| 1 | MODULE module_cu_camzm_driver |
|---|
| 2 | |
|---|
| 3 | !Roughly based on zm_conv_intr.F90 from CAM |
|---|
| 4 | |
|---|
| 5 | USE module_cam_support, only: pcnst, pcols, pver, pverp |
|---|
| 6 | |
|---|
| 7 | IMPLICIT NONE |
|---|
| 8 | |
|---|
| 9 | PRIVATE !Default to private |
|---|
| 10 | PUBLIC :: & !Public entities |
|---|
| 11 | camzm_driver, & |
|---|
| 12 | zm_conv_init |
|---|
| 13 | |
|---|
| 14 | CONTAINS |
|---|
| 15 | |
|---|
| 16 | !------------------------------------------------------------------------ |
|---|
| 17 | SUBROUTINE camzm_driver( & |
|---|
| 18 | ids,ide, jds,jde, kds,kde & |
|---|
| 19 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 20 | ,its,ite, jts,jte, kts,kte & |
|---|
| 21 | ,itimestep, bl_pbl_physics, sf_sfclay_physics & |
|---|
| 22 | ,th, t_phy, tsk, tke_pbl, ust, qv, qc, qi & |
|---|
| 23 | ,mavail, kpbl, pblh, xland, z & |
|---|
| 24 | ,z_at_w, dz8w, ht, p, p8w, pi_phy, psfc & |
|---|
| 25 | ,u_phy, v_phy, hfx, qfx, cldfra & |
|---|
| 26 | ,tpert_camuwpbl & |
|---|
| 27 | ,dx, dt, stepcu, cudt, curr_secs, adapt_step_flag& |
|---|
| 28 | ,cape_out, mu_out, md_out, zmdt, zmdq & |
|---|
| 29 | ,rliq_out, dlf_out & |
|---|
| 30 | ,pconvb, pconvt, cubot, cutop, raincv, pratec & |
|---|
| 31 | ,rucuten, rvcuten & |
|---|
| 32 | ,rthcuten, rqvcuten, rqccuten, rqicuten & |
|---|
| 33 | ,evaptzm, fzsntzm, evsntzm, evapqzm, zmflxprc & |
|---|
| 34 | ,zmflxsnw, zmntprpd, zmntsnpd, zmeiheat & |
|---|
| 35 | ,cmfmc, cmfmcdzm, preccdzm, precz & |
|---|
| 36 | ,zmmtu, zmmtv, zmupgu, zmupgd, zmvpgu, zmvpgd & |
|---|
| 37 | ,zmicuu, zmicud, zmicvu, zmicvd & |
|---|
| 38 | ,zmdice, zmdliq & |
|---|
| 39 | ) |
|---|
| 40 | ! This routine is based on zm_conv_tend in CAM. It handles the mapping of |
|---|
| 41 | ! variables from the WRF to the CAM framework for the Zhang-McFarlane |
|---|
| 42 | ! convective parameterization. |
|---|
| 43 | ! |
|---|
| 44 | ! Author: William.Gustafson@pnl.gov, Nov. 2009 |
|---|
| 45 | ! Last modified: William.Gustafson@pnl.gov, Nov. 2010 |
|---|
| 46 | !------------------------------------------------------------------------ |
|---|
| 47 | USE shr_kind_mod, only: r8 => shr_kind_r8 |
|---|
| 48 | USE physconst, only: cpair, gravit |
|---|
| 49 | USE module_cu_camzm, only: convtran, momtran, zm_conv_evap, zm_convr |
|---|
| 50 | |
|---|
| 51 | ! Subroutine arguments... |
|---|
| 52 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
|---|
| 53 | ims,ime, jms,jme, kms,kme, & |
|---|
| 54 | its,ite, jts,jte, kts,kte, & |
|---|
| 55 | bl_pbl_physics, & !pbl scheme |
|---|
| 56 | itimestep, & !time step index |
|---|
| 57 | sf_sfclay_physics, & !surface layer scheme |
|---|
| 58 | stepcu !number of time steps between Cu calls |
|---|
| 59 | |
|---|
| 60 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN) :: & |
|---|
| 61 | cldfra, & !cloud fraction |
|---|
| 62 | dz8w, & !height between interfaces (m) |
|---|
| 63 | p, & !pressure at mid-level (Pa) |
|---|
| 64 | p8w, & !pressure at level interface (Pa) |
|---|
| 65 | pi_phy, & !exner function, (p0/p)^(R/cpair) (none) |
|---|
| 66 | qv, & !water vapor mixing ratio (kg/kg-dry air) |
|---|
| 67 | th, & !potential temperature (K) |
|---|
| 68 | tke_pbl, & !turbulent kinetic energy from PBL (m2/s2) |
|---|
| 69 | t_phy, & !temperature (K) |
|---|
| 70 | u_phy, & !zonal wind component on T points (m/s) |
|---|
| 71 | v_phy, & !meridional wind component on T points (m/s) |
|---|
| 72 | z, & !height above sea level at mid-level (m) |
|---|
| 73 | z_at_w !height above sea level at interface (m) |
|---|
| 74 | |
|---|
| 75 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN), OPTIONAL :: & |
|---|
| 76 | qc, & !cloud droplet mixing ratio (kg/kg-dry air) |
|---|
| 77 | qi !cloud ice crystal mixing ratio (kg/kg-dry air) |
|---|
| 78 | |
|---|
| 79 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(INOUT) :: & |
|---|
| 80 | dlf_out, & !detraining cloud water tendendcy |
|---|
| 81 | evaptzm, & !temp. tendency - evap/snow prod from ZM (K/s) |
|---|
| 82 | fzsntzm, & !temp. tendency - rain to snow conversion from ZM (K/s) |
|---|
| 83 | evsntzm, & !temp. tendency - snow to rain conversion from ZM (K/s) |
|---|
| 84 | evapqzm, & !spec. humidity tend. - evaporation from ZM (kg/kg/s) |
|---|
| 85 | zmflxprc, & !flux of precipitation from ZM (kg/m2/s) |
|---|
| 86 | zmflxsnw, & !flux of snow from ZM (kg/m2/s) |
|---|
| 87 | zmntprpd, & !net precipitation production from ZM (kg/kg/s) |
|---|
| 88 | zmntsnpd, & !net snow production from ZM (kg/kg/s) |
|---|
| 89 | zmeiheat, & !heating by ice and evaporation from ZM (W/kg) |
|---|
| 90 | cmfmc, & !convective mass flux--m sub c, deep here but ultimately deep+shallow (kg/m2/s) |
|---|
| 91 | cmfmcdzm, & !convection mass flux from ZM deep (kg/m2/s) |
|---|
| 92 | md_out, & !output convective downdraft mass flux (kg/m2/s) |
|---|
| 93 | mu_out, & !output convective updraft mass flux (kg/m2/s) |
|---|
| 94 | rucuten, & !UNcoupled zonal wind tendency due to Cu scheme (m/s2) |
|---|
| 95 | rvcuten, & !UNcoupled meridional wind tendency due to Cu scheme (m/s2) |
|---|
| 96 | rthcuten, & !UNcoupled potential temperature tendendcy due to cu scheme (K/s) |
|---|
| 97 | rqvcuten, & !UNcoupled water vapor mixing ratio tendency due to Cu scheme (kg/kg/s) |
|---|
