| 1 | ! L. Fita. August 2013 |
|---|
| 2 | |
|---|
| 3 | MODULE orografi_strato_mod |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE drag_noro_strato (nlon,nlev,dtime,paprs,pplay, & |
|---|
| 8 | & pmea,pstd, psig, pgam, pthe,ppic,pval, & |
|---|
| 9 | & kgwd,kdx,ktest, & |
|---|
| 10 | & t, u, v, & |
|---|
| 11 | & pulow, pvlow, pustr, pvstr, & |
|---|
| 12 | & d_t, d_u, d_v) |
|---|
| 13 | !c |
|---|
| 14 | USE dimphy |
|---|
| 15 | IMPLICIT none |
|---|
| 16 | !c====================================================================== |
|---|
| 17 | !c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
|---|
| 18 | !c Object: Mountain drag interface. Made necessary because: |
|---|
| 19 | !C 1. in the LMD-GCM Layers are from bottom to top, |
|---|
| 20 | !C contrary to most European GCM. |
|---|
| 21 | !c 2. the altitude above ground of each model layers |
|---|
| 22 | !c needs to be known (variable zgeom) |
|---|
| 23 | !c====================================================================== |
|---|
| 24 | !c Explicit Arguments: |
|---|
| 25 | !c ================== |
|---|
| 26 | !c nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 27 | !c nlev----input-I-Number of vertical levels |
|---|
| 28 | !c dtime---input-R-Time-step (s) |
|---|
| 29 | !c paprs---input-R-Pressure in semi layers (Pa) |
|---|
| 30 | !c pplay---input-R-Pressure model-layers (Pa) |
|---|
| 31 | !c t-------input-R-temperature (K) |
|---|
| 32 | !c u-------input-R-Horizontal wind (m/s) |
|---|
| 33 | !c v-------input-R-Meridional wind (m/s) |
|---|
| 34 | !c pmea----input-R-Mean Orography (m) |
|---|
| 35 | !C pstd----input-R-SSO standard deviation (m) |
|---|
| 36 | !c psig----input-R-SSO slope |
|---|
| 37 | !c pgam----input-R-SSO Anisotropy |
|---|
| 38 | !c pthe----input-R-SSO Angle |
|---|
| 39 | !c ppic----input-R-SSO Peacks elevation (m) |
|---|
| 40 | !c pval----input-R-SSO Valleys elevation (m) |
|---|
| 41 | !c |
|---|
| 42 | !c kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 43 | !c ktest--input-I: Flags to indicate active points |
|---|
| 44 | !c kdx----input-I: Locate the physical location of an active point. |
|---|
| 45 | |
|---|
| 46 | !c pulow, pvlow -output-R: Low-level wind |
|---|
| 47 | !c pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
|---|
| 48 | !c |
|---|
| 49 | !c d_t-----output-R: T increment |
|---|
| 50 | !c d_u-----output-R: U increment |
|---|
| 51 | !c d_v-----output-R: V increment |
|---|
| 52 | !c |
|---|
| 53 | !c Implicit Arguments: |
|---|
| 54 | !c =================== |
|---|
| 55 | !c |
|---|
| 56 | !c iim--common-I: Number of longitude intervals |
|---|
| 57 | !c jjm--common-I: Number of latitude intervals |
|---|
| 58 | !c klon-common-I: Number of points seen by the physics |
|---|
| 59 | !c (iim+1)*(jjm+1) for instance |
|---|
| 60 | !c klev-common-I: Number of vertical layers |
|---|
| 61 | !c====================================================================== |
|---|
| 62 | !c Local Variables: |
|---|
| 63 | !c ================ |
|---|
| 64 | !c |
|---|
| 65 | !c zgeom-----R: Altitude of layer above ground |
|---|
| 66 | !c pt, pu, pv --R: t u v from top to bottom |
|---|
| 67 | !c pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
|---|
| 68 | !c papmf: pressure at model layer (from top to bottom) |
|---|
| 69 | !c papmh: pressure at model 1/2 layer (from top to bottom) |
|---|
| 70 | !c |
|---|
| 71 | !c====================================================================== |
|---|
| 72 | !cym#include "dimensions.h" |
|---|
| 73 | !cym#include "dimphy.h" |
|---|
| 74 | #include "YOMCST.h" |
|---|
| 75 | #include "YOEGWD.h" |
|---|
| 76 | !c |
|---|
| 77 | !c ARGUMENTS |
|---|
| 78 | !c |
|---|
| 79 | INTEGER nlon,nlev |
|---|
| 80 | REAL dtime |
|---|
| 81 | REAL paprs(nlon,nlev+1) |
|---|
| 82 | REAL pplay(nlon,nlev) |
|---|
| 83 | REAL pmea(nlon),pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
|---|
| 84 | REAL ppic(nlon),pval(nlon) |
|---|
| 85 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
|---|
| 86 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
|---|
| 87 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
|---|
| 88 | !c |
|---|
| 89 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
|---|
| 90 | !c |
|---|
| 91 | !c LOCAL VARIABLES: |
|---|
| 92 | !c |
|---|
| 93 | REAL zgeom(klon,klev) |
|---|
| 94 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
|---|
| 95 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
|---|
| 96 | REAL papmf(klon,klev),papmh(klon,klev+1) |
|---|
| 97 | CHARACTER (LEN=20) :: modname='orografi_strato' |
|---|
| 98 | CHARACTER (LEN=80) :: abort_message |
|---|
| 99 | !c |
|---|
| 100 | !c INITIALIZE OUTPUT VARIABLES |
|---|
| 101 | !c |
|---|
| 102 | DO i = 1,klon |
|---|
| 103 | pulow(i) = 0.0 |
|---|
| 104 | pvlow(i) = 0.0 |
|---|
| 105 | pustr(i) = 0.0 |
|---|
| 106 | pvstr(i) = 0.0 |
|---|
| 107 | ENDDO |
|---|
| 108 | DO k = 1, klev |
|---|
| 109 | DO i = 1, klon |
|---|
| 110 | d_t(i,k) = 0.0 |
|---|
| 111 | d_u(i,k) = 0.0 |
|---|
| 112 | d_v(i,k) = 0.0 |
|---|
| 113 | pdudt(i,k)=0.0 |
|---|
| 114 | pdvdt(i,k)=0.0 |
|---|
| 115 | pdtdt(i,k)=0.0 |
|---|
| 116 | ENDDO |
|---|
| 117 | ENDDO |
|---|
| 118 | !c |
|---|
| 119 | !c PREPARE INPUT VARIABLES FOR ORODRAG (i.e., ORDERED FROM TOP TO BOTTOM) |
|---|
| 120 | !C CALCULATE LAYERS HEIGHT ABOVE GROUND) |
|---|
| 121 | !c |
|---|
| 122 | DO k = 1, klev |
|---|
| 123 | DO i = 1, klon |
|---|
| 124 | pt(i,k) = t(i,klev-k+1) |
|---|
| 125 | pu(i,k) = u(i,klev-k+1) |
|---|
| 126 | pv(i,k) = v(i,klev-k+1) |
|---|
| 127 | papmf(i,k) = pplay(i,klev-k+1) |
|---|
| 128 | ENDDO |
|---|
| 129 | ENDDO |
|---|
| 130 | DO k = 1, klev+1 |
|---|
| 131 | DO i = 1, klon |
|---|
| 132 | papmh(i,k) = paprs(i,klev-k+2) |
|---|
| 133 | ENDDO |
|---|
| 134 | ENDDO |
|---|
| 135 | DO i = 1, klon |
|---|
| 136 | zgeom(i,klev) = RD * pt(i,klev) & |
|---|
| 137 | & * LOG(papmh(i,klev+1)/papmf(i,klev)) |
|---|
| 138 | ENDDO |
|---|
| 139 | DO k = klev-1, 1, -1 |
|---|
| 140 | DO i = 1, klon |
|---|
