| 1 | ! |
|---|
| 2 | ! $Header$ |
|---|
| 3 | ! |
|---|
| 4 | SUBROUTINE yamada_c(ngrid,timestep,plev,play & |
|---|
| 5 | & ,pu,pv,pt,d_u,d_v,d_t,cd,q2,km,kn,kq,d_t_diss,ustar & |
|---|
| 6 | & ,iflag_pbl,okiophys) |
|---|
| 7 | use dimphy |
|---|
| 8 | IMPLICIT NONE |
|---|
| 9 | #include "iniprint.h" |
|---|
| 10 | #include "YOMCST.h" |
|---|
| 11 | !....................................................................... |
|---|
| 12 | !ym#include "dimensions.h" |
|---|
| 13 | !ym#include "dimphy.h" |
|---|
| 14 | !....................................................................... |
|---|
| 15 | ! |
|---|
| 16 | ! timestep : pas de temps |
|---|
| 17 | ! g : g |
|---|
| 18 | ! zlev : altitude a chaque niveau (interface inferieure de la couche |
|---|
| 19 | ! de meme indice) |
|---|
| 20 | ! zlay : altitude au centre de chaque couche |
|---|
| 21 | ! u,v : vitesse au centre de chaque couche |
|---|
| 22 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 23 | ! teta : temperature potentielle au centre de chaque couche |
|---|
| 24 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 25 | ! cd : cdrag |
|---|
| 26 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 27 | ! q2 : $q^2$ au bas de chaque couche |
|---|
| 28 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 29 | ! (en sortie : la valeur a la fin du pas de temps) |
|---|
| 30 | ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
|---|
| 31 | ! couche) |
|---|
| 32 | ! (en sortie : la valeur a la fin du pas de temps) |
|---|
| 33 | ! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
|---|
| 34 | ! (en sortie : la valeur a la fin du pas de temps) |
|---|
| 35 | ! |
|---|
| 36 | ! iflag_pbl doit valoir entre 6 et 9 |
|---|
| 37 | ! l=6, on prend systematiquement une longueur d'equilibre |
|---|
| 38 | ! iflag_pbl=6 : MY 2.0 |
|---|
| 39 | ! iflag_pbl=7 : MY 2.0.Fournier |
|---|
| 40 | ! iflag_pbl=8/9 : MY 2.5 |
|---|
| 41 | ! iflag_pbl=8 with special obsolete treatments for convergence |
|---|
| 42 | ! with Cmpi5 NPv3.1 simulations |
|---|
| 43 | ! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact |
|---|
| 44 | ! iflag_pbl=12 = 11 with vertical diffusion off q2 |
|---|
| 45 | ! |
|---|
| 46 | ! 2013/04/01 (FH hourdin@lmd.jussieu.fr) |
|---|
| 47 | ! Correction for very stable PBLs (iflag_pbl=10 and 11) |
|---|
| 48 | ! iflag_pbl=8 converges numerically with NPv3.1 |
|---|
| 49 | ! iflag_pbl=11 -> the model starts with NP from start files created by ce0l |
|---|
| 50 | ! -> the model can run with longer time-steps. |
|---|
| 51 | !....................................................................... |
|---|
| 52 | |
|---|
| 53 | REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t |
|---|
| 54 | REAL, DIMENSION(klon,klev) :: pu,pv,pt |
|---|
| 55 | REAL, DIMENSION(klon,klev) :: d_t_diss |
|---|
| 56 | INTEGER okiophys |
|---|
| 57 | |
|---|
| 58 | REAL timestep |
|---|
| 59 | real plev(klon,klev+1) |
|---|
| 60 | real play(klon,klev) |
|---|
| 61 | real ustar(klon) |
|---|
| 62 | real kmin,qmin,pblhmin(klon),coriol(klon) |
|---|
| 63 | REAL zlev(klon,klev+1) |
|---|
| 64 | REAL zlay(klon,klev) |
|---|
| 65 | REAL zu(klon,klev) |
|---|
| 66 | REAL zv(klon,klev) |
|---|
| 67 | REAL zt(klon,klev) |
|---|
| 68 | REAL teta(klon,klev) |
|---|
| 69 | REAL cd(klon) |
|---|
| 70 | REAL q2(klon,klev+1),qpre |
|---|
| 71 | REAL unsdz(klon,klev) |
|---|
| 72 | REAL unsdzdec(klon,klev+1) |
|---|
| 73 | |
|---|
| 74 | REAL km(klon,klev+1) |
|---|
| 75 | REAL kmpre(klon,klev+1),tmp2 |
|---|
| 76 | REAL mpre(klon,klev+1) |
|---|
| 77 | REAL kn(klon,klev+1) |
|---|
| 78 | REAL kq(klon,klev+1) |
|---|
| 79 | real ff(klon,klev+1),delta(klon,klev+1) |