| 98 | zmdt, & !temp. tendency from moist convection (K/s) |
|---|
| 99 | zmdq, & !spec. humidity tendency from moist convection (kg/kg/s) |
|---|
| 100 | zmmtu, & !U tendency from ZM convective momentum transport (m/s2) |
|---|
| 101 | zmmtv, & !V tendency from ZM convective momentum transport (m/s2) |
|---|
| 102 | zmupgu, & !zonal force from ZM updraft pressure gradient term (m/s2) |
|---|
| 103 | zmupgd, & !zonal force from ZM downdraft pressure gradient term (m/s2) |
|---|
| 104 | zmvpgu, & !meridional force from ZM updraft pressure gradient term (m/s2) |
|---|
| 105 | zmvpgd, & !meridional force from ZM downdraft pressure gradient term (m/s2) |
|---|
| 106 | zmicuu, & !ZM in-cloud U updrafts (m/s) |
|---|
| 107 | zmicud, & !ZM in-cloud U downdrafts (m/s) |
|---|
| 108 | zmicvu, & !ZM in-cloud V updrafts (m/s) |
|---|
| 109 | zmicvd, & !ZM in-cloud V downdrafts (m/s) |
|---|
| 110 | zmdice, & !ZM cloud ice tendency (kg/kg/s) |
|---|
| 111 | zmdliq !ZM cloud liquid tendency (kg/kg/s) |
|---|
| 112 | |
|---|
| 113 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(INOUT), OPTIONAL :: & |
|---|
| 114 | rqccuten, & !UNcoupled cloud droplet mixing ratio tendency due to Cu scheme (kg/kg/s) |
|---|
| 115 | rqicuten !UNcoupled ice crystal mixing ratio tendency due to Cu scheme (kg/kg/s) |
|---|
| 116 | |
|---|
| 117 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) :: & |
|---|
| 118 | hfx, & !upward heat flux at sfc (W/m2) |
|---|
| 119 | ht, & !terrain height (m) |
|---|
| 120 | xland, & !land/water mask, 1=land, 2=water |
|---|
| 121 | mavail, & !soil moisture availability |
|---|
| 122 | pblh, & !planetary boundary layer height (m) |
|---|
| 123 | psfc, & !surface pressure (Pa) |
|---|
| 124 | qfx, & !upward moisture flux at sfc (kg/m2/s) |
|---|
| 125 | tpert_camuwpbl, & !temperature perturbation from UW CAM PBL |
|---|
| 126 | tsk, & !skin temperature (K) |
|---|
| 127 | ust !u* in similarity theory (m/s) |
|---|
| 128 | |
|---|
| 129 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: & |
|---|
| 130 | cape_out, & !convective available potential energy (J/kg) |
|---|
| 131 | cubot, & !level number of base of convection |
|---|
| 132 | cutop, & !level number of top of convection |
|---|
| 133 | pconvb, & !pressure of base of convection (Pa) |
|---|
| 134 | pconvt, & !pressure of top of convection (Pa) |
|---|
| 135 | pratec, & !rain rate returned to WRF for accumulation (mm/s) |
|---|
| 136 | preccdzm, & !convection precipitation rate from ZM deep (m/s) |
|---|
| 137 | precz, & !total precipitation rate from ZM (m/s) |
|---|
| 138 | raincv, & !time-step convective rain amount (mm) |
|---|
| 139 | rliq_out !vertical integral of reserved cloud water |
|---|
| 140 | |
|---|
| 141 | REAL, INTENT(IN) :: & |
|---|
| 142 | cudt, & !cumulus time step (min) |
|---|
| 143 | curr_secs, & !current forecast time (s) |
|---|
| 144 | dt, & !domain time step (s) |
|---|
| 145 | dx !grid spacing (m) |
|---|
| 146 | |
|---|
| 147 | INTEGER, DIMENSION( ims:ime, jms:jme), INTENT(IN) :: & |
|---|
| 148 | kpbl !index of PBL level |
|---|
| 149 | |
|---|
| 150 | LOGICAL, INTENT(IN) :: & |
|---|
| 151 | adapt_step_flag !using adaptive time steps? |
|---|
| 152 | |
|---|
| 153 | ! Local variables... |
|---|
| 154 | !Variables dimensioned for input to ZM routines |
|---|
| 155 | REAL(r8), DIMENSION(pcols, kte+1) :: & |
|---|
| 156 | mcon, & !convective mass flux--m sub c (sub arg out in CAM) |
|---|
| 157 | pflx, & !scattered precip flux at each level (sub arg out in CAM) |
|---|
| 158 | pint8, & !pressure at layer interface (Pa) |
|---|
| 159 | zi8 !height above sea level at mid-level (m) |
|---|
| 160 | |
|---|
| 161 | REAL(r8), DIMENSION(pcols, kte, pcnst) :: & |
|---|
| 162 | qh8 !specific humidity (kg/kg-moist air) |
|---|
| 163 | |
|---|
| 164 | REAL(r8), DIMENSION(pcols, kte, 3) :: & |
|---|
| 165 | cloud, & !holder for cloud water and ice (q in CAM) |
|---|
| 166 | cloudtnd, & !holder for cloud tendencies (ptend_loc%q in CAM) |
|---|
| 167 | fracis !fraction of cloud species that are insoluble |
|---|
| 168 | |
|---|
| 169 | REAL(r8), DIMENSION(pcols, kte, 2) :: & |
|---|
| 170 | icwu, & !in-cloud winds in upraft (m/s) |
|---|
| 171 | icwd, & !in-cloud winds in downdraft (m/s) |
|---|
| 172 | pguall, & !apparent force from updraft pres. gradient (~units?) |
|---|
| 173 | pgdall, & !apparent force from downdraft pres. gradient (~units?) |
|---|
| 174 | winds, & !wind components (m/s) |
|---|
| 175 | wind_tends !wind component tendencies (m/s2) |
|---|
| 176 | |
|---|
| 177 | REAL(r8), DIMENSION(pcols, kte) :: & |
|---|
| 178 | cld8, & !cloud fraction |
|---|
| 179 | cme, & !cmf condensation - evaporation (~units?, sub arg out in CAM) |
|---|
| 180 | dlf, & !scattered version of the detraining cld h2o tendency (~units?) |
|---|
| 181 | fake_dpdry, & !place holder for dpdry, delta pres. of dry atmos. |
|---|
| 182 | flxprec, & !evap outfld: convective-scale flux of precip at interfaces (kg/m2/s) |
|---|
| 183 | flxsnow, & !evap outfld: convective-scale flux of snow at interfaces (kg/m2/s) |
|---|
| 184 | ntprprd, & !evap outfld: net precip production in layer (kg/kg/s) |
|---|
| 185 | ntsnprd, & !evap outfld: net snow production in layer (kg/kg/s) |
|---|
| 186 | pdel8, & !pressure thickness of layer (between interfaces, Pa) |
|---|
| 187 | pmid8, & !pressure at layer middle (Pa) |
