| 1 | MODULE module_bl_boulac |
|---|
| 2 | |
|---|
| 3 | !USE module_model_constants |
|---|
| 4 | |
|---|
| 5 | |
|---|
| 6 | !------------------------------------------------------------------------ |
|---|
| 7 | ! Calculation of the tendency due to momentum, heat |
|---|
| 8 | ! and moisture turbulent fluxes follwing the approach |
|---|
| 9 | ! of Bougeault and Lacarrere, 1989 (MWR, 117, 1872-1890). |
|---|
| 10 | ! The scheme computes a prognostic ecuation for TKE and derives |
|---|
| 11 | ! dissipation and turbulent coefficients using length scales. |
|---|
| 12 | ! |
|---|
| 13 | ! Subroutine written by Alberto Martilli, CIEMAT, Spain, |
|---|
| 14 | ! e-mail:alberto_martilli@ciemat.es |
|---|
| 15 | ! August 2006. |
|---|
| 16 | !------------------------------------------------------------------------ |
|---|
| 17 | ! IN THIS VERSION TKE IS NOT ADVECTED!!!! |
|---|
| 18 | ! TO BE CHANGED IN THE FUTURE |
|---|
| 19 | ! |
|---|
| 20 | ! ----------------------------------------------------------------------- |
|---|
| 21 | ! Constant used in the module |
|---|
| 22 | ! ck_b=constant used in the compuation of diffusion coefficients |
|---|
| 23 | ! ceps_b=constant used inthe computation of dissipation |
|---|
| 24 | ! temin= minimum value allowed for TKE |
|---|
| 25 | ! vk=von karman constant |
|---|
| 26 | ! ----------------------------------------------------------------------- |
|---|
| 27 | |
|---|
| 28 | real ck_b,ceps_b,vk,temin ! constant for Bougeault and Lacarrere |
|---|
| 29 | parameter(ceps_b=1/1.4,ck_b=0.4,temin=0.0001,vk=0.4) ! impose minimum values for tke similar to those of MYJ |
|---|
| 30 | ! ----------------------------------------------------------------------- |
|---|
| 31 | |
|---|
| 32 | |
|---|
| 33 | CONTAINS |
|---|
| 34 | |
|---|
| 35 | subroutine boulac(frc_urb2d,idiff,flag_bep,dz8w,dt,u_phy,v_phy & |
|---|
| 36 | ,th_phy,rho,qv_curr,hfx & |
|---|
| 37 | ,qfx,ustar,cp,g & |
|---|
| 38 | ,rublten,rvblten,rthblten & |
|---|
| 39 | ,rqvblten,rqcblten & |
|---|
| 40 | ,tke,dlk,wu,wv,wt,wq,exch_h,exch_m,pblh & |
|---|
| 41 | ,a_u_bep,a_v_bep,a_t_bep,a_q_bep & |
|---|
| 42 | ,a_e_bep,b_u_bep,b_v_bep & |
|---|
| 43 | ,b_t_bep,b_q_bep,b_e_bep,dlg_bep & |
|---|
| 44 | ,dl_u_bep,sf_bep,vl_bep & |
|---|
| 45 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 46 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 47 | ,its,ite, jts,jte, kts,kte) |
|---|
| 48 | |
|---|
| 49 | implicit none |
|---|
| 50 | |
|---|
| 51 | |
|---|
| 52 | |
|---|
| 53 | !----------------------------------------------------------------------- |
|---|
| 54 | ! Input |
|---|
| 55 | !------------------------------------------------------------------------ |
|---|
| 56 | INTEGER:: ids,ide, jds,jde, kds,kde, & |
|---|
| 57 | ims,ime, jms,jme, kms,kme, & |
|---|
| 58 | its,ite, jts,jte, kts,kte |
|---|
| 59 | |
|---|
| 60 | integer, INTENT(IN) :: idiff |
|---|
| 61 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: DZ8W !vertical resolution |
|---|
| 62 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: qv_curr !moisture |
|---|
| 63 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: RHO !air density |
|---|
| 64 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: TH_PHY !potential temperature |
|---|
| 65 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: U_PHY !x-component of wind |
|---|
| 66 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) :: V_PHY !y-component of wind |
|---|
| 67 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: ustar !friction velocity |
|---|
| 68 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: hfx !sensible heat flux (W/m2) at surface |
|---|
| 69 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: qfx !moisture flux at surface |
|---|
| 70 | real, INTENT(IN ) :: g,cp !gravity and Cp |
|---|
| 71 | REAL, INTENT(IN ):: DT ! Time step |
|---|
| 72 | |
|---|
| 73 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN ) :: FRC_URB2D !fraction cover urban |
|---|
| 74 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: PBLH !PBL height |
|---|
| 75 | ! |
|---|
| 76 | ! variable added for urban |
|---|
| 77 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_u_bep ! Implicit component for the momemtum in X-direction |
|---|
| 78 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_v_bep ! Implicit component for the momemtum in Y-direction |
|---|
| 79 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_t_bep ! Implicit component for the Pot. Temp. |
|---|
| 80 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_q_bep ! Implicit component for Moisture |
|---|
| 81 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::a_e_bep ! Implicit component for the TKE |
|---|
| 82 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_u_bep ! Explicit component for the momemtum in X-direction |
|---|
| 83 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_v_bep ! Explicit component for the momemtum in Y-direction |
|---|
| 84 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_t_bep ! Explicit component for the Pot. Temp. |
|---|
| 85 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_q_bep ! Explicit component for Moisture |
|---|
| 86 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::b_e_bep ! Explicit component for the TKE |
|---|
| 87 | |
|---|
| 88 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(INOUT) ::dlg_bep ! Height above ground (L_ground in formula (24) of the BLM paper). |