|---|
| 80 | real aa(klon,klev+1),aa0,aa1 |
|---|
| 81 | integer iflag_pbl,ngrid |
|---|
| 82 | integer nlay,nlev |
|---|
| 83 | |
|---|
| 84 | logical first |
|---|
| 85 | integer ipas |
|---|
| 86 | save first,ipas |
|---|
| 87 | !FH/IM data first,ipas/.true.,0/ |
|---|
| 88 | data first,ipas/.false.,0/ |
|---|
| 89 | !$OMP THREADPRIVATE( first,ipas) |
|---|
| 90 | |
|---|
| 91 | integer ig,k |
|---|
| 92 | |
|---|
| 93 | |
|---|
| 94 | real ri,zrif,zalpha,zsm,zsn |
|---|
| 95 | real rif(klon,klev+1),sm(klon,klev+1),alpha(klon,klev) |
|---|
| 96 | |
|---|
| 97 | real m2(klon,klev+1),dz(klon,klev+1),zq,n2(klon,klev+1) |
|---|
| 98 | REAL, DIMENSION(klon,klev+1) :: km2,kn2,sqrtq |
|---|
| 99 | real dtetadz(klon,klev+1) |
|---|
| 100 | real m2cstat,mcstat,kmcstat |
|---|
| 101 | real l(klon,klev+1) |
|---|
| 102 | real leff(klon,klev+1) |
|---|
| 103 | real,allocatable,save :: l0(:) |
|---|
| 104 | !$OMP THREADPRIVATE(l0) |
|---|
| 105 | real sq(klon),sqz(klon),zz(klon,klev+1) |
|---|
| 106 | integer iter |
|---|
| 107 | |
|---|
| 108 | real ric,rifc,b1,kap |
|---|
| 109 | save ric,rifc,b1,kap |
|---|
| 110 | data ric,rifc,b1,kap/0.195,0.191,16.6,0.4/ |
|---|
| 111 | !$OMP THREADPRIVATE(ric,rifc,b1,kap) |
|---|
| 112 | real frif,falpha,fsm |
|---|
| 113 | real fl,zzz,zl0,zq2,zn2 |
|---|
| 114 | |
|---|
| 115 | real rino(klon,klev+1),smyam(klon,klev),styam(klon,klev) |
|---|
| 116 | real lyam(klon,klev),knyam(klon,klev) |
|---|
| 117 | real w2yam(klon,klev),t2yam(klon,klev) |
|---|
| 118 | logical,save :: firstcall=.true. |
|---|
| 119 | |
|---|
| 120 | REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt |
|---|
| 121 | REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt |
|---|
| 122 | REAL, DIMENSION(klon,klev) :: exner,masse |
|---|
| 123 | REAL, DIMENSION(klon,klev+1) :: masseb,q2old,q2neg |
|---|
| 124 | |
|---|
| 125 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 126 | frif(ri)=0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) |
|---|
| 127 | falpha(ri)=1.318*(0.2231-ri)/(0.2341-ri) |
|---|
| 128 | fsm(ri)=1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri)) |
|---|
| 129 | fl(zzz,zl0,zq2,zn2)= & |
|---|
| 130 | & max(min(l0(ig)*kap*zlev(ig,k)/(kap*zlev(ig,k)+l0(ig)) & |
|---|
| 131 | & ,0.5*sqrt(q2(ig,k))/sqrt(max(n2(ig,k),1.e-10))) ,1.) |
|---|
| 132 | |
|---|
| 133 | |
|---|
| 134 | if (firstcall) then |
|---|
| 135 | allocate(l0(klon)) |
|---|
| 136 | #ifdef IOPHYS |
|---|
| 137 | call iophys_ini |
|---|
| 138 | #endif |
|---|
| 139 | firstcall=.false. |
|---|
| 140 | endif |
|---|
| 141 | |
|---|
| 142 | |
|---|
| 143 | #ifdef IOPHYS |
|---|
| 144 | if (okiophys==1) then |
|---|
| 145 | call iophys_ecrit('q2i',klev,'q2 debut my','m2/s2',q2(:,1:klev)) |
|---|
| 146 | call iophys_ecrit('kmi',klev,'Kz debut my','m/s2',km(:,1:klev)) |
|---|
| 147 | endif |
|---|
| 148 | #endif |
|---|
| 149 | |
|---|
| 150 | nlay=klev |
|---|
| 151 | nlev=klev+1 |
|---|
| 152 | |
|---|
| 153 | !------------------------------------------------------------------------- |
|---|
| 154 | ! Computation of conservative source terms from the turbulent tendencies |
|---|
| 155 | !------------------------------------------------------------------------- |
|---|
| 156 | |
|---|
| 157 | |
|---|
| 158 | zu(:,:)=pu(:,:)+0.5*d_u(:,:) |
|---|
| 159 | zv(:,:)=pv(:,:)+0.5*d_v(:,:) |
|---|
| 160 | zt(:,:)=pt(:,:)+0.5*d_t(:,:) |
|---|
| 161 | do k=1,klev |
|---|
| 162 | exner(:,k)=(play(:,k)/plev(:,1))**RKAPPA |
|---|
| 163 | masse(:,k)=(plev(:,k)-plev(:,k+1))/RG |
|---|
| 164 | enddo |
|---|
| 165 | teta(:,:)=zt(:,:)/exner(:,:) |
|---|
| 166 | |
|---|