|---|
| 188 | ql8, & !cloud liquid water (~units?) |
|---|
| 189 | qi8, & !cloud ice (~units?) |
|---|
| 190 | t8, & !temperature (K) |
|---|
| 191 | zm8, & !height above ground at mid-level (m) |
|---|
| 192 | qtnd, & !specific humidity tendency (kg/kg/s) |
|---|
| 193 | rprd, & !rain production rate (kg/kg/s, comes from pbuf array in CAM, add to restart?~) |
|---|
| 194 | stnd, & !heating rate (dry static energy tendency, W/kg) |
|---|
| 195 | tend_s_snwprd, & !heating rate of snow production (~units?) |
|---|
| 196 | tend_s_snwevmlt, & !heating rate of evap/melting of snow (~units?) |
|---|
| 197 | zdu !detraining mass flux (~units? sub arg out in CAM) |
|---|
| 198 | |
|---|
| 199 | REAL(r8), DIMENSION(pcols) :: & |
|---|
| 200 | cape, & !convective available potential energy (J/kg) |
|---|
| 201 | jctop, & !row of top-of-deep-convection indices passed out (sub arg out in CAM) |
|---|
| 202 | jcbot, & !row of base of cloud indices passed out (sub arg out in CAM) |
|---|
| 203 | landfrac, & !land fraction |
|---|
| 204 | pblh8, & !planetary boundary layer height (m) |
|---|
| 205 | phis, & !geopotential at terrain height (m2/s2) |
|---|
| 206 | prec, & !convective-scale precipitation rate from ZM (m/s) |
|---|
| 207 | rliq, & !reserved liquid (not yet in cldliq) for energy integrals (units? sub arg out in CAM) |
|---|
| 208 | snow, & !convective-scale snowfall rate from ZM (m/s) |
|---|
| 209 | tpert !thermal (convective) temperature excess (K) |
|---|
| 210 | |
|---|
| 211 | !Variables that were declared at the module level of zm_conv_intr in |
|---|
| 212 | !CAM. In that context they needed to be held between calls to |
|---|
| 213 | !zm_conv_tend and zm_conv_tend2 at the chunk level. In WRF, these vars |
|---|
| 214 | !are setup to hold the whole "memory" dimension, but as a 1-D vector |
|---|
| 215 | !instead of a 2-D array as is typically done in WRF. This allows us to |
|---|
| 216 | !leave the CAM routines in tact. For now, this forces us to immediately |
|---|
| 217 | !call zm_conv_tend2 before leaving this module, but it allows us to |
|---|
| 218 | !follow the WRF rules. We can deal with generalizing this for handling |
|---|
| 219 | !tracer convective transport of aerosols later.~ |
|---|
| 220 | REAL(r8), DIMENSION(pcols, kte, (ime-ims+1)*(jme-jms+1)) :: & |
|---|
| 221 | dp, & !layer pres. thickness between interfaces (mb) |
|---|
| 222 | du, & |
|---|
| 223 | ed, & |
|---|
| 224 | eu, & |
|---|
| 225 | md, & |
|---|
| 226 | mu |
|---|
| 227 | |
|---|
| 228 | REAL(r8), DIMENSION(pcols, (ime-ims+1)*(jme-jms+1)) :: & |
|---|
| 229 | dsubcld ! layer pres. thickness between LCL and maxi (mb) |
|---|
| 230 | |
|---|
| 231 | INTEGER, DIMENSION(pcols, (ime-ims+1)*(jme-jms+1)) :: & |
|---|
| 232 | ideep, & ! holds position of gathered points |
|---|
| 233 | jt, & ! top-level index of deep cumulus convection |
|---|
| 234 | maxg ! gathered values of maxi |
|---|
| 235 | |
|---|
| 236 | INTEGER, DIMENSION((ime-ims+1)*(jme-jms+1)) :: & |
|---|
| 237 | lengath ! number of gathered points |
|---|
| 238 | |
|---|
| 239 | !Other local vars |
|---|
| 240 | INTEGER :: i, j, k, kflip, n, ncnst |
|---|
| 241 | INTEGER :: lchnk !chunk identifier, used to map 2-D to 1-D arrays in WRF |
|---|
| 242 | INTEGER :: ncol !number of atmospheric columns in chunk |
|---|
| 243 | LOGICAL, DIMENSION(3) :: l_qt !logical switches for constituent tendency presence |
|---|
| 244 | LOGICAL, DIMENSION(2) :: l_windt !logical switches for wind tendency presence |
|---|
| 245 | LOGICAL :: run_param !flag for handling alternate cumulus call freq. |
|---|
| 246 | ! |
|---|
| 247 | ! Check to see if this is a convection timestep... |
|---|
| 248 | ! |
|---|
| 249 | if (adapt_step_flag) then |
|---|
| 250 | if ( (itimestep==0) .or. (cudt<=0) .or. & |
|---|
| 251 | ( curr_secs+dt >= ( int(curr_secs/( cudt*60 )) + 1 )*cudt*60 ) ) then |
|---|
| 252 | run_param = .TRUE. |
|---|
| 253 | else |
|---|
| 254 | run_param = .FALSE. |
|---|
| 255 | endif |
|---|
| 256 | |
|---|
| 257 | else |
|---|
| 258 | if (mod(itimestep,stepcu)==0 .or. itimestep==0) then |
|---|
| 259 | run_param = .TRUE. |
|---|
| 260 | else |
|---|
| 261 | run_param = .FALSE. |
|---|
| 262 | endif |
|---|
| 263 | endif |
|---|
| 264 | |
|---|
| 265 | !Leave the subroutine if it is not yet time to call the cumulus param |
|---|
| 266 | if( .not. run_param ) return |
|---|
| 267 | ! |
|---|
| 268 | ! Initialize... |
|---|
| 269 | ! |
|---|
| 270 | ncol = 1 !chunk size in WRF is 1 since we loop over all columns in a tile |
|---|
| 271 | |
|---|
| 272 | cape_out(its:ite, jts:jte) = 0. |
|---|
| 273 | mu_out(its:ite, kts:kte, jts:jte) = 0. |
|---|
| 274 | md_out(its:ite, kts:kte, jts:jte) = 0. |
|---|
| 275 | zmdt(its:ite, kts:kte, jts:jte) = 0. |
|---|
| 276 | ! |
|---|
| 277 | ! Map variables to inputs for zm_convr and call it... |
|---|
| 278 | ! Loop over the points in the tile and treat them each as a CAM chunk. |
|---|
| 279 | ! |
|---|
| 280 | do j = jts,jte |
|---|
| 281 | do i = its,ite |
|---|
| 282 | lchnk = (j-jts)*(ite-its+1) + (i-its+1) !1-D index location from the 2-D tile |
|---|
| 283 | |
|---|
| 284 | !Flip variables on the layer middles |
|---|
| 285 | do k = kts,kte |
|---|
| 286 | kflip = kte-k+1 |
|---|
| 287 | |
|---|
| 288 | cld8(1,kflip) = cldfra(i,k,j) |