| 141 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 & |
|---|
| 142 | & * LOG(papmf(i,k+1)/papmf(i,k)) |
|---|
| 143 | ENDDO |
|---|
| 144 | ENDDO |
|---|
| 145 | !c |
|---|
| 146 | !c CALL SSO DRAG ROUTINES |
|---|
| 147 | !c |
|---|
| 148 | CALL orodrag_strato(klon,klev,kgwd,kdx,ktest, & |
|---|
| 149 | & dtime, & |
|---|
| 150 | & papmh, papmf, zgeom, & |
|---|
| 151 | & pt, pu, pv, & |
|---|
| 152 | & pmea, pstd, psig, pgam, pthe, ppic,pval, & |
|---|
| 153 | & pulow,pvlow, & |
|---|
| 154 | & pdudt,pdvdt,pdtdt) |
|---|
| 155 | !C |
|---|
| 156 | !C COMPUTE INCREMENTS AND STRESS FROM TENDENCIES |
|---|
| 157 | |
|---|
| 158 | DO k = 1, klev |
|---|
| 159 | DO i = 1, klon |
|---|
| 160 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
|---|
| 161 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
|---|
| 162 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
|---|
| 163 | pustr(i) = pustr(i) & |
|---|
| 164 | & +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
|---|
| 165 | pvstr(i) = pvstr(i) & |
|---|
| 166 | & +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
|---|
| 167 | ENDDO |
|---|
| 168 | ENDDO |
|---|
| 169 | !c |
|---|
| 170 | RETURN |
|---|
| 171 | END SUBROUTINE drag_noro_strato |
|---|
| 172 | |
|---|
| 173 | SUBROUTINE orodrag_strato( nlon,nlev & |
|---|
| 174 | & , kgwd, kdx, ktest & |
|---|
| 175 | & , ptsphy & |
|---|
| 176 | & , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 & |
|---|
| 177 | & , pmea, pstd, psig, pgam, pthe, ppic, pval & |
|---|
| 178 | !c outputs & |
|---|
| 179 | & , pulow,pvlow & |
|---|
| 180 | & , pvom,pvol,pte ) |
|---|
| 181 | |
|---|
| 182 | USE dimphy |
|---|
| 183 | IMPLICIT NONE |
|---|
| 184 | !c |
|---|
| 185 | !c |
|---|
| 186 | !c**** *orodrag* - does the SSO drag parametrization. |
|---|
| 187 | !c |
|---|
| 188 | !c purpose. |
|---|
| 189 | !c -------- |
|---|
| 190 | !c |
|---|
| 191 | !c this routine computes the physical tendencies of the |
|---|
| 192 | !c prognostic variables u,v and t due to vertical transports by |
|---|
| 193 | !c subgridscale orographically excited gravity waves, and to |
|---|
| 194 | !c low level blocked flow drag. |
|---|
| 195 | !c |
|---|
| 196 | !c** interface. |
|---|
| 197 | !c ---------- |
|---|
| 198 | !c called from *drag_noro*. |
|---|
| 199 | !c |
|---|
| 200 | !c the routine takes its input from the long-term storage: |
|---|
| 201 | !c u,v,t and p at t-1. |
|---|
| 202 | !c |
|---|
| 203 | !c explicit arguments : |
|---|
| 204 | !c -------------------- |
|---|
| 205 | !c ==== inputs === |
|---|
| 206 | !c nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 207 | !c nlev----input-I-Number of vertical levels |
|---|
| 208 | !c |
|---|
| 209 | !c kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 210 | !c ktest--input-I: Flags to indicate active points |
|---|
| 211 | !c kdx----input-I: Locate the physical location of an active point. |
|---|
| 212 | !c ptsphy--input-R-Time-step (s) |
|---|
| 213 | !c paphm1--input-R: pressure at model 1/2 layer |
|---|
| 214 | !c papm1---input-R: pressure at model layer |
|---|
| 215 | !c pgeom1--input-R: Altitude of layer above ground |
|---|
| 216 | !c ptm1, pum1, pvm1--R-: t, u and v |
|---|
| 217 | !c pmea----input-R-Mean Orography (m) |
|---|
| 218 | !C pstd----input-R-SSO standard deviation (m) |
|---|
| 219 | !c psig----input-R-SSO slope |
|---|
| 220 | !c pgam----input-R-SSO Anisotropy |
|---|
| 221 | !c pthe----input-R-SSO Angle |
|---|
| 222 | !c ppic----input-R-SSO Peacks elevation (m) |
|---|
| 223 | !c pval----input-R-SSO Valleys elevation (m) |
|---|
| 224 | |
|---|
| 225 | integer nlon,nlev,kgwd |
|---|
| 226 | real ptsphy |
|---|
| 227 | |
|---|
| 228 | !c ==== outputs === |
|---|
| 229 | !c pulow, pvlow -output-R: Low-level wind |
|---|
| 230 | !c |
|---|
| 231 | !c pte -----output-R: T tendency |
|---|
| 232 | !c pvom-----output-R: U tendency |
|---|
| 233 | !c pvol-----output-R: V tendency |
|---|
| 234 | !c |
|---|
| 235 | !c |
|---|
| 236 | !c Implicit Arguments: |
|---|
| 237 | !c =================== |
|---|
| 238 | !c |
|---|
| 239 | !c klon-common-I: Number of points seen by the physics |
|---|
| 240 | !c klev-common-I: Number of vertical layers |
|---|
| 241 | !c |
|---|
| 242 | !c method. |
|---|
| 243 | !c ------- |
|---|
| 244 | !c |
|---|
| 245 | !c externals. |
|---|
| 246 | !c ---------- |
|---|
| 247 | integer ismin, ismax |
|---|
| 248 | external ismin, ismax |
|---|
| 249 | !c |
|---|
| 250 | !c reference. |
|---|
| 251 | !c ---------- |
|---|
| 252 | !c |
|---|
| 253 | !c author. |
|---|
| 254 | !c ------- |
|---|
| 255 | !c m.miller + b.ritter e.c.m.w.f. 15/06/86. |
|---|
| 256 | !c |
|---|
| 257 | !c f.lott + m. miller e.c.m.w.f. 22/11/94 |
|---|
| 258 | !c----------------------------------------------------------------------- |
|---|
| 259 | !c |
|---|
| 260 | !c |
|---|
| 261 | !cym#include "dimensions.h" |
|---|
| 262 | !cym#include "dimphy.h" |
|---|
| 263 | #include "YOMCST.h" |
|---|
| 264 | #include "YOEGWD.h" |
|---|
| 265 | !c----------------------------------------------------------------------- |
|---|
| 266 | !c |
|---|
| 267 | !c* 0.1 arguments |
|---|
| 268 | !c --------- |
|---|
| 269 | !c |
|---|
| 270 | !c |
|---|
| 271 | real pte(nlon,nlev), & |
|---|
| 272 | & pvol(nlon,nlev), & |
|---|
| 273 | & pvom(nlon,nlev), & |
|---|
| 274 | & pulow(nlon), & |
|---|
| 275 | & pvlow(nlon) |
|---|
| 276 | real pum1(nlon,nlev), & |
|---|
| 277 | & pvm1(nlon,nlev), & |
|---|
| 278 | & ptm1(nlon,nlev), & |
|---|
| 279 | & pmea(nlon),pstd(nlon),psig(nlon), & |
|---|
| 280 | & pgam(nlon),pthe(nlon),ppic(nlon),pval(nlon), & |
|---|
| 281 | & pgeom1(nlon,nlev), & |
|---|
| 282 | & papm1(nlon,nlev), & |
|---|
| 283 | & paphm1(nlon,nlev+1) |
|---|
| 284 | !c |
|---|
| 285 | integer kdx(nlon),ktest(nlon) |
|---|
| 286 | !c----------------------------------------------------------------------- |
|---|
| 287 | !c |
|---|
| 288 | !c* 0.2 local arrays |
|---|
| 289 | !c ------------ |
|---|
| 290 | integer isect(klon), & |
|---|
| 291 | & icrit(klon), & |
