source: lmdz_wrf/trunk/WRFV3/phys/module_cam_wv_saturation.F @ 2295

Last change on this file since 2295 was 1, checked in by lfita, 10 years ago
  • -- --- Opening of the WRF+LMDZ coupling repository --- -- -

WRF: version v3.3
LMDZ: version v1818

More details in:

File size: 39.6 KB
Line 
1#define WRF_PORT
2
3!
4! Common block and statement functions for saturation vapor pressure
5! look-up procedure, J. J. Hack, February 1990
6!
7! Ported to WRF by William.Gustafson@pnl.gov, Nov. 2009
8! Updated to version from CESM1_0_1, Nov. 2010
9!
10! $Id$
11!
12module wv_saturation
13  use shr_kind_mod, only: r8 => shr_kind_r8
14#ifndef WRF_PORT
15  use abortutils,   only: endrun
16  use cam_logfile,  only: iulog
17#else
18  use module_cam_support, only: &
19       masterproc, &
20       endrun, &
21       iulog
22  use module_wrf_error
23#endif
24
25  implicit none
26  private
27  save
28!
29! Public interfaces
30!
31  public gestbl   ! Initialization subroutine
32  public estblf   ! saturation pressure table lookup
33  public aqsat    ! Returns saturation vapor pressure
34#ifndef WRF_PORT
35  public aqsatd   ! Same as aqsat, but also returns a temperature derivitive
36  public vqsatd   ! Vector version of aqsatd
37#endif
38  public fqsatd   ! Function version of vqsatd
39#ifndef WRF_PORT
40  public qsat_water  ! saturation mixing ration with respect to liquid water
41  public vqsat_water ! vector version of qsat_water
42  public qsat_ice    ! saturation mixing ration with respect to ice
43  public vqsat_ice   ! vector version of qsat_ice
44  public vqsatd_water
45  public aqsat_water
46  public vqsatd2_water         ! Variant of vqsatd_water to print out dqsdT
47  public vqsatd2_water_single  ! Single value version of vqsatd2_water
48  public vqsatd2
49  public vqsatd2_single
50  public polysvp
51#endif
52!
53! Data used by cldwat
54!
55  public hlatv, tmin, hlatf, rgasv, pcf, cp, epsqs, ttrice
56!
57! Data
58!
59  integer plenest  ! length of saturation vapor pressure table
60  parameter (plenest=250)
61!
62! Table of saturation vapor pressure values es from tmin degrees
63! to tmax+1 degrees k in one degree increments.  ttrice defines the
64! transition region where es is a combination of ice & water values
65!
66  real(r8) estbl(plenest)      ! table values of saturation vapor pressure
67  real(r8) tmin       ! min temperature (K) for table
68  real(r8) tmax       ! max temperature (K) for table
69  real(r8) ttrice     ! transition range from es over H2O to es over ice
70  real(r8) pcf(6)     ! polynomial coeffs -> es transition water to ice
71  real(r8) epsqs      ! Ratio of h2o to dry air molecular weights
72  real(r8) rgasv      ! Gas constant for water vapor
73  real(r8) hlatf      ! Latent heat of vaporization
74  real(r8) hlatv      ! Latent heat of fusion
75  real(r8) cp         ! specific heat of dry air
76  real(r8) tmelt      ! Melting point of water (K)
77  logical icephs  ! false => saturation vapor press over water only
78
79contains
80
81   real(r8) function estblf( td )
82!
83! Saturation vapor pressure table lookup
84!
85   real(r8), intent(in) :: td         ! Temperature for saturation lookup
86!
87   real(r8) :: e       ! intermediate variable for es look-up
88   real(r8) :: ai
89   integer  :: i
90!
91   e = max(min(td,tmax),tmin)   ! partial pressure
92   i = int(e-tmin)+1
93   ai = aint(e-tmin)
94   estblf = (tmin+ai-e+1._r8)* &
95            estbl(i)-(tmin+ai-e)* &
96            estbl(i+1)
97   end function estblf
98
99subroutine gestbl(tmn     ,tmx     ,trice   ,ip      ,epsil   , &
100                  latvap  ,latice  ,rh2o    ,cpair   ,tmeltx   )
101!-----------------------------------------------------------------------
102!
103! Purpose:
104! Builds saturation vapor pressure table for later lookup procedure.
105!
106! Method:
107! Uses Goff & Gratch (1946) relationships to generate the table
108! according to a set of free parameters defined below.  Auxiliary
109! routines are also included for making rapid estimates (well with 1%)
110! of both es and d(es)/dt for the particular table configuration.
111!
112! Author: J. Hack
113!
114!-----------------------------------------------------------------------
115#ifndef WRF_PORT
116   use spmd_utils, only: masterproc
117#else
118   use module_cam_gffgch
119#endif
120!------------------------------Arguments--------------------------------
121!
122! Input arguments
123!
124   real(r8), intent(in) :: tmn           ! Minimum temperature entry in es lookup table
125   real(r8), intent(in) :: tmx           ! Maximum temperature entry in es lookup table
126   real(r8), intent(in) :: epsil         ! Ratio of h2o to dry air molecular weights
127   real(r8), intent(in) :: trice         ! Transition range from es over range to es over ice
128   real(r8), intent(in) :: latvap        ! Latent heat of vaporization
129   real(r8), intent(in) :: latice        ! Latent heat of fusion
130   real(r8), intent(in) :: rh2o          ! Gas constant for water vapor
131   real(r8), intent(in) :: cpair         ! Specific heat of dry air
132   real(r8), intent(in) :: tmeltx        ! Melting point of water (K)
133!
134!---------------------------Local variables-----------------------------
135!
136   real(r8) t             ! Temperature
137   integer n          ! Increment counter
138   integer lentbl     ! Calculated length of lookup table
139   integer itype      ! Ice phase: 0 -> no ice phase
140!            1 -> ice phase, no transition
141!           -x -> ice phase, x degree transition
142   logical ip         ! Ice phase logical flag
143!
144!-----------------------------------------------------------------------
145!
146! Set es table parameters
147!
148   tmin   = tmn       ! Minimum temperature entry in table
149   tmax   = tmx       ! Maximum temperature entry in table
150   ttrice = trice     ! Trans. range from es over h2o to es over ice
151   icephs = ip        ! Ice phase (true or false)
152!