|---|
| 289 | pdel8(1,kflip) = p8w(i,k,j) - p8w(i,k+1,j) |
|---|
| 290 | pmid8(1,kflip) = p(i,k,j) |
|---|
| 291 | qh8(1,kflip,1) = max( qv(i,k,j)/(1.+qv(i,k,j)), 1e-30 ) !values of 0 cause a crash in entropy |
|---|
| 292 | if( present(qc) ) then |
|---|
| 293 | ql8(1,kflip) = qc(i,k,j)/(1.+qv(i,k,j)) !Convert to moist mix ratio |
|---|
| 294 | else |
|---|
| 295 | ql8(1,kflip) = 0. |
|---|
| 296 | end if |
|---|
| 297 | if( present(qi) ) then |
|---|
| 298 | qi8(1,kflip) = qi(i,k,j)/(1.+qv(i,k,j)) !Used in convtran, ditto for conversion |
|---|
| 299 | else |
|---|
| 300 | qi8(1,kflip) = 0. |
|---|
| 301 | end if |
|---|
| 302 | t8(1,kflip) = t_phy(i,k,j) |
|---|
| 303 | zm8(1,kflip) = z(i,k,j) - ht(i,j) !Height above the ground at midlevels |
|---|
| 304 | end do |
|---|
| 305 | |
|---|
| 306 | !Flip variables on the layer interfaces |
|---|
| 307 | do k = kts,kte+1 |
|---|
| 308 | kflip = kte-k+2 |
|---|
| 309 | |
|---|
| 310 | pint8(1,kflip) = p8w(i,k,j) |
|---|
| 311 | zi8(1,kflip) = z_at_w(i,k,j) -ht(i,j) !Height above the ground at interfaces |
|---|
| 312 | end do |
|---|
| 313 | |
|---|
| 314 | !Other necessary conversions for input to ZM |
|---|
| 315 | if( xland(i,j)==2 ) then |
|---|
| 316 | landfrac(1) = 1. !land, WRF is all or nothing |
|---|
| 317 | else |
|---|
| 318 | landfrac(1) = 0. !water |
|---|
| 319 | end if |
|---|
| 320 | pblh8(1) = pblh(i,j) |
|---|
| 321 | phis(1) = ht(i,j)*gravit |
|---|
| 322 | |
|---|
| 323 | call get_tpert(bl_pbl_physics, sf_sfclay_physics, dx, & |
|---|
| 324 | mavail(i,j), kpbl(i,j), pblh(i,j), & |
|---|
| 325 | dz8w(i,1,j), psfc(i,j), qv(i,1,j), t_phy(i,1,j), & |
|---|
| 326 | th(i,1,j), tsk(i,j), tke_pbl(i,:,j), ust(i,j), & |
|---|
| 327 | u_phy(i,1,j), v_phy(i,1,j), hfx(i,j), qfx(i,j), & |
|---|
| 328 | tpert_camuwpbl(i,j), kte, & |
|---|
| 329 | tpert(1)) |
|---|
| 330 | |
|---|
| 331 | !Call the Zhang-McFarlane (1996) convection parameterization |
|---|
| 332 | !NOTE: The 0.5*dt is correct and is a nuance of CAM typically |
|---|
| 333 | ! using 2*dt for physics tendencies. Everywhere in zm_convr |
|---|
| 334 | ! that dt is used, the dt is multiplied by 2 to get back to |
|---|
| 335 | ! the 2*dt. Everywhere else in the CAM ZM interface the full |
|---|
| 336 | ! 2*dt is passed into the subroutines. In WRF we use 1*dt |
|---|
| 337 | ! in place of CAM's 2*dt since the adjustment is made |
|---|
| 338 | ! elsewhere. |
|---|
| 339 | call zm_convr( lchnk, ncol, & |
|---|
| 340 | t8, qh8, prec, jctop, jcbot, & |
|---|
| 341 | pblh8, zm8, phis, zi8, qtnd, & |
|---|
| 342 | stnd, pmid8, pint8, pdel8, & |
|---|
| 343 | 0.5_r8*real(dt,r8), mcon, cme, cape, & |
|---|
| 344 | tpert, dlf, pflx, zdu, rprd, & |
|---|
| 345 | mu(:,:,lchnk), md(:,:,lchnk),du(:,:,lchnk),eu(:,:,lchnk),ed(:,:,lchnk), & |
|---|
| 346 | dp(:,:,lchnk), dsubcld(:,lchnk), jt(:,lchnk), maxg(:,lchnk), ideep(:,lchnk), & |
|---|
| 347 | lengath(lchnk), ql8, rliq, landfrac ) |
|---|
| 348 | |
|---|
| 349 | !Start mapping CAM output to WRF output variables. We follow the |
|---|
| 350 | !same order as in CAM's zm_conv_tend to ease maintenance... |
|---|
| 351 | do k=kts,kte |
|---|
| 352 | kflip = kte-k+1 |
|---|
| 353 | dlf_out(i,k,j) = dlf(1,kflip) |
|---|
| 354 | end do |
|---|
| 355 | cape_out(i,j) = cape(1) |
|---|
| 356 | rliq_out(i,j) = rliq(1) |
|---|
| 357 | |
|---|
| 358 | !Convert mass flux from reported mb/s to kg/m2/s |
|---|
| 359 | mcon(:ncol,:pver) = mcon(:ncol,:pver) * 100._r8/gravit |
|---|
| 360 | |
|---|
| 361 | ! Store upward and downward mass fluxes in un-gathered arrays |
|---|
| 362 | ! + convert from mb/s to kg/m2/s |
|---|
| 363 | do n=1,lengath(lchnk) |
|---|
| 364 | do k=kts,kte |
|---|
| 365 | kflip = kte-k+1 |
|---|
| 366 | ! ii = ideep(n,lchnk) <--in WRF this is always 1 because chunk size=1 |
|---|
| 367 | mu_out(i,k,j) = mu(n,kflip,lchnk) * 100._r8/gravit |
|---|
| 368 | md_out(i,k,j) = md(n,kflip,lchnk) * 100._r8/gravit |
|---|
| 369 | end do |
|---|
| 370 | end do |
|---|
| 371 | |
|---|
| 372 | do k=kts,kte |
|---|
| 373 | kflip = kte-k+1 |
|---|
| 374 | zmdt(i,k,j) = stnd(1,kflip)/cpair |
|---|
| 375 | zmdq(i,k,j) = qtnd(1,kflip) |
|---|
| 376 | end do |
|---|
| 377 | |
|---|
| 378 | !Top and bottom pressure of convection |
|---|
| 379 | pconvt(i,j) = p8w(i,1,j) |
|---|
| 380 | pconvb(i,j) = p8w(i,1,j) |
|---|
| 381 | do n = 1,lengath(lchnk) |
|---|
| 382 | if (maxg(n,lchnk).gt.jt(n,lchnk)) then |
|---|
| 383 | pconvt(i,j) = pmid8(ideep(n,lchnk),jt(n,lchnk)) ! gathered array (or jctop ungathered) |
|---|
| 384 | pconvb(i,j) = pmid8(ideep(n,lchnk),maxg(n,lchnk))! gathered array |
|---|
| 385 | endif |
|---|
| 386 | end do |
|---|
| 387 | cutop(i,j) = jctop(1) |
|---|
| 388 | cubot(i,j) = jcbot(1) |
|---|
| 389 | |
|---|
| 390 | !Add tendency from this process to tendencies arrays. Also, |
|---|
| 391 | !increment the local state arrays to reflect additional tendency |
|---|
| 392 | !from zm_convr, i.e. the physics update call in CAM. Note that |
|---|
| 393 | !we are not readjusting the pressure levels to hydrostatic |
|---|
| 394 | !balance for the new virtual temperature like is done in CAM. We |
|---|
| 395 | !will let WRF take care of such things later for the total |
|---|
| 396 | !tendency. |
|---|
| 397 | do k=kts,kte |
|---|
| 398 | kflip = kte-k+1 |
|---|
| 399 | |
|---|
