2093 | ! fm(m,n)=1. |
|---|
| 2094 | fnmin=min(fn(m,n),fnmin) |
|---|
| 2095 | ! integration is second order accurate |
|---|
| 2096 | ! assumes linear variation of f*gaus with w |
|---|
| 2097 | wb=(w+wold) |
|---|
| 2098 | fnbar=(fn(m,n)*gaus+fnold(m,n)*gold) |
|---|
| 2099 | fsbar=(fs(m,n)*gaus+fsold(m,n)*gold) |
|---|
| 2100 | fmbar=(fm(m,n)*gaus+fmold(m,n)*gold) |
|---|
| 2101 | if((top.and.w.lt.0.).or.(.not.top.and.w.gt.0.))then |
|---|
| 2102 | sumflxn(m,n)=sumflxn(m,n)+sixth*(wb*fnbar & |
|---|
| 2103 | +(fn(m,n)*gaus*w+fnold(m,n)*gold*wold))*dw |
|---|
| 2104 | sumflxs(m,n)=sumflxs(m,n)+sixth*(wb*fsbar & |
|---|
| 2105 | +(fs(m,n)*gaus*w+fsold(m,n)*gold*wold))*dw |
|---|
| 2106 | sumflxm(m,n)=sumflxm(m,n)+sixth*(wb*fmbar & |
|---|
| 2107 | +(fm(m,n)*gaus*w+fmold(m,n)*gold*wold))*dw |
|---|
| 2108 | endif |
|---|
| 2109 | sumfn(m,n)=sumfn(m,n)+0.5*fnbar*dw |
|---|
| 2110 | ! write(6,'(a,9g10.2)')'lnsmax,lnsm(m,n),x,fn(m,n),fnold(m,n),g,gold,fnbar,dw=', & |
|---|
| 2111 | ! lnsmax,lnsm(m,n),x,fn(m,n),fnold(m,n),g,gold,fnbar,dw |
|---|
| 2112 | fnold(m,n)=fn(m,n) |
|---|
| 2113 | sumfs(m,n)=sumfs(m,n)+0.5*fsbar*dw |
|---|
| 2114 | fsold(m,n)=fs(m,n) |
|---|
| 2115 | sumfm(m,n)=sumfm(m,n)+0.5*fmbar*dw |
|---|
| 2116 | fmold(m,n)=fm(m,n) |
|---|
| 2117 | |
|---|
| 2118 | 44000 continue ! m=1,nsize_aer(n) |
|---|
| 2119 | 44002 continue ! n=1,ntype_aer |
|---|
| 2120 | |
|---|
| 2121 | ! same form as sumflxm(m,n) but replace the fm/fmold(m,n) with 1.0 |
|---|
| 2122 | sumflx_fullact = sumflx_fullact & |
|---|
| 2123 | + sixth*(wb*(gaus+gold) + (gaus*w + gold*wold))*dw |
|---|
| 2124 | ! sumg=sumg+0.5*(gaus+gold)*dw |
|---|
| 2125 | gold=gaus |
|---|
| 2126 | wold=w |
|---|
| 2127 | dw=dwnew |
|---|
| 2128 | |
|---|
| 2129 | if(nw.gt.1.and.(w.gt.wmax.or.fnmin.gt.fmax))go to 48000 |
|---|
| 2130 | w=w+dw |
|---|
| 2131 | |
|---|
| 2132 | 47000 continue ! nw = 1, nwmax |
|---|
| 2133 | |
|---|
| 2134 | |
|---|
| 2135 | print *,'do loop is too short in activate' |
|---|
| 2136 | print *,'wmin=',wmin,' w=',w,' wmax=',wmax,' dw=',dw |
|---|
| 2137 | print *,'wbar=',wbar,' sigw=',sigw,' wdiab=',wdiab |
|---|
| 2138 | print *,'wnuc=',wnuc |
|---|
| 2139 | do n=1,ntype_aer |
|---|
| 2140 | print *,'ntype=',n |
|---|
| 2141 | print *,'na=',(na(m,n),m=1,nsize_aer(n)) |
|---|
| 2142 | print *,'fn=',(fn(m,n),m=1,nsize_aer(n)) |
|---|
| 2143 | end do |
|---|
| 2144 | ! dump all subr parameters to allow testing with standalone code |
|---|
| 2145 | ! (build a driver that will read input and call activate) |
|---|
| 2146 | print *,'top,wbar,sigw,wdiab,tair,rhoair,ntype_aer=' |
|---|
| 2147 | print *, top,wbar,sigw,wdiab,tair,rhoair,ntype_aer |
|---|
| 2148 | print *,'na=' |
|---|
| 2149 | print *, na |
|---|
| 2150 | print *,'volc=' |
|---|
| 2151 | print *, volc |
|---|
| 2152 | print *,'sigman=' |
|---|
| 2153 | print *, sigman |
|---|
| 2154 | print *,'hygro=' |
|---|
| 2155 | print *, hygro |
|---|
| 2156 | |
|---|
| 2157 | print *,'subr activate error 31 - i,j,k =', ii, jj, kk |
|---|
| 2158 | ! 06-nov-2005 rce - if integration fails, repeat it once with additional diagnostics |
|---|
| 2159 | if (ipass_nwloop .eq. 1) then |
|---|
| 2160 | ipass_nwloop = 2 |
|---|
| 2161 | idiagaa = 2 |
|---|
| 2162 | goto 40000 |
|---|
| 2163 | end if |
|---|
| 2164 | call wrf_error_fatal("STOP: activate before 48000") |
|---|
| 2165 | |
|---|
| 2166 | 48000 continue |
|---|
| 2167 | |
|---|
| 2168 | |
|---|
| 2169 | ! ndist(n)=ndist(n)+1 |
|---|
| 2170 | if(.not.top.and.w.lt.wmaxf)then |
|---|
| 2171 | |