153! Set physical constants required for es calculation
154!
155   epsqs  = epsil
156   hlatv  = latvap
157   hlatf  = latice
158   rgasv  = rh2o
159   cp     = cpair
160   tmelt  = tmeltx
161!
162   lentbl = INT(tmax-tmin+2.000001_r8)
163   if (lentbl .gt. plenest) then
164      write(iulog,9000) tmax, tmin, plenest
165#ifdef WRF_PORT
166      call wrf_message(iulog)
167#endif
168      call endrun ('GESTBL')    ! Abnormal termination
169   end if
170!
171! Begin building es table.
172! Check whether ice phase requested.
173! If so, set appropriate transition range for temperature
174!
175   if (icephs) then
176      if (ttrice /= 0.0_r8) then
177         itype = -ttrice
178      else
179         itype = 1
180      end if
181   else
182      itype = 0
183   end if
184!
185   t = tmin - 1.0_r8
186   do n=1,lentbl
187      t = t + 1.0_r8
188      call gffgch(t,estbl(n),itype)
189   end do
190!
191   do n=lentbl+1,plenest
192      estbl(n) = -99999.0_r8
193   end do
194!
195! Table complete -- Set coefficients for polynomial approximation of
196! difference between saturation vapor press over water and saturation
197! pressure over ice for -ttrice < t < 0 (degrees C). NOTE: polynomial
198! is valid in the range -40 < t < 0 (degrees C).
199!
200!                  --- Degree 5 approximation ---
201!
202   pcf(1) =  5.04469588506e-01_r8
203   pcf(2) = -5.47288442819e+00_r8
204   pcf(3) = -3.67471858735e-01_r8
205   pcf(4) = -8.95963532403e-03_r8
206   pcf(5) = -7.78053686625e-05_r8
207!
208!                  --- Degree 6 approximation ---
209!
210!-----pcf(1) =  7.63285250063e-02
211!-----pcf(2) = -5.86048427932e+00
212!-----pcf(3) = -4.38660831780e-01
213!-----pcf(4) = -1.37898276415e-02
214!-----pcf(5) = -2.14444472424e-04
215!-----pcf(6) = -1.36639103771e-06
216!
217   if (masterproc) then
218      write(iulog,*)' *** SATURATION VAPOR PRESSURE TABLE COMPLETED ***'
219#ifdef WRF_PORT
220      call wrf_debug(100,iulog)
221#endif
222   end if
223
224   return
225!
2269000 format('GESTBL: FATAL ERROR *********************************',/, &
227            ' TMAX AND TMIN REQUIRE A LARGER DIMENSION ON THE LENGTH', &
228            ' OF THE SATURATION VAPOR PRESSURE TABLE ESTBL(PLENEST)',/, &
229            ' TMAX, TMIN, AND PLENEST => ', 2f7.2, i3)
230!
231end subroutine gestbl
232
233subroutine aqsat(t       ,p       ,es      ,qs        ,ii      , &
234                 ilen    ,kk      ,kstart  ,kend      )
235!-----------------------------------------------------------------------
236!
237! Purpose:
238! Utility procedure to look up and return saturation vapor pressure from
239! precomputed table, calculate and return saturation specific humidity
240! (g/g),for input arrays of temperature and pressure (dimensioned ii,kk)
241! This routine is useful for evaluating only a selected region in the
242! vertical.
243!
244! Method:
245! <Describe the algorithm(s) used in the routine.>
246! <Also include any applicable external references.>
247!
248! Author: J. Hack
249!
250!------------------------------Arguments--------------------------------
251!
252! Input arguments
253!
254   integer, intent(in) :: ii             ! I dimension of arrays t, p, es, qs
255   integer, intent(in) :: kk             ! K dimension of arrays t, p, es, qs
256   integer, intent(in) :: ilen           ! Length of vectors in I direction which
257   integer, intent(in) :: kstart         ! Starting location in K direction
258   integer, intent(in) :: kend           ! Ending location in K direction
259   real(r8), intent(in) :: t(ii,kk)          ! Temperature
260   real(r8), intent(in) :: p(ii,kk)          ! Pressure
261!
262! Output arguments
263!
264   real(r8), intent(out) :: es(ii,kk)         ! Saturation vapor pressure
265   real(r8), intent(out) :: qs(ii,kk)         ! Saturation specific humidity
266!
267!---------------------------Local workspace-----------------------------
268!
269   real(r8) omeps             ! 1 - 0.622
270   integer i, k           ! Indices
271!
272!-----------------------------------------------------------------------
273!
274   omeps = 1.0_r8 - epsqs
275   do k=kstart,kend
276      do i=1,ilen
277         es(i,k) = estblf(t(i,k))
278!
279! Saturation specific humidity
280!
281         qs(i,k) = epsqs*es(i,k)/(p(i,k) - omeps*es(i,k))
282!
283! The following check is to avoid the generation of negative values
284! that can occur in the upper stratosphere and mesosphere
285!
286         qs(i,k) = min(1.0_r8,qs(i,k))
287!
288         if (qs(i,k) < 0.0_r8) then
289            qs(i,k) = 1.0_r8
290            es(i,k) = p(i,k)
291         end if
292      end do
293   end do
294!
295   return
296end subroutine aqsat
297
298#ifndef WRF_PORT
299!++xl
300subroutine aqsat_water(t       ,p       ,es      ,qs        ,ii      , &
301                       ilen    ,kk      ,kstart  ,kend      )
302!-----------------------------------------------------------------------
303!
304! Purpose:
305! Utility procedure to look up and return saturation vapor pressure from
306! precomputed table, calculate and return saturation specific humidity
307! (g/g),for input arrays of temperature and pressure (dimensioned ii,kk)
308! This routine is useful for evaluating only a selected region in the
309! vertical.
310!
311! Method:
312! <Describe the algorithm(s) used in the routine.>
313! <Also include any applicable external references.>
314!
315! Author: J. Hack
316!
317!------------------------------Arguments--------------------------------
318!
319! Input arguments
320!