|---|
| 292 | & ikcrith(klon), & |
|---|
| 293 | & ikenvh(klon), & |
|---|
| 294 | & iknu(klon), & |
|---|
| 295 | & iknu2(klon), & |
|---|
| 296 | & ikcrit(klon), & |
|---|
| 297 | & ikhlim(klon) |
|---|
| 298 | !c |
|---|
| 299 | real ztau(klon,klev+1), & |
|---|
| 300 | & zstab(klon,klev+1), & |
|---|
| 301 | & zvph(klon,klev+1), & |
|---|
| 302 | & zrho(klon,klev+1), & |
|---|
| 303 | & zri(klon,klev+1), & |
|---|
| 304 | & zpsi(klon,klev+1), & |
|---|
| 305 | & zzdep(klon,klev) |
|---|
| 306 | real zdudt(klon), & |
|---|
| 307 | & zdvdt(klon), & |
|---|
| 308 | & zdtdt(klon), & |
|---|
| 309 | & zdedt(klon), & |
|---|
| 310 | & zvidis(klon), & |
|---|
| 311 | & ztfr(klon), & |
|---|
| 312 | & znu(klon), & |
|---|
| 313 | & zd1(klon), & |
|---|
| 314 | & zd2(klon), & |
|---|
| 315 | & zdmod(klon) |
|---|
| 316 | |
|---|
| 317 | |
|---|
| 318 | !c local quantities: |
|---|
| 319 | |
|---|
| 320 | integer jl,jk,ji |
|---|
| 321 | real ztmst,zdelp,ztemp,zforc,ztend,rover |
|---|
| 322 | real zb,zc,zconb,zabsv,zzd1,ratio,zbet,zust,zvst,zdis |
|---|
| 323 | |
|---|
| 324 | !c |
|---|
| 325 | !c------------------------------------------------------------------ |
|---|
| 326 | !c |
|---|
| 327 | !c* 1. initialization |
|---|
| 328 | !c -------------- |
|---|
| 329 | !c |
|---|
| 330 | !c print *,' in orodrag' |
|---|
| 331 | 100 continue |
|---|
| 332 | !c |
|---|
| 333 | !c ------------------------------------------------------------------ |
|---|
| 334 | !c |
|---|
| 335 | !c* 1.1 computational constants |
|---|
| 336 | !c ----------------------- |
|---|
| 337 | !c |
|---|
| 338 | 110 continue |
|---|
| 339 | !c |
|---|
| 340 | !c ztmst=twodt |
|---|
| 341 | !c if(nstep.eq.nstart) ztmst=0.5*twodt |
|---|
| 342 | ztmst=ptsphy |
|---|
| 343 | !c ------------------------------------------------------------------ |
|---|
| 344 | !c |
|---|
| 345 | 120 continue |
|---|
| 346 | !c |
|---|
| 347 | !c ------------------------------------------------------------------ |
|---|
| 348 | !c |
|---|
| 349 | !c* 1.3 check whether row contains point for printing |
|---|
| 350 | !c --------------------------------------------- |
|---|
| 351 | !c |
|---|
| 352 | 130 continue |
|---|
| 353 | !c |
|---|
| 354 | !c ------------------------------------------------------------------ |
|---|
| 355 | !c |
|---|
| 356 | !c* 2. precompute basic state variables. |
|---|
| 357 | !c* ---------- ----- ----- ---------- |
|---|
| 358 | !c* define low level wind, project winds in plane of |
|---|
| 359 | !c* low level wind, determine sector in which to take |
|---|
| 360 | !c* the variance and set indicator for critical levels. |
|---|
| 361 | !c |
|---|
| 362 | |
|---|
| 363 | 200 continue |
|---|
| 364 | !c |
|---|
| 365 | !c |
|---|
| 366 | !c |
|---|
| 367 | call orosetup_strato & |
|---|
| 368 | & ( nlon, nlev , ktest & |
|---|
| 369 | & , ikcrit, ikcrith, icrit, isect, ikhlim, ikenvh,iknu,iknu2 & |
|---|
| 370 | & , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd & |
|---|
| 371 | & , zrho , zri , zstab , ztau , zvph , zpsi, zzdep & |
|---|
| 372 | & , pulow, pvlow & |
|---|
| 373 | & , pthe,pgam,pmea,ppic,pval,znu ,zd1, zd2, zdmod ) |
|---|
| 374 | |
|---|
| 375 | |
|---|
| 376 | !c |
|---|
| 377 | !c |
|---|
| 378 | !c |
|---|
| 379 | !c*********************************************************** |
|---|
| 380 | !c |
|---|
| 381 | !c |
|---|
| 382 | !c* 3. compute low level stresses using subcritical and |
|---|
| 383 | !c* supercritical forms.computes anisotropy coefficient |
|---|
| 384 | !c* as measure of orographic twodimensionality. |
|---|
| 385 | !c |
|---|
| 386 | 300 continue |
|---|
| 387 | !c |
|---|
| 388 | call gwstress_strato & |
|---|
| 389 | & ( nlon , nlev & |
|---|
| 390 | & , ikcrit, isect, ikhlim, ktest, ikcrith, icrit, ikenvh, iknu & |
|---|
| 391 | & , zrho , zstab, zvph , pstd, psig, pmea, ppic, pval & |
|---|
| 392 | & , ztfr , ztau & |
|---|
| 393 | & , pgeom1,pgam,zd1,zd2,zdmod,znu) |
|---|
| 394 | |
|---|
| 395 | !c |
|---|
| 396 | !c |
|---|
| 397 | !c* 4. compute stress profile including |
|---|
| 398 | !c trapped waves, wave breaking, |
|---|
| 399 | !c linear decay in stratosphere. |
|---|
| 400 | !c |
|---|
| 401 | 400 continue |
|---|
| 402 | !c |
|---|
| 403 | !c |
|---|
| 404 | |
|---|
| 405 | call gwprofil_strato & |
|---|
| 406 | & ( nlon , nlev & |
|---|
| 407 | & , kgwd , kdx , ktest & |
|---|
| 408 | & , ikcrit, ikcrith, icrit , ikenvh, iknu & |
|---|
| 409 | & ,iknu2 , paphm1, zrho , zstab , ztfr , zvph & |
|---|
| 410 | & , zri , ztau & |
|---|
| 411 | & , zdmod , znu , psig , pgam , pstd , ppic , pval) |
|---|
| 412 | |
|---|
| 413 | !c |
|---|
| 414 | !c* 5. Compute tendencies from waves stress profile. |
|---|
| 415 | !c Compute low level blocked flow drag. |
|---|
| 416 | !c* -------------------------------------------- |
|---|
| 417 | !c |
|---|
| 418 | 500 continue |
|---|
| 419 | |
|---|
| 420 | |
|---|
| 421 | !c |
|---|
| 422 | !c explicit solution at all levels for the gravity wave |
|---|
| 423 | !c implicit solution for the blocked levels |
|---|
| 424 | |
|---|
| 425 | do 510 jl=kidia,kfdia |
|---|
| 426 | zvidis(jl)=0.0 |
|---|
| 427 | zdudt(jl)=0.0 |
|---|
| 428 | zdvdt(jl)=0.0 |
|---|
| 429 | zdtdt(jl)=0.0 |
|---|
| 430 | 510 continue |
|---|
| 431 | !c |
|---|
| 432 | |
|---|
| 433 | do 524 jk=1,klev |
|---|
| 434 | !c |
|---|
| 435 | |
|---|
| 436 | !C WAVE STRESS |
|---|
| 437 | !C------------- |
|---|
| 438 | !c |
|---|
| 439 | !c |
|---|
| 440 | do 523 ji=kidia,kfdia |
|---|
| 441 | |
|---|
| 442 | if(ktest(ji).eq.1) then |
|---|
| 443 | |
|---|
| 444 | zdelp=paphm1(ji,jk+1)-paphm1(ji,jk) |
|---|
| 445 | ztemp=-rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,klev+1)*zdelp) |
|---|
| 446 | |
|---|
| 447 | zdudt(ji)=(pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
|---|
| 448 | zdvdt(ji)=(pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
|---|
| 449 | !c |
|---|
| 450 | !c Control Overshoots |
|---|
| 451 | !c |
|---|
| 452 | |
|---|
| 453 | if(jk.ge.nstra)then |
|---|