|---|
| 2172 | ! contribution from all updrafts stronger than wmax |
|---|
| 2173 | ! assuming constant f (close to fmax) |
|---|
| 2174 | wnuc=w+wdiab |
|---|
| 2175 | |
|---|
| 2176 | z1=(w-wbar)/(sigw*sq2) |
|---|
| 2177 | z2=(wmaxf-wbar)/(sigw*sq2) |
|---|
| 2178 | integ=sigw*0.5*sq2*sqpi*(ERFC_NUM_RECIPES(z1)-ERFC_NUM_RECIPES(z2)) |
|---|
| 2179 | ! consider only upward flow into cloud base when estimating flux |
|---|
| 2180 | wf1=max(w,zero) |
|---|
| 2181 | zf1=(wf1-wbar)/(sigw*sq2) |
|---|
| 2182 | gf1=exp(-zf1*zf1) |
|---|
| 2183 | wf2=max(wmaxf,zero) |
|---|
| 2184 | zf2=(wf2-wbar)/(sigw*sq2) |
|---|
| 2185 | gf2=exp(-zf2*zf2) |
|---|
| 2186 | gf=(gf1-gf2) |
|---|
| 2187 | integf=wbar*sigw*0.5*sq2*sqpi*(ERFC_NUM_RECIPES(zf1)-ERFC_NUM_RECIPES(zf2))+sigw*sigw*gf |
|---|
| 2188 | |
|---|
| 2189 | do n=1,ntype_aer |
|---|
| 2190 | do m=1,nsize_aer(n) |
|---|
| 2191 | sumflxn(m,n)=sumflxn(m,n)+integf*fn(m,n) |
|---|
| 2192 | sumfn(m,n)=sumfn(m,n)+fn(m,n)*integ |
|---|
| 2193 | sumflxs(m,n)=sumflxs(m,n)+integf*fs(m,n) |
|---|
| 2194 | sumfs(m,n)=sumfs(m,n)+fs(m,n)*integ |
|---|
| 2195 | sumflxm(m,n)=sumflxm(m,n)+integf*fm(m,n) |
|---|
| 2196 | sumfm(m,n)=sumfm(m,n)+fm(m,n)*integ |
|---|
| 2197 | end do |
|---|
| 2198 | end do |
|---|
| 2199 | ! same form as sumflxm(m,n) but replace the fm(m,n) with 1.0 |
|---|
| 2200 | sumflx_fullact = sumflx_fullact + integf |
|---|
| 2201 | ! sumg=sumg+integ |
|---|
| 2202 | endif |
|---|
| 2203 | |
|---|
| 2204 | |
|---|
| 2205 | do n=1,ntype_aer |
|---|
| 2206 | do m=1,nsize_aer(n) |
|---|
| 2207 | |
|---|
| 2208 | ! fn(m,n)=sumfn(m,n)/(sumg) |
|---|
| 2209 | fn(m,n)=sumfn(m,n)/(sq2*sqpi*sigw) |
|---|
| 2210 | fluxn(m,n)=sumflxn(m,n)/(sq2*sqpi*sigw) |
|---|
| 2211 | if(fn(m,n).gt.1.01)then |
|---|
| 2212 | if (idiag_fnsm_prob .gt. 0) then |
|---|
| 2213 | print *,'fn=',fn(m,n),' > 1 - activate err41' |
|---|
| 2214 | print *,'w,m,n,na,am=',w,m,n,na(m,n),am(m,n) |
|---|
| 2215 | print *,'integ,sumfn,sigw=',integ,sumfn(m,n),sigw |
|---|
| 2216 | print *,'subr activate error - i,j,k =', ii, jj, kk |
|---|
| 2217 | endif |
|---|
| 2218 | fluxn(m,n) = fluxn(m,n)/fn(m,n) |
|---|
| 2219 | endif |
|---|
| 2220 | |
|---|
| 2221 | fs(m,n)=sumfs(m,n)/(sq2*sqpi*sigw) |
|---|
| 2222 | fluxs(m,n)=sumflxs(m,n)/(sq2*sqpi*sigw) |
|---|
| 2223 | if(fs(m,n).gt.1.01)then |
|---|
| 2224 | if (idiag_fnsm_prob .gt. 0) then |
|---|
| 2225 | print *,'fs=',fs(m,n),' > 1 - activate err42' |
|---|
| 2226 | print *,'m,n,isectional=',m,n,isectional |
|---|
| 2227 | print *,'alnsign(m,n)=',alnsign(m,n) |
|---|
| 2228 | print *,'rcut,rlo(m,n),rhi(m,n)',exp(xcut),rlo(m,n),rhi(m,n) |
|---|
| 2229 | print *,'w,m,na,am=',w,m,na(m,n),am(m,n) |
|---|
| 2230 | print *,'integ,sumfs,sigw=',integ,sumfs(m,n),sigw |
|---|
| 2231 | endif |
|---|
| 2232 | fluxs(m,n) = fluxs(m,n)/fs(m,n) |
|---|
| 2233 | endif |
|---|
| 2234 | |
|---|
| 2235 | ! fm(m,n)=sumfm(m,n)/(sumg) |
|---|
| 2236 | fm(m,n)=sumfm(m,n)/(sq2*sqpi*sigw) |
|---|
| 2237 | fluxm(m,n)=sumflxm(m,n)/(sq2*sqpi*sigw) |
|---|
| 2238 | if(fm(m,n).gt.1.01)then |
|---|
| 2239 | if (idiag_fnsm_prob .gt. 0) then |
|---|
| 2240 | print *,'fm(',m,n,')=',fm(m,n),' > 1 - activate err43' |
|---|
| 2241 | endif |
|---|
| 2242 | fluxm(m,n) = fluxm(m,n)/fm(m,n) |
|---|
| 2243 | endif |
|---|
| 2244 | |
|---|
| 2245 | end do |
|---|
| 2246 | end do |
|---|
| 2247 | ! same form as fluxm(m,n) |
|---|
| 2248 | flux_fullact = sumflx_fullact/(sq2*sqpi*sigw) |
|---|
| 2249 | |
|---|
| 2250 | goto 60000 |
|---|