| 400 | !Convert temperature to potential temperature and |
|---|
| 401 | !specific humidity to water vapor mixing ratio |
|---|
| 402 | rthcuten(i,k,j) = zmdt(i,k,j)/pi_phy(i,k,j) |
|---|
| 403 | rqvcuten(i,k,j) = zmdq(i,k,j)/(1._r8 - zmdq(i,k,j)) |
|---|
| 404 | |
|---|
| 405 | t8(1,kflip) = t8(1,kflip) + zmdt(i,k,j)*real(dt,r8) |
|---|
| 406 | qh8(1,kflip,1) = qh8(1,kflip,1) + zmdq(i,k,j)*real(dt,r8) |
|---|
| 407 | end do |
|---|
| 408 | |
|---|
| 409 | ! Determine the phase of the precipitation produced and add latent heat of fusion |
|---|
| 410 | ! Evaporate some of the precip directly into the environment (Sundqvist) |
|---|
| 411 | ! Allow this to use the updated state1 (t8 and qh8 in WRF) and the fresh ptend_loc type |
|---|
| 412 | ! heating and specific humidity tendencies produced |
|---|
| 413 | qtnd = 0._r8 !re-initialize tendencies (i.e. physics_ptend_init(ptend_loc)) |
|---|
| 414 | stnd = 0._r8 |
|---|
| 415 | call zm_conv_evap(ncol, lchnk, & |
|---|
| 416 | t8, pmid8, pdel8, qh8(:,:,1), & |
|---|
| 417 | stnd, tend_s_snwprd, tend_s_snwevmlt, qtnd, & |
|---|
| 418 | rprd, cld8, real(dt,r8), & |
|---|
| 419 | prec, snow, ntprprd, ntsnprd , flxprec, flxsnow) |
|---|
| 420 | |
|---|
| 421 | ! Parse output variables from zm_conv_evap |
|---|
| 422 | do k=kts,kte |
|---|
| 423 | kflip = kte-k+1 |
|---|
| 424 | |
|---|
| 425 | evaptzm(i,k,j) = stnd(1,kflip)/cpair |
|---|
| 426 | fzsntzm(i,k,j) = tend_s_snwprd(1,kflip)/cpair |
|---|
| 427 | evsntzm(i,k,j) = tend_s_snwevmlt(1,kflip)/cpair |
|---|
| 428 | evapqzm(i,k,j) = qtnd(1,kflip) |
|---|
| 429 | zmflxprc(i,k,j) = flxprec(1,kflip) |
|---|
| 430 | zmflxsnw(i,k,j) = flxsnow(1,kflip) |
|---|
| 431 | zmntprpd(i,k,j) = ntprprd(1,kflip) |
|---|
| 432 | zmntsnpd(i,k,j) = ntsnprd(1,kflip) |
|---|
| 433 | zmeiheat(i,k,j) = stnd(1,kflip) !Do we really need this and evaptzm? |
|---|
| 434 | cmfmc(i,k,j) = mcon(1,kflip) !Set to deep value here, shallow added in UW scheme |
|---|
| 435 | cmfmcdzm(i,k,j) = mcon(1,kflip) |
|---|
| 436 | preccdzm(i,j) = prec(1) !Rain rate from just deep |
|---|
| 437 | precz(i,j) = prec(1) !Rain rate for total convection (just deep right now) |
|---|
| 438 | pratec(i,j) = prec(1)*1e3 !Rain rate used in WRF for accumulation (mm/s) |
|---|
| 439 | raincv(i,j) = pratec(i,j)*dt !Rain amount for time step returned back to WRF |
|---|
| 440 | end do |
|---|
| 441 | |
|---|
| 442 | !Add tendency from zm_conv_evap to tendencies arrays. Also, |
|---|
| 443 | !increment the local state arrays to reflect additional tendency |
|---|
| 444 | !Note that we are not readjusting the pressure levels to hydrostatic |
|---|
| 445 | !balance for the new virtual temperature like is done in CAM. We |
|---|
| 446 | !will let WRF take care of such things later for the total |
|---|
| 447 | !tendency. |
|---|
| 448 | do k=kts,kte |
|---|
| 449 | kflip = kte-k+1 |
|---|
| 450 | |
|---|
| 451 | !Convert temperature to potential temperature and |
|---|
| 452 | !specific humidity to water vapor mixing ratio |
|---|
| 453 | rthcuten(i,k,j) = rthcuten(i,k,j) + & |
|---|
| 454 | evaptzm(i,k,j)/pi_phy(i,k,j) |
|---|
| 455 | rqvcuten(i,k,j) = rqvcuten(i,k,j) + & |
|---|
| 456 | evapqzm(i,k,j)/(1. - qv(i,k,j)) |
|---|
| 457 | |
|---|
| 458 | t8(1,kflip) = t8(1,kflip) + evaptzm(i,k,j)*real(dt,r8) |
|---|
| 459 | qh8(1,kflip,1) = qh8(1,kflip,1) + evapqzm(i,k,j)*real(dt,r8) |
|---|
| 460 | end do |
|---|
| 461 | |
|---|
| 462 | ! Momentum transport |
|---|
| 463 | stnd = 0._r8 !Zero relevant tendencies in preparation |
|---|
| 464 | wind_tends = 0._r8 |
|---|
| 465 | do k=kts,kte |
|---|
| 466 | kflip = kte-k+1 |
|---|
| 467 | winds(1,k,1) = u_phy(i,kflip,j) |
|---|
| 468 | winds(1,k,2) = v_phy(i,kflip,j) |
|---|
| 469 | end do |
|---|
| 470 | l_windt(1:2) = .true. |
|---|
| 471 | |
|---|
| 472 | call momtran (lchnk, ncol, & |
|---|
| 473 | l_windt, winds, 2, mu(:,:,lchnk), md(:,:,lchnk), & |
|---|
| 474 | du(:,:,lchnk), eu(:,:,lchnk), ed(:,:,lchnk), dp(:,:,lchnk), dsubcld(:,lchnk), & |
|---|
| 475 | jt(:,lchnk),maxg(:,lchnk), ideep(:,lchnk), 1, lengath(lchnk), & |
|---|
| 476 | itimestep, wind_tends, pguall, pgdall, icwu, icwd, real(dt,r8), stnd ) |
|---|
| 477 | |
|---|
| 478 | !Add tendency from momtran to tendencies arrays. Also, |
|---|
| 479 | !increment the local state arrays to reflect additional tendency |
|---|
| 480 | !Note that we are not readjusting the pressure levels to hydrostatic |
|---|
| 481 | !balance for the new virtual temperature like is done in CAM. We |
|---|
| 482 | !will let WRF take care of such things later for the total |
|---|
| 483 | !tendency. |
|---|
| 484 | do k=kts,kte |
|---|
| 485 | kflip = kte-k+1 |
|---|
| 486 | |
|---|
| 487 | !Convert temperature to potential temperature and |
|---|
| 488 | !specific humidity to water vapor mixing ratio |
|---|
| 489 | rucuten(i,k,j) = wind_tends(1,kflip,1) |
|---|
| 490 | rvcuten(i,k,j) = wind_tends(1,kflip,2) |
|---|
| 491 | rthcuten(i,k,j) = rthcuten(i,k,j) + & |
|---|
| 492 | stnd(1,kflip)/cpair/pi_phy(i,k,j) |
|---|
| 493 | |
|---|
| 494 | t8(1,kflip) = t8(1,kflip) + stnd(1,kflip)/cpair*real(dt,r8) |
|---|
| 495 | !winds is not used again so do not bother updating them |
|---|
| 496 | end do |
|---|
| 497 | |
|---|
| 498 | !Parse output arrays for momtran |
|---|
| 499 | do k=kts,kte |
|---|
| 500 | kflip = kte-k+1 |