| 454 | rover=0.10 |
|---|
| 455 | if(abs(zdudt(ji)).gt.rover*abs(pum1(ji,jk))/ztmst) & |
|---|
| 456 | & zdudt(ji)=rover*abs(pum1(ji,jk))/ztmst* & |
|---|
| 457 | & zdudt(ji)/(abs(zdudt(ji))+1.E-10) |
|---|
| 458 | if(abs(zdvdt(ji)).gt.rover*abs(pvm1(ji,jk))/ztmst) & |
|---|
| 459 | & zdvdt(ji)=rover*abs(pvm1(ji,jk))/ztmst* & |
|---|
| 460 | & zdvdt(ji)/(abs(zdvdt(ji))+1.E-10) |
|---|
| 461 | endif |
|---|
| 462 | |
|---|
| 463 | rover=0.25 |
|---|
| 464 | zforc=sqrt(zdudt(ji)**2+zdvdt(ji)**2) |
|---|
| 465 | ztend=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst |
|---|
| 466 | |
|---|
| 467 | if(zforc.ge.rover*ztend)then |
|---|
| 468 | zdudt(ji)=rover*ztend/zforc*zdudt(ji) |
|---|
| 469 | zdvdt(ji)=rover*ztend/zforc*zdvdt(ji) |
|---|
| 470 | endif |
|---|
| 471 | !c |
|---|
| 472 | !c BLOCKED FLOW DRAG: |
|---|
| 473 | !C ----------------- |
|---|
| 474 | !c |
|---|
| 475 | if(jk.gt.ikenvh(ji)) then |
|---|
| 476 | zb=1.0-0.18*pgam(ji)-0.04*pgam(ji)**2 |
|---|
| 477 | zc=0.48*pgam(ji)+0.3*pgam(ji)**2 |
|---|
| 478 | zconb=2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
|---|
| 479 | zabsv=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
|---|
| 480 | zzd1=zb*cos(zpsi(ji,jk))**2+zc*sin(zpsi(ji,jk))**2 |
|---|
| 481 | ratio=(cos(zpsi(ji,jk))**2+pgam(ji)*sin(zpsi(ji,jk))**2)/ & |
|---|
| 482 | & (pgam(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
|---|
| 483 | zbet=max(0.,2.-1./ratio)*zconb*zzdep(ji,jk)*zzd1*zabsv |
|---|
| 484 | !c |
|---|
| 485 | !c OPPOSED TO THE WIND |
|---|
| 486 | !c |
|---|
| 487 | zdudt(ji)=-pum1(ji,jk)/ztmst |
|---|
| 488 | zdvdt(ji)=-pvm1(ji,jk)/ztmst |
|---|
| 489 | !c |
|---|
| 490 | !c PERPENDICULAR TO THE SSO MAIN AXIS: |
|---|
| 491 | !C |
|---|
| 492 | !cmod zdudt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
|---|
| 493 | !cmod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
|---|
| 494 | !cmod * *cos(pthe(ji)*rpi/180.)/ztmst |
|---|
| 495 | !cmod zdvdt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
|---|
| 496 | !cmod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
|---|
| 497 | !cmod * *sin(pthe(ji)*rpi/180.)/ztmst |
|---|
| 498 | !C |
|---|
| 499 | zdudt(ji)=zdudt(ji)*(zbet/(1.+zbet)) |
|---|
| 500 | zdvdt(ji)=zdvdt(ji)*(zbet/(1.+zbet)) |
|---|
| 501 | end if |
|---|
| 502 | pvom(ji,jk)=zdudt(ji) |
|---|
| 503 | pvol(ji,jk)=zdvdt(ji) |
|---|
| 504 | zust=pum1(ji,jk)+ztmst*zdudt(ji) |
|---|
| 505 | zvst=pvm1(ji,jk)+ztmst*zdvdt(ji) |
|---|
| 506 | zdis=0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
|---|
| 507 | zdedt(ji)=zdis/ztmst |
|---|
| 508 | zvidis(ji)=zvidis(ji)+zdis*zdelp |
|---|
| 509 | zdtdt(ji)=zdedt(ji)/rcpd |
|---|
| 510 | !c |
|---|
| 511 | !c NO TENDENCIES ON TEMPERATURE ..... |
|---|
| 512 | !c |
|---|
| 513 | !c Instead of, pte(ji,jk)=zdtdt(ji), due to mechanical dissipation |
|---|
| 514 | !c |
|---|
| 515 | pte(ji,jk)=0.0 |
|---|
| 516 | |
|---|
| 517 | endif |
|---|
| 518 | |
|---|
| 519 | 523 continue |
|---|
| 520 | 524 continue |
|---|
| 521 | !c |
|---|
| 522 | !c |
|---|
| 523 | 501 continue |
|---|
| 524 | |
|---|
| 525 | return |
|---|
| 526 | end SUBROUTINE orodrag_strato |
|---|
| 527 | |
|---|
| 528 | SUBROUTINE orosetup_strato & |
|---|
| 529 | & ( nlon , nlev , ktest & |
|---|
| 530 | & , kkcrit, kkcrith, kcrit, ksect , kkhlim & |
|---|
| 531 | & , kkenvh, kknu , kknu2 & |
|---|
| 532 | & , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd & |
|---|
| 533 | & , prho , pri , pstab , ptau , pvph ,ppsi, pzdep & |
|---|
| 534 | & , pulow , pvlow & |
|---|
| 535 | & , ptheta, pgam, pmea, ppic, pval & |
|---|
| 536 | & , pnu , pd1 , pd2 ,pdmod ) |
|---|
| 537 | !C |
|---|
| 538 | !c**** *gwsetup* |
|---|
| 539 | !c |
|---|
| 540 | !c purpose. |
|---|
| 541 | !c -------- |
|---|
| 542 | !c SET-UP THE ESSENTIAL PARAMETERS OF THE SSO DRAG SCHEME: |
|---|
| 543 | !C DEPTH OF LOW WBLOCKED LAYER, LOW-LEVEL FLOW, BACKGROUND |
|---|
| 544 | !C STRATIFICATION..... |
|---|
| 545 | !c |
|---|
| 546 | !c** interface. |
|---|
| 547 | !c ---------- |
|---|
| 548 | !c from *orodrag* |
|---|
| 549 | !c |
|---|
| 550 | !c explicit arguments : |
|---|
| 551 | !c -------------------- |
|---|
| 552 | !c ==== inputs === |
|---|
| 553 | !c |
|---|
| 554 | !c nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 555 | !c nlev----input-I-Number of vertical levels |
|---|
| 556 | !c ktest--input-I: Flags to indicate active points |
|---|
| 557 | !c |
|---|
| 558 | !c ptsphy--input-R-Time-step (s) |
|---|
| 559 | !c paphm1--input-R: pressure at model 1/2 layer |
|---|
| 560 | !c papm1---input-R: pressure at model layer |
|---|
| 561 | !c pgeom1--input-R: Altitude of layer above ground |
|---|
| 562 | !c ptm1, pum1, pvm1--R-: t, u and v |
|---|
| 563 | !c pmea----input-R-Mean Orography (m) |
|---|
| 564 | !C pstd----input-R-SSO standard deviation (m) |
|---|
| 565 | !c psig----input-R-SSO slope |
|---|
| 566 | !c pgam----input-R-SSO Anisotropy |
|---|
| 567 | !c pthe----input-R-SSO Angle |
|---|
| 568 | !c ppic----input-R-SSO Peacks elevation (m) |
|---|
| 569 | !c pval----input-R-SSO Valleys elevation (m) |
|---|
| 570 | |
|---|
| 571 | !c ==== outputs === |
|---|
| 572 | !c pulow, pvlow -output-R: Low-level wind |
|---|
| 573 | !c kkcrit----I-: Security value for top of low level flow |
|---|
| 574 | !c kcrit-----I-: Critical level |
|---|
| 575 | !c ksect-----I-: Not used |
|---|
| 576 | !c kkhlim----I-: Not used |
|---|
| 577 | !c kkenvh----I-: Top of blocked flow layer |
|---|
| 578 | !c kknu------I-: Layer that sees mountain peacks |
|---|
| 579 | !c kknu2-----I-: Layer that sees mountain peacks above mountain mean |
|---|
| 580 | !c kknub-----I-: Layer that sees mountain mean above valleys |
|---|
| 581 | !c prho------R-: Density at 1/2 layers |
|---|
| 582 | !c pri-------R-: Background Richardson Number, Wind shear measured along GW stress |
|---|
| 583 | !c pstab-----R-: Brunt-Vaisala freq. at 1/2 layers |
|---|
| 584 | !c pvph------R-: Wind in plan of GW stress, Half levels. |
|---|
| 585 | !c ppsi------R-: Angle between low level wind and SS0 main axis. |