|---|
| 89 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::dl_u_bep ! Length scale (lb in formula (22) ofthe BLM paper). |
|---|
| 90 | ! urban surface and volumes |
|---|
| 91 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::sf_bep ! surface of the urban grid cells |
|---|
| 92 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN ) ::vl_bep ! volume of the urban grid cells |
|---|
| 93 | LOGICAL, INTENT(IN) :: flag_bep !flag for BEP |
|---|
| 94 | |
|---|
| 95 | ! |
|---|
| 96 | !----------------------------------------------------------------------- |
|---|
| 97 | ! Local, carried on from one timestep to the other |
|---|
| 98 | !------------------------------------------------------------------------ |
|---|
| 99 | ! real, save, allocatable, dimension (:,:,:)::TKE ! Turbulent kinetic energy |
|---|
| 100 | real, dimension (ims:ime, kms:kme, jms:jme) ::th_0 ! reference state for potential temperature |
|---|
| 101 | |
|---|
| 102 | !------------------------------------------------------------------------ |
|---|
| 103 | ! Output |
|---|
| 104 | !------------------------------------------------------------------------ |
|---|
| 105 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: exch_h ! exchange coefficient for heat |
|---|
| 106 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: exch_m ! exchange coefficient for momentum |
|---|
| 107 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(INOUT ) :: tke ! Turbulence Kinetic Energy |
|---|
| 108 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wu ! Turbulent flux of momentum (x) |
|---|
| 109 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wv ! Turbulent flux of momentum (y) |
|---|
| 110 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wt ! Turbulent flux of temperature |
|---|
| 111 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: wq ! Turbulent flux of water vapor |
|---|
| 112 | real, dimension( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: dlk ! Turbulent flux of water vapor |
|---|
| 113 | ! only if idiff not equal 1: |
|---|
| 114 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RUBLTEN !tendency for U_phy |
|---|
| 115 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RVBLTEN !tendency for V_phy |
|---|
| 116 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RTHBLTEN !tendency for TH_phy |
|---|
| 117 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQVBLTEN !tendency for QV_curr |
|---|
| 118 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(OUT ) :: RQCBLTEN !tendency for QV_curr |
|---|
| 119 | |
|---|
| 120 | !-------------------------------------------------------------- |
|---|
| 121 | ! Local |
|---|
| 122 | !-------------------------------------------------------------- |
|---|
| 123 | ! 1D array used for the input and output of the routine boulac1D |
|---|
| 124 | |
|---|
| 125 | real z1D(kms:kme) ! vertical coordinates (faces of the grid) |
|---|
| 126 | real dz1D(kms:kme) ! vertical resolution |
|---|
| 127 | real u1D(kms:kme) ! wind speed in the x directions |
|---|
| 128 | real v1D(kms:kme) ! wind speed in the y directions |
|---|
| 129 | real th1D(kms:kme) ! potential temperature |
|---|
| 130 | real q1D(kms:kme) ! potential temperature |
|---|
| 131 | real rho1D(kms:kme) ! air density |
|---|
| 132 | real rhoz1D(kms:kme) ! air density at the faces |
|---|
| 133 | real tke1D(kms:kme) ! air pressure |
|---|
| 134 | real th01D(kms:kme) ! reference potential temperature |
|---|
| 135 | real dlk1D(kms:kme) ! dlk |
|---|
| 136 | real dls1D(kms:kme) ! dls |
|---|
| 137 | real exch1D(kms:kme) ! exch |
|---|
| 138 | real sf1D(kms:kme) ! surface of the grid cells |
|---|
| 139 | real vl1D(kms:kme) ! volume of the grid cells |
|---|
| 140 | real a_u1D(kms:kme) ! Implicit component of the momentum sources or sinks in the X-direction |
|---|
| 141 | real a_v1D(kms:kme) ! Implicit component of the momentum sources or sinks in the Y-direction |
|---|
| 142 | real a_t1D(kms:kme) ! Implicit component of the heat sources or sinks |
|---|
| 143 | real a_q1D(kms:kme) ! Implicit component of the moisture sources or sinks |
|---|
| 144 | real a_e1D(kms:kme) ! Implicit component of the TKE sources or sinks |
|---|
| 145 | real b_u1D(kms:kme) ! Explicit component of the momentum sources or sinks in the X-direction |
|---|
| 146 | real b_v1D(kms:kme) ! Explicit component of the momentum sources or sinks in the Y-direction |
|---|
| 147 | real b_t1D(kms:kme) ! Explicit component of the heat sources or sinks |
|---|
| 148 | real b_q1D(kms:kme) ! Explicit component of the moisture sources or sinks |
|---|
| 149 | real b_e1D(kms:kme) ! Explicit component of the TKE sources or sinks |
|---|
| 150 | real dlg1D(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper). |
|---|
| 151 | real dl_u1D(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper) |
|---|
| 152 | real sh1D(kms:kme) ! shear |
|---|
| 153 | real bu1D(kms:kme) ! buoyancy |
|---|
| 154 | real wu1D(kms:kme) ! turbulent flux of momentum (x component) |
|---|
| 155 | real wv1D(kms:kme) ! turbulent flux of momentum (y component) |
|---|
| 156 | real wt1D(kms:kme) ! turbulent flux of temperature |
|---|
| 157 | real wq1D(kms:kme) ! turbulent flux of water vapor |
|---|
| 158 | ! local added only for diagnostic output |
|---|