|---|
| 501 | |
|---|
| 502 | zmmtu(i,k,j) = wind_tends(1,kflip,1) !wind tendencies... |
|---|
| 503 | zmmtv(i,k,j) = wind_tends(1,kflip,2) |
|---|
| 504 | |
|---|
| 505 | zmupgu(i,k,j) = pguall(1,kflip,1) !apparent force pres. grads... |
|---|
| 506 | zmupgd(i,k,j) = pgdall(1,kflip,1) |
|---|
| 507 | zmvpgu(i,k,j) = pguall(1,kflip,2) |
|---|
| 508 | zmvpgd(i,k,j) = pgdall(1,kflip,2) |
|---|
| 509 | |
|---|
| 510 | zmicuu(i,k,j) = icwu(1,kflip,1) !in-cloud winds... |
|---|
| 511 | zmicud(i,k,j) = icwd(1,kflip,1) |
|---|
| 512 | zmicvu(i,k,j) = icwu(1,kflip,2) |
|---|
| 513 | zmicvd(i,k,j) = icwd(1,kflip,2) |
|---|
| 514 | end do |
|---|
| 515 | |
|---|
| 516 | !Setup for convective transport of cloud water and ice |
|---|
| 517 | !~We should set this up to use an integer pointer instead of |
|---|
| 518 | ! hard-coded numbers for each species so that we can easily |
|---|
| 519 | ! handle other species. Something to come back to later... |
|---|
| 520 | l_qt(1) = .false. !do not mix water vapor |
|---|
| 521 | l_qt(2:3) = .true. !do mix cloud water and ice |
|---|
| 522 | cloudtnd = 0._r8 |
|---|
| 523 | fracis(1,:,1:3) = 0._r8 !all cloud liquid & ice is soluble |
|---|
| 524 | ncnst = 3 !number of constituents in cloud array (including vapor) |
|---|
| 525 | fake_dpdry = 0._r8 !delta pres. for dry atmos. (0 since assuming moist mix ratios) |
|---|
| 526 | do k=kts,kte |
|---|
| 527 | kflip = kte-k+1 |
|---|
| 528 | |
|---|
| 529 | cloud(1,kflip,1) = qh8(1,kflip,1) !We can either use moist mix ratios, as is |
|---|
| 530 | cloud(1,kflip,2) = ql8(1,kflip) !done here, or else use dry mix ratios, send |
|---|
| 531 | cloud(1,kflip,3) = qi8(1,kflip) !in appropriate dpdry values, and return the |
|---|
| 532 | !approp. response from cnst_get_type_byind |
|---|
| 533 | end do |
|---|
| 534 | |
|---|
| 535 | call convtran (lchnk, & |
|---|
| 536 | l_qt, cloud, ncnst, mu(:,:,lchnk), md(:,:,lchnk), & |
|---|
| 537 | du(:,:,lchnk), eu(:,:,lchnk), ed(:,:,lchnk), dp(:,:,lchnk), dsubcld(:,lchnk), & |
|---|
| 538 | jt(:,lchnk), maxg(:,lchnk), ideep(:,lchnk), 1, lengath(lchnk), & |
|---|
| 539 | itimestep, fracis, cloudtnd, fake_dpdry) |
|---|
| 540 | |
|---|
| 541 | !Parse output for convtran and increment tendencies |
|---|
| 542 | do k=kts,kte |
|---|
| 543 | kflip = kte-k+1 |
|---|
| 544 | |
|---|
| 545 | zmdice(i,k,j) = cloudtnd(1,kflip,3) |
|---|
| 546 | zmdliq(i,k,j) = cloudtnd(1,kflip,2) |
|---|
| 547 | |
|---|
| 548 | !Convert cloud tendencies from wet to dry mix ratios |
|---|
| 549 | if( present(rqccuten) ) then |
|---|
| 550 | rqccuten(i,k,j) = cloudtnd(1,kflip,2)/(1. - qv(i,k,j)) |
|---|
| 551 | end if |
|---|
| 552 | if( present(rqicuten) ) then |
|---|
| 553 | rqicuten(i,k,j) = cloudtnd(1,kflip,3)/(1. - qv(i,k,j)) |
|---|
| 554 | end if |
|---|
| 555 | end do |
|---|
| 556 | |
|---|
| 557 | end do !i-loop |
|---|
| 558 | end do !j-loop |
|---|
| 559 | END SUBROUTINE camzm_driver |
|---|
| 560 | |
|---|
| 561 | |
|---|
| 562 | !------------------------------------------------------------------------ |
|---|
| 563 | SUBROUTINE zm_conv_init(rucuten, rvcuten, rthcuten, rqvcuten, & |
|---|
| 564 | rqccuten, rqicuten, & |
|---|
| 565 | p_qc, p_qi, param_first_scalar, & |
|---|
| 566 | restart, & |
|---|
| 567 | ids, ide, jds, jde, kds, kde, & |
|---|
| 568 | ims, ime, jms, jme, kms, kme, & |
|---|
| 569 | its, ite, jts, jte, kts, kte ) |
|---|
| 570 | ! Initialization routine for Zhang-McFarlane cumulus parameterization |
|---|
| 571 | ! from CAM. The routine with this name in CAM is revamped here to give |
|---|
| 572 | ! the needed functionality within WRF. |
|---|
| 573 | ! |
|---|
| 574 | ! Author: William.Gustafson@pnl.gov, Nov. 2009 |
|---|
| 575 | !------------------------------------------------------------------------ |
|---|
| 576 | USE module_cam_esinti, only: esinti |
|---|
| 577 | USE physconst, only: epsilo, latvap, latice, rh2o, cpair, tmelt |
|---|
| 578 | USE module_bl_camuwpbl_driver, only: vd_register |
|---|
| 579 | USE module_cu_camzm, only: zm_convi, zmconv_readnl |
|---|
| 580 | |
|---|
| 581 | LOGICAL , INTENT(IN) :: restart |
|---|
| 582 | INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 583 | ims, ime, jms, jme, kms, kme, & |
|---|
| 584 | its, ite, jts, jte, kts, kte, & |
|---|
| 585 | p_qc, p_qi, param_first_scalar |
|---|
| 586 | |
|---|
| 587 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(OUT) :: & |
|---|
| 588 | rucuten, & |
|---|
| 589 | rvcuten, & |
|---|
| 590 | rthcuten, & |
|---|
| 591 | rqvcuten, & |
|---|
| 592 | rqccuten, & |
|---|
| 593 | rqicuten |
|---|
| 594 | |
|---|
| 595 | integer :: i, itf, j, jtf, k, ktf |
|---|
| 596 | integer :: limcnv |
|---|
| 597 | |
|---|
| 598 | jtf = min(jte,jde-1) |
|---|
| 599 | ktf = min(kte,kde-1) |
|---|
| 600 | itf = min(ite,ide-1) |
|---|
| 601 | ! |
|---|
| 602 | ! Initialize module_cam_support variables... |
|---|
| 603 | ! This could be moved to a master "cam-init" subroutine once multiple CAM |
|---|
| 604 | ! parameterizations are implemented in WRF. For now, it doesn't hurt to |
|---|
| 605 | ! have these possibly initialized more than once since they are |
|---|
| 606 | ! essentially constant. |
|---|
| 607 | ! |
|---|
| 608 | pver = ktf-kts+1 |
|---|
| 609 | pverp = pver+1 |
|---|
| 610 | ! |
|---|
| 611 | ! Initialize the saturation vapor pressure look-up table... |