| 2251 | !....................................................................... |
|---|
| 2252 | ! |
|---|
| 2253 | ! end calc. of activation fractions/fluxes |
|---|
| 2254 | ! for spectrum of updrafts (end of section 2) |
|---|
| 2255 | ! |
|---|
| 2256 | !....................................................................... |
|---|
| 2257 | |
|---|
| 2258 | !....................................................................... |
|---|
| 2259 | ! |
|---|
| 2260 | ! start calc. of activation fractions/fluxes |
|---|
| 2261 | ! for (single) uniform updraft (start of section 3) |
|---|
| 2262 | ! |
|---|
| 2263 | !....................................................................... |
|---|
| 2264 | 50000 continue |
|---|
| 2265 | |
|---|
| 2266 | wnuc=wbar+wdiab |
|---|
| 2267 | ! write(6,*)'uniform updraft =',wnuc |
|---|
| 2268 | |
|---|
| 2269 | ! 04-nov-2005 rce - moved the code for "wnuc.le.0" code to here |
|---|
| 2270 | if(wnuc.le.0.)then |
|---|
| 2271 | do n=1,ntype_aer |
|---|
| 2272 | do m=1,nsize_aer(n) |
|---|
| 2273 | fn(m,n)=0 |
|---|
| 2274 | fluxn(m,n)=0 |
|---|
| 2275 | fs(m,n)=0 |
|---|
| 2276 | fluxs(m,n)=0 |
|---|
| 2277 | fm(m,n)=0 |
|---|
| 2278 | fluxm(m,n)=0 |
|---|
| 2279 | end do |
|---|
| 2280 | end do |
|---|
| 2281 | flux_fullact=0. |
|---|
| 2282 | return |
|---|
| 2283 | endif |
|---|
| 2284 | |
|---|
| 2285 | w=wbar |
|---|
| 2286 | alw=alpha*wnuc |
|---|
| 2287 | sqrtalw=sqrt(alw) |
|---|
| 2288 | zeta=2.*sqrtalw*aten/(3.*sqrtg) |
|---|
| 2289 | |
|---|
| 2290 | if (isectional .gt. 0) then |
|---|
| 2291 | ! sectional model. |
|---|
| 2292 | ! use bulk properties |
|---|
| 2293 | do n=1,ntype_aer |
|---|
| 2294 | if(totn(n).gt.1.e-10)then |
|---|
| 2295 | eta(1,n)=2*alw*sqrtalw/(totn(n)*beta*sqrtg) |
|---|
| 2296 | else |
|---|
| 2297 | eta(1,n)=1.e10 |
|---|
| 2298 | endif |
|---|
| 2299 | end do |
|---|
| 2300 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
|---|
| 2301 | maxd_asize,(/1/),gmsm,gmlnsig,f1,smax) |
|---|
| 2302 | |
|---|
| 2303 | else |
|---|
| 2304 | |
|---|
| 2305 | do n=1,ntype_aer |
|---|
| 2306 | do m=1,nsize_aer(n) |
|---|
| 2307 | if(na(m,n).gt.1.e-10)then |
|---|
| 2308 | eta(m,n)=2*alw*sqrtalw/(na(m,n)*beta*sqrtg) |
|---|
| 2309 | else |
|---|
| 2310 | eta(m,n)=1.e10 |
|---|
| 2311 | endif |
|---|
| 2312 | end do |
|---|
| 2313 | end do |
|---|
| 2314 | |
|---|
| 2315 | call maxsat(zeta,eta,maxd_atype,ntype_aer, & |
|---|
| 2316 | maxd_asize,nsize_aer,sm,alnsign,f1,smax) |
|---|
| 2317 | |
|---|
| 2318 | endif |
|---|
| 2319 | |
|---|
| 2320 | lnsmax=log(smax) |
|---|
| 2321 | xmincoeff=alogaten-2.*third*(lnsmax-alog2)-alog3 |
|---|
| 2322 | |
|---|
| 2323 | do 55002 n=1,ntype_aer |
|---|
| 2324 | do 55000 m=1,nsize_aer(n) |
|---|
| 2325 | |
|---|
| 2326 | ! 04-nov-2005 rce - check for bin_is_empty here too, just like earlier |
|---|
| 2327 | if ( bin_is_empty(m,n) ) then |
|---|
| 2328 | fn(m,n)=0. |
|---|
| 2329 | fs(m,n)=0. |
|---|
| 2330 | fm(m,n)=0. |
|---|
| 2331 | |
|---|
| 2332 | else if ((isectional .eq. 2) .or. (isectional .eq. 4)) then |
|---|
| 2333 | ! sectional |
|---|
| 2334 | ! within-section dn/dx = a + b*x |
|---|
| 2335 | xcut=xmincoeff-third*lnhygro(m,n) |
|---|
| 2336 | ! ycut=(exp(xcut)/rhi(m,n))**3 |
|---|
| 2337 | ! 07-jul-2006 rce - the above line gave a (rare) overflow when smax=1.0e-20 |
|---|
| 2338 | ! if (ycut > yhi), then actual value of ycut is unimportant, |
|---|
| 2339 | ! so do the following to avoid overflow |
|---|
| 2340 | lnycut = 3.0 * ( xcut - log(rhi(m,n)) ) |
|---|
| 2341 | lnycut = min( lnycut, log(yhi(m,n)*1.0e5) ) |