| 159 | real a_e(ims:ime,kms:kme,jms:jme) ! implicit term in TKE |
|---|
| 160 | real b_e(ims:ime,kms:kme,jms:jme) ! explicit term in TKE |
|---|
| 161 | real bu(ims:ime,kms:kme,jms:jme) ! buoyancy term in TKE |
|---|
| 162 | real sh(ims:ime,kms:kme,jms:jme) ! shear term in TKE |
|---|
| 163 | real wrk(ims:ime) ! working array |
|---|
| 164 | integer ix,iy,iz,id,iz_u,iw_u,ig,ir_u,ix1,iy1 |
|---|
| 165 | real ufrac_int ! urban fraction |
|---|
| 166 | real vect,time_tke,hour,zzz |
|---|
| 167 | real ustarf |
|---|
| 168 | real summ1,summ2,summ3 |
|---|
| 169 | save time_tke,hour |
|---|
| 170 | ! |
|---|
| 171 | ! store reference state for potential temperature |
|---|
| 172 | ! and initialize tke |
|---|
| 173 | ! |
|---|
| 174 | |
|---|
| 175 | !here I fix the value of the reference state equal to the value of the potnetial temperature |
|---|
| 176 | ! the only use of this variable in the code is to compute the paramter BETA = g/th0 |
|---|
| 177 | ! I fix it to 300K. |
|---|
| 178 | |
|---|
| 179 | do ix=its,ite |
|---|
| 180 | do iy=jts,jte |
|---|
| 181 | do iz=kts,kte |
|---|
| 182 | ! th_0(ix,iz,iy)=th_phy(ix,iz,iy) |
|---|
| 183 | th_0(ix,iz,iy)=300. |
|---|
| 184 | enddo |
|---|
| 185 | enddo |
|---|
| 186 | enddo |
|---|
| 187 | |
|---|
| 188 | bu1d=0. |
|---|
| 189 | sh1d=0. |
|---|
| 190 | b_e1d=0. |
|---|
| 191 | b_u1d=0. |
|---|
| 192 | b_v1d=0. |
|---|
| 193 | b_t1d=0. |
|---|
| 194 | b_q1d=0. |
|---|
| 195 | a_e1d=0. |
|---|
| 196 | a_u1d=0. |
|---|
| 197 | a_v1d=0. |
|---|
| 198 | a_t1d=0. |
|---|
| 199 | a_q1d=0. |
|---|
| 200 | z1D=0. ! vertical coordinates (faces of the grid) |
|---|
| 201 | dz1D=0. ! vertical resolution |
|---|
| 202 | u1D =0. ! wind speed in the x directions |
|---|
| 203 | v1D =0. ! wind speed in the y directions |
|---|
| 204 | th1D=0. ! potential temperature |
|---|
| 205 | q1D=0. ! potential temperature |
|---|
| 206 | rho1D=0. ! air density |
|---|
| 207 | rhoz1D=0. ! air density at the faces |
|---|
| 208 | tke1D =0. ! air pressure |
|---|
| 209 | th01D =0. ! reference potential temperature |
|---|
| 210 | dlk1D =0. ! dlk |
|---|
| 211 | dls1D =0. ! dls |
|---|
| 212 | exch1D=0. ! exch |
|---|
| 213 | sf1D =1. ! surface of the grid cells |
|---|
| 214 | vl1D =1. ! volume of the grid cells |
|---|
| 215 | a_u1D =0. ! Implicit component of the momentum sources or sinks in the X-direction |
|---|
| 216 | a_v1D =0. ! Implicit component of the momentum sources or sinks in the Y-direction |
|---|
| 217 | a_t1D =0. ! Implicit component of the heat sources or sinks |
|---|
| 218 | a_q1D =0. ! Implicit component of the moisture sources or sinks |
|---|
| 219 | a_e1D =0. ! Implicit component of the TKE sources or sinks |
|---|
| 220 | b_u1D =0. ! Explicit component of the momentum sources or sinks in the X-direction |
|---|
| 221 | b_v1D =0. ! Explicit component of the momentum sources or sinks in the Y-direction |
|---|
| 222 | b_t1D =0. ! Explicit component of the heat sources or sinks |
|---|
| 223 | b_q1D =0. ! Explicit component of the moisture sources or sinks |
|---|
| 224 | b_e1D =0. ! Explicit component of the TKE sources or sinks |
|---|
| 225 | dlg1D =0. ! Height above ground (L_ground in formula (24) of the BLM paper). |
|---|
| 226 | dl_u1D=0. ! Length scale (lb in formula (22) ofthe BLM paper) |
|---|
| 227 | sh1D =0. ! shear |
|---|
| 228 | bu1D =0. ! buoyancy |
|---|
| 229 | wu1D =0. ! turbulent flux of momentum (x component) |
|---|
| 230 | wv1D =0. ! turbulent flux of momentum (y component) |
|---|
| 231 | wt1D =0. ! turbulent flux of temperature |
|---|
| 232 | wq1D =0. ! turbulent flux of water vapor |
|---|
| 233 | ! local added only for diagnostic output |
|---|
| 234 | |
|---|
| 235 | ! loop over the columns. |
|---|
| 236 | ! put variables in 1D temporary arrays |
|---|
| 237 | ! |
|---|
| 238 | |
|---|
| 239 | do ix=its,ite |
|---|
| 240 | do iy=jts,jte |
|---|
| 241 | z1d(kts)=0. |
|---|
| 242 | do iz= kts,kte |
|---|
| 243 | u1D(iz)=u_phy(ix,iz,iy) |
|---|
| 244 | v1D(iz)=v_phy(ix,iz,iy) |
|---|
| 245 | th1D(iz)=th_phy(ix,iz,iy) |
|---|
| 246 | q1D(iz)=qv_curr(ix,iz,iy) |
|---|
| 247 | tke1D(iz)=tke(ix,iz,iy) |
|---|
| 248 | rho1D(iz)=rho(ix,iz,iy) |
|---|
| 249 | th01D(iz)=th_0(ix,iz,iy) |
|---|
| 250 | dz1D(iz)=dz8w(ix,iz,iy) |
|---|
| 251 | z1D(iz+1)=z1D(iz)+dz1D(iz) |
|---|
| 252 | enddo |
|---|
| 253 | rhoz1D(kts)=rho1D(kts) |
|---|
| 254 | do iz=kts+1,kte |
|---|
| 255 | rhoz1D(iz)=(rho1D(iz)*dz1D(iz-1)+rho1D(iz-1)*dz1D(iz))/(dz1D(iz-1)+dz1D(iz)) |
|---|
| 256 | enddo |
|---|
| 257 | rhoz1D(kte+1)=rho1D(kte) |
|---|
| 258 | if(flag_bep)then |
|---|
| 259 | do iz=kts,kte |
|---|
| 260 | a_e1D(iz)=a_e_bep(ix,iz,iy) |
|---|
| 261 | b_e1D(iz)=b_e_bep(ix,iz,iy) |
|---|
| 262 | dlg1D(iz)=(z1D(iz)+z1D(iz+1))/2.*(1.-frc_urb2d(ix,iy))+dlg_bep(ix,iz,iy)*frc_urb2d(ix,iy) |
|---|
| 263 | dl_u1D(iz)=dl_u_bep(ix,iz,iy) |
|---|
| 264 | if((1.-frc_urb2d(ix,iy)).lt.1.)dl_u1D(iz)=dl_u1D(iz)/frc_urb2d(ix,iy) |
|---|
| 265 | vl1D(iz)=vl_bep(ix,iz,iy) |
|---|
| 266 | sf1D(iz)=sf_bep(ix,iz,iy) |
|---|
| 267 | enddo |
|---|
| 268 | ufrac_int=frc_urb2d(ix,iy) |
|---|
| 269 | sf1D(kte+1)=sf_bep(ix,1,iy) |
|---|
| 270 | else |
|---|
| 271 | do iz=kts,kte |
|---|
| 272 | a_e1D(iz)=0. |
|---|
| 273 | b_e1D(iz)=0. |
|---|
| 274 | dlg1D(iz)=(z1D(iz)+z1D(iz+1))/2. |
|---|
| 275 | dl_u1D(iz)=0. |
|---|
| 276 | vl1D(iz)=1. |
|---|
| 277 | sf1D(iz)=1. |
|---|
| 278 | enddo |