|---|
| 612 | ! This could be moved to a master cam-init subroutine too if it is needed |
|---|
| 613 | ! by more than one CAM parameterization. In CAM this is called from |
|---|
| 614 | ! phys_init. |
|---|
| 615 | ! |
|---|
| 616 | call esinti(epsilo, latvap, latice, rh2o, cpair, tmelt) |
|---|
| 617 | |
|---|
| 618 | !~Need code here to set limcnv to max convective level of 40 mb... To |
|---|
| 619 | ! properly set an average value for the whole domain would involve doing |
|---|
| 620 | ! a collective operation across the whole domain to get pressure averages |
|---|
| 621 | ! by level, which is difficult within the WRF framework. So, we will just |
|---|
| 622 | ! use the model top for now. |
|---|
| 623 | ! |
|---|
| 624 | ! Technically, limcnv should be calculated for each grid point at each |
|---|
| 625 | ! time because the levels in WRF do not have a constant pressure, as |
|---|
| 626 | ! opposed to CAM. But, that would involve making this variable local |
|---|
| 627 | ! instead of at the module level as is currently done in CAM. For now, |
|---|
| 628 | ! we will not worry about this because WRF rarely has domains higher than |
|---|
| 629 | ! 40 mb. There is also little variability between grid points near the |
|---|
| 630 | ! model top due to the underlying topography so a constant value would |
|---|
| 631 | ! be OK across the comain. Also, remember that CAM levels are reversed in |
|---|
| 632 | ! the vertical from WRF. So, setting limcnv to 1 means the top of the |
|---|
| 633 | ! domain. Note that because of a bug in the parcel_dilute routine, limcnv |
|---|
| 634 | ! must be >=2 instead of 1. Otherwise, an array out-of-bounds occurs. |
|---|
| 635 | limcnv = 2 |
|---|
| 636 | ! |
|---|
| 637 | ! Get the ZM namelist variables (hard-wired for now)... |
|---|
| 638 | ! |
|---|
| 639 | call zmconv_readnl("hard-wired") |
|---|
| 640 | ! |
|---|
| 641 | !~need to determine if convection should happen in PBL and set |
|---|
| 642 | ! no_deep_pbl_in accordingly |
|---|
| 643 | call zm_convi(limcnv, NO_DEEP_PBL_IN=.false.) |
|---|
| 644 | |
|---|
| 645 | ! |
|---|
| 646 | ! Set initial values for arrays dependent on restart conditions |
|---|
| 647 | ! |
|---|
| 648 | if(.not.restart)then |
|---|
| 649 | do j=jts,jtf |
|---|
| 650 | do k=kts,ktf |
|---|
| 651 | do i=its,itf |
|---|
| 652 | rucuten(i,k,j) = 0. |
|---|
| 653 | rvcuten(i,k,j) = 0. |
|---|
| 654 | rthcuten(i,k,j) = 0. |
|---|
| 655 | rqvcuten(i,k,j) = 0. |
|---|
| 656 | if( p_qc > param_first_scalar ) rqccuten(i,k,j) = 0. |
|---|
| 657 | if( p_qi > param_first_scalar ) rqicuten(i,k,j) = 0. |
|---|
| 658 | enddo |
|---|
| 659 | enddo |
|---|
| 660 | enddo |
|---|
| 661 | end if |
|---|
| 662 | |
|---|
| 663 | END SUBROUTINE zm_conv_init |
|---|
| 664 | |
|---|
| 665 | |
|---|
| 666 | !------------------------------------------------------------------------ |
|---|
| 667 | SUBROUTINE get_tpert(bl_pbl_physics, sf_sfclay_physics, dx, & |
|---|
| 668 | mavail, kpbl, pblh, dzlowest, & |
|---|
| 669 | psfc, qvlowest, t_phylowest, thlowest, tsk, tke_pbl, ust, & |
|---|
| 670 | u_phylowest, v_phylowest, hfx, qfx, tpert_camuwpbl, kte, tpert) |
|---|
| 671 | ! Calculates the temperature perturbation used to trigger convection. |
|---|
| 672 | ! This should only be used if tpert is not already provided by CAM's PBL |
|---|
| 673 | ! scheme. Right now, this only works with the Mellor-Yamada boundary |
|---|
| 674 | ! layer scheme in combination with the MYJ surface scheme. This is due to |
|---|
| 675 | ! the need of TKE for the vertical velocity perturbation. This scheme has |
|---|
| 676 | ! not been generalized to handle all schemes that produce TKE at this |
|---|
| 677 | ! time, and the non-TKE schemes, e.g. YSU, could probably have an |
|---|
| 678 | ! appropriate tpert deduced but we have not taken the time yet to do it. |
|---|
| 679 | ! |
|---|
| 680 | ! Author: William.Gustafson@pnl.gov, Nov. 2009 |
|---|
| 681 | ! Last updated: William.Gustafson@pnl.gov, Nov. 2010 |
|---|
| 682 | !------------------------------------------------------------------------ |
|---|
| 683 | USE shr_kind_mod, only: r8 => shr_kind_r8 |
|---|
| 684 | USE module_model_constants, only: cp, ep_1, ep_2, g, r_d, rcp, & |
|---|
| 685 | svp1, svp2, svp3, svpt0, xlv |
|---|
| 686 | USE module_state_description, ONLY : SFCLAYSCHEME & |
|---|
| 687 | ,MYJSFCSCHEME & |
|---|
| 688 | ,GFSSFCSCHEME & |
|---|
| 689 | ,SLABSCHEME & |
|---|
| 690 | ,LSMSCHEME & |
|---|
| 691 | ,RUCLSMSCHEME & |
|---|
| 692 | ,MYJPBLSCHEME & |
|---|
| 693 | ,CAMUWPBLSCHEME |
|---|
| 694 | ! |
|---|
| 695 | ! Subroutine arguments... |
|---|
| 696 | ! |
|---|
| 697 | real, dimension(:), intent(in) :: tke_pbl |
|---|
| 698 | real, intent(in) :: dx, dzlowest, hfx, mavail, pblh, psfc, qvlowest, & |
|---|
| 699 | tpert_camuwpbl, tsk, t_phylowest, thlowest, ust, u_phylowest, & |
|---|
| 700 | v_phylowest |
|---|
| 701 | integer, intent(in) :: bl_pbl_physics, kpbl, kte, sf_sfclay_physics |
|---|
| 702 | real(r8),intent(inout) :: tpert |
|---|
| 703 | ! |
|---|
| 704 | ! Local vars... |
|---|
| 705 | ! |
|---|
| 706 | real, parameter :: fak = 8.5 !Constant in surface temperature excess |
|---|
| 707 | real, parameter :: tfac = 1. !Ratio of 'tpert' to (w't')/wpert |
|---|