321   integer, intent(in) :: ii             ! I dimension of arrays t, p, es, qs
322   integer, intent(in) :: kk             ! K dimension of arrays t, p, es, qs
323   integer, intent(in) :: ilen           ! Length of vectors in I direction which
324   integer, intent(in) :: kstart         ! Starting location in K direction
325   integer, intent(in) :: kend           ! Ending location in K direction
326   real(r8), intent(in) :: t(ii,kk)          ! Temperature
327   real(r8), intent(in) :: p(ii,kk)          ! Pressure
328!
329! Output arguments
330!
331   real(r8), intent(out) :: es(ii,kk)         ! Saturation vapor pressure
332   real(r8), intent(out) :: qs(ii,kk)         ! Saturation specific humidity
333!
334!---------------------------Local workspace-----------------------------
335!
336   real(r8) omeps             ! 1 - 0.622
337   integer i, k           ! Indices
338!
339!-----------------------------------------------------------------------
340!
341   omeps = 1.0_r8 - epsqs
342   do k=kstart,kend
343      do i=1,ilen
344!        es(i,k) = estblf(t(i,k))
345         es(i,k) = polysvp(t(i,k),0)
346!
347! Saturation specific humidity
348!
349         qs(i,k) = epsqs*es(i,k)/(p(i,k) - omeps*es(i,k))
350!
351! The following check is to avoid the generation of negative values
352! that can occur in the upper stratosphere and mesosphere
353!
354         qs(i,k) = min(1.0_r8,qs(i,k))
355!
356         if (qs(i,k) < 0.0_r8) then
357            qs(i,k) = 1.0_r8
358            es(i,k) = p(i,k)
359         end if
360      end do
361   end do
362!
363   return
364end subroutine aqsat_water
365!--xl
366
367
368subroutine aqsatd(t       ,p       ,es      ,qs      ,gam     , &
369                  ii      ,ilen    ,kk      ,kstart  ,kend    )
370!-----------------------------------------------------------------------
371!
372! Purpose:
373! Utility procedure to look up and return saturation vapor pressure from
374! precomputed table, calculate and return saturation specific humidity
375! (g/g).   
376!
377! Method:
378! Differs from aqsat by also calculating and returning
379! gamma (l/cp)*(d(qsat)/dT)
380! Input arrays temperature and pressure (dimensioned ii,kk).
381!
382! Author: J. Hack
383!
384!------------------------------Arguments--------------------------------
385!
386! Input arguments
387!
388   integer, intent(in) :: ii            ! I dimension of arrays t, p, es, qs
389   integer, intent(in) :: ilen          ! Vector length in I direction
390   integer, intent(in) :: kk            ! K dimension of arrays t, p, es, qs
391   integer, intent(in) :: kstart        ! Starting location in K direction
392   integer, intent(in) :: kend          ! Ending location in K direction
393
394   real(r8), intent(in) :: t(ii,kk)         ! Temperature
395   real(r8), intent(in) :: p(ii,kk)         ! Pressure
396
397!
398! Output arguments
399!
400   real(r8), intent(out) :: es(ii,kk)        ! Saturation vapor pressure
401   real(r8), intent(out) :: qs(ii,kk)        ! Saturation specific humidity
402   real(r8), intent(out) :: gam(ii,kk)       ! (l/cp)*(d(qs)/dt)
403!
404!---------------------------Local workspace-----------------------------
405!
406   logical lflg          ! True if in temperature transition region
407   integer i             ! i index for vector calculations
408   integer k             ! k index
409   real(r8) omeps            ! 1. - 0.622
410   real(r8) trinv            ! Reciprocal of ttrice (transition range)
411   real(r8) tc               ! Temperature (in degrees C)
412   real(r8) weight           ! Weight for es transition from water to ice
413   real(r8) hltalt           ! Appropriately modified hlat for T derivatives
414   real(r8) hlatsb           ! hlat weighted in transition region
415   real(r8) hlatvp           ! hlat modified for t changes above freezing
416   real(r8) tterm            ! Account for d(es)/dT in transition region
417   real(r8) desdt            ! d(es)/dT
418!
419!-----------------------------------------------------------------------
420!
421   omeps = 1.0_r8 - epsqs
422   do k=kstart,kend
423      do i=1,ilen
424         es(i,k) = estblf(t(i,k))
425!
426! Saturation specific humidity
427!
428         qs(i,k) = epsqs*es(i,k)/(p(i,k) - omeps*es(i,k))
429!
430! The following check is to avoid the generation of negative qs
431! values which can occur in the upper stratosphere and mesosphere
432!
433         qs(i,k) = min(1.0_r8,qs(i,k))
434!
435         if (qs(i,k) < 0.0_r8) then
436            qs(i,k) = 1.0_r8
437            es(i,k) = p(i,k)
438         end if
439      end do
440   end do
441!
442! "generalized" analytic expression for t derivative of es
443! accurate to within 1 percent for 173.16 < t < 373.16
444!
445   trinv = 0.0_r8
446   if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10
447   trinv = 1.0_r8/ttrice
448!
449   do k=kstart,kend
450      do i=1,ilen
451!
452! Weighting of hlat accounts for transition from water to ice
453! polynomial expression approximates difference between es over
454! water and es over ice from 0 to -ttrice (C) (min of ttrice is
455! -40): required for accurate estimate of es derivative in transition
456! range from ice to water also accounting for change of hlatv with t
457! above freezing where constant slope is given by -2369 j/(kg c) =cpv - cw
458!
459         tc     = t(i,k) - tmelt
460         lflg   = (tc >= -ttrice .and. tc < 0.0_r8)
461         weight = min(-tc*trinv,1.0_r8)
462         hlatsb = hlatv + weight*hlatf
463         hlatvp = hlatv - 2369.0_r8*tc
464         if (t(i,k) < tmelt) then
465            hltalt = hlatsb
466         else
467            hltalt = hlatvp
468         end if
469         if (lflg) then
470            tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5))))
471         else
472            tterm = 0.0_r8
473         end if
474         desdt    = hltalt*es(i,k)/(rgasv*t(i,k)*t(i,k)) + tterm*trinv
475         gam(i,k) = hltalt*qs(i,k)*p(i,k)*desdt/(cp*es(i,k)*(p(i,k) - omeps*es(i,k)))
476         if (qs(i,k) == 1.0_r8) gam(i,k) = 0.0_r8
477      end do
478   end do
479!
480   go to 20
481!
482! No icephs or water to ice transition
483!