| 167 | ! Atmospheric mass at layer interfaces, where the TKE is computed |
|---|
| 168 | masseb(:,:)=0. |
|---|
| 169 | do k=1,klev |
|---|
| 170 | masseb(:,k)=masseb(:,k)+masse(:,k) |
|---|
| 171 | masseb(:,k+1)=masseb(:,k+1)+masse(:,k) |
|---|
| 172 | enddo |
|---|
| 173 | masseb(:,:)=0.5*masseb(:,:) |
|---|
| 174 | |
|---|
| 175 | |
|---|
| 176 | |
|---|
| 177 | zlev(:,1)=0. |
|---|
| 178 | zlay(:,1)=RCPD*teta(:,1)*(1.-exner(:,1)) |
|---|
| 179 | do k=1,klev-1 |
|---|
| 180 | zlay(:,k+1)=zlay(:,k)+0.5*RCPD*(teta(:,k)+teta(:,k+1))*(exner(:,k)-exner(:,k+1))/RG |
|---|
| 181 | zlev(:,k)=0.5*(zlay(:,k)+zlay(:,k+1)) ! PASBO |
|---|
| 182 | enddo |
|---|
| 183 | |
|---|
| 184 | fluxu(:,klev+1)=0. |
|---|
| 185 | fluxv(:,klev+1)=0. |
|---|
| 186 | fluxt(:,klev+1)=0. |
|---|
| 187 | |
|---|
| 188 | do k=klev,1,-1 |
|---|
| 189 | fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) |
|---|
| 190 | fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) |
|---|
| 191 | fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) ! Flux de theta |
|---|
| 192 | enddo |
|---|
| 193 | |
|---|
| 194 | dddu(:,1)=2*zu(:,1)*fluxu(:,1) |
|---|
| 195 | dddv(:,1)=2*zv(:,1)*fluxv(:,1) |
|---|
| 196 | dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) |
|---|
| 197 | |
|---|
| 198 | do k=2,klev |
|---|
| 199 | dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) |
|---|
| 200 | dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) |
|---|
| 201 | dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) |
|---|
| 202 | enddo |
|---|
| 203 | dddu(:,klev+1)=0. |
|---|
| 204 | dddv(:,klev+1)=0. |
|---|
| 205 | dddt(:,klev+1)=0. |
|---|
| 206 | |
|---|
| 207 | #ifdef IOPHYS |
|---|
| 208 | if (okiophys==1) then |
|---|
| 209 | call iophys_ecrit('zlay',klev,'Geop','m',zlay) |
|---|
| 210 | call iophys_ecrit('teta',klev,'teta','K',teta) |
|---|
| 211 | call iophys_ecrit('temp',klev,'temp','K',zt) |
|---|
| 212 | call iophys_ecrit('pt',klev,'temp','K',pt) |
|---|
| 213 | call iophys_ecrit('d_u',klev,'d_u','m/s2',d_u) |
|---|
| 214 | call iophys_ecrit('d_v',klev,'d_v','m/s2',d_v) |
|---|
| 215 | call iophys_ecrit('d_t',klev,'d_t','K/s',d_t) |
|---|
| 216 | call iophys_ecrit('exner',klev,'exner','',exner) |
|---|
| 217 | call iophys_ecrit('masse',klev,'masse','',masse) |
|---|
| 218 | call iophys_ecrit('masseb',klev,'masseb','',masseb) |
|---|
| 219 | call iophys_ecrit('Cm2',klev,'m2 conserv','m/s',(dddu(:,1:klev)+dddv(:,1:klev))/(masseb(:,1:klev)*timestep)) |
|---|
| 220 | call iophys_ecrit('Cn2',klev,'m2 conserv','m/s',(rcpd*dddt(:,1:klev)/masseb(:,1:klev))/timestep) |
|---|
| 221 | call iophys_ecrit('rifc',klev,'rif conservative','',rcpd*dddt(:,1:klev)/min(dddu(:,1:klev)+dddv(:,1:klev),-1.e-20)) |
|---|
| 222 | endif |
|---|
| 223 | #endif |
|---|
| 224 | |
|---|
| 225 | |
|---|
| 226 | |
|---|
| 227 | ipas=ipas+1 |
|---|
| 228 | |
|---|
| 229 | |
|---|
| 230 | !....................................................................... |
|---|
| 231 | ! les increments verticaux |
|---|
| 232 | !....................................................................... |
|---|
| 233 | ! |
|---|
| 234 | !!!!!! allerte !!!!!c |
|---|
| 235 | !!!!!! zlev n'est pas declare a nlev !!!!!c |
|---|
| 236 | !!!!!! ----> |
|---|
| 237 | DO ig=1,ngrid |
|---|
| 238 | zlev(ig,nlev)=zlay(ig,nlay) & |
|---|
| 239 | & +( zlay(ig,nlay) - zlev(ig,nlev-1) ) |
|---|
| 240 | ENDDO |
|---|
| 241 | !!!!!! <---- |
|---|
| 242 | !!!!!! allerte !!!!!c |
|---|
| 243 | ! |
|---|
| 244 | DO k=1,nlay |
|---|
| 245 | DO ig=1,ngrid |
|---|
| 246 | unsdz(ig,k)=1.E+0/(zlev(ig,k+1)-zlev(ig,k)) |
|---|
| 247 | ENDDO |
|---|
| 248 | ENDDO |
|---|
| 249 | DO ig=1,ngrid |
|---|