|---|
| 2342 | ycut=exp(lnycut) |
|---|
| 2343 | ! write(6,*)'m,n,rcut,rlo,rhi=',m,n,exp(xcut),rlo(m,n),rhi(m,n) |
|---|
| 2344 | ! if(lnsmax.lt.lnsmn(m,n))then |
|---|
| 2345 | if(ycut.gt.yhi(m,n))then |
|---|
| 2346 | fn(m,n)=0. |
|---|
| 2347 | fs(m,n)=0. |
|---|
| 2348 | fm(m,n)=0. |
|---|
| 2349 | ! elseif(lnsmax.gt.lnsmx(m,n))then |
|---|
| 2350 | elseif(ycut.lt.ylo(m,n))then |
|---|
| 2351 | fn(m,n)=1. |
|---|
| 2352 | fs(m,n)=1. |
|---|
| 2353 | fm(m,n)=1. |
|---|
| 2354 | elseif ( bin_is_narrow(m,n) ) then |
|---|
| 2355 | ! 04-nov-2005 rce - for extremely narrow bins, |
|---|
| 2356 | ! do zero activation if xcut>xmean, 100% activation otherwise |
|---|
| 2357 | if (ycut.gt.ymean(m,n)) then |
|---|
| 2358 | fn(m,n)=0. |
|---|
| 2359 | fs(m,n)=0. |
|---|
| 2360 | fm(m,n)=0. |
|---|
| 2361 | else |
|---|
| 2362 | fn(m,n)=1. |
|---|
| 2363 | fs(m,n)=1. |
|---|
| 2364 | fm(m,n)=1. |
|---|
| 2365 | endif |
|---|
| 2366 | else |
|---|
| 2367 | phiyy=ycut/yhi(m,n) |
|---|
| 2368 | fn(m,n) = asub(m,n)*(1.0-phiyy) + 0.5*bsub(m,n)*(1.0-phiyy*phiyy) |
|---|
| 2369 | if (fn(m,n).lt.zero .or. fn(m,n).gt.one) then |
|---|
| 2370 | if (idiag_fnsm_prob .gt. 0) then |
|---|
| 2371 | print *,'fn(',m,n,')=',fn(m,n),' outside 0,1 - activate err21' |
|---|
| 2372 | print *,'na,volc =', na(m,n), volc(m,n) |
|---|
| 2373 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
|---|
| 2374 | print *,'yhi,ycut =', yhi(m,n), ycut |
|---|
| 2375 | endif |
|---|
| 2376 | endif |
|---|
| 2377 | |
|---|
| 2378 | if (fn(m,n) .le. zero) then |
|---|
| 2379 | ! 10-nov-2005 rce - if fn=0, then fs & fm must be 0 |
|---|
| 2380 | fn(m,n)=zero |
|---|
| 2381 | fs(m,n)=zero |
|---|
| 2382 | fm(m,n)=zero |
|---|
| 2383 | else if (fn(m,n) .ge. one) then |
|---|
| 2384 | ! 10-nov-2005 rce - if fn=1, then fs & fm must be 1 |
|---|
| 2385 | fn(m,n)=one |
|---|
| 2386 | fs(m,n)=one |
|---|
| 2387 | fm(m,n)=one |
|---|
| 2388 | else |
|---|
| 2389 | ! 10-nov-2005 rce - otherwise, calc fm and check it |
|---|
| 2390 | fm(m,n) = (yhi(m,n)/ymean(m,n)) * (0.5*asub(m,n)*(1.0-phiyy*phiyy) + & |
|---|
| 2391 | third*bsub(m,n)*(1.0-phiyy*phiyy*phiyy)) |
|---|
| 2392 | if (fm(m,n).lt.fn(m,n) .or. fm(m,n).gt.one) then |
|---|
| 2393 | if (idiag_fnsm_prob .gt. 0) then |
|---|
| 2394 | print *,'fm(',m,n,')=',fm(m,n),' outside fn,1 - activate err22' |
|---|
| 2395 | print *,'na,volc,fn =', na(m,n), volc(m,n), fn(m,n) |
|---|
| 2396 | print *,'asub,bsub =', asub(m,n), bsub(m,n) |
|---|
| 2397 | print *,'yhi,ycut =', yhi(m,n), ycut |
|---|
| 2398 | endif |
|---|
| 2399 | endif |
|---|
| 2400 | if (fm(m,n) .le. fn(m,n)) then |
|---|
| 2401 | ! 10-nov-2005 rce - if fm=fn, then fs must =fn |
|---|
| 2402 | fm(m,n)=fn(m,n) |
|---|
| 2403 | fs(m,n)=fn(m,n) |
|---|
| 2404 | else if (fm(m,n) .ge. one) then |
|---|
| 2405 | ! 10-nov-2005 rce - if fm=1, then fs & fn must be 1 |
|---|
| 2406 | fm(m,n)=one |
|---|
| 2407 | fs(m,n)=one |
|---|
| 2408 | fn(m,n)=one |
|---|
| 2409 | else |
|---|
| 2410 | ! 10-nov-2005 rce - these two checks assure that the mean size |
|---|
| 2411 | ! of the activated & interstitial particles will be between rlo & rhi |
|---|
| 2412 | dumaa = fn(m,n)*(yhi(m,n)/ymean(m,n)) |
|---|
| 2413 | fm(m,n) = min( fm(m,n), dumaa ) |
|---|
| 2414 | dumaa = 1.0 + (fn(m,n)-1.0)*(ylo(m,n)/ymean(m,n)) |
|---|
| 2415 | fm(m,n) = min( fm(m,n), dumaa ) |
|---|
| 2416 | ! 10-nov-2005 rce - now calculate fs and bound it by fn, fm |
|---|
| 2417 | betayy = ylo(m,n)/yhi(m,n) |
|---|
| 2418 | dumaa = phiyy**twothird |
|---|