| 708 | real, parameter :: wfac = 1. !Ratio of 'wpert' to sqrt(tke) |
|---|
| 709 | real, parameter :: wpertmin = 1.e-6 !Min PBL eddy vertical velocity perturbation |
|---|
| 710 | real :: ebrk !In CAM, net mean TKE of CL including |
|---|
| 711 | !entrainment effect (m2/s2). In WRF, |
|---|
| 712 | !average TKE within the PBL |
|---|
| 713 | real :: br2, dthvdz, e1, flux, govrth, psfccmb, qfx, qsfc, rhox, thgb, & |
|---|
| 714 | thv, tskv, tvcon, vconv, vsgd, wpert, wspd, za |
|---|
| 715 | integer :: k |
|---|
| 716 | character(len=250) :: msg |
|---|
| 717 | logical :: UnstableOrNeutral |
|---|
| 718 | ! |
|---|
| 719 | ! We can get the perturbation values directly from CAMUWPBLSCHEME if |
|---|
| 720 | ! available. Otherwise, we have to calculate them. |
|---|
| 721 | ! |
|---|
| 722 | if( bl_pbl_physics==CAMUWPBLSCHEME ) then |
|---|
| 723 | tpert = tpert_camuwpbl |
|---|
| 724 | ! |
|---|
| 725 | !...non-CAMUWPBL. Need MYJ SFC & PBL for now until other schemes |
|---|
| 726 | ! get coded to give perturbations too. |
|---|
| 727 | ! First, we need to determine if the conditions are stable or unstable. |
|---|
| 728 | ! We will do this by mimicing the bulk Richardson calculation from |
|---|
| 729 | ! module_sf_sfclay.F because the MYJ scheme does not provide this info. |
|---|
| 730 | ! The logic borrowed from the CuP shallow cumulus scheme. Non-MYJ sfc |
|---|
| 731 | ! scheme code is commented out for now since we also require MYJ PBL |
|---|
| 732 | ! scheme. |
|---|
| 733 | ! |
|---|
| 734 | elseif( bl_pbl_physics==MYJPBLSCHEME ) then |
|---|
| 735 | |
|---|
| 736 | UnstableOrNeutral = .false. |
|---|
| 737 | sfclay_case: SELECT CASE (sf_sfclay_physics) |
|---|
| 738 | CASE (MYJSFCSCHEME) |
|---|
| 739 | ! The MYJ sfc scheme does not already provide a stability criteria. |
|---|
| 740 | ! So, we will mimic the bulk Richardson calculation from |
|---|
| 741 | ! module_sf_sfclay.F. |
|---|
| 742 | |
|---|
| 743 | if( pblh <= 0. ) call wrf_error_fatal( & |
|---|
| 744 | "CAMZMSCHEME needs a PBL height from a PBL scheme.") |
|---|
| 745 | |
|---|
| 746 | za = 0.5*dzlowest |
|---|
| 747 | |
|---|
| 748 | e1 = svp1*exp(svp2*(tsk-svpt0)/(tsk-svp3)) |
|---|
| 749 | psfccmb=psfc/1000. !converts from Pa to cmb |
|---|
| 750 | qsfc = ep_2*e1/(psfccmb-e1) |
|---|
| 751 | thgb = tsk*(100./psfccmb)**rcp |
|---|
| 752 | tskv = thgb*(1.+ep_1*qsfc*mavail) |
|---|
| 753 | tvcon = 1.+ep_1*qvlowest |
|---|
| 754 | thv = thlowest*tvcon |
|---|
| 755 | dthvdz = (thv-tskv) |
|---|
| 756 | |
|---|
| 757 | govrth = g/thlowest |
|---|
| 758 | |
|---|
| 759 | rhox = psfc/(r_d*t_phylowest*tvcon) |
|---|
| 760 | flux = max(hfx/rhox/cp + ep_1*tskv*qfx/rhox,0.) |
|---|
| 761 | vconv = (g/tsk*pblh*flux)**.33 |
|---|
| 762 | vsgd = 0.32 * (max(dx/5000.-1.,0.))**.33 |
|---|
| 763 | wspd = sqrt(u_phylowest*u_phylowest+v_phylowest*v_phylowest) |
|---|
| 764 | wspd = sqrt(wspd*wspd+vconv*vconv+vsgd*vsgd) |
|---|
| 765 | wspd = max(wspd,0.1) |
|---|
| 766 | |
|---|
| 767 | !And finally, the bulk Richardson number... |
|---|
| 768 | br2 = govrth*za*dthvdz/(wspd*wspd) |
|---|
| 769 | |
|---|
| 770 | if( br2 <= 0. ) UnstableOrNeutral = .true. |
|---|
| 771 | |
|---|
| 772 | CASE DEFAULT |
|---|
| 773 | call wrf_error_fatal("CAMZMSCHEME requires MYJSFCSCHEME or else CAMUWPBLSCHEME.") |
|---|
| 774 | |
|---|
| 775 | END SELECT sfclay_case |
|---|
| 776 | ! |
|---|
| 777 | ! The perturbation temperature for unstable conditions... |
|---|
| 778 | ! The calculation follows the one in caleddy inside eddy_diff.F90 from |
|---|
| 779 | ! CAM. |
|---|
| 780 | ! |
|---|
| 781 | !Check that we are using the MJY BL scheme since we are hard-wired to |
|---|
| 782 | !use TKE and u* from this scheme. At some point this dependency should |
|---|
| 783 | !be broken and a way needs to be found for other schemes to provide |
|---|
| 784 | !reasonable tpert values too. |
|---|
| 785 | if( bl_pbl_physics /= MYJPBLSCHEME ) & |
|---|
| 786 | call wrf_error_fatal("CAMZMSCHEME requires MYJPBLSCHEME or CAMUWPBLSCHEME") |
|---|
| 787 | |
|---|
| 788 | |
|---|
| 789 | !Recalculate rhox in case a non-MYJ scheme is used to get |
|---|
| 790 | !stability and rhox is not calculated above. Right now, this is |
|---|
| 791 | !technically reduncant, but cheap. |
|---|
| 792 | tvcon = 1.+ep_1*qvlowest |
|---|
| 793 | rhox = psfc/(r_d*t_phylowest*tvcon) |
|---|
| 794 | |
|---|
| 795 | if( UnstableOrNeutral ) then |
|---|
| 796 | !1st, get avg TKE w/n the PBL as a proxy for ebrk variable in CAM |
|---|
| 797 | ebrk = 0. |
|---|
| 798 | do k=1,min(kpbl,kte) |
|---|
| 799 | ebrk = ebrk + tke_pbl(k) |
|---|
| 800 | end do |
|---|
| 801 | ebrk = ebrk/real(kpbl) |
|---|
| 802 | |
|---|
| 803 | wpert = max( wfac*sqrt(ebrk), wpertmin ) |
|---|
| 804 | tpert = max( abs(hfx/rhox/cp)*tfac/wpert, 0. ) |
|---|
| 805 | ! |
|---|
| 806 | ! Or, the perturbation temperature for stable conditions... |
|---|
| 807 | ! |
|---|
| 808 | else !Stable conditions |
|---|
| 809 | tpert = max( hfx/rhox/cp*fak/ust, 0. ) |
|---|
| 810 | end if |
|---|
| 811 | |
|---|
| 812 | else |
|---|
| 813 | call wrf_error_fatal("CAMZMSCHEME requires MYJPBLSCHEME or CAMUWPBLSCHEME") |
|---|
| 814 | |
|---|
| 815 | end if !PBL choice |
|---|
| 816 | |
|---|
| 817 | END SUBROUTINE get_tpert |
|---|
| 818 | |
|---|
| 819 | END MODULE module_cu_camzm_driver |
|---|