| 250 | unsdzdec(ig,1)=1.E+0/(zlay(ig,1)-zlev(ig,1)) |
|---|
| 251 | ENDDO |
|---|
| 252 | DO k=2,nlay |
|---|
| 253 | DO ig=1,ngrid |
|---|
| 254 | unsdzdec(ig,k)=1.E+0/(zlay(ig,k)-zlay(ig,k-1)) |
|---|
| 255 | ENDDO |
|---|
| 256 | ENDDO |
|---|
| 257 | DO ig=1,ngrid |
|---|
| 258 | unsdzdec(ig,nlay+1)=1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay)) |
|---|
| 259 | ENDDO |
|---|
| 260 | ! |
|---|
| 261 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 262 | ! Computing M^2, N^2, Richardson numbers, stability functions |
|---|
| 263 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 264 | |
|---|
| 265 | |
|---|
| 266 | do k=2,klev |
|---|
| 267 | do ig=1,ngrid |
|---|
| 268 | dz(ig,k)=zlay(ig,k)-zlay(ig,k-1) |
|---|
| 269 | m2(ig,k)=((zu(ig,k)-zu(ig,k-1))**2+(zv(ig,k)-zv(ig,k-1))**2)/(dz(ig,k)*dz(ig,k)) |
|---|
| 270 | dtetadz(ig,k)=(teta(ig,k)-teta(ig,k-1))/dz(ig,k) |
|---|
| 271 | n2(ig,k)=RG*2.*dtetadz(ig,k)/(teta(ig,k-1)+teta(ig,k)) |
|---|
| 272 | ! n2(ig,k)=0. |
|---|
| 273 | ri=n2(ig,k)/max(m2(ig,k),1.e-10) |
|---|
| 274 | if (ri.lt.ric) then |
|---|
| 275 | rif(ig,k)=frif(ri) |
|---|
| 276 | else |
|---|
| 277 | rif(ig,k)=rifc |
|---|
| 278 | endif |
|---|
| 279 | if(rif(ig,k).lt.0.16) then |
|---|
| 280 | alpha(ig,k)=falpha(rif(ig,k)) |
|---|
| 281 | sm(ig,k)=fsm(rif(ig,k)) |
|---|
| 282 | else |
|---|
| 283 | alpha(ig,k)=1.12 |
|---|
| 284 | sm(ig,k)=0.085 |
|---|
| 285 | endif |
|---|
| 286 | zz(ig,k)=b1*m2(ig,k)*(1.-rif(ig,k))*sm(ig,k) |
|---|
| 287 | enddo |
|---|
| 288 | enddo |
|---|
| 289 | |
|---|
| 290 | |
|---|
| 291 | |
|---|
| 292 | !==================================================================== |
|---|
| 293 | ! Computing the mixing length |
|---|
| 294 | !==================================================================== |
|---|
| 295 | |
|---|
| 296 | ! Mise a jour de l0 |
|---|
| 297 | if (iflag_pbl==8.or.iflag_pbl==10) then |
|---|
| 298 | |
|---|
| 299 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 300 | ! Iterative computation of l0 |
|---|
| 301 | ! This version is kept for iflag_pbl only for convergence |
|---|
| 302 | ! with NPv3.1 Cmip5 simulations |
|---|
| 303 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 304 | |
|---|
| 305 | do ig=1,ngrid |
|---|
| 306 | sq(ig)=1.e-10 |
|---|
| 307 | sqz(ig)=1.e-10 |
|---|
| 308 | enddo |
|---|
| 309 | do k=2,klev-1 |
|---|
| 310 | do ig=1,ngrid |
|---|
| 311 | zq=sqrt(q2(ig,k)) |
|---|
| 312 | sqz(ig)=sqz(ig)+zq*zlev(ig,k)*(zlay(ig,k)-zlay(ig,k-1)) |
|---|
| 313 | sq(ig)=sq(ig)+zq*(zlay(ig,k)-zlay(ig,k-1)) |
|---|
| 314 | enddo |
|---|
| 315 | enddo |
|---|
| 316 | do ig=1,ngrid |
|---|
| 317 | l0(ig)=0.2*sqz(ig)/sq(ig) |
|---|
| 318 | enddo |
|---|
| 319 | do k=2,klev |
|---|
| 320 | do ig=1,ngrid |
|---|
| 321 | l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
|---|
| 322 | enddo |
|---|
| 323 | enddo |
|---|
| 324 | ! print*,'L0 cas 8 ou 10 ',l0 |
|---|
| 325 | |
|---|
| 326 | else |
|---|
| 327 | |
|---|
| 328 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 329 | ! In all other case, the assymptotic mixing length l0 is imposed (100m) |
|---|
| 330 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 331 | |
|---|
| 332 | l0(:)=150. |
|---|
| 333 | do k=2,klev |
|---|
| 334 | do ig=1,ngrid |
|---|
| 335 | l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
|---|
| 336 | enddo |
|---|
| 337 | enddo |
|---|
| 338 | ! print*,'L0 cas autres ',l0 |
|---|
| 339 | |
|---|
| 340 | endif |
|---|
| 341 | |
|---|
| 342 | |
|---|
| 343 | #ifdef IOPHYS |
|---|
| 344 | if (okiophys==1) then |
|---|
| 345 | call iophys_ecrit('rif',klev,'Flux Richardson','m',rif(:,1:klev)) |
|---|