|---|
| 586 | !c pd1-------R-| Compared the ratio of the stress |
|---|
| 587 | !c pd2-------R-| that is along the wind to that Normal to it. |
|---|
| 588 | !c pdi define the plane of low level stress |
|---|
| 589 | !c compared to the low level wind. |
|---|
| 590 | !c see p. 108 Lott & Miller (1997). |
|---|
| 591 | !c pdmod-----R-: Norme of pdi |
|---|
| 592 | |
|---|
| 593 | !c === local arrays === |
|---|
| 594 | !c |
|---|
| 595 | !c zvpf------R-: Wind projected in the plan of the low-level stress. |
|---|
| 596 | |
|---|
| 597 | !c ==== outputs === |
|---|
| 598 | !c |
|---|
| 599 | !c implicit arguments : none |
|---|
| 600 | !c -------------------- |
|---|
| 601 | !c |
|---|
| 602 | !c method. |
|---|
| 603 | !c ------- |
|---|
| 604 | !c |
|---|
| 605 | !c |
|---|
| 606 | !c externals. |
|---|
| 607 | !c ---------- |
|---|
| 608 | !c |
|---|
| 609 | !c |
|---|
| 610 | !c reference. |
|---|
| 611 | !c ---------- |
|---|
| 612 | !c |
|---|
| 613 | !c see ecmwf research department documentation of the "i.f.s." |
|---|
| 614 | !c |
|---|
| 615 | !c author. |
|---|
| 616 | !c ------- |
|---|
| 617 | !c |
|---|
| 618 | !c modifications. |
|---|
| 619 | !c -------------- |
|---|
| 620 | !c f.lott for the new-gwdrag scheme november 1993 |
|---|
| 621 | !c |
|---|
| 622 | !c----------------------------------------------------------------------- |
|---|
| 623 | USE dimphy |
|---|
| 624 | implicit none |
|---|
| 625 | !c |
|---|
| 626 | |
|---|
| 627 | !cym#include "dimensions.h" |
|---|
| 628 | !cym#include "dimphy.h" |
|---|
| 629 | #include "YOMCST.h" |
|---|
| 630 | #include "YOEGWD.h" |
|---|
| 631 | |
|---|
| 632 | !c----------------------------------------------------------------------- |
|---|
| 633 | !c |
|---|
| 634 | !c* 0.1 arguments |
|---|
| 635 | !c --------- |
|---|
| 636 | !c |
|---|
| 637 | integer nlon,nlev |
|---|
| 638 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), & |
|---|
| 639 | & kkhlim(nlon),ktest(nlon),kkenvh(nlon) |
|---|
| 640 | |
|---|
| 641 | !c |
|---|
| 642 | real paphm1(nlon,klev+1),papm1(nlon,klev),pum1(nlon,klev), & |
|---|
| 643 | & pvm1(nlon,klev),ptm1(nlon,klev),pgeom1(nlon,klev), & |
|---|
| 644 | & prho(nlon,klev+1),pri(nlon,klev+1),pstab(nlon,klev+1), & |
|---|
| 645 | & ptau(nlon,klev+1),pvph(nlon,klev+1),ppsi(nlon,klev+1), & |
|---|
| 646 | & pzdep(nlon,klev) |
|---|
| 647 | real pulow(nlon),pvlow(nlon),ptheta(nlon),pgam(nlon),pnu(nlon), & |
|---|
| 648 | & pd1(nlon),pd2(nlon),pdmod(nlon) |
|---|
| 649 | real pstd(nlon),pmea(nlon),ppic(nlon),pval(nlon) |
|---|
| 650 | !c |
|---|
| 651 | !c----------------------------------------------------------------------- |
|---|
| 652 | !c |
|---|
| 653 | !c* 0.2 local arrays |
|---|
| 654 | !c ------------ |
|---|
| 655 | !c |
|---|
| 656 | !c |
|---|
| 657 | integer ilevh ,jl,jk |
|---|
| 658 | real zcons1,zcons2,zhgeo,zu,zphi |
|---|
| 659 | real zvt1,zvt2,zdwind,zwind,zdelp |
|---|
| 660 | real zstabm,zstabp,zrhom,zrhop |
|---|
| 661 | logical lo |
|---|
| 662 | logical ll1(klon,klev+1) |
|---|
| 663 | integer kknu(klon),kknu2(klon),kknub(klon),kknul(klon), & |
|---|
| 664 | & kentp(klon),ncount(klon) |
|---|
| 665 | !c |
|---|
| 666 | real zhcrit(klon,klev),zvpf(klon,klev), & |
|---|
| 667 | & zdp(klon,klev) |
|---|
| 668 | real znorm(klon),zb(klon),zc(klon), & |
|---|
| 669 | & zulow(klon),zvlow(klon),znup(klon),znum(klon) |
|---|
| 670 | !c |
|---|
| 671 | !c ------------------------------------------------------------------ |
|---|
| 672 | !c |
|---|
| 673 | !c* 1. initialization |
|---|
| 674 | !c -------------- |
|---|
| 675 | !c |
|---|
| 676 | !c PRINT *,' in orosetup' |
|---|
| 677 | 100 continue |
|---|
| 678 | !c |
|---|
| 679 | !c ------------------------------------------------------------------ |
|---|
| 680 | !c |
|---|
| 681 | !c* 1.1 computational constants |
|---|
| 682 | !c ----------------------- |
|---|
| 683 | !c |
|---|
| 684 | 110 continue |
|---|
| 685 | !c |
|---|
| 686 | ilevh =klev/3 |
|---|
| 687 | !c |
|---|
| 688 | zcons1=1./rd |
|---|
| 689 | zcons2=rg**2/rcpd |
|---|
| 690 | !c |
|---|
| 691 | !c |
|---|
| 692 | !c ------------------------------------------------------------------ |
|---|
| 693 | !c |
|---|
| 694 | !c* 2. |
|---|
| 695 | !c -------------- |
|---|
| 696 | !c |
|---|
| 697 | 200 continue |
|---|
| 698 | !c |
|---|
| 699 | !c ------------------------------------------------------------------ |
|---|
| 700 | !c |
|---|
| 701 | !c* 2.1 define low level wind, project winds in plane of |
|---|
| 702 | !c* low level wind, determine sector in which to take |
|---|
| 703 | !c* the variance and set indicator for critical levels. |
|---|
| 704 | !c |
|---|
| 705 | !c |
|---|
| 706 | !c |
|---|
| 707 | do 2001 jl=kidia,kfdia |
|---|
| 708 | kknu(jl) =klev |
|---|
| 709 | kknu2(jl) =klev |
|---|
| 710 | kknub(jl) =klev |
|---|
| 711 | kknul(jl) =klev |
|---|
| 712 | pgam(jl) =max(pgam(jl),gtsec) |
|---|
| 713 | ll1(jl,klev+1)=.false. |
|---|
| 714 | 2001 continue |
|---|
| 715 | !c |
|---|
| 716 | !c Ajouter une initialisation (L. Li, le 23fev99): |
|---|
| 717 | !c |
|---|
| 718 | do jk=klev,ilevh,-1 |
|---|
| 719 | do jl=kidia,kfdia |
|---|
| 720 | ll1(jl,jk)= .false. |
|---|
| 721 | ENDDO |
|---|
| 722 | ENDDO |
|---|
| 723 | !c |
|---|
| 724 | !c* define top of low level flow |
|---|
| 725 | !c ---------------------------- |
|---|
| 726 | do 2002 jk=klev,ilevh,-1 |
|---|
| 727 | do 2003 jl=kidia,kfdia |
|---|
| 728 | if(ktest(jl).eq.1) then |
|---|
| 729 | lo=(paphm1(jl,jk)/paphm1(jl,klev+1)).ge.gsigcr |
|---|
| 730 | if(lo) then |
|---|
| 731 | kkcrit(jl)=jk |
|---|
| 732 | endif |
|---|
| 733 | zhcrit(jl,jk)=ppic(jl)-pval(jl) |
|---|
| 734 | zhgeo=pgeom1(jl,jk)/rg |
|---|
| 735 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
|---|
| 736 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
|---|
| 737 | kknu(jl)=jk |
|---|
| 738 | endif |
|---|
| 739 | if(.not.ll1(jl,ilevh))kknu(jl)=ilevh |
|---|
| 740 | endif |
|---|
| 741 | 2003 continue |
|---|
| 742 | 2002 continue |