| 2419 | dumbb = betayy**twothird |
|---|
| 2420 | fs(m,n) = & |
|---|
| 2421 | (asub(m,n)*(1.0-phiyy*dumaa) + & |
|---|
| 2422 | 0.625*bsub(m,n)*(1.0-phiyy*phiyy*dumaa)) / & |
|---|
| 2423 | (asub(m,n)*(1.0-betayy*dumbb) + & |
|---|
| 2424 | 0.625*bsub(m,n)*(1.0-betayy*betayy*dumbb)) |
|---|
| 2425 | fs(m,n)=max(fs(m,n),fn(m,n)) |
|---|
| 2426 | fs(m,n)=min(fs(m,n),fm(m,n)) |
|---|
| 2427 | endif |
|---|
| 2428 | endif |
|---|
| 2429 | |
|---|
| 2430 | endif |
|---|
| 2431 | |
|---|
| 2432 | else |
|---|
| 2433 | ! modal |
|---|
| 2434 | x=2*(lnsm(m,n)-lnsmax)/(3*sq2*alnsign(m,n)) |
|---|
| 2435 | fn(m,n)=0.5*(1.-ERF_ALT(x)) |
|---|
| 2436 | arg=x-sq2*alnsign(m,n) |
|---|
| 2437 | fs(m,n)=0.5*(1.-ERF_ALT(arg)) |
|---|
| 2438 | arg=x-1.5*sq2*alnsign(m,n) |
|---|
| 2439 | fm(m,n)=0.5*(1.-ERF_ALT(arg)) |
|---|
| 2440 | endif |
|---|
| 2441 | |
|---|
| 2442 | ! fn(m,n)=1. ! test |
|---|
| 2443 | ! fs(m,n)=1. |
|---|
| 2444 | ! fm(m,n)=1. |
|---|
| 2445 | if((top.and.wbar.lt.0.).or.(.not.top.and.wbar.gt.0.))then |
|---|
| 2446 | fluxn(m,n)=fn(m,n)*w |
|---|
| 2447 | fluxs(m,n)=fs(m,n)*w |
|---|
| 2448 | fluxm(m,n)=fm(m,n)*w |
|---|
| 2449 | else |
|---|
| 2450 | fluxn(m,n)=0 |
|---|
| 2451 | fluxs(m,n)=0 |
|---|
| 2452 | fluxm(m,n)=0 |
|---|
| 2453 | endif |
|---|
| 2454 | |
|---|
| 2455 | 55000 continue ! m=1,nsize_aer(n) |
|---|
| 2456 | 55002 continue ! n=1,ntype_aer |
|---|
| 2457 | |
|---|
| 2458 | if((top.and.wbar.lt.0.).or.(.not.top.and.wbar.gt.0.))then |
|---|
| 2459 | flux_fullact = w |
|---|
| 2460 | else |
|---|
| 2461 | flux_fullact = 0.0 |
|---|
| 2462 | endif |
|---|
| 2463 | |
|---|
| 2464 | ! 04-nov-2005 rce - moved the code for "wnuc.le.0" from here |
|---|
| 2465 | ! to near the start the uniform undraft section |
|---|
| 2466 | |
|---|
| 2467 | !....................................................................... |
|---|
| 2468 | ! |
|---|
| 2469 | ! end calc. of activation fractions/fluxes |
|---|
| 2470 | ! for (single) uniform updraft (end of section 3) |
|---|
| 2471 | ! |
|---|
| 2472 | !....................................................................... |
|---|
| 2473 | |
|---|
| 2474 | |
|---|
| 2475 | |
|---|
| 2476 | 60000 continue |
|---|
| 2477 | |
|---|
| 2478 | |
|---|
| 2479 | ! do n=1,ntype_aer |
|---|
| 2480 | ! do m=1,nsize_aer(n) |
|---|
| 2481 | ! write(6,'(a,2i3,5e10.1)')'n,m,na,wbar,sigw,fn,fm=',n,m,na(m,n),wbar,sigw,fn(m,n),fm(m,n) |
|---|
| 2482 | ! end do |
|---|
| 2483 | ! end do |
|---|
| 2484 | |
|---|
| 2485 | |
|---|
| 2486 | return |
|---|
| 2487 | end subroutine activate |
|---|
| 2488 | |
|---|
| 2489 | |
|---|
| 2490 | |
|---|
| 2491 | !---------------------------------------------------------------------- |
|---|
| 2492 | !---------------------------------------------------------------------- |
|---|
| 2493 | subroutine maxsat(zeta,eta, & |
|---|
| 2494 | maxd_atype,ntype_aer,maxd_asize,nsize_aer, & |
|---|
| 2495 | sm,alnsign,f1,smax) |
|---|
| 2496 | |
|---|
| 2497 | ! Calculates maximum supersaturation for multiple competing aerosol |
|---|
| 2498 | ! modes. Note that maxsat_init must be called before calling this |
|---|
| 2499 | ! subroutine. |
|---|
| 2500 | |
|---|
| 2501 | ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. |
|---|
| 2502 | ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. |
|---|
| 2503 | |
|---|
| 2504 | implicit none |
|---|
| 2505 | |
|---|
| 2506 | integer, intent(in) :: maxd_atype |
|---|
| 2507 | integer, intent(in) :: ntype_aer |
|---|
| 2508 | integer, intent(in) :: maxd_asize |
|---|