| 346 | call iophys_ecrit('m2',klev,'m2 ','m/s',m2(:,1:klev)) |
|---|
| 347 | call iophys_ecrit('Km2',klev,'m2 conserv','m/s',km(:,1:klev)*m2(:,1:klev)) |
|---|
| 348 | call iophys_ecrit('Km',klev,'Km','m2/s',km(:,1:klev)) |
|---|
| 349 | endif |
|---|
| 350 | #endif |
|---|
| 351 | |
|---|
| 352 | |
|---|
| 353 | IF (iflag_pbl<20) then |
|---|
| 354 | ! For diagnostics only |
|---|
| 355 | RETURN |
|---|
| 356 | |
|---|
| 357 | ELSE |
|---|
| 358 | |
|---|
| 359 | ! print*,'OK1' |
|---|
| 360 | |
|---|
| 361 | ! Evolution of TKE under source terms K M2 and K N2 |
|---|
| 362 | leff(:,:)=max(l(:,:),1.) |
|---|
| 363 | IF (iflag_pbl==29) THEN |
|---|
| 364 | km2(:,:)=km(:,:)*m2(:,:) |
|---|
| 365 | kn2(:,:)=kn2(:,:)*rif(:,:) |
|---|
| 366 | ELSEIF (iflag_pbl==25) THEN |
|---|
| 367 | DO k=1,klev |
|---|
| 368 | km2(:,k)=-0.5*(dddu(:,k)+dddv(:,k)+dddu(:,k+1)+dddv(:,k+1)) & |
|---|
| 369 | & /(masse(:,k)*timestep) |
|---|
| 370 | kn2(:,k)=rcpd*0.5*(dddt(:,k)+dddt(:,k+1))/(masse(:,k)*timestep) |
|---|
| 371 | leff(:,k)=0.5*(leff(:,k)+leff(:,k+1)) |
|---|
| 372 | ENDDO |
|---|
| 373 | km2(:,klev+1)=0. ; kn2(:,klev+1)=0. |
|---|
| 374 | ELSE |
|---|
| 375 | km2(:,:)=-(dddu(:,:)+dddv(:,:))/(masseb(:,:)*timestep) |
|---|
| 376 | kn2(:,:)=rcpd*dddt(:,:)/(masseb(:,:)*timestep) |
|---|
| 377 | ENDIF |
|---|
| 378 | q2neg(:,:)=q2(:,:)+timestep*(km2(:,:)-kn2(:,:)) |
|---|
| 379 | q2(:,:)=min(max(q2neg(:,:),1.e-10),1.e4) |
|---|
| 380 | |
|---|
| 381 | ! Dissipation of TKE |
|---|
| 382 | q2old(:,:)=q2(:,:) |
|---|
| 383 | q2(:,:)=1./(1./sqrt(q2(:,:))+timestep/(2*leff(:,:)*b1)) |
|---|
| 384 | q2(:,:)=q2(:,:)*q2(:,:) |
|---|
| 385 | IF (iflag_pbl<=24) THEN |
|---|
| 386 | DO k=1,klev |
|---|
| 387 | d_t_diss(:,k)=(masseb(:,k)*(q2neg(:,k)-q2(:,k))+masseb(:,k+1)*(q2neg(:,k+1)-q2(:,k+1)))/(2.*rcpd*masse(:,k)) |
|---|
| 388 | ENDDO |
|---|
| 389 | ELSE IF (iflag_pbl<=27) THEN |
|---|
| 390 | DO k=1,klev |
|---|
| 391 | d_t_diss(:,k)=(q2neg(:,k)-q2(:,k))/rcpd |
|---|
| 392 | ENDDO |
|---|
| 393 | ENDIF |
|---|
| 394 | ! print*,'iflag_pbl ',d_t_diss |
|---|
| 395 | |
|---|
| 396 | |
|---|
| 397 | ! Compuation of stability functions |
|---|
| 398 | IF (iflag_pbl/=29) THEN |
|---|
| 399 | DO k=1,klev |
|---|
| 400 | DO ig=1,ngrid |
|---|
| 401 | IF (ABS(km2(ig,k))<=1.e-20) THEN |
|---|
| 402 | rif(ig,k)=0. |
|---|
| 403 | ELSE |
|---|
| 404 | rif(ig,k)=min(kn2(ig,k)/km2(ig,k),rifc) |
|---|
| 405 | ENDIF |
|---|
| 406 | IF (rif(ig,k).lt.0.16) THEN |
|---|
| 407 | alpha(ig,k)=falpha(rif(ig,k)) |
|---|
| 408 | sm(ig,k)=fsm(rif(ig,k)) |
|---|
| 409 | else |
|---|
| 410 | alpha(ig,k)=1.12 |
|---|
| 411 | sm(ig,k)=0.085 |
|---|
| 412 | endif |
|---|
| 413 | ENDDO |
|---|
| 414 | ENDDO |
|---|
| 415 | ENDIF |
|---|
| 416 | |
|---|
| 417 | ! Computation of turbulent diffusivities |
|---|
| 418 | IF (25<=iflag_pbl.and.iflag_pbl<=28) THEN |
|---|
| 419 | DO k=2,klev |
|---|
| 420 | sqrtq(:,k)=sqrt(0.5*(q2(:,k)+q2(:,k-1))) |
|---|
| 421 | ENDDO |
|---|
| 422 | ELSE |
|---|
| 423 | DO k=2,klev |
|---|
| 424 | sqrtq(:,k)=sqrt(q2(:,k)) |
|---|
| 425 | ENDDO |
|---|
| 426 | ENDIF |
|---|
| 427 | DO k=2,klev |
|---|
| 428 | DO ig=1,ngrid |
|---|
| 429 | km(ig,k)=leff(ig,k)*sqrtq(ig,k)*sm(ig,k) |
|---|
| 430 | kn(ig,k)=km(ig,k)*alpha(ig,k) |
|---|
| 431 | kq(ig,k)=leff(ig,k)*zq*0.2 |
|---|
| 432 | ! print*,q2(ig,k),zq,km(ig,k) |
|---|
| 433 | ENDDO |
|---|
| 434 | ENDDO |
|---|
| 435 | |
|---|
| 436 | |
|---|
| 437 | |
|---|
| 438 | #ifdef IOPHYS |
|---|
| 439 | if (okiophys==1) then |
|---|
| 440 | call iophys_ecrit('mixingl',klev,'Mixing length','m',leff(:,1:klev)) |
|---|
| 441 | call iophys_ecrit('rife',klev,'Flux Richardson','m',rif(:,1:klev)) |