48410 do k=kstart,kend
485      do i=1,ilen
486!
487! Account for change of hlatv with t above freezing where
488! constant slope is given by -2369 j/(kg c) = cpv - cw
489!
490         hlatvp = hlatv - 2369.0_r8*(t(i,k)-tmelt)
491         if (icephs) then
492            hlatsb = hlatv + hlatf
493         else
494            hlatsb = hlatv
495         end if
496         if (t(i,k) < tmelt) then
497            hltalt = hlatsb
498         else
499            hltalt = hlatvp
500         end if
501         desdt    = hltalt*es(i,k)/(rgasv*t(i,k)*t(i,k))
502         gam(i,k) = hltalt*qs(i,k)*p(i,k)*desdt/(cp*es(i,k)*(p(i,k) - omeps*es(i,k)))
503         if (qs(i,k) == 1.0_r8) gam(i,k) = 0.0_r8
504      end do
505   end do
506!
50720 return
508end subroutine aqsatd
509#endif
510
511subroutine vqsatd(t       ,p       ,es      ,qs      ,gam      , &
512                  len     )
513!-----------------------------------------------------------------------
514!
515! Purpose:
516! Utility procedure to look up and return saturation vapor pressure from
517! precomputed table, calculate and return saturation specific humidity
518! (g/g), and calculate and return gamma (l/cp)*(d(qsat)/dT).  The same
519! function as qsatd, but operates on vectors of temperature and pressure
520!
521! Method:
522!
523! Author: J. Hack
524!
525!------------------------------Arguments--------------------------------
526!
527! Input arguments
528!
529   integer, intent(in) :: len       ! vector length
530   real(r8), intent(in) :: t(len)       ! temperature
531   real(r8), intent(in) :: p(len)       ! pressure
532!
533! Output arguments
534!
535   real(r8), intent(out) :: es(len)   ! saturation vapor pressure
536   real(r8), intent(out) :: qs(len)   ! saturation specific humidity
537   real(r8), intent(out) :: gam(len)  ! (l/cp)*(d(qs)/dt)
538!
539!--------------------------Local Variables------------------------------
540!
541   logical lflg   ! true if in temperature transition region
542!
543   integer i      ! index for vector calculations
544!
545   real(r8) omeps     ! 1. - 0.622
546   real(r8) trinv     ! reciprocal of ttrice (transition range)
547   real(r8) tc        ! temperature (in degrees C)
548   real(r8) weight    ! weight for es transition from water to ice
549   real(r8) hltalt    ! appropriately modified hlat for T derivatives
550!
551   real(r8) hlatsb    ! hlat weighted in transition region
552   real(r8) hlatvp    ! hlat modified for t changes above freezing
553   real(r8) tterm     ! account for d(es)/dT in transition region
554   real(r8) desdt     ! d(es)/dT
555!
556!-----------------------------------------------------------------------
557!
558   omeps = 1.0_r8 - epsqs
559   do i=1,len
560      es(i) = estblf(t(i))
561!
562! Saturation specific humidity
563!
564      qs(i) = epsqs*es(i)/(p(i) - omeps*es(i))
565!
566! The following check is to avoid the generation of negative
567! values that can occur in the upper stratosphere and mesosphere
568!
569      qs(i) = min(1.0_r8,qs(i))
570!
571      if (qs(i) < 0.0_r8) then
572         qs(i) = 1.0_r8
573         es(i) = p(i)
574      end if
575   end do
576!
577! "generalized" analytic expression for t derivative of es
578! accurate to within 1 percent for 173.16 < t < 373.16
579!
580   trinv = 0.0_r8
581   if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10
582   trinv = 1.0_r8/ttrice
583   do i=1,len
584!
585! Weighting of hlat accounts for transition from water to ice
586! polynomial expression approximates difference between es over
587! water and es over ice from 0 to -ttrice (C) (min of ttrice is
588! -40): required for accurate estimate of es derivative in transition
589! range from ice to water also accounting for change of hlatv with t
590! above freezing where const slope is given by -2369 j/(kg c) = cpv - cw
591!
592      tc     = t(i) - tmelt
593      lflg   = (tc >= -ttrice .and. tc < 0.0_r8)
594      weight = min(-tc*trinv,1.0_r8)
595      hlatsb = hlatv + weight*hlatf
596      hlatvp = hlatv - 2369.0_r8*tc
597      if (t(i) < tmelt) then
598         hltalt = hlatsb
599      else
600         hltalt = hlatvp
601      end if
602      if (lflg) then
603         tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5))))
604      else
605         tterm = 0.0_r8
606      end if
607      desdt  = hltalt*es(i)/(rgasv*t(i)*t(i)) + tterm*trinv
608      gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i)))
609      if (qs(i) == 1.0_r8) gam(i) = 0.0_r8
610   end do
611   return
612!
613! No icephs or water to ice transition
614!
61510 do i=1,len
616!
617! Account for change of hlatv with t above freezing where
618! constant slope is given by -2369 j/(kg c) = cpv - cw
619!
620      hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt)
621      if (icephs) then
622         hlatsb = hlatv + hlatf
623      else
624         hlatsb = hlatv
625      end if
626      if (t(i) < tmelt) then
627         hltalt = hlatsb
628      else
629         hltalt = hlatvp
630      end if
631      desdt  = hltalt*es(i)/(rgasv*t(i)*t(i))
632      gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i)))
633      if (qs(i) == 1.0_r8) gam(i) = 0.0_r8
634   end do
635!
636   return
637!
638end subroutine vqsatd
639
640#ifndef WRF_PORT
641!++xl
642subroutine vqsatd_water(t       ,p       ,es      ,qs      ,gam      , &
643                        len     )
644
645!------------------------------Arguments--------------------------------
646!
647! Input arguments
648!
649   integer, intent(in) :: len       ! vector length
650   real(r8), intent(in) :: t(len)       ! temperature
651   real(r8), intent(in) :: p(len)       ! pressure
652
653!
654! Output arguments
655!
656   real(r8), intent(out) :: es(len)   ! saturation vapor pressure
657   real(r8), intent(out) :: qs(len)   ! saturation specific humidity
658   real(r8), intent(out) :: gam(len)  ! (l/cp)*(d(qs)/dt)
659
660!
661!--------------------------Local Variables------------------------------
662!