| 2509 | integer, intent(in) :: nsize_aer(maxd_atype) ! number of size bins |
|---|
| 2510 | real, intent(in) :: sm(maxd_asize,maxd_atype) ! critical supersaturation for number mode radius |
|---|
| 2511 | real, intent(in) :: zeta, eta(maxd_asize,maxd_atype) |
|---|
| 2512 | real, intent(in) :: alnsign(maxd_asize,maxd_atype) ! ln(sigma) |
|---|
| 2513 | real, intent(in) :: f1(maxd_asize,maxd_atype) |
|---|
| 2514 | real, intent(out) :: smax ! maximum supersaturation |
|---|
| 2515 | |
|---|
| 2516 | real :: g1, g2 |
|---|
| 2517 | real thesum |
|---|
| 2518 | integer m ! size index |
|---|
| 2519 | integer n ! type index |
|---|
| 2520 | |
|---|
| 2521 | do n=1,ntype_aer |
|---|
| 2522 | do m=1,nsize_aer(n) |
|---|
| 2523 | if(zeta.gt.1.e5*eta(m,n) .or. & |
|---|
| 2524 | sm(m,n)*sm(m,n).gt.1.e5*eta(m,n))then |
|---|
| 2525 | ! weak forcing. essentially none activated |
|---|
| 2526 | smax=1.e-20 |
|---|
| 2527 | else |
|---|
| 2528 | ! significant activation of this mode. calc activation all modes. |
|---|
| 2529 | go to 1 |
|---|
| 2530 | endif |
|---|
| 2531 | end do |
|---|
| 2532 | end do |
|---|
| 2533 | |
|---|
| 2534 | return |
|---|
| 2535 | |
|---|
| 2536 | 1 continue |
|---|
| 2537 | |
|---|
| 2538 | thesum=0 |
|---|
| 2539 | do n=1,ntype_aer |
|---|
| 2540 | do m=1,nsize_aer(n) |
|---|
| 2541 | if(eta(m,n).gt.1.e-20)then |
|---|
| 2542 | g1=sqrt(zeta/eta(m,n)) |
|---|
| 2543 | g1=g1*g1*g1 |
|---|
| 2544 | g2=sm(m,n)/sqrt(eta(m,n)+3*zeta) |
|---|
| 2545 | g2=sqrt(g2) |
|---|
| 2546 | g2=g2*g2*g2 |
|---|
| 2547 | thesum=thesum + & |
|---|
| 2548 | (f1(m,n)*g1+(1.+0.25*alnsign(m,n))*g2)/(sm(m,n)*sm(m,n)) |
|---|
| 2549 | else |
|---|
| 2550 | thesum=1.e20 |
|---|
| 2551 | endif |
|---|
| 2552 | end do |
|---|
| 2553 | end do |
|---|
| 2554 | |
|---|
| 2555 | smax=1./sqrt(thesum) |
|---|
| 2556 | |
|---|
| 2557 | return |
|---|
| 2558 | end subroutine maxsat |
|---|
| 2559 | |
|---|
| 2560 | |
|---|
| 2561 | |
|---|
| 2562 | !---------------------------------------------------------------------- |
|---|
| 2563 | !---------------------------------------------------------------------- |
|---|
| 2564 | subroutine maxsat_init(maxd_atype, ntype_aer, & |
|---|
| 2565 | maxd_asize, nsize_aer, alnsign, f1) |
|---|
| 2566 | |
|---|
| 2567 | ! Calculates the f1 paramter needed by maxsat. |
|---|
| 2568 | |
|---|
| 2569 | ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. |
|---|
| 2570 | ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. |
|---|
| 2571 | |
|---|
| 2572 | implicit none |
|---|
| 2573 | |
|---|
| 2574 | integer, intent(in) :: maxd_atype |
|---|
| 2575 | integer, intent(in) :: ntype_aer ! number of aerosol types |
|---|
| 2576 | integer, intent(in) :: maxd_asize |
|---|
| 2577 | integer, intent(in) :: nsize_aer(maxd_atype) ! number of size bins |
|---|
| 2578 | real, intent(in) :: alnsign(maxd_asize,maxd_atype) ! ln(sigma) |
|---|
| 2579 | real, intent(out) :: f1(maxd_asize,maxd_atype) |
|---|
| 2580 | |
|---|
| 2581 | integer m ! size index |
|---|
| 2582 | integer n ! type index |
|---|
| 2583 | |
|---|
| 2584 | ! calculate and save f1(sigma), assumes sigma is invariant |
|---|
| 2585 | ! between calls to this init routine |
|---|
| 2586 | |
|---|
| 2587 | do n=1,ntype_aer |
|---|
| 2588 | do m=1,nsize_aer(n) |
|---|
| 2589 | f1(m,n)=0.5*exp(2.5*alnsign(m,n)*alnsign(m,n)) |
|---|
| 2590 | end do |
|---|
| 2591 | end do |
|---|
| 2592 | |
|---|
| 2593 | end subroutine maxsat_init |
|---|
| 2594 | |
|---|
| 2595 | |
|---|
| 2596 | |
|---|