|---|
| 279 | ufrac_int=0. |
|---|
| 280 | sf1D(kte+1)=1. |
|---|
| 281 | endif |
|---|
| 282 | ! call the routine that will solve the turbulence in 1D for tke |
|---|
| 283 | |
|---|
| 284 | call boulac1D(ix,iy,ufrac_int,kms,kme,kts,kte,dz1d,z1D,dt,u1D,v1D,th1D,rho1D,rhoz1D,q1D,th01D,& |
|---|
| 285 | tke1D,ustar(ix,iy),hfx(ix,iy),qfx(ix,iy),cp,g, & |
|---|
| 286 | a_e1D,b_e1D, & |
|---|
| 287 | dlg1D,dl_u1D,sf1D,vl1D,dlk1D,dls1D,exch1D,sh1D,bu1D) |
|---|
| 288 | |
|---|
| 289 | call pbl_height(kms,kme,kts,kte,dz1d,z1d,th1D,q1D,pblh(ix,iy)) |
|---|
| 290 | |
|---|
| 291 | |
|---|
| 292 | ! store turbulent exchange coefficients, TKE, and other variables |
|---|
| 293 | |
|---|
| 294 | do iz= kts,kte |
|---|
| 295 | a_e(ix,iz,iy)=a_e1D(iz) |
|---|
| 296 | b_e(ix,iz,iy)=b_e1D(iz) |
|---|
| 297 | if(flag_bep)then |
|---|
| 298 | dlg_bep(ix,iz,iy)=dlg1D(iz) |
|---|
| 299 | endif |
|---|
| 300 | tke(ix,iz,iy)=tke1D(iz) |
|---|
| 301 | dlk(ix,iz,iy)=dlk1D(iz) |
|---|
| 302 | sh(ix,iz,iy)=sh1D(iz) |
|---|
| 303 | bu(ix,iz,iy)=bu1D(iz) |
|---|
| 304 | exch_h(ix,iz,iy)=exch1D(iz) |
|---|
| 305 | exch_m(ix,iz,iy)=exch1D(iz) |
|---|
| 306 | enddo |
|---|
| 307 | |
|---|
| 308 | if(idiff.ne.1)then |
|---|
| 309 | |
|---|
| 310 | ! estimate the tendencies |
|---|
| 311 | |
|---|
| 312 | if(flag_bep)then |
|---|
| 313 | do iz=kts,kte |
|---|
| 314 | a_t1D(iz)=a_t_bep(ix,iz,iy) |
|---|
| 315 | b_t1D(iz)=b_t_bep(ix,iz,iy) |
|---|
| 316 | a_u1D(iz)=a_u_bep(ix,iz,iy) |
|---|
| 317 | b_u1D(iz)=b_u_bep(ix,iz,iy) |
|---|
| 318 | a_v1D(iz)=a_v_bep(ix,iz,iy) |
|---|
| 319 | b_v1D(iz)=b_v_bep(ix,iz,iy) |
|---|
| 320 | a_q1D(iz)=a_q_bep(ix,iz,iy) |
|---|
| 321 | b_q1D(iz)=b_q_bep(ix,iz,iy) |
|---|
| 322 | enddo |
|---|
| 323 | else |
|---|
| 324 | do iz=kts,kte |
|---|
| 325 | a_t1D(iz)=0. |
|---|
| 326 | b_t1D(iz)=0. |
|---|
| 327 | a_u1D(iz)=0. |
|---|
| 328 | b_u1D(iz)=0. |
|---|
| 329 | a_v1D(iz)=0. |
|---|
| 330 | b_v1D(iz)=0. |
|---|
| 331 | a_q1D(iz)=0. |
|---|
| 332 | b_q1D(iz)=0. |
|---|
| 333 | enddo |
|---|
| 334 | b_t1D(1)=hfx(ix,iy)/dz1D(1)/rho1D(1)/cp |
|---|
| 335 | b_q1D(1)=qfx(ix,iy)/dz1D(1)/rho1D(1) |
|---|
| 336 | a_u1D(1)=(-ustar(ix,iy)*ustar(ix,iy)/dz1D(1)/((u1D(1)**2.+v1D(1)**2.)**.5)) |
|---|
| 337 | a_v1D(1)=(-ustar(ix,iy)*ustar(ix,iy)/dz1D(1)/((u1D(1)**2.+v1D(1)**2.)**.5)) |
|---|
| 338 | endif |
|---|
| 339 | |
|---|
| 340 | ! solve diffusion equation for momentum x component |
|---|
| 341 | call diff(kms,kme,kts,kte,1,1,dt,u1D,rho1D,rhoz1D,exch1D,a_u1D,b_u1D,sf1D,vl1D,dz1D,wu1D) |
|---|
| 342 | |
|---|
| 343 | ! solve diffusion equation for momentum y component |
|---|
| 344 | call diff(kms,kme,kts,kte,1,1,dt,v1D,rho1D,rhoz1D,exch1D,a_v1D,b_v1D,sf1D,vl1D,dz1D,wv1D) |
|---|
| 345 | |
|---|
| 346 | ! solve diffusion equation for potential temperature |
|---|
| 347 | call diff(kms,kme,kts,kte,1,1,dt,th1D,rho1D,rhoz1D,exch1D,a_t1D,b_t1D,sf1D,vl1D,dz1D,wt1D) |
|---|
| 348 | |
|---|
| 349 | ! solve diffusion equation for water vapor mixing ratio |
|---|
| 350 | call diff(kms,kme,kts,kte,1,1,dt,q1D,rho1D,rhoz1D,exch1D,a_q1D,b_q1D,sf1D,vl1D,dz1D,wq1D) |
|---|
| 351 | |
|---|
| 352 | ! compute the tendencies |
|---|
| 353 | |
|---|
| 354 | do iz= kts,kte |
|---|
| 355 | rthblten(ix,iz,iy)=rthblten(ix,iz,iy)+(th1D(iz)-th_phy(ix,iz,iy))/dt |
|---|
| 356 | rqvblten(ix,iz,iy)=rqvblten(ix,iz,iy)+(q1D(iz)-qv_curr(ix,iz,iy))/dt |
|---|
| 357 | rublten(ix,iz,iy)=rublten(ix,iz,iy)+(u1D(iz)-u_phy(ix,iz,iy))/dt |
|---|
| 358 | rvblten(ix,iz,iy)=rvblten(ix,iz,iy)+(v1D(iz)-v_phy(ix,iz,iy))/dt |
|---|
| 359 | wu(ix,iz,iy)=wu1D(iz) |
|---|
| 360 | wv(ix,iz,iy)=wv1D(iz) |
|---|
| 361 | wt(ix,iz,iy)=wt1D(iz) |
|---|
| 362 | wq(ix,iz,iy)=wq1D(iz) |
|---|
| 363 | enddo |
|---|
| 364 | endif |
|---|
| 365 | |
|---|
| 366 | enddo ! iy |
|---|
| 367 | enddo ! ix |
|---|
| 368 | |
|---|
| 369 | |
|---|
| 370 | time_tke=time_tke+dt |
|---|
| 371 | |
|---|
| 372 | |
|---|
| 373 | return |
|---|
| 374 | end subroutine boulac |
|---|
| 375 | |
|---|
| 376 | |
|---|
| 377 | ! ===6=8===============================================================72 |
|---|
| 378 | |
|---|
| 379 | ! ===6=8===============================================================72 |
|---|
| 380 | |
|---|
| 381 | subroutine boulac1D(ix,iy,ufrac_int,kms,kme,kts,kte,dz,z,dt,u,v,th,rho,rhoz,qa,th0,te, & |
|---|
| 382 | ustar,hfx,qfx,cp,g, & |
|---|
| 383 | a_e,b_e, & |
|---|
| 384 | dlg,dl_u,sf,vl,dlk,dls,exch,sh,bu) |
|---|
| 385 | |
|---|
| 386 | ! ---------------------------------------------------------------------- |
|---|
| 387 | ! 1D resolution of TKE following Bougeault and Lacarrere |
|---|
| 388 | ! ---------------------------------------------------------------------- |
|---|
| 389 | |
|---|
| 390 | implicit none |
|---|
| 391 | |
|---|
| 392 | integer iz,ix,iy |
|---|
| 393 | |
|---|
| 394 | ! ---------------------------------------------------------------------- |
|---|
| 395 | ! INPUT: |
|---|
| 396 | ! ---------------------------------------------------------------------- |
|---|
| 397 | |
|---|
| 398 | |
|---|
| 399 | integer kms,kme,kts,kte |
|---|
| 400 | real z(kms:kme) ! Altitude above the ground of the cell interfaces. |
|---|
| 401 | real dz(kms:kme) ! vertical resolution |
|---|
| 402 | real u(kms:kme) ! Wind speed in the x direction |
|---|
| 403 | real v(kms:kme) ! Wind speed in the y direction |
|---|
| 404 | real th(kms:kme) ! Potential temperature |