|---|
| 743 | do 2004 jk=klev,ilevh,-1 |
|---|
| 744 | do 2005 jl=kidia,kfdia |
|---|
| 745 | if(ktest(jl).eq.1) then |
|---|
| 746 | zhcrit(jl,jk)=ppic(jl)-pmea(jl) |
|---|
| 747 | zhgeo=pgeom1(jl,jk)/rg |
|---|
| 748 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
|---|
| 749 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
|---|
| 750 | kknu2(jl)=jk |
|---|
| 751 | endif |
|---|
| 752 | if(.not.ll1(jl,ilevh))kknu2(jl)=ilevh |
|---|
| 753 | endif |
|---|
| 754 | 2005 continue |
|---|
| 755 | 2004 continue |
|---|
| 756 | do 2006 jk=klev,ilevh,-1 |
|---|
| 757 | do 2007 jl=kidia,kfdia |
|---|
| 758 | if(ktest(jl).eq.1) then |
|---|
| 759 | zhcrit(jl,jk)=amin1(ppic(jl)-pmea(jl),pmea(jl)-pval(jl)) |
|---|
| 760 | zhgeo=pgeom1(jl,jk)/rg |
|---|
| 761 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
|---|
| 762 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
|---|
| 763 | kknub(jl)=jk |
|---|
| 764 | endif |
|---|
| 765 | if(.not.ll1(jl,ilevh))kknub(jl)=ilevh |
|---|
| 766 | endif |
|---|
| 767 | 2007 continue |
|---|
| 768 | 2006 continue |
|---|
| 769 | !c |
|---|
| 770 | do 2010 jl=kidia,kfdia |
|---|
| 771 | if(ktest(jl).eq.1) then |
|---|
| 772 | kknu(jl)=min(kknu(jl),nktopg) |
|---|
| 773 | kknu2(jl)=min(kknu2(jl),nktopg) |
|---|
| 774 | kknub(jl)=min(kknub(jl),nktopg) |
|---|
| 775 | kknul(jl)=klev |
|---|
| 776 | endif |
|---|
| 777 | 2010 continue |
|---|
| 778 | !c |
|---|
| 779 | 210 continue |
|---|
| 780 | !c |
|---|
| 781 | !cc* initialize various arrays |
|---|
| 782 | !c |
|---|
| 783 | do 2107 jl=kidia,kfdia |
|---|
| 784 | prho(jl,klev+1) =0.0 |
|---|
| 785 | !cym correction en attendant mieux |
|---|
| 786 | prho(jl,1) =0.0 |
|---|
| 787 | pstab(jl,klev+1) =0.0 |
|---|
| 788 | pstab(jl,1) =0.0 |
|---|
| 789 | pri(jl,klev+1) =9999.0 |
|---|
| 790 | ppsi(jl,klev+1) =0.0 |
|---|
| 791 | pri(jl,1) =0.0 |
|---|
| 792 | pvph(jl,1) =0.0 |
|---|
| 793 | pvph(jl,klev+1) =0.0 |
|---|
| 794 | !cym correction en attendant mieux |
|---|
| 795 | !cym pvph(jl,klev) =0.0 |
|---|
| 796 | pulow(jl) =0.0 |
|---|
| 797 | pvlow(jl) =0.0 |
|---|
| 798 | zulow(jl) =0.0 |
|---|
| 799 | zvlow(jl) =0.0 |
|---|
| 800 | kkcrith(jl) =klev |
|---|
| 801 | kkenvh(jl) =klev |
|---|
| 802 | kentp(jl) =klev |
|---|
| 803 | kcrit(jl) =1 |
|---|
| 804 | ncount(jl) =0 |
|---|
| 805 | ll1(jl,klev+1) =.false. |
|---|
| 806 | 2107 continue |
|---|
| 807 | !c |
|---|
| 808 | !c* define flow density and stratification (rho and N2) |
|---|
| 809 | !c at semi layers. |
|---|
| 810 | !c ------------------------------------------------------- |
|---|
| 811 | !c |
|---|
| 812 | do 223 jk=klev,2,-1 |
|---|
| 813 | do 222 jl=kidia,kfdia |
|---|
| 814 | if(ktest(jl).eq.1) then |
|---|
| 815 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
|---|
| 816 | prho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
|---|
| 817 | pstab(jl,jk)=2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
|---|
| 818 | & (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
|---|
| 819 | pstab(jl,jk)=max(pstab(jl,jk),gssec) |
|---|
| 820 | endif |
|---|
| 821 | 222 continue |
|---|
| 822 | 223 continue |
|---|
| 823 | !c |
|---|
| 824 | !c******************************************************************** |
|---|
| 825 | !c |
|---|
| 826 | !c* define Low level flow (between ground and peacks-valleys) |
|---|
| 827 | !c --------------------------------------------------------- |
|---|
| 828 | do 2115 jk=klev,ilevh,-1 |
|---|
| 829 | do 2116 jl=kidia,kfdia |
|---|
| 830 | if(ktest(jl).eq.1) then |
|---|
| 831 | if(jk.ge.kknu2(jl).and.jk.le.kknul(jl)) then |
|---|
| 832 | pulow(jl)=pulow(jl)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
|---|
| 833 | pvlow(jl)=pvlow(jl)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
|---|
| 834 | pstab(jl,klev+1)=pstab(jl,klev+1) & |
|---|
| 835 | & +pstab(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
|---|
| 836 | prho(jl,klev+1)=prho(jl,klev+1) & |
|---|
| 837 | & +prho(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
|---|
| 838 | end if |
|---|
| 839 | endif |
|---|
| 840 | 2116 continue |
|---|
| 841 | 2115 continue |
|---|
| 842 | do 2110 jl=kidia,kfdia |
|---|
| 843 | if(ktest(jl).eq.1) then |
|---|
| 844 | pulow(jl)=pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
|---|
| 845 | pvlow(jl)=pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
|---|
| 846 | znorm(jl)=max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
|---|
| 847 | pvph(jl,klev+1)=znorm(jl) |
|---|
| 848 | pstab(jl,klev+1)=pstab(jl,klev+1) & |
|---|
| 849 | & /(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
|---|
| 850 | prho(jl,klev+1)=prho(jl,klev+1) & |
|---|
| 851 | & /(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
|---|
| 852 | endif |
|---|
| 853 | 2110 continue |
|---|
| 854 | |
|---|
| 855 | !c |
|---|
| 856 | !c******* setup orography orientation relative to the low level |
|---|
| 857 | !C wind and define parameters of the Anisotropic wave stress. |
|---|
| 858 | !c |
|---|
| 859 | do 2112 jl=kidia,kfdia |
|---|
| 860 | if(ktest(jl).eq.1) then |
|---|
| 861 | lo=(pulow(jl).lt.gvsec).and.(pulow(jl).ge.-gvsec) |
|---|
| 862 | if(lo) then |
|---|
| 863 | zu=pulow(jl)+2.*gvsec |
|---|
| 864 | else |
|---|
| 865 | zu=pulow(jl) |
|---|
| 866 | endif |
|---|
| 867 | zphi=atan(pvlow(jl)/zu) |
|---|
| 868 | ppsi(jl,klev+1)=ptheta(jl)*rpi/180.-zphi |
|---|
| 869 | zb(jl)=1.-0.18*pgam(jl)-0.04*pgam(jl)**2 |
|---|
| 870 | zc(jl)=0.48*pgam(jl)+0.3*pgam(jl)**2 |
|---|
| 871 | pd1(jl)=zb(jl)-(zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
|---|
| 872 | pd2(jl)=(zb(jl)-zc(jl))*sin(ppsi(jl,klev+1)) & |
|---|
| 873 | & *cos(ppsi(jl,klev+1)) |
|---|
| 874 | pdmod(jl)=sqrt(pd1(jl)**2+pd2(jl)**2) |
|---|
| 875 | endif |
|---|
| 876 | 2112 continue |
|---|
| 877 | !c |
|---|
| 878 | !c ************ projet flow in plane of lowlevel stress ************* |
|---|
| 879 | !C ************ Find critical levels... ************* |
|---|
| 880 | !c |
|---|
| 881 | do 213 jk=1,klev |
|---|
| 882 | do 212 jl=kidia,kfdia |