| 2597 | !---------------------------------------------------------------------- |
|---|
| 2598 | !---------------------------------------------------------------------- |
|---|
| 2599 | ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3); |
|---|
| 2600 | ! grid_id, ktau, i, j, isize, itype added to arg list to assist debugging |
|---|
| 2601 | subroutine loadaer(chem,k,kmn,kmx,num_chem,cs,npv, & |
|---|
| 2602 | dlo_sect,dhi_sect,maxd_acomp, ncomp, & |
|---|
| 2603 | grid_id, ktau, i, j, isize, itype, & |
|---|
| 2604 | numptr_aer, numptrcw_aer, dens_aer, & |
|---|
| 2605 | massptr_aer, massptrcw_aer, & |
|---|
| 2606 | maerosol, maerosolcw, & |
|---|
| 2607 | maerosol_tot, maerosol_totcw, & |
|---|
| 2608 | naerosol, naerosolcw, & |
|---|
| 2609 | vaerosol, vaerosolcw) |
|---|
| 2610 | |
|---|
| 2611 | implicit none |
|---|
| 2612 | |
|---|
| 2613 | ! load aerosol number, surface, mass concentrations |
|---|
| 2614 | |
|---|
| 2615 | ! input |
|---|
| 2616 | |
|---|
| 2617 | integer, intent(in) :: num_chem ! maximum number of consituents |
|---|
| 2618 | integer, intent(in) :: k,kmn,kmx |
|---|
| 2619 | real, intent(in) :: chem(kmn:kmx,num_chem) ! aerosol mass, number mixing ratios |
|---|
| 2620 | real, intent(in) :: cs ! air density (kg/m3) |
|---|
| 2621 | real, intent(in) :: npv ! number per volume concentration (/m3) |
|---|
| 2622 | integer, intent(in) :: maxd_acomp,ncomp |
|---|
| 2623 | integer, intent(in) :: numptr_aer,numptrcw_aer |
|---|
| 2624 | integer, intent(in) :: massptr_aer(maxd_acomp), massptrcw_aer(maxd_acomp) |
|---|
| 2625 | real, intent(in) :: dens_aer(maxd_acomp) ! aerosol material density (g/cm3) |
|---|
| 2626 | real, intent(in) :: dlo_sect,dhi_sect ! minimum, maximum diameter of section (cm) |
|---|
| 2627 | integer, intent(in) :: grid_id, ktau, i, j, isize, itype |
|---|
| 2628 | |
|---|
| 2629 | ! output |
|---|
| 2630 | |
|---|
| 2631 | real, intent(out) :: naerosol ! interstitial number conc (/m3) |
|---|
| 2632 | real, intent(out) :: naerosolcw ! activated number conc (/m3) |
|---|
| 2633 | real, intent(out) :: maerosol(maxd_acomp) ! interstitial mass conc (kg/m3) |
|---|
| 2634 | real, intent(out) :: maerosolcw(maxd_acomp) ! activated mass conc (kg/m3) |
|---|
| 2635 | real, intent(out) :: maerosol_tot ! total-over-species interstitial mass conc (kg/m3) |
|---|
| 2636 | real, intent(out) :: maerosol_totcw ! total-over-species activated mass conc (kg/m3) |
|---|
| 2637 | real, intent(out) :: vaerosol ! interstitial volume conc (m3/m3) |
|---|
| 2638 | real, intent(out) :: vaerosolcw ! activated volume conc (m3/m3) |
|---|
| 2639 | |
|---|
| 2640 | ! internal |
|---|
| 2641 | |
|---|
| 2642 | integer lnum,lnumcw,l,ltype,lmass,lmasscw,lsfc,lsfccw |
|---|
| 2643 | real num_at_dhi, num_at_dlo |
|---|
| 2644 | real npv_at_dhi, npv_at_dlo |
|---|
| 2645 | real, parameter :: pi = 3.1415926526 |
|---|
| 2646 | real specvol ! inverse aerosol material density (m3/kg) |
|---|
| 2647 | |
|---|
| 2648 | lnum=numptr_aer |
|---|
| 2649 | lnumcw=numptrcw_aer |
|---|
| 2650 | maerosol_tot=0. |
|---|
| 2651 | maerosol_totcw=0. |
|---|
| 2652 | vaerosol=0. |
|---|
| 2653 | vaerosolcw=0. |
|---|
| 2654 | do l=1,ncomp |
|---|
| 2655 | lmass=massptr_aer(l) |
|---|
| 2656 | lmasscw=massptrcw_aer(l) |
|---|
| 2657 | maerosol(l)=chem(k,lmass)*cs |
|---|
| 2658 | maerosol(l)=max(maerosol(l),0.) |
|---|
| 2659 | maerosolcw(l)=chem(k,lmasscw)*cs |
|---|
| 2660 | maerosolcw(l)=max(maerosolcw(l),0.) |
|---|
| 2661 | maerosol_tot=maerosol_tot+maerosol(l) |
|---|
| 2662 | maerosol_totcw=maerosol_totcw+maerosolcw(l) |