|---|
| 405 | real rho(kms:kme) ! Air density |
|---|
| 406 | real g ! gravity |
|---|
| 407 | real cp ! |
|---|
| 408 | real te(kms:kme) ! turbulent kinetic energy |
|---|
| 409 | real qa(kms:kme) ! air humidity |
|---|
| 410 | real th0(kms:kme) ! Reference potential temperature |
|---|
| 411 | real dt ! Time step |
|---|
| 412 | real ustar ! ustar |
|---|
| 413 | real hfx ! sensbile heat flux |
|---|
| 414 | real qfx ! kinematic latent heat flux |
|---|
| 415 | real sf(kms:kme) ! surface of the urban grid cells |
|---|
| 416 | real vl(kms:kme) ! volume of the urban grid cells |
|---|
| 417 | real a_e(kms:kme) ! Implicit component of the TKE sources or sinks |
|---|
| 418 | real b_e(kms:kme) ! Explicit component of the TKE sources or sinks |
|---|
| 419 | real dlg(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper). |
|---|
| 420 | real dl_u(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper) |
|---|
| 421 | real ufrac_int ! urban fraction |
|---|
| 422 | ! local variables not needed in principle, but that can be used to estimate the budget and turbulent fluxes |
|---|
| 423 | |
|---|
| 424 | real we(kms:kme),dwe(kms:kme) |
|---|
| 425 | |
|---|
| 426 | ! local variables |
|---|
| 427 | real sh(kms:kme) ! shear term in TKE eqn. |
|---|
| 428 | real bu(kms:kme) ! buoyancy term in TKE eqn. |
|---|
| 429 | real td(kms:kme) ! dissipation term in TKE eqn. |
|---|
| 430 | real exch(kms:kme) ! turbulent diffusion coefficients (defined at the faces) |
|---|
| 431 | real dls(kms:kme) ! dissipation length scale |
|---|
| 432 | real dlk(kms:kme) ! length scale used to estimate exch |
|---|
| 433 | real dlu(kms:kme) ! l_up |
|---|
| 434 | real dld(kms:kme) ! l_down |
|---|
| 435 | real rhoz(kms:kme) !air density at the faces of the cell |
|---|
| 436 | real tstar ! derived from hfx and ustar |
|---|
| 437 | real beta |
|---|
| 438 | real summ1,summ2,summ3,summ4 |
|---|
| 439 | ! interpolate air density at the faces |
|---|
| 440 | |
|---|
| 441 | |
|---|
| 442 | |
|---|
| 443 | ! estimation of tstar |
|---|
| 444 | |
|---|
| 445 | tstar=-hfx/rho(1)/cp/ustar |
|---|
| 446 | |
|---|
| 447 | ! first compute values of dlu and dld (length scales up and down). |
|---|
| 448 | |
|---|
| 449 | call dissip_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,te,dlu,dld,th,th0) |
|---|
| 450 | |
|---|
| 451 | !then average them to obtain dls and dlk (length scales for dissipation and eddy coefficients) |
|---|
| 452 | |
|---|
| 453 | call length_bougeault(ix,iy,kms,kme,kts,kte,dld,dlu,dlg,dl_u,dls,dlk) |
|---|
| 454 | |
|---|
| 455 | ! compute the turbulent diffusion coefficients exch |
|---|
| 456 | |
|---|
| 457 | call cdtur_bougeault(ix,iy,kms,kme,kts,kte,te,z,dz,exch,dlk) |
|---|
| 458 | |
|---|
| 459 | ! compute source and sink terms in the TKE equation (shear, buoyancy and dissipation) |
|---|
| 460 | |
|---|
| 461 | call tke_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,vl,u,v,th,te,th0,ustar,tstar,exch,dls,td,sh,bu,b_e,a_e,sf,ufrac_int) |
|---|
| 462 | |
|---|
| 463 | ! solve for tke |
|---|
| 464 | |
|---|
| 465 | call diff(kms,kme,kts,kte,1,1,dt,te,rho,rhoz,exch,a_e,b_e,sf,vl,dz,we) |
|---|
| 466 | |
|---|
| 467 | ! avoid negative values for tke |
|---|
| 468 | |
|---|
| 469 | do iz=kts,kte |
|---|
| 470 | if(te(iz).lt.temin) te(iz)=temin |
|---|
| 471 | enddo |
|---|
| 472 | |
|---|
| 473 | return |
|---|
| 474 | end subroutine boulac1d |
|---|
| 475 | ! |
|---|
| 476 | ! ===6=8===============================================================72 |
|---|
| 477 | |
|---|
| 478 | ! ===6=8===============================================================72 |
|---|
| 479 | subroutine dissip_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,te,dlu,dld,th,th0) |
|---|
| 480 | ! compute the length scales up and down |
|---|
| 481 | implicit none |
|---|
| 482 | integer kms,kme,kts,kte,iz,izz,ix,iy |
|---|
| 483 | real dzt,zup,beta,zup_inf,bbb,tl,zdo,zdo_sup,zzz,g |
|---|
| 484 | real te(kms:kme),dlu(kms:kme),dld(kms:kme),dz(kms:kme) |
|---|
| 485 | real z(kms:kme),th(kms:kme),th0(kms:kme) |
|---|
| 486 | |
|---|
| 487 | do iz=kts,kte |
|---|
| 488 | zup=0. |
|---|
| 489 | dlu(iz)=z(kte+1)-z(iz)-dz(iz)/2. |
|---|
| 490 | zzz=0. |
|---|
| 491 | zup_inf=0. |
|---|
| 492 | beta=g/th0(iz) !Buoyancy coefficient |
|---|
| 493 | do izz=iz,kte-1 |
|---|
| 494 | dzt=(dz(izz+1)+dz(izz))/2. |
|---|
| 495 | zup=zup-beta*th(iz)*dzt |
|---|
| 496 | zup=zup+beta*(th(izz+1)+th(izz))*dzt/2. |
|---|
| 497 | zzz=zzz+dzt |
|---|
| 498 | if(te(iz).lt.zup.and.te(iz).ge.zup_inf)then |
|---|
| 499 | bbb=(th(izz+1)-th(izz))/dzt |
|---|
| 500 | if(bbb.ne.0)then |
|---|
| 501 | tl=(-beta*(th(izz)-th(iz))+sqrt( max(0.,(beta*(th(izz)-th(iz)))**2.+2.*bbb*beta*(te(iz)-zup_inf))))/bbb/beta |
|---|
| 502 | else |
|---|
| 503 | if(th(izz).ne.th(iz))then |
|---|
| 504 | tl=(te(iz)-zup_inf)/(beta*(th(izz)-th(iz))) |
|---|
| 505 | else |
|---|
| 506 | tl=0. |
|---|
| 507 | endif |
|---|
| 508 | endif |
|---|
| 509 | dlu(iz)=zzz-dzt+tl |
|---|
| 510 | endif |
|---|
| 511 | zup_inf=zup |
|---|
| 512 | enddo |
|---|
| 513 | |
|---|
| 514 | zdo=0. |
|---|
| 515 | zdo_sup=0. |
|---|
| 516 | dld(iz)=z(iz)+dz(iz)/2. |
|---|
| 517 | zzz=0. |
|---|
| 518 | do izz=iz,kts+1,-1 |
|---|
| 519 | dzt=(dz(izz-1)+dz(izz))/2. |
|---|
| 520 | zdo=zdo+beta*th(iz)*dzt |
|---|
| 521 | zdo=zdo-beta*(th(izz-1)+th(izz))*dzt/2. |
|---|