|---|
| 883 | if(ktest(jl).eq.1) then |
|---|
| 884 | zvt1 =pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk) |
|---|
| 885 | zvt2 =-pvlow(jl)*pum1(jl,jk)+pulow(jl)*pvm1(jl,jk) |
|---|
| 886 | zvpf(jl,jk)=(zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
|---|
| 887 | endif |
|---|
| 888 | ptau(jl,jk) =0.0 |
|---|
| 889 | pzdep(jl,jk) =0.0 |
|---|
| 890 | ppsi(jl,jk) =0.0 |
|---|
| 891 | ll1(jl,jk) =.false. |
|---|
| 892 | 212 continue |
|---|
| 893 | 213 continue |
|---|
| 894 | do 215 jk=2,klev |
|---|
| 895 | do 214 jl=kidia,kfdia |
|---|
| 896 | if(ktest(jl).eq.1) then |
|---|
| 897 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
|---|
| 898 | pvph(jl,jk)=((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+ & |
|---|
| 899 | & (papm1(jl,jk)-paphm1(jl,jk))*zvpf(jl,jk-1)) & |
|---|
| 900 | & /zdp(jl,jk) |
|---|
| 901 | if(pvph(jl,jk).lt.gvsec) then |
|---|
| 902 | pvph(jl,jk)=gvsec |
|---|
| 903 | kcrit(jl)=jk |
|---|
| 904 | endif |
|---|
| 905 | endif |
|---|
| 906 | 214 continue |
|---|
| 907 | 215 continue |
|---|
| 908 | !c |
|---|
| 909 | !c* 2.3 mean flow richardson number. |
|---|
| 910 | !c |
|---|
| 911 | 230 continue |
|---|
| 912 | !c |
|---|
| 913 | do 232 jk=2,klev |
|---|
| 914 | do 231 jl=kidia,kfdia |
|---|
| 915 | if(ktest(jl).eq.1) then |
|---|
| 916 | zdwind=max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)),gvsec) |
|---|
| 917 | pri(jl,jk)=pstab(jl,jk)*(zdp(jl,jk) & |
|---|
| 918 | & /(rg*prho(jl,jk)*zdwind))**2 |
|---|
| 919 | pri(jl,jk)=max(pri(jl,jk),grcrit) |
|---|
| 920 | endif |
|---|
| 921 | 231 continue |
|---|
| 922 | 232 continue |
|---|
| 923 | |
|---|
| 924 | !c |
|---|
| 925 | !c |
|---|
| 926 | !c* define top of 'envelope' layer |
|---|
| 927 | !c ---------------------------- |
|---|
| 928 | |
|---|
| 929 | do 233 jl=kidia,kfdia |
|---|
| 930 | pnu (jl)=0.0 |
|---|
| 931 | znum(jl)=0.0 |
|---|
| 932 | 233 continue |
|---|
| 933 | |
|---|
| 934 | do 234 jk=2,klev-1 |
|---|
| 935 | do 234 jl=kidia,kfdia |
|---|
| 936 | |
|---|
| 937 | if(ktest(jl).eq.1) then |
|---|
| 938 | |
|---|
| 939 | if (jk.ge.kknu2(jl)) then |
|---|
| 940 | |
|---|
| 941 | znum(jl)=pnu(jl) |
|---|
| 942 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
|---|
| 943 | & max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
|---|
| 944 | zwind=max(sqrt(zwind**2),gvsec) |
|---|
| 945 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
|---|
| 946 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
|---|
| 947 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
|---|
| 948 | zrhom=prho(jl,jk ) |
|---|
| 949 | zrhop=prho(jl,jk+1) |
|---|
| 950 | pnu(jl) = pnu(jl) + (zdelp/rg)* & |
|---|
| 951 | & ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
|---|
| 952 | if((znum(jl).le.gfrcrit).and.(pnu(jl).gt.gfrcrit) & |
|---|
| 953 | & .and.(kkenvh(jl).eq.klev)) & |
|---|
| 954 | & kkenvh(jl)=jk |
|---|
| 955 | endif |
|---|
| 956 | |
|---|
| 957 | endif |
|---|
| 958 | |
|---|
| 959 | 234 continue |
|---|
| 960 | |
|---|
| 961 | !c calculation of a dynamical mixing height for when the waves |
|---|
| 962 | !C BREAK AT LOW LEVEL: The drag will be repartited over |
|---|
| 963 | !C a depths that depends on waves vertical wavelength, |
|---|
| 964 | !C not just between two adjacent model layers. |
|---|
| 965 | !c of gravity waves: |
|---|
| 966 | |
|---|
| 967 | do 235 jl=kidia,kfdia |
|---|
| 968 | znup(jl)=0.0 |
|---|
| 969 | znum(jl)=0.0 |
|---|
| 970 | 235 continue |
|---|
| 971 | |
|---|
| 972 | do 236 jk=klev-1,2,-1 |
|---|
| 973 | do 236 jl=kidia,kfdia |
|---|
| 974 | |
|---|
| 975 | if(ktest(jl).eq.1) then |
|---|
| 976 | |
|---|
| 977 | znum(jl)=znup(jl) |
|---|
| 978 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
|---|
| 979 | & max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
|---|
| 980 | zwind=max(sqrt(zwind**2),gvsec) |
|---|
| 981 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
|---|
| 982 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
|---|
| 983 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
|---|
| 984 | zrhom=prho(jl,jk ) |
|---|
| 985 | zrhop=prho(jl,jk+1) |
|---|
| 986 | znup(jl) = znup(jl) + (zdelp/rg)* & |
|---|
| 987 | & ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
|---|
| 988 | if((znum(jl).le.rpi/4.).and.(znup(jl).gt.rpi/4.) & |
|---|
| 989 | & .and.(kkcrith(jl).eq.klev)) & |
|---|
| 990 | & kkcrith(jl)=jk |
|---|
| 991 | endif |
|---|
| 992 | |
|---|
| 993 | 236 continue |
|---|
| 994 | |
|---|
| 995 | do 237 jl=kidia,kfdia |
|---|
| 996 | if(ktest(jl).eq.1) then |
|---|
| 997 | kkcrith(jl)=max0(kkcrith(jl),ilevh*2) |
|---|
| 998 | kkcrith(jl)=max0(kkcrith(jl),kknu(jl)) |
|---|
| 999 | if(kcrit(jl).ge.kkcrith(jl))kcrit(jl)=1 |
|---|
| 1000 | endif |
|---|
| 1001 | 237 continue |
|---|
| 1002 | !c |
|---|
| 1003 | !c directional info for flow blocking ************************* |
|---|
| 1004 | !c |
|---|
| 1005 | do 251 jk=1,klev |
|---|
| 1006 | do 252 jl=kidia,kfdia |
|---|
| 1007 | if(ktest(jl).eq.1) then |
|---|
| 1008 | lo=(pum1(jl,jk).lt.gvsec).and.(pum1(jl,jk).ge.-gvsec) |
|---|
| 1009 | if(lo) then |
|---|
| 1010 | zu=pum1(jl,jk)+2.*gvsec |
|---|
| 1011 | else |
|---|
| 1012 | zu=pum1(jl,jk) |
|---|
| 1013 | endif |
|---|
| 1014 | zphi=atan(pvm1(jl,jk)/zu) |
|---|
| 1015 | ppsi(jl,jk)=ptheta(jl)*rpi/180.-zphi |
|---|
| 1016 | endif |
|---|
| 1017 | 252 continue |
|---|
| 1018 | 251 continue |
|---|
| 1019 | |
|---|
| 1020 | !c forms the vertical 'leakiness' ************************** |
|---|
| 1021 | |
|---|
| 1022 | do 254 jk=ilevh,klev |
|---|
| 1023 | do 253 jl=kidia,kfdia |
|---|
| 1024 | if(ktest(jl).eq.1) then |
|---|
| 1025 | pzdep(jl,jk)=0 |
|---|
| 1026 | if(jk.ge.kkenvh(jl).and.kkenvh(jl).ne.klev) then |
|---|
| 1027 | pzdep(jl,jk)=(pgeom1(jl,kkenvh(jl) )-pgeom1(jl, jk))/ & |
|---|
| 1028 | & (pgeom1(jl,kkenvh(jl) )-pgeom1(jl,klev)) |
|---|
| 1029 | end if |
|---|
| 1030 | endif |
|---|
| 1031 | 253 continue |
|---|
| 1032 | 254 continue |
|---|
| 1033 | |
|---|
| 1034 | return |
|---|