|---|
| 2663 | ! [ 1.e-3 factor because dens_aer is (g/cm3), specvol is (m3/kg) ] |
|---|
| 2664 | specvol=1.0e-3/dens_aer(l) |
|---|
| 2665 | vaerosol=vaerosol+maerosol(l)*specvol |
|---|
| 2666 | vaerosolcw=vaerosolcw+maerosolcw(l)*specvol |
|---|
| 2667 | ! write(6,'(a,3e12.2)')'maerosol,dens_aer,vaerosol=',maerosol(l),dens_aer(l),vaerosol |
|---|
| 2668 | enddo |
|---|
| 2669 | |
|---|
| 2670 | if(lnum.gt.0)then |
|---|
| 2671 | ! aerosol number predicted |
|---|
| 2672 | ! [ 1.0e6 factor because because dhi_ & dlo_sect are (cm), vaerosol is (m3) ] |
|---|
| 2673 | npv_at_dhi = 6.0e6/(pi*dhi_sect*dhi_sect*dhi_sect) |
|---|
| 2674 | npv_at_dlo = 6.0e6/(pi*dlo_sect*dlo_sect*dlo_sect) |
|---|
| 2675 | |
|---|
| 2676 | naerosol=chem(k,lnum)*cs |
|---|
| 2677 | naerosolcw=chem(k,lnumcw)*cs |
|---|
| 2678 | num_at_dhi = vaerosol*npv_at_dhi |
|---|
| 2679 | num_at_dlo = vaerosol*npv_at_dlo |
|---|
| 2680 | naerosol = max( num_at_dhi, min( num_at_dlo, naerosol ) ) |
|---|
| 2681 | |
|---|
| 2682 | ! write(6,'(a,5e10.1)')'naerosol,num_at_dhi,num_at_dlo,dhi_sect,dlo_sect', & |
|---|
| 2683 | ! naerosol,num_at_dhi,num_at_dlo,dhi_sect,dlo_sect |
|---|
| 2684 | num_at_dhi = vaerosolcw*npv_at_dhi |
|---|
| 2685 | num_at_dlo = vaerosolcw*npv_at_dlo |
|---|
| 2686 | naerosolcw = max( num_at_dhi, min( num_at_dlo, naerosolcw ) ) |
|---|
| 2687 | else |
|---|
| 2688 | ! aerosol number diagnosed from mass and prescribed size |
|---|
| 2689 | naerosol=vaerosol*npv |
|---|
| 2690 | naerosol=max(naerosol,0.) |
|---|
| 2691 | naerosolcw=vaerosolcw*npv |
|---|
| 2692 | naerosolcw=max(naerosolcw,0.) |
|---|
| 2693 | endif |
|---|
| 2694 | |
|---|
| 2695 | |
|---|
| 2696 | return |
|---|
| 2697 | end subroutine loadaer |
|---|
| 2698 | |
|---|
| 2699 | |
|---|
| 2700 | |
|---|
| 2701 | !----------------------------------------------------------------------- |
|---|
| 2702 | real function erfc_num_recipes( x ) |
|---|
| 2703 | ! |
|---|
| 2704 | ! from press et al, numerical recipes, 1990, page 164 |
|---|
| 2705 | ! |
|---|
| 2706 | implicit none |
|---|
| 2707 | real x |
|---|
| 2708 | double precision erfc_dbl, dum, t, zz |
|---|
| 2709 | |
|---|
| 2710 | zz = abs(x) |
|---|
| 2711 | t = 1.0/(1.0 + 0.5*zz) |
|---|
| 2712 | |
|---|
| 2713 | ! erfc_num_recipes = |
|---|
| 2714 | ! & t*exp( -zz*zz - 1.26551223 + t*(1.00002368 + t*(0.37409196 + |
|---|
| 2715 | ! & t*(0.09678418 + t*(-0.18628806 + t*(0.27886807 + |
|---|
| 2716 | ! & t*(-1.13520398 + |
|---|
| 2717 | ! & t*(1.48851587 + t*(-0.82215223 + t*0.17087277 ))))))))) |
|---|
| 2718 | |
|---|
| 2719 | dum = ( -zz*zz - 1.26551223 + t*(1.00002368 + t*(0.37409196 + & |
|---|
| 2720 | t*(0.09678418 + t*(-0.18628806 + t*(0.27886807 + & |
|---|
| 2721 | t*(-1.13520398 + & |
|---|
| 2722 | t*(1.48851587 + t*(-0.82215223 + t*0.17087277 ))))))))) |
|---|
| 2723 | |
|---|
| 2724 | erfc_dbl = t * exp(dum) |
|---|
| 2725 | if (x .lt. 0.0) erfc_dbl = 2.0d0 - erfc_dbl |
|---|
| 2726 | |
|---|
| 2727 | erfc_num_recipes = erfc_dbl |
|---|
| 2728 | |
|---|
| 2729 | return |
|---|
| 2730 | end function erfc_num_recipes |
|---|
| 2731 | |
|---|
| 2732 | !----------------------------------------------------------------------- |
|---|
| 2733 | real function erf_alt( x ) |
|---|
| 2734 | |
|---|
| 2735 | implicit none |
|---|
| 2736 | |
|---|
| 2737 | real,intent(in) :: x |
|---|
| 2738 | |
|---|
| 2739 | erf_alt = 1. - erfc_num_recipes(x) |
|---|
| 2740 | |
|---|
| 2741 | end function erf_alt |
|---|
| 2742 | |
|---|
| 2743 | END MODULE module_mixactivate |
|---|