|---|
| 442 | call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
|---|
| 443 | call iophys_ecrit('q2neg',klev,'KTE non bornee','m2/s',q2neg(:,1:klev)) |
|---|
| 444 | call iophys_ecrit('alpha',klev,'alpha','',alpha(:,1:klev)) |
|---|
| 445 | call iophys_ecrit('sm',klev,'sm','',sm(:,1:klev)) |
|---|
| 446 | call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
|---|
| 447 | call iophys_ecrit('kmf',klev,'Kz final','m2/s',km(:,1:klev)) |
|---|
| 448 | call iophys_ecrit('knf',klev,'Kz final','m2/s',kn(:,1:klev)) |
|---|
| 449 | call iophys_ecrit('kqf',klev,'Kz final','m2/s',kq(:,1:klev)) |
|---|
| 450 | endif |
|---|
| 451 | #endif |
|---|
| 452 | |
|---|
| 453 | ENDIF |
|---|
| 454 | |
|---|
| 455 | |
|---|
| 456 | ! print*,'OK2' |
|---|
| 457 | RETURN |
|---|
| 458 | !==================================================================== |
|---|
| 459 | ! Yamada 2.0 |
|---|
| 460 | !==================================================================== |
|---|
| 461 | if (iflag_pbl.eq.6) then |
|---|
| 462 | |
|---|
| 463 | do k=2,klev |
|---|
| 464 | q2(:,k)=l(:,k)**2*zz(:,k) |
|---|
| 465 | enddo |
|---|
| 466 | |
|---|
| 467 | |
|---|
| 468 | else if (iflag_pbl.eq.7) then |
|---|
| 469 | !==================================================================== |
|---|
| 470 | ! Yamada 2.Fournier |
|---|
| 471 | !==================================================================== |
|---|
| 472 | |
|---|
| 473 | ! Calcul de l, km, au pas precedent |
|---|
| 474 | do k=2,klev |
|---|
| 475 | do ig=1,ngrid |
|---|
| 476 | ! print*,'SMML=',sm(ig,k),l(ig,k) |
|---|
| 477 | delta(ig,k)=q2(ig,k)/(l(ig,k)**2*sm(ig,k)) |
|---|
| 478 | kmpre(ig,k)=l(ig,k)*sqrt(q2(ig,k))*sm(ig,k) |
|---|
| 479 | mpre(ig,k)=sqrt(m2(ig,k)) |
|---|
| 480 | ! print*,'0L=',k,l(ig,k),delta(ig,k),km(ig,k) |
|---|
| 481 | enddo |
|---|
| 482 | enddo |
|---|
| 483 | |
|---|
| 484 | do k=2,klev-1 |
|---|
| 485 | do ig=1,ngrid |
|---|
| 486 | m2cstat=max(alpha(ig,k)*n2(ig,k)+delta(ig,k)/b1,1.e-12) |
|---|
| 487 | mcstat=sqrt(m2cstat) |
|---|
| 488 | |
|---|
| 489 | ! print*,'M2 L=',k,mpre(ig,k),mcstat |
|---|
| 490 | ! |
|---|
| 491 | ! -----{puis on ecrit la valeur de q qui annule l'equation de m |
|---|
| 492 | ! supposee en q3} |
|---|
| 493 | ! |
|---|
| 494 | IF (k.eq.2) THEN |
|---|
| 495 | kmcstat=1.E+0 / mcstat & |
|---|
| 496 | & *( unsdz(ig,k)*kmpre(ig,k+1) & |
|---|
| 497 | & *mpre(ig,k+1) & |
|---|
| 498 | & +unsdz(ig,k-1) & |
|---|
| 499 | & *cd(ig) & |
|---|
| 500 | & *( sqrt(zu(ig,3)**2+zv(ig,3)**2) & |
|---|
| 501 | & -mcstat/unsdzdec(ig,k) & |
|---|
| 502 | & -mpre(ig,k+1)/unsdzdec(ig,k+1) )**2) & |
|---|
| 503 | & /( unsdz(ig,k)+unsdz(ig,k-1) ) |
|---|
| 504 | ELSE |
|---|
| 505 | kmcstat=1.E+0 / mcstat & |
|---|
| 506 | & *( unsdz(ig,k)*kmpre(ig,k+1) & |
|---|
| 507 | & *mpre(ig,k+1) & |
|---|
| 508 | & +unsdz(ig,k-1)*kmpre(ig,k-1) & |
|---|
| 509 | & *mpre(ig,k-1) ) & |
|---|
| 510 | & /( unsdz(ig,k)+unsdz(ig,k-1) ) |
|---|
| 511 | ENDIF |
|---|
| 512 | ! print*,'T2 L=',k,tmp2 |
|---|
| 513 | tmp2=kmcstat & |
|---|
| 514 | & /( sm(ig,k)/q2(ig,k) ) & |
|---|
| 515 | & /l(ig,k) |
|---|
| 516 | q2(ig,k)=max(tmp2,1.e-12)**(2./3.) |
|---|
| 517 | ! print*,'Q2 L=',k,q2(ig,k) |
|---|
| 518 | ! |
|---|
| 519 | enddo |
|---|
| 520 | enddo |
|---|
| 521 | |
|---|
| 522 | else if (iflag_pbl==8.or.iflag_pbl==9) then |
|---|
| 523 | !==================================================================== |
|---|
| 524 | ! Yamada 2.5 a la Didi |
|---|
| 525 | !==================================================================== |
|---|
| 526 | |
|---|
| 527 | |
|---|
| 528 | ! Calcul de l, km, au pas precedent |
|---|
| 529 | do k=2,klev |