| 522 | zzz=zzz+dzt |
|---|
| 523 | if(te(iz).lt.zdo.and.te(iz).ge.zdo_sup)then |
|---|
| 524 | bbb=(th(izz)-th(izz-1))/dzt |
|---|
| 525 | if(bbb.ne.0.)then |
|---|
| 526 | tl=(beta*(th(izz)-th(iz))+sqrt( max(0.,(beta*(th(izz)-th(iz)))**2.+2.*bbb*beta*(te(iz)-zdo_sup))))/bbb/beta |
|---|
| 527 | else |
|---|
| 528 | if(th(izz).ne.th(iz))then |
|---|
| 529 | tl=(te(iz)-zdo_sup)/(beta*(th(izz)-th(iz))) |
|---|
| 530 | else |
|---|
| 531 | tl=0. |
|---|
| 532 | endif |
|---|
| 533 | endif |
|---|
| 534 | |
|---|
| 535 | dld(iz)=zzz-dzt+tl |
|---|
| 536 | endif |
|---|
| 537 | zdo_sup=zdo |
|---|
| 538 | enddo |
|---|
| 539 | enddo |
|---|
| 540 | |
|---|
| 541 | |
|---|
| 542 | end subroutine dissip_bougeault |
|---|
| 543 | ! |
|---|
| 544 | ! ===6=8===============================================================72 |
|---|
| 545 | ! ===6=8===============================================================72 |
|---|
| 546 | subroutine length_bougeault(ix,iy,kms,kme,kts,kte,dld,dlu,dlg,dl_u,dls,dlk) |
|---|
| 547 | ! compute the length scales for dissipation and turbulent coefficients |
|---|
| 548 | implicit none |
|---|
| 549 | integer kms,kme,kts,kte,iz,ix,iy |
|---|
| 550 | real dlu(kms:kme),dld(kms:kme),dl_u(kms:kme) |
|---|
| 551 | real dls(kms:kme),dlk(kms:kme),dlg(kms:kme) |
|---|
| 552 | |
|---|
| 553 | do iz=kts,kte |
|---|
| 554 | dld(iz)=min(dld(iz),dlg(iz)) |
|---|
| 555 | dls(iz)=sqrt(dlu(iz)*dld(iz)) |
|---|
| 556 | dlk(iz)=min(dlu(iz),dld(iz)) |
|---|
| 557 | |
|---|
| 558 | if(dl_u(iz).gt.0.)then |
|---|
| 559 | dls(iz)=1./(1./dls(iz)+1./dl_u(iz)) |
|---|
| 560 | dlk(iz)=1./(1./dlk(iz)+1./dl_u(iz)) |
|---|
| 561 | endif |
|---|
| 562 | enddo |
|---|
| 563 | |
|---|
| 564 | return |
|---|
| 565 | end subroutine length_bougeault |
|---|
| 566 | ! |
|---|
| 567 | |
|---|
| 568 | ! ===6=8===============================================================72 |
|---|
| 569 | ! ===6=8===============================================================72 |
|---|
| 570 | |
|---|
| 571 | subroutine cdtur_bougeault(ix,iy,kms,kme,kts,kte,te,z,dz,exch,dlk) |
|---|
| 572 | ! compute turbulent coefficients |
|---|
| 573 | implicit none |
|---|
| 574 | integer iz,kms,kme,kts,kte,ix,iy |
|---|
| 575 | real te_m,dlk_m |
|---|
| 576 | real te(kms:kme),exch(kms:kme) |
|---|
| 577 | real dz(kms:kme),z(kms:kme) |
|---|
| 578 | real dlk(kms:kme) |
|---|
| 579 | real fact |
|---|
| 580 | |
|---|
| 581 | exch(kts)=0. |
|---|
| 582 | |
|---|
| 583 | ! do iz=2,nz-1 |
|---|
| 584 | do iz=kts+1,kte |
|---|
| 585 | te_m=(te(iz-1)*dz(iz)+te(iz)*dz(iz-1))/(dz(iz)+dz(iz-1)) |
|---|
| 586 | dlk_m=(dlk(iz-1)*dz(iz)+dlk(iz)*dz(iz-1))/(dz(iz)+dz(iz-1)) |
|---|
| 587 | exch(iz)=ck_b*dlk_m*sqrt(te_m) |
|---|
| 588 | ! exch(iz)=max(exch(iz),0.0001) |
|---|
| 589 | exch(iz)=max(exch(iz),0.1) |
|---|
| 590 | enddo |
|---|
| 591 | |
|---|
| 592 | exch(kte+1)=0.1 |
|---|
| 593 | |
|---|
| 594 | return |
|---|
| 595 | end subroutine cdtur_bougeault |
|---|
| 596 | |
|---|
| 597 | |
|---|
| 598 | ! ===6=8===============================================================72 |
|---|
| 599 | ! ===6=8===============================================================72 |
|---|
| 600 | |
|---|
| 601 | subroutine diff(kms,kme,kts,kte,iz1,izf,dt,co,rho,rhoz,cd,aa,bb,sf,vl,dz,fc) |
|---|
| 602 | |
|---|
| 603 | |
|---|
| 604 | !------------------------------------------------------------------------ |
|---|
| 605 | ! Calculation of the diffusion in 1D |
|---|
| 606 | !------------------------------------------------------------------------ |
|---|
| 607 | ! - Input: |
|---|
| 608 | ! nz : number of points |
|---|
| 609 | ! iz1 : first calculated point |
|---|
| 610 | ! co : concentration of the variable of interest |
|---|
| 611 | ! dz : vertical levels |
|---|
| 612 | ! cd : diffusion coefficients |
|---|
| 613 | ! dtext : external time step |
|---|
| 614 | ! rho : density of the air at the center |
|---|
| 615 | ! rhoz : density of the air at the face |
|---|
| 616 | ! itest : if itest eq 1 then update co, else store in a flux array |
|---|
| 617 | ! - Output: |
|---|
| 618 | ! co :concentration of the variable of interest |
|---|
| 619 | |
|---|
| 620 | ! - Internal: |
|---|
| 621 | ! cddz : constant terms in the equations |
|---|
| 622 | ! dt : diffusion time step |
|---|
| 623 | ! nt : number of the diffusion time steps |
|---|
| 624 | ! cstab : ratio of the stability condition for the time step |
|---|
| 625 | !--------------------------------------------------------------------- |
|---|
| 626 | |
|---|
| 627 | implicit none |
|---|
| 628 | integer iz,iz1,izf |
|---|
| 629 | integer kms,kme,kts,kte |
|---|
| 630 | real dt,dzv |
|---|
| 631 | real co(kms:kme),cd(kms:kme),dz(kms:kme) |
|---|
| 632 | real rho(kms:kme),rhoz(kms:kme) |
|---|
| 633 | real cddz(kms:kme+1),fc(kms:kme),df(kms:kme) |
|---|
| 634 | real a(kms:kme,3),c(kms:kme) |
|---|
| 635 | real sf(kms:kme),vl(kms:kme) |
|---|
| 636 | real aa(kms:kme),bb(kms:kme) |
|---|
| 637 | |
|---|
| 638 | |
|---|
| 639 | ! Compute cddz=2*cd/dz |
|---|
| 640 | |
|---|
| 641 | cddz(kts)=sf(kts)*rhoz(kts)*cd(kts)/dz(kts) |
|---|
| 642 | do iz=kts+1,kte |
|---|
| 643 | cddz(iz)=2.*sf(iz)*rhoz(iz)*cd(iz)/(dz(iz)+dz(iz-1)) |
|---|
| 644 | enddo |
|---|
| 645 | cddz(kte+1)=sf(kte+1)*rhoz(kte+1)*cd(kte+1)/dz(kte) |
|---|
| 646 | |
|---|
| 647 | do iz=kts,iz1-1 |
|---|
| 648 | a(iz,1)=0. |
|---|
| 649 | a(iz,2)=1. |