663!
664   integer i      ! index for vector calculations
665!
666   real(r8) omeps     ! 1. - 0.622
667   real(r8) hltalt    ! appropriately modified hlat for T derivatives
668!
669   real(r8) hlatsb    ! hlat weighted in transition region
670   real(r8) hlatvp    ! hlat modified for t changes above freezing
671   real(r8) desdt     ! d(es)/dT
672!
673!-----------------------------------------------------------------------
674!
675   omeps = 1.0_r8 - epsqs
676   do i=1,len
677      es(i) = polysvp(t(i),0)
678!
679! Saturation specific humidity
680!
681      qs(i) = epsqs*es(i)/(p(i) - omeps*es(i))
682!
683! The following check is to avoid the generation of negative
684! values that can occur in the upper stratosphere and mesosphere
685!
686      qs(i) = min(1.0_r8,qs(i))
687!
688      if (qs(i) < 0.0_r8) then
689         qs(i) = 1.0_r8
690         es(i) = p(i)
691      end if
692   end do
693!
694! No icephs or water to ice transition
695!
696   do i=1,len
697!
698! Account for change of hlatv with t above freezing where
699! constant slope is given by -2369 j/(kg c) = cpv - cw
700!
701      hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt)
702      hlatsb = hlatv
703      if (t(i) < tmelt) then
704         hltalt = hlatsb
705      else
706         hltalt = hlatvp
707      end if
708      desdt  = hltalt*es(i)/(rgasv*t(i)*t(i))
709      gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i)))
710      if (qs(i) == 1.0_r8) gam(i) = 0.0_r8
711   end do
712!
713   return
714!
715end subroutine vqsatd_water
716
717      function polysvp (T,type)
718!  Compute saturation vapor pressure by using
719! function from Goff and Gatch (1946)
720
721!  Polysvp returned in units of pa.
722!  T is input in units of K.
723!  type refers to saturation with respect to liquid (0) or ice (1)
724
725      real(r8) dum
726
727      real(r8) T,polysvp
728
729      integer type
730
731! ice
732
733      if (type.eq.1) then
734
735! Goff Gatch equation (good down to -100 C)
736
737         polysvp = 10._r8**(-9.09718_r8*(273.16_r8/t-1._r8)-3.56654_r8* &
738          log10(273.16_r8/t)+0.876793_r8*(1._r8-t/273.16_r8)+ &
739          log10(6.1071_r8))*100._r8
740
741      end if
742
743! Goff Gatch equation, uncertain below -70 C
744
745      if (type.eq.0) then
746         polysvp = 10._r8**(-7.90298_r8*(373.16_r8/t-1._r8)+ &
747             5.02808_r8*log10(373.16_r8/t)- &
748             1.3816e-7_r8*(10._r8**(11.344_r8*(1._r8-t/373.16_r8))-1._r8)+ &
749             8.1328e-3_r8*(10._r8**(-3.49149_r8*(373.16_r8/t-1._r8))-1._r8)+ &
750             log10(1013.246_r8))*100._r8
751         end if
752
753
754      end function polysvp
755!--xl
756#endif
757
758integer function fqsatd(t    ,p    ,es    ,qs   ,gam   , len     )
759  !-----------------------------------------------------------------------
760  ! Purpose:
761  ! This is merely a function interface vqsatd.
762  !------------------------------Arguments--------------------------------
763  ! Input arguments
764  integer, intent(in) :: len       ! vector length
765  real(r8), intent(in) :: t(len)       ! temperature
766  real(r8), intent(in) :: p(len)       ! pressure
767  ! Output arguments
768  real(r8), intent(out) :: es(len)   ! saturation vapor pressure
769  real(r8), intent(out) :: qs(len)   ! saturation specific humidity
770  real(r8), intent(out) :: gam(len)  ! (l/cp)*(d(qs)/dt)
771  ! Call vqsatd
772  call vqsatd(t       ,p       ,es      ,qs      ,gam  , len     )
773  fqsatd = 1
774  return
775end function fqsatd
776
777#ifndef WRF_PORT
778real(r8) function qsat_water(t,p)
779  !  saturation mixing ratio w/respect to liquid water
780  real(r8) t ! temperature
781  real(r8) p ! pressure (Pa)
782  real(r8) es ! saturation vapor pressure (Pa)
783  real(r8) ps, ts, e1, e2, f1, f2, f3, f4, f5, f
784  !  real(r8) t0inv ! 1/273.
785  !  data t0inv/0.003663/
786  !  save t0inv
787  !  es = 611.*exp(hlatv/rgasv*(t0inv-1./t))
788
789  ps = 1013.246_r8
790  ts = 373.16_r8
791  e1 = 11.344_r8*(1.0_r8 - t/ts)
792  e2 = -3.49149_r8*(ts/t - 1.0_r8)
793  f1 = -7.90298_r8*(ts/t - 1.0_r8)
794  f2 = 5.02808_r8*log10(ts/t)
795  f3 = -1.3816_r8*(10.0_r8**e1 - 1.0_r8)/10000000.0_r8
796  f4 = 8.1328_r8*(10.0_r8**e2 - 1.0_r8)/1000.0_r8
797  f5 = log10(ps)
798  f  = f1 + f2 + f3 + f4 + f5
799  es = (10.0_r8**f)*100.0_r8
800
801  qsat_water = epsqs*es/(p-(1.-epsqs)*es) ! saturation w/respect to liquid only
802  if(qsat_water < 0.) qsat_water = 1.
803
804end function qsat_water
805
806subroutine vqsat_water(t,p,qsat_water,len)
807  !  saturation mixing ratio w/respect to liquid water
808  integer, intent(in)  :: len
809  real(r8) t(len) ! temperature
810  real(r8) p(len) ! pressure (Pa)
811  real(r8) qsat_water(len)
812  real(r8) es ! saturation vapor pressure (Pa)
813  real(r8), parameter :: t0inv = 1._r8/273._r8
814  real(r8) coef
815  integer :: i
816
817  coef = hlatv/rgasv
818  do i=1,len
819     es = 611._r8*exp(coef*(t0inv-1./t(i)))
820     qsat_water(i) = epsqs*es/(p(i)-(1.-epsqs)*es) ! saturation w/respect to liquid only
821     if(qsat_water(i) < 0.) qsat_water(i) = 1.