|---|
| 530 | do ig=1,ngrid |
|---|
| 531 | ! print*,'SMML=',sm(ig,k),l(ig,k) |
|---|
| 532 | delta(ig,k)=q2(ig,k)/(l(ig,k)**2*sm(ig,k)) |
|---|
| 533 | if (delta(ig,k).lt.1.e-20) then |
|---|
| 534 | ! print*,'ATTENTION L=',k,' Delta=',delta(ig,k) |
|---|
| 535 | delta(ig,k)=1.e-20 |
|---|
| 536 | endif |
|---|
| 537 | km(ig,k)=l(ig,k)*sqrt(q2(ig,k))*sm(ig,k) |
|---|
| 538 | aa0=(m2(ig,k)-alpha(ig,k)*n2(ig,k)-delta(ig,k)/b1) |
|---|
| 539 | aa1=(m2(ig,k)*(1.-rif(ig,k))-delta(ig,k)/b1) |
|---|
| 540 | ! abder print*,'AA L=',k,aa0,aa1,aa1/max(m2(ig,k),1.e-20) |
|---|
| 541 | aa(ig,k)=aa1*timestep/(delta(ig,k)*l(ig,k)) |
|---|
| 542 | ! print*,'0L=',k,l(ig,k),delta(ig,k),km(ig,k) |
|---|
| 543 | qpre=sqrt(q2(ig,k)) |
|---|
| 544 | ! if (iflag_pbl.eq.8 ) then |
|---|
| 545 | if (aa(ig,k).gt.0.) then |
|---|
| 546 | q2(ig,k)=(qpre+aa(ig,k)*qpre*qpre)**2 |
|---|
| 547 | else |
|---|
| 548 | q2(ig,k)=(qpre/(1.-aa(ig,k)*qpre))**2 |
|---|
| 549 | endif |
|---|
| 550 | ! else ! iflag_pbl=9 |
|---|
| 551 | ! if (aa(ig,k)*qpre.gt.0.9) then |
|---|
| 552 | ! q2(ig,k)=(qpre*10.)**2 |
|---|
| 553 | ! else |
|---|
| 554 | ! q2(ig,k)=(qpre/(1.-aa(ig,k)*qpre))**2 |
|---|
| 555 | ! endif |
|---|
| 556 | ! endif |
|---|
| 557 | q2(ig,k)=min(max(q2(ig,k),1.e-10),1.e4) |
|---|
| 558 | ! print*,'Q2 L=',k,q2(ig,k),qpre*qpre |
|---|
| 559 | enddo |
|---|
| 560 | enddo |
|---|
| 561 | |
|---|
| 562 | else if (iflag_pbl>=10) then |
|---|
| 563 | |
|---|
| 564 | ! print*,'Schema mixte D' |
|---|
| 565 | ! print*,'Longueur ',l(:,:) |
|---|
| 566 | do k=2,klev-1 |
|---|
| 567 | l(:,k)=max(l(:,k),1.) |
|---|
| 568 | km(:,k)=l(:,k)*sqrt(q2(:,k))*sm(:,k) |
|---|
| 569 | q2(:,k)=q2(:,k)+timestep*km(:,k)*m2(:,k)*(1.-rif(:,k)) |
|---|
| 570 | q2(:,k)=min(max(q2(:,k),1.e-10),1.e4) |
|---|
| 571 | q2(:,k)=1./(1./sqrt(q2(:,k))+timestep/(2*l(:,k)*b1)) |
|---|
| 572 | q2(:,k)=q2(:,k)*q2(:,k) |
|---|
| 573 | enddo |
|---|
| 574 | |
|---|
| 575 | |
|---|
| 576 | else |
|---|
| 577 | stop'Cas nom prevu dans yamada4' |
|---|
| 578 | |
|---|
| 579 | endif ! Fin du cas 8 |
|---|
| 580 | |
|---|
| 581 | ! print*,'OK8' |
|---|
| 582 | |
|---|
| 583 | !==================================================================== |
|---|
| 584 | ! Calcul des coefficients de mᅵange |
|---|
| 585 | !==================================================================== |
|---|
| 586 | do k=2,klev |
|---|
| 587 | ! print*,'k=',k |
|---|
| 588 | do ig=1,ngrid |
|---|
| 589 | !abde print*,'KML=',l(ig,k),q2(ig,k),sm(ig,k) |
|---|
| 590 | zq=sqrt(q2(ig,k)) |
|---|
| 591 | km(ig,k)=l(ig,k)*zq*sm(ig,k) |
|---|
| 592 | kn(ig,k)=km(ig,k)*alpha(ig,k) |
|---|
| 593 | kq(ig,k)=l(ig,k)*zq*0.2 |
|---|
| 594 | ! print*,'KML=',km(ig,k),kn(ig,k) |
|---|
| 595 | enddo |
|---|
| 596 | enddo |
|---|
| 597 | |
|---|
| 598 | ! Transport diffusif vertical de la TKE. |
|---|
| 599 | if (iflag_pbl.ge.12) then |
|---|
| 600 | ! print*,'YAMADA VDIF' |
|---|
| 601 | q2(:,1)=q2(:,2) |
|---|
| 602 | call vdif_q2(timestep,RG,RD,ngrid,plev,zt,kq,q2) |
|---|
| 603 | endif |
|---|
| 604 | |
|---|
| 605 | ! Traitement des cas noctrunes avec l'introduction d'une longueur |
|---|
| 606 | ! minilale. |
|---|
| 607 | |
|---|
| 608 | !==================================================================== |
|---|
| 609 | ! Traitement particulier pour les cas tres stables. |
|---|
| 610 | ! D'apres Holtslag Boville. |
|---|
| 611 | |
|---|
| 612 | if (prt_level>1) THEN |
|---|
| 613 | print*,'YAMADA4 0' |
|---|
| 614 | endif !(prt_level>1) THEN |
|---|
| 615 | do ig=1,ngrid |
|---|
| 616 | coriol(ig)=1.e-4 |
|---|
| 617 | pblhmin(ig)=0.07*ustar(ig)/max(abs(coriol(ig)),2.546e-5) |
|---|
| 618 | enddo |