|---|
| 650 | a(iz,3)=0. |
|---|
| 651 | c(iz)=co(iz) |
|---|
| 652 | enddo |
|---|
| 653 | |
|---|
| 654 | do iz=iz1,kte-izf |
|---|
| 655 | dzv=vl(iz)*dz(iz) |
|---|
| 656 | a(iz,1)=-cddz(iz)*dt/dzv/rho(iz) |
|---|
| 657 | a(iz,2)=1+dt*(cddz(iz)+cddz(iz+1))/dzv/rho(iz)-aa(iz)*dt |
|---|
| 658 | a(iz,3)=-cddz(iz+1)*dt/dzv/rho(iz) |
|---|
| 659 | c(iz)=co(iz)+bb(iz)*dt |
|---|
| 660 | enddo |
|---|
| 661 | |
|---|
| 662 | do iz=kte-(izf-1),kte |
|---|
| 663 | a(iz,1)=0. |
|---|
| 664 | a(iz,2)=1 |
|---|
| 665 | a(iz,3)=0. |
|---|
| 666 | c(iz)=co(iz) |
|---|
| 667 | enddo |
|---|
| 668 | |
|---|
| 669 | call invert (kms,kme,kts,kte,a,c,co) |
|---|
| 670 | |
|---|
| 671 | do iz=kts,iz1 |
|---|
| 672 | fc(iz)=0. |
|---|
| 673 | enddo |
|---|
| 674 | |
|---|
| 675 | do iz=iz1+1,kte |
|---|
| 676 | fc(iz)=-(cddz(iz)*(co(iz)-co(iz-1)))/rho(iz) |
|---|
| 677 | enddo |
|---|
| 678 | |
|---|
| 679 | ! do iz=1,iz1 |
|---|
| 680 | ! df(iz)=0. |
|---|
| 681 | ! enddo |
|---|
| 682 | ! |
|---|
| 683 | ! do iz=iz1+1,nz-izf |
|---|
| 684 | ! dzv=vl(iz)*dz(iz) |
|---|
| 685 | ! df(iz)=+(co(iz-1)*cddz(iz)-co(iz)*(cddz(iz)+cddz(iz+1))+co(iz+1)*cddz(iz+1))/dzv/rho(iz) |
|---|
| 686 | ! enddo |
|---|
| 687 | ! |
|---|
| 688 | ! do iz=nz-izf,nz |
|---|
| 689 | ! df(iz)=0. |
|---|
| 690 | ! enddo |
|---|
| 691 | |
|---|
| 692 | return |
|---|
| 693 | end subroutine diff |
|---|
| 694 | |
|---|
| 695 | ! ===6=8===============================================================72 |
|---|
| 696 | ! ===6=8===============================================================72 |
|---|
| 697 | |
|---|
| 698 | subroutine buoy(ix,iy,g,kms,kme,kts,kte,th,th0,exch,dz,bu,ustar,tstar,ufrac_int) |
|---|
| 699 | ! compute buoyancy term |
|---|
| 700 | implicit none |
|---|
| 701 | integer kms,kme,kts,kte,iz,ix,iy |
|---|
| 702 | real dtdz1,dtdz2,cdm,dtmdz,g |
|---|
| 703 | real th(kms:kme),exch(kms:kme),dz(kms:kme),bu(kms:kme) |
|---|
| 704 | real th0(kms:kme),ustar,tstar,ufrac_int |
|---|
| 705 | |
|---|
| 706 | ! bu(1)=-ustar*tstar*g/th0(1)*(1.-ufrac_int) |
|---|
| 707 | bu(kts)=0. |
|---|
| 708 | |
|---|
| 709 | |
|---|
| 710 | do iz=kts+1,kte-1 |
|---|
| 711 | dtdz1=2.*(th(iz)-th(iz-1))/(dz(iz-1)+dz(iz)) |
|---|
| 712 | dtdz2=2.*(th(iz+1)-th(iz))/(dz(iz+1)+dz(iz)) |
|---|
| 713 | dtmdz=0.5*(dtdz1+dtdz2) |
|---|
| 714 | cdm=0.5*(exch(iz+1)+exch(iz)) |
|---|
| 715 | bu(iz)=-cdm*dtmdz*g/th0(iz) |
|---|
| 716 | enddo |
|---|
| 717 | ! |
|---|
| 718 | |
|---|
| 719 | bu(kte)=0. |
|---|
| 720 | |
|---|
| 721 | return |
|---|
| 722 | end subroutine buoy |
|---|
| 723 | |
|---|
| 724 | ! ===6=8===============================================================72 |
|---|
| 725 | ! ===6=8===============================================================72 |
|---|
| 726 | |
|---|
| 727 | subroutine shear(ix,iy,g,kms,kme,kts,kte,u,v,cdua,dz,sh,ustar,tstar,th,ufrac_int) |
|---|
| 728 | ! compute shear term |
|---|
| 729 | implicit none |
|---|
| 730 | integer kms,kme,kts,kte,iz,ix,iy |
|---|
| 731 | real dudz1,dudz2,dvdz1,dvdz2,cdm,dumdz,ustar |
|---|
| 732 | real tstar,th,al,phim,g |
|---|
| 733 | real u(kms:kme),v(kms:kme),cdua(kms:kme),dz(kms:kme),sh(kms:kme) |
|---|
| 734 | real u1,u2,v1,v2,ufrac_int |
|---|
| 735 | |
|---|
| 736 | ! al=vk*g*tstar/(th*(ustar**2.)) |
|---|
| 737 | ! if(al.ge.0.)phim=1.+4.7*dz(1)/2.*al |
|---|
| 738 | ! if(al.lt.0.)phim=(1.-15*dz(1)/2.*al)**(-0.25) |
|---|
| 739 | ! |
|---|
| 740 | ! sh(1)=(ustar**3.)/vk/(dz(1)/2.)*(1.-ufrac_int) |
|---|
| 741 | sh(kts)=0. |
|---|
| 742 | do iz=kts+1,kte-1 |
|---|
| 743 | u2=(dz(iz+1)*u(iz)+dz(iz)*u(iz+1))/(dz(iz)+dz(iz+1)) |
|---|
| 744 | u1=(dz(iz)*u(iz-1)+dz(iz-1)*u(iz))/(dz(iz-1)+dz(iz)) |
|---|
| 745 | v2=(dz(iz+1)*v(iz)+dz(iz)*v(iz+1))/(dz(iz)+dz(iz+1)) |
|---|
| 746 | v1=(dz(iz)*v(iz-1)+dz(iz-1)*v(iz))/(dz(iz-1)+dz(iz)) |
|---|
| 747 | cdm=0.5*(cdua(iz)+cdua(iz+1)) |
|---|
| 748 | dumdz=((u2-u1)/dz(iz))**2.+((v2-v1)/dz(iz))**2. |
|---|
| 749 | sh(iz)=cdm*dumdz |
|---|
| 750 | enddo |
|---|
| 751 | |
|---|
| 752 | !!!!!!! |
|---|
| 753 | sh(kte)=0. |
|---|
| 754 | |
|---|
| 755 | return |
|---|
| 756 | end subroutine shear |
|---|
| 757 | |
|---|
| 758 | ! ===6=8===============================================================72 |
|---|
| 759 | ! ===6=8===============================================================72 |
|---|
| 760 | |
|---|
| 761 | subroutine invert(kms,kme,kts,kte,a,c,x) |
|---|
| 762 | |
|---|
| 763 | !ccccccccccccccccccccccccccccccc |
|---|
| 764 | ! Aim: Inversion and resolution of a tridiagonal matrix |
|---|
| 765 | ! A X = C |
|---|
| 766 | ! Input: |
|---|
| 767 | ! a(*,1) lower diagonal (Ai,i-1) |
|---|
| 768 | ! a(*,2) principal diagonal (Ai,i) |
|---|
| 769 | ! a(*,3) upper diagonal (Ai,i+1) |
|---|
| 770 | ! c |
|---|
| 771 | ! Output |
|---|
| 772 | ! x results |
|---|
| 773 | !ccccccccccccccccccccccccccccccc |
|---|
| 774 | |
|---|
| 775 | implicit none |
|---|
| 776 | integer in |
|---|
| 777 | integer kts,kte,kms,kme |
|---|
| 778 | real a(kms:kme,3),c(kms:kme),x(kms:kme) |
|---|
| 779 | |
|---|
| 780 | do in=kte-1,kts,-1 |
|---|
| 781 | c(in)=c(in)-a(in,3)*c(in+1)/a(in+1,2) |
|---|
| 782 | a(in,2)=a(in,2)-a(in,3)*a(in+1,1)/a(in+1,2) |
|---|
| 783 | enddo |
|---|
| 784 | |
|---|
| 785 | do in=kts+1,kte |
|---|
| 786 | c(in)=c(in)-a(in,1)*c(in-1)/a(in-1,2) |
|---|
| 787 | enddo |
|---|
| 788 | |
|---|
| 789 | do in=kts,kte |
|---|
| 790 | |