822  enddo
823
824  return
825
826end subroutine vqsat_water
827
828real(r8) function qsat_ice(t,p)
829  !  saturation mixing ratio w/respect to ice
830  real(r8) t ! temperature
831  real(r8) p ! pressure (Pa)
832  real(r8) es ! saturation vapor pressure (Pa)
833  real(r8), parameter :: t0inv = 1._r8/273._r8
834  es = 611.*exp((hlatv+hlatf)/rgasv*(t0inv-1./t))
835  qsat_ice = epsqs*es/(p-(1.-epsqs)*es) ! saturation w/respect to liquid only
836  if(qsat_ice < 0.) qsat_ice = 1.
837
838end function qsat_ice
839
840subroutine vqsat_ice(t,p,qsat_ice,len)
841  !  saturation mixing ratio w/respect to liquid water
842  integer,intent(in) :: len
843  real(r8) t(len) ! temperature
844  real(r8) p(len) ! pressure (Pa)
845  real(r8) qsat_ice(len)
846  real(r8) es ! saturation vapor pressure (Pa)
847  real(r8), parameter :: t0inv = 1._r8/273._r8
848  real(r8) coef
849  integer :: i
850
851  coef = (hlatv+hlatf)/rgasv
852  do i=1,len
853     es = 611.*exp(coef*(t0inv-1./t(i)))
854     qsat_ice(i) = epsqs*es/(p(i)-(1.-epsqs)*es) ! saturation w/respect to liquid only
855     if(qsat_ice(i) < 0.) qsat_ice(i) = 1.
856  enddo
857
858  return
859
860end subroutine vqsat_ice
861
862! Sungsu
863! Below two subroutines (vqsatd2_water,vqsatd2_water_single) are by Sungsu
864! Replace 'gam -> dqsdt'
865! Sungsu
866
867subroutine vqsatd2_water(t       ,p       ,es      ,qs      ,dqsdt      , &
868                        len     )
869
870!------------------------------Arguments--------------------------------
871!
872! Input arguments
873!
874   integer, intent(in) :: len       ! vector length
875   real(r8), intent(in) :: t(len)       ! temperature
876   real(r8), intent(in) :: p(len)       ! pressure
877
878!
879! Output arguments
880!
881   real(r8), intent(out) :: es(len)   ! saturation vapor pressure
882   real(r8), intent(out) :: qs(len)   ! saturation specific humidity
883 ! real(r8), intent(out) :: gam(len)  ! (l/cp)*(d(qs)/dt)
884 ! Sungsu
885   real(r8), intent(out) :: dqsdt(len)  ! (d(qs)/dt)
886 ! End by Sungsu
887
888!
889!--------------------------Local Variables------------------------------
890!
891!
892   integer i      ! index for vector calculations
893!
894   real(r8) omeps     ! 1. - 0.622
895   real(r8) hltalt    ! appropriately modified hlat for T derivatives
896!
897   real(r8) hlatsb    ! hlat weighted in transition region
898   real(r8) hlatvp    ! hlat modified for t changes above freezing
899   real(r8) desdt     ! d(es)/dT
900
901 ! Sungsu
902   real(r8) gam(len)  ! (l/cp)*(d(qs)/dt)
903 ! End by Sungsu
904
905!
906!-----------------------------------------------------------------------
907!
908   omeps = 1.0_r8 - epsqs
909   do i=1,len
910      es(i) = polysvp(t(i),0)
911!
912! Saturation specific humidity
913!
914      qs(i) = epsqs*es(i)/(p(i) - omeps*es(i))
915!
916! The following check is to avoid the generation of negative
917! values that can occur in the upper stratosphere and mesosphere
918!
919      qs(i) = min(1.0_r8,qs(i))
920!
921      if (qs(i) < 0.0_r8) then
922         qs(i) = 1.0_r8
923         es(i) = p(i)
924      end if
925   end do
926!
927! No icephs or water to ice transition
928!
929   do i=1,len
930!
931! Account for change of hlatv with t above freezing where
932! constant slope is given by -2369 j/(kg c) = cpv - cw
933!
934      hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt)
935      hlatsb = hlatv
936      if (t(i) < tmelt) then
937         hltalt = hlatsb
938      else
939         hltalt = hlatvp
940      end if
941      desdt  = hltalt*es(i)/(rgasv*t(i)*t(i))
942      gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i)))
943      if (qs(i) == 1.0_r8) gam(i) = 0.0_r8
944    ! Sungsu
945      dqsdt(i) = (cp/hltalt)*gam(i)
946    ! End by Sungsu
947   end do
948!
949   return
950!
951end subroutine vqsatd2_water
952
953subroutine vqsatd2_water_single(t       ,p       ,es      ,qs      ,dqsdt)
954
955!------------------------------Arguments--------------------------------
956!
957! Input arguments
958!
959
960   real(r8), intent(in) :: t       ! temperature
961   real(r8), intent(in) :: p       ! pressure
962
963!
964! Output arguments
965!
966   real(r8), intent(out) :: es   ! saturation vapor pressure
967   real(r8), intent(out) :: qs   ! saturation specific humidity
968 ! real(r8), intent(out) :: gam  ! (l/cp)*(d(qs)/dt)
969 ! Sungsu
970   real(r8), intent(out) :: dqsdt  ! (d(qs)/dt)
971 ! End by Sungsu
972
973!
974!--------------------------Local Variables------------------------------
975!
976!
977   integer i      ! index for vector calculations
978!
979   real(r8) omeps     ! 1. - 0.622
980   real(r8) hltalt    ! appropriately modified hlat for T derivatives
981!
982   real(r8) hlatsb    ! hlat weighted in transition region
983   real(r8) hlatvp    ! hlat modified for t changes above freezing
984   real(r8) desdt     ! d(es)/dT
985
986 ! Sungsu
987   real(r8) gam  ! (l/cp)*(d(qs)/dt)
988 ! End by Sungsu
989
990!
991!-----------------------------------------------------------------------
992!
993   omeps = 1.0_r8 - epsqs
994!  do i=1,len
995      es = polysvp(t,0)
996!
997! Saturation specific humidity
998!
999      qs = epsqs*es/(p - omeps*es)
1000!