|---|
| 619 | |
|---|
| 620 | ! print*,'pblhmin ',pblhmin |
|---|
| 621 | !Test a remettre 21 11 02 |
|---|
| 622 | ! test abd 13 05 02 if(0.eq.1) then |
|---|
| 623 | if(1==1) then |
|---|
| 624 | if(iflag_pbl==8.or.iflag_pbl==10) then |
|---|
| 625 | |
|---|
| 626 | do k=2,klev |
|---|
| 627 | do ig=1,ngrid |
|---|
| 628 | if (teta(ig,2).gt.teta(ig,1)) then |
|---|
| 629 | qmin=ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2 |
|---|
| 630 | kmin=kap*zlev(ig,k)*qmin |
|---|
| 631 | else |
|---|
| 632 | kmin=-1. ! kmin n'est utilise que pour les SL stables. |
|---|
| 633 | endif |
|---|
| 634 | if (kn(ig,k).lt.kmin.or.km(ig,k).lt.kmin) then |
|---|
| 635 | ! print*,'Seuil min Km K=',k,kmin,km(ig,k),kn(ig,k) |
|---|
| 636 | ! s ,sqrt(q2(ig,k)),pblhmin(ig),qmin/sm(ig,k) |
|---|
| 637 | kn(ig,k)=kmin |
|---|
| 638 | km(ig,k)=kmin |
|---|
| 639 | kq(ig,k)=kmin |
|---|
| 640 | ! la longueur de melange est suposee etre l= kap z |
|---|
| 641 | ! K=l q Sm d'ou q2=(K/l Sm)**2 |
|---|
| 642 | q2(ig,k)=(qmin/sm(ig,k))**2 |
|---|
| 643 | endif |
|---|
| 644 | enddo |
|---|
| 645 | enddo |
|---|
| 646 | |
|---|
| 647 | else |
|---|
| 648 | |
|---|
| 649 | do k=2,klev |
|---|
| 650 | do ig=1,ngrid |
|---|
| 651 | if (teta(ig,2).gt.teta(ig,1)) then |
|---|
| 652 | qmin=ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2 |
|---|
| 653 | kmin=kap*zlev(ig,k)*qmin |
|---|
| 654 | else |
|---|
| 655 | kmin=-1. ! kmin n'est utilise que pour les SL stables. |
|---|
| 656 | endif |
|---|
| 657 | if (kn(ig,k).lt.kmin.or.km(ig,k).lt.kmin) then |
|---|
| 658 | ! print*,'Seuil min Km K=',k,kmin,km(ig,k),kn(ig,k) |
|---|
| 659 | ! s ,sqrt(q2(ig,k)),pblhmin(ig),qmin/sm(ig,k) |
|---|
| 660 | kn(ig,k)=kmin |
|---|
| 661 | km(ig,k)=kmin |
|---|
| 662 | kq(ig,k)=kmin |
|---|
| 663 | ! la longueur de melange est suposee etre l= kap z |
|---|
| 664 | ! K=l q Sm d'ou q2=(K/l Sm)**2 |
|---|
| 665 | sm(ig,k)=1. |
|---|
| 666 | alpha(ig,k)=1. |
|---|
| 667 | q2(ig,k)=min((qmin/sm(ig,k))**2,10.) |
|---|
| 668 | zq=sqrt(q2(ig,k)) |
|---|
| 669 | km(ig,k)=l(ig,k)*zq*sm(ig,k) |
|---|
| 670 | kn(ig,k)=km(ig,k)*alpha(ig,k) |
|---|
| 671 | kq(ig,k)=l(ig,k)*zq*0.2 |
|---|
| 672 | endif |
|---|
| 673 | enddo |
|---|
| 674 | enddo |
|---|
| 675 | endif |
|---|
| 676 | |
|---|
| 677 | endif |
|---|
| 678 | |
|---|
| 679 | if (prt_level>1) THEN |
|---|
| 680 | print*,'YAMADA4 1' |
|---|
| 681 | endif !(prt_level>1) THEN |
|---|
| 682 | ! Diagnostique pour stokage |
|---|
| 683 | |
|---|
| 684 | if(1.eq.0)then |
|---|
| 685 | rino=rif |
|---|
| 686 | smyam(1:ngrid,1)=0. |
|---|
| 687 | styam(1:ngrid,1)=0. |
|---|
| 688 | lyam(1:ngrid,1)=0. |
|---|
| 689 | knyam(1:ngrid,1)=0. |
|---|
| 690 | w2yam(1:ngrid,1)=0. |
|---|
| 691 | t2yam(1:ngrid,1)=0. |
|---|
| 692 | |
|---|
| 693 | smyam(1:ngrid,2:klev)=sm(1:ngrid,2:klev) |
|---|
| 694 | styam(1:ngrid,2:klev)=sm(1:ngrid,2:klev)*alpha(1:ngrid,2:klev) |
|---|
| 695 | lyam(1:ngrid,2:klev)=l(1:ngrid,2:klev) |
|---|
| 696 | knyam(1:ngrid,2:klev)=kn(1:ngrid,2:klev) |
|---|
| 697 | |
|---|
| 698 | ! Estimations de w'2 et T'2 d'apres Abdela et McFarlane |
|---|
| 699 | |
|---|
| 700 | w2yam(1:ngrid,2:klev)=q2(1:ngrid,2:klev)*0.24 & |
|---|
| 701 | & +lyam(1:ngrid,2:klev)*5.17*kn(1:ngrid,2:klev) & |
|---|
| 702 | & *n2(1:ngrid,2:klev)/sqrt(q2(1:ngrid,2:klev)) |
|---|
| 703 | |
|---|
| 704 | t2yam(1:ngrid,2:klev)=9.1*kn(1:ngrid,2:klev) & |
|---|
| 705 | & *dtetadz(1:ngrid,2:klev)**2 & |
|---|
| 706 | & /sqrt(q2(1:ngrid,2:klev))*lyam(1:ngrid,2:klev) |
|---|
| 707 | endif |
|---|
| 708 | |
|---|
| 709 | ! print*,'OKFIN' |
|---|
| 710 | first=.false. |
|---|
| 711 | return |
|---|
| 712 | end |
|---|