|---|
| 791 | x(in)=c(in)/a(in,2) |
|---|
| 792 | |
|---|
| 793 | enddo |
|---|
| 794 | |
|---|
| 795 | return |
|---|
| 796 | end subroutine invert |
|---|
| 797 | |
|---|
| 798 | ! ===6=8===============================================================72 |
|---|
| 799 | ! ===6=8===============================================================72 |
|---|
| 800 | |
|---|
| 801 | subroutine tke_bougeault(ix,iy,g,kms,kme,kts,kte,z,dz,vl,u,v,th,te,th0,ustar,tstar,exch, & |
|---|
| 802 | dls,td,sh,bu,b_e,a_e,sf,ufrac_int) |
|---|
| 803 | ! in this routine the shear, buoyancy and part of the dissipation terms |
|---|
| 804 | ! of the TKE equation are computed |
|---|
| 805 | |
|---|
| 806 | implicit none |
|---|
| 807 | integer kms,kme,kts,kte,iz,ix,iy |
|---|
| 808 | real g,ustar,tstar,ufrac_int |
|---|
| 809 | real z(kms:kme),dz(kms:kme),u(kms:kme),v(kms:kme),th(kms:kme),th0(kms:kme),te(kms:kme) |
|---|
| 810 | real exch(kms:kme),dls(kms:kme),td(kms:kme),sh(kms:kme),bu(kms:kme) |
|---|
| 811 | real a_e(kms:kme),b_e(kms:kme) |
|---|
| 812 | real vl(kms:kme),sf(kms:kme) |
|---|
| 813 | real te1,dl1 |
|---|
| 814 | |
|---|
| 815 | call shear(ix,iy,g,kms,kme,kts,kte,u,v,exch,dz,sh,ustar,tstar,th(kts),ufrac_int) |
|---|
| 816 | |
|---|
| 817 | call buoy(ix,iy,g,kms,kme,kts,kte,th,th0,exch,dz,bu,ustar,tstar,ufrac_int) |
|---|
| 818 | |
|---|
| 819 | do iz=kts,kte |
|---|
| 820 | te1=max(te(iz),temin) |
|---|
| 821 | dl1=max(dls(iz),0.1) |
|---|
| 822 | td(iz)=-ceps_b*sqrt(te1)/dl1 |
|---|
| 823 | sh(iz)=sh(iz)*sf(iz) |
|---|
| 824 | bu(iz)=bu(iz)*sf(iz) |
|---|
| 825 | a_e(iz)=a_e(iz)+td(iz) |
|---|
| 826 | b_e(iz)=b_e(iz)+sh(iz)+bu(iz) |
|---|
| 827 | enddo |
|---|
| 828 | |
|---|
| 829 | |
|---|
| 830 | return |
|---|
| 831 | end subroutine tke_bougeault |
|---|
| 832 | !###################################################################### |
|---|
| 833 | subroutine pbl_height(kms,kme,kts,kte,dz,z,th,q,pblh) |
|---|
| 834 | |
|---|
| 835 | ! this routine computes the PBL height |
|---|
| 836 | ! with an approach similar to MYNN |
|---|
| 837 | implicit none |
|---|
| 838 | integer kms,kme,kts,kte,iz |
|---|
| 839 | real z(kms:kme),dz(kms:kme),th(kms:kme),q(kms:kme) |
|---|
| 840 | real pblh |
|---|
| 841 | !Local |
|---|
| 842 | real thv(kms:kme),zc(kms:kme) |
|---|
| 843 | real thsfc |
|---|
| 844 | |
|---|
| 845 | ! compute the height of the center of the grid cells |
|---|
| 846 | do iz=kts,kte |
|---|
| 847 | zc(iz)=z(iz)+dz(iz)/2. |
|---|
| 848 | enddo |
|---|
| 849 | |
|---|
| 850 | ! compute the virtual potential temperature |
|---|
| 851 | |
|---|
| 852 | do iz=kts,kte |
|---|
| 853 | thv(iz)=th(iz)*(1.+0.61*q(iz)) |
|---|
| 854 | enddo |
|---|
| 855 | ! now compute the PBL height |
|---|
| 856 | |
|---|
| 857 | pblh=0. |
|---|
| 858 | thsfc=thv(kts)+0.5 |
|---|
| 859 | do iz=kts+1,kte |
|---|
| 860 | if(pblh.eq.0.and.thv(iz).gt.thsfc)then |
|---|
| 861 | pblh=zc(iz-1)+(thsfc-thv(iz-1))/(max(0.01,thv(iz)-thv(iz-1)))*(zc(iz)-zc(iz-1)) |
|---|
| 862 | ! pblh=z(iz-1)+(thsfc-thv(iz-1))/(max(0.01,thv(iz)-thv(iz-1)))*(z(iz)-z(iz-1)) |
|---|
| 863 | endif |
|---|
| 864 | enddo |
|---|
| 865 | |
|---|
| 866 | return |
|---|
| 867 | end subroutine pbl_height |
|---|
| 868 | |
|---|
| 869 | |
|---|
| 870 | ! ===6=8===============================================================72 |
|---|
| 871 | |
|---|
| 872 | |
|---|
| 873 | ! ===6=8===============================================================72 |
|---|
| 874 | SUBROUTINE BOULACINIT(RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN, & |
|---|
| 875 | & TKE_PBL,EXCH_H,RESTART,ALLOWED_TO_READ, & |
|---|
| 876 | & IDS,IDE,JDS,JDE,KDS,KDE, & |
|---|
| 877 | & IMS,IME,JMS,JME,KMS,KME, & |
|---|
| 878 | & ITS,ITE,JTS,JTE,KTS,KTE ) |
|---|
| 879 | !----------------------------------------------------------------------- |
|---|
| 880 | IMPLICIT NONE |
|---|
| 881 | !----------------------------------------------------------------------- |
|---|
| 882 | LOGICAL,INTENT(IN) :: ALLOWED_TO_READ,RESTART |
|---|
| 883 | INTEGER,INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE, & |
|---|
| 884 | & IMS,IME,JMS,JME,KMS,KME, & |
|---|
| 885 | & ITS,ITE,JTS,JTE,KTS,KTE |
|---|
| 886 | |
|---|
| 887 | REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(OUT) :: EXCH_H, & |
|---|
| 888 | & RUBLTEN, & |
|---|
| 889 | & RVBLTEN, & |
|---|
| 890 | & RTHBLTEN, & |
|---|
| 891 | & RQVBLTEN, & |
|---|
| 892 | & TKE_PBL |
|---|
| 893 | INTEGER :: I,J,K,ITF,JTF,KTF |
|---|
| 894 | !----------------------------------------------------------------------- |
|---|
| 895 | !----------------------------------------------------------------------- |
|---|
| 896 | |
|---|
| 897 | JTF=MIN0(JTE,JDE-1) |
|---|
| 898 | KTF=MIN0(KTE,KDE-1) |
|---|
| 899 | ITF=MIN0(ITE,IDE-1) |
|---|
| 900 | |
|---|
| 901 | IF(.NOT.RESTART)THEN |
|---|
| 902 | DO J=JTS,JTF |
|---|
| 903 | DO K=KTS,KTF |
|---|
| 904 | DO I=ITS,ITF |
|---|
| 905 | TKE_PBL(I,K,J)=0.0001 |
|---|
| 906 | RUBLTEN(I,K,J)=0. |
|---|
| 907 | RVBLTEN(I,K,J)=0. |
|---|
| 908 | RTHBLTEN(I,K,J)=0. |
|---|
| 909 | RQVBLTEN(I,K,J)=0. |
|---|
| 910 | EXCH_H(I,K,J)=0. |
|---|
| 911 | ENDDO |
|---|
| 912 | ENDDO |
|---|
| 913 | ENDDO |
|---|
| 914 | ENDIF |
|---|
| 915 | |
|---|
| 916 | END SUBROUTINE BOULACINIT |
|---|
| 917 | |
|---|
| 918 | |
|---|
| 919 | |
|---|
| 920 | END MODULE module_bl_boulac |
|---|
| 921 | |
|---|