1001! The following check is to avoid the generation of negative
1002! values that can occur in the upper stratosphere and mesosphere
1003!
1004      qs = min(1.0_r8,qs)
1005!
1006      if (qs < 0.0_r8) then
1007         qs = 1.0_r8
1008         es = p
1009      end if
1010!  end do
1011!
1012! No icephs or water to ice transition
1013!
1014!  do i=1,len
1015!
1016! Account for change of hlatv with t above freezing where
1017! constant slope is given by -2369 j/(kg c) = cpv - cw
1018!
1019      hlatvp = hlatv - 2369.0_r8*(t-tmelt)
1020      hlatsb = hlatv
1021      if (t < tmelt) then
1022         hltalt = hlatsb
1023      else
1024         hltalt = hlatvp
1025      end if
1026      desdt  = hltalt*es/(rgasv*t*t)
1027      gam = hltalt*qs*p*desdt/(cp*es*(p - omeps*es))
1028      if (qs == 1.0_r8) gam = 0.0_r8
1029    ! Sungsu
1030      dqsdt = (cp/hltalt)*gam
1031    ! End by Sungsu
1032!  end do
1033!
1034   return
1035!
1036end subroutine vqsatd2_water_single
1037
1038
1039subroutine vqsatd2(t       ,p       ,es      ,qs      ,dqsdt      , &
1040                   len     )
1041!-----------------------------------------------------------------------
1042! Sungsu : This is directly copied from 'vqsatd' but 'dqsdt' is output
1043!          instead of gam for use in Sungsu's equilibrium stratiform
1044!          macrophysics scheme.
1045!
1046! Purpose:
1047! Utility procedure to look up and return saturation vapor pressure from
1048! precomputed table, calculate and return saturation specific humidity
1049! (g/g), and calculate and return gamma (l/cp)*(d(qsat)/dT).  The same
1050! function as qsatd, but operates on vectors of temperature and pressure
1051!
1052! Method:
1053!
1054! Author: J. Hack
1055!
1056!------------------------------Arguments--------------------------------
1057!
1058! Input arguments
1059!
1060   integer, intent(in) :: len       ! vector length
1061   real(r8), intent(in) :: t(len)       ! temperature
1062   real(r8), intent(in) :: p(len)       ! pressure
1063!
1064! Output arguments
1065!
1066   real(r8), intent(out) :: es(len)   ! saturation vapor pressure
1067   real(r8), intent(out) :: qs(len)   ! saturation specific humidity
1068 ! real(r8), intent(out) :: gam(len)  ! (l/cp)*(d(qs)/dt)
1069 ! Sungsu
1070   real(r8), intent(out) :: dqsdt(len)  ! (d(qs)/dt)
1071 ! End by Sungsu
1072
1073!
1074!--------------------------Local Variables------------------------------
1075!
1076   logical lflg   ! true if in temperature transition region
1077!
1078   integer i      ! index for vector calculations
1079!
1080   real(r8) omeps     ! 1. - 0.622
1081   real(r8) trinv     ! reciprocal of ttrice (transition range)
1082   real(r8) tc        ! temperature (in degrees C)
1083   real(r8) weight    ! weight for es transition from water to ice
1084   real(r8) hltalt    ! appropriately modified hlat for T derivatives
1085!
1086   real(r8) hlatsb    ! hlat weighted in transition region
1087   real(r8) hlatvp    ! hlat modified for t changes above freezing
1088   real(r8) tterm     ! account for d(es)/dT in transition region
1089   real(r8) desdt     ! d(es)/dT
1090
1091 ! Sungsu
1092   real(r8) gam(len)  ! (l/cp)*(d(qs)/dt)
1093 ! End by Sungsu
1094!
1095!-----------------------------------------------------------------------
1096!
1097   omeps = 1.0_r8 - epsqs
1098   do i=1,len
1099      es(i) = estblf(t(i))
1100!
1101! Saturation specific humidity
1102!
1103      qs(i) = epsqs*es(i)/(p(i) - omeps*es(i))
1104!
1105! The following check is to avoid the generation of negative
1106! values that can occur in the upper stratosphere and mesosphere
1107!
1108      qs(i) = min(1.0_r8,qs(i))
1109!
1110      if (qs(i) < 0.0_r8) then
1111         qs(i) = 1.0_r8
1112         es(i) = p(i)
1113      end if
1114   end do
1115!
1116! "generalized" analytic expression for t derivative of es
1117! accurate to within 1 percent for 173.16 < t < 373.16
1118!
1119   trinv = 0.0_r8
1120   if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10
1121   trinv = 1.0_r8/ttrice
1122   do i=1,len
1123!
1124! Weighting of hlat accounts for transition from water to ice
1125! polynomial expression approximates difference between es over
1126! water and es over ice from 0 to -ttrice (C) (min of ttrice is
1127! -40): required for accurate estimate of es derivative in transition
1128! range from ice to water also accounting for change of hlatv with t
1129! above freezing where const slope is given by -2369 j/(kg c) = cpv - cw
1130!
1131      tc     = t(i) - tmelt
1132      lflg   = (tc >= -ttrice .and. tc < 0.0_r8)
1133      weight = min(-tc*trinv,1.0_r8)
1134      hlatsb = hlatv + weight*hlatf
1135      hlatvp = hlatv - 2369.0_r8*tc
1136      if (t(i) < tmelt) then
1137         hltalt = hlatsb
1138      else
1139         hltalt = hlatvp
1140      end if
1141      if (lflg) then
1142         tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5))))
1143      else
1144         tterm = 0.0_r8
1145      end if
1146      desdt  = hltalt*es(i)/(rgasv*t(i)*t(i)) + tterm*trinv
1147      gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i)))
1148      if (qs(i) == 1.0_r8) gam(i) = 0.0_r8
1149    ! Sungsu
1150      dqsdt(i) = (cp/hltalt)*gam(i)
1151    ! End by Sungsu
1152   end do
1153   return
1154!
1155! No icephs or water to ice transition
1156!
115710 do i=1,len
1158!
1159! Account for change of hlatv with t above freezing where
1160! constant slope is given by -2369 j/(kg c) = cpv - cw
1161!
1162      hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt)
1163      if (icephs) then
1164         hlatsb = hlatv + hlatf
1165      else
1166         hlatsb = hlatv
1167      end if
1168      if (t(i) < tmelt) then
1169         hltalt = hlatsb
1170      else
1171         hltalt = hlatvp
1172      end if
1173      desdt  = hltalt*es(i)/(rgasv*t(i)*t(i))
1174      gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i)))
1175      if (qs(i) == 1.0_r8) gam(i) = 0.0_r8
1176    ! Sungsu
1177      dqsdt(i) = (cp/hltalt)*gam(i)
1178    ! End by Sungsu
1179   end do
1180!
1181   return
1182!
1183end subroutine vqsatd2
1184
1185
1186! Below routine is by Sungsu
1187
1188subroutine vqsatd2_single(t       ,p       ,es      ,qs      ,dqsdt)
1189!-----------------------------------------------------------------------
1190! Sungsu : This is directly copied from 'vqsatd' but 'dqsdt' is output
1191!          instead of gam for use in Sungsu's equilibrium stratiform
1192!          macrophysics scheme.
1193!
1194! Purpose:
1195! Utility procedure to look up and return saturation vapor pressure from
1196! precomputed table, calculate and return saturation specific humidity
1197! (g/g), and calculate and return gamma (l/cp)*(d(qsat)/dT).  The same
1198! function as qsatd, but operates on vectors of temperature and pressure
1199!
1200! Method:
1201!
1202! Author: J. Hack
1203!
1204!------------------------------Arguments--------------------------------
1205!
1206! Input arguments
1207!
1208   real(r8), intent(in) :: t       ! temperature
1209   real(r8), intent(in) :: p       ! pressure
1210!
1211! Output arguments
1212!
1213   real(r8), intent(out) :: es     ! saturation vapor pressure
1214   real(r8), intent(out) :: qs     ! saturation specific humidity
1215 ! real(r8), intent(out) :: gam    ! (l/cp)*(d(qs)/dt)
1216 ! Sungsu
1217   real(r8), intent(out) :: dqsdt  ! (d(qs)/dt)
1218 ! End by Sungsu
1219
1220!
1221!--------------------------Local Variables------------------------------
1222!
1223   logical lflg   ! true if in temperature transition region
1224!
1225!  integer i      ! index for vector calculations
1226!
1227   real(r8) omeps     ! 1. - 0.622
1228   real(r8) trinv     ! reciprocal of ttrice (transition range)
1229   real(r8) tc        ! temperature (in degrees C)
1230   real(r8) weight    ! weight for es transition from water to ice
1231   real(r8) hltalt    ! appropriately modified hlat for T derivatives
1232!
1233   real(r8) hlatsb    ! hlat weighted in transition region
1234   real(r8) hlatvp    ! hlat modified for t changes above freezing
1235   real(r8) tterm     ! account for d(es)/dT in transition region
1236   real(r8) desdt     ! d(es)/dT
1237
1238 ! Sungsu
1239   real(r8) gam       ! (l/cp)*(d(qs)/dt)
1240 ! End by Sungsu
1241!
1242!-----------------------------------------------------------------------
1243!
1244   omeps = 1.0_r8 - epsqs
1245
1246!  do i=1,len
1247
1248      es = estblf(t)
1249!
1250! Saturation specific humidity
1251!
1252      qs = epsqs*es/(p - omeps*es)
1253!
1254! The following check is to avoid the generation of negative
1255! values that can occur in the upper stratosphere and mesosphere
1256!
1257      qs = min(1.0_r8,qs)
1258!
1259      if (qs < 0.0_r8) then
1260         qs = 1.0_r8
1261         es = p
1262      end if
1263
1264!  end do
1265!
1266! "generalized" analytic expression for t derivative of es
1267! accurate to within 1 percent for 173.16 < t < 373.16
1268!
1269   trinv = 0.0_r8
1270   if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10
1271   trinv = 1.0_r8/ttrice
1272
1273!  do i=1,len
1274!
1275! Weighting of hlat accounts for transition from water to ice
1276! polynomial expression approximates difference between es over
1277! water and es over ice from 0 to -ttrice (C) (min of ttrice is
1278! -40): required for accurate estimate of es derivative in transition
1279! range from ice to water also accounting for change of hlatv with t
1280! above freezing where const slope is given by -2369 j/(kg c) = cpv - cw
1281!
1282      tc     = t - tmelt
1283      lflg   = (tc >= -ttrice .and. tc < 0.0_r8)
1284      weight = min(-tc*trinv,1.0_r8)
1285      hlatsb = hlatv + weight*hlatf
1286      hlatvp = hlatv - 2369.0_r8*tc
1287      if (t < tmelt) then
1288         hltalt = hlatsb
1289      else
1290         hltalt = hlatvp
1291      end if
1292      if (lflg) then
1293         tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5))))
1294      else
1295         tterm = 0.0_r8
1296      end if
1297      desdt  = hltalt*es/(rgasv*t*t) + tterm*trinv
1298      gam = hltalt*qs*p*desdt/(cp*es*(p - omeps*es))
1299      if (qs == 1.0_r8) gam = 0.0_r8
1300    ! Sungsu
1301      dqsdt = (cp/hltalt)*gam
1302    ! End by Sungsu
1303!  end do
1304   return
1305!
1306! No icephs or water to ice transition
1307!
1308
130910 continue
1310
1311!10 do i=1,len
1312!
1313! Account for change of hlatv with t above freezing where
1314! constant slope is given by -2369 j/(kg c) = cpv - cw
1315!
1316      hlatvp = hlatv - 2369.0_r8*(t-tmelt)
1317      if (icephs) then
1318         hlatsb = hlatv + hlatf
1319      else
1320         hlatsb = hlatv
1321      end if
1322      if (t < tmelt) then
1323         hltalt = hlatsb
1324      else
1325         hltalt = hlatvp
1326      end if
1327      desdt  = hltalt*es/(rgasv*t*t)
1328      gam = hltalt*qs*p*desdt/(cp*es*(p - omeps*es))
1329      if (qs == 1.0_r8) gam = 0.0_r8
1330    ! Sungsu
1331      dqsdt = (cp/hltalt)*gam
1332    ! End by Sungsu
1333
1334!  end do
1335!
1336   return
1337!
1338end subroutine vqsatd2_single
1339#endif
1340
1341end module wv_saturation
Note: See TracBrowser for help on using the repository browser.