| 1035 | end SUBROUTINE orosetup_strato |
|---|
| 1036 | |
|---|
| 1037 | SUBROUTINE gwstress_strato & |
|---|
| 1038 | & ( nlon , nlev & |
|---|
| 1039 | & , kkcrit, ksect, kkhlim, ktest, kkcrith, kcrit, kkenvh & |
|---|
| 1040 | & , kknu & |
|---|
| 1041 | & , prho , pstab , pvph , pstd, psig & |
|---|
| 1042 | & , pmea , ppic , pval , ptfr , ptau & |
|---|
| 1043 | & , pgeom1 , pgamma , pd1 , pd2 , pdmod , pnu ) |
|---|
| 1044 | !c |
|---|
| 1045 | !c**** *gwstress* |
|---|
| 1046 | !c |
|---|
| 1047 | !c purpose. |
|---|
| 1048 | !c -------- |
|---|
| 1049 | !c Compute the surface stress due to Gravity Waves, according |
|---|
| 1050 | !c to the Phillips (1979) theory of 3-D flow above |
|---|
| 1051 | !c anisotropic elliptic ridges. |
|---|
| 1052 | |
|---|
| 1053 | !C The stress is reduced two account for cut-off flow over |
|---|
| 1054 | !C hill. The flow only see that part of the ridge located |
|---|
| 1055 | !c above the blocked layer (see zeff). |
|---|
| 1056 | !c |
|---|
| 1057 | !c** interface. |
|---|
| 1058 | !c ---------- |
|---|
| 1059 | !c call *gwstress* from *gwdrag* |
|---|
| 1060 | !c |
|---|
| 1061 | !c explicit arguments : |
|---|
| 1062 | !c -------------------- |
|---|
| 1063 | !c ==== inputs === |
|---|
| 1064 | !c ==== outputs === |
|---|
| 1065 | !c |
|---|
| 1066 | !c implicit arguments : none |
|---|
| 1067 | !c -------------------- |
|---|
| 1068 | !c |
|---|
| 1069 | !c method. |
|---|
| 1070 | !c ------- |
|---|
| 1071 | !c |
|---|
| 1072 | !c |
|---|
| 1073 | !c externals. |
|---|
| 1074 | !c ---------- |
|---|
| 1075 | !c |
|---|
| 1076 | !c |
|---|
| 1077 | !c reference. |
|---|
| 1078 | !c ---------- |
|---|
| 1079 | !c |
|---|
| 1080 | !c LOTT and MILLER (1997) & LOTT (1999) |
|---|
| 1081 | !c |
|---|
| 1082 | !c author. |
|---|
| 1083 | !c ------- |
|---|
| 1084 | !c |
|---|
| 1085 | !c modifications. |
|---|
| 1086 | !c -------------- |
|---|
| 1087 | !c f. lott put the new gwd on ifs 22/11/93 |
|---|
| 1088 | !c |
|---|
| 1089 | !c----------------------------------------------------------------------- |
|---|
| 1090 | USE dimphy |
|---|
| 1091 | implicit none |
|---|
| 1092 | |
|---|
| 1093 | !cym#include "dimensions.h" |
|---|
| 1094 | !cym#include "dimphy.h" |
|---|
| 1095 | #include "YOMCST.h" |
|---|
| 1096 | #include "YOEGWD.h" |
|---|
| 1097 | |
|---|
| 1098 | !c----------------------------------------------------------------------- |
|---|
| 1099 | !c |
|---|
| 1100 | !c* 0.1 arguments |
|---|
| 1101 | !c --------- |
|---|
| 1102 | !c |
|---|
| 1103 | integer nlon,nlev |
|---|
| 1104 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), & |
|---|
| 1105 | & kkhlim(nlon),ktest(nlon),kkenvh(nlon),kknu(nlon) |
|---|
| 1106 | !c |
|---|
| 1107 | real prho(nlon,nlev+1),pstab(nlon,nlev+1),ptau(nlon,nlev+1), & |
|---|
| 1108 | & pvph(nlon,nlev+1),ptfr(nlon), & |
|---|
| 1109 | & pgeom1(nlon,nlev),pstd(nlon) |
|---|
| 1110 | !c |
|---|
| 1111 | real pd1(nlon),pd2(nlon),pnu(nlon),psig(nlon),pgamma(nlon) |
|---|
| 1112 | real pmea(nlon),ppic(nlon),pval(nlon) |
|---|
| 1113 | real pdmod(nlon) |
|---|
| 1114 | !c |
|---|
| 1115 | !c----------------------------------------------------------------------- |
|---|
| 1116 | !c |
|---|
| 1117 | !c* 0.2 local arrays |
|---|
| 1118 | !c ------------ |
|---|
| 1119 | !c zeff--real: effective height seen by the flow when there is blocking |
|---|
| 1120 | |
|---|
| 1121 | integer jl |
|---|
| 1122 | real zeff |
|---|
| 1123 | !c |
|---|
| 1124 | !c----------------------------------------------------------------------- |
|---|
| 1125 | !c |
|---|
| 1126 | !c* 0.3 functions |
|---|
| 1127 | !c --------- |
|---|
| 1128 | !c ------------------------------------------------------------------ |
|---|
| 1129 | !c |
|---|
| 1130 | !c* 1. initialization |
|---|
| 1131 | !c -------------- |
|---|
| 1132 | !c |
|---|
| 1133 | !c PRINT *,' in gwstress' |
|---|
| 1134 | 100 continue |
|---|
| 1135 | !c |
|---|
| 1136 | !c* 3.1 gravity wave stress. |
|---|
| 1137 | !c |
|---|
| 1138 | 300 continue |
|---|
| 1139 | !c |
|---|
| 1140 | !c |
|---|
| 1141 | do 301 jl=kidia,kfdia |
|---|
| 1142 | if(ktest(jl).eq.1) then |
|---|
| 1143 | |
|---|
| 1144 | !c effective mountain height above the blocked flow |
|---|
| 1145 | |
|---|
| 1146 | zeff=ppic(jl)-pval(jl) |
|---|
| 1147 | if(kkenvh(jl).lt.klev)then |
|---|
| 1148 | zeff=amin1(GFRCRIT*pvph(jl,klev+1)/sqrt(pstab(jl,klev+1)) & |
|---|
| 1149 | & ,zeff) |
|---|
| 1150 | endif |
|---|
| 1151 | |
|---|
| 1152 | |
|---|
| 1153 | ptau(jl,klev+1)=gkdrag*prho(jl,klev+1) & |
|---|
| 1154 | & *psig(jl)*pdmod(jl)/4./pstd(jl) & |
|---|
| 1155 | & *pvph(jl,klev+1)*sqrt(pstab(jl,klev+1)) & |
|---|
| 1156 | & *zeff**2 |
|---|
| 1157 | |
|---|
| 1158 | |
|---|
| 1159 | !c too small value of stress or low level flow include critical level |
|---|
| 1160 | !c or low level flow: gravity wave stress nul. |
|---|
| 1161 | |
|---|
| 1162 | !c lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) |
|---|
| 1163 | !c * .or.(pvph(jl,klev+1).lt.gvcrit) |
|---|
| 1164 | !c if(lo) ptau(jl,klev+1)=0.0 |
|---|
| 1165 | |
|---|
| 1166 | !c print *,jl,ptau(jl,klev+1) |
|---|
| 1167 | |
|---|
| 1168 | else |
|---|
| 1169 | |
|---|
| 1170 | ptau(jl,klev+1)=0.0 |
|---|
| 1171 | |
|---|
| 1172 | endif |
|---|
| 1173 | |
|---|
| 1174 | 301 continue |
|---|
| 1175 | |
|---|
| 1176 | !c write(21)(ptau(jl,klev+1),jl=kidia,kfdia) |
|---|
| 1177 | |
|---|
| 1178 | return |
|---|
| 1179 | end SUBROUTINE gwstress_strato |
|---|
| 1180 | |
|---|
| 1181 | subroutine gwprofil_strato & |
|---|
| 1182 | & ( nlon, nlev & |
|---|
| 1183 | & , kgwd ,kdx , ktest & |
|---|
| 1184 | & , kkcrit, kkcrith, kcrit , kkenvh, kknu,kknu2 & |
|---|
| 1185 | & , paphm1, prho , pstab , ptfr , pvph , pri , ptau & |
|---|
| 1186 | & , pdmod , pnu , psig ,pgamma, pstd, ppic,pval) |
|---|
| 1187 | |
|---|
| 1188 | !C**** *gwprofil* |
|---|
| 1189 | !C |
|---|
| 1190 | !C purpose. |
|---|
| 1191 | !C -------- |
|---|
| 1192 | !C |
|---|
| 1193 | !C** interface. |
|---|
| 1194 | !C ---------- |
|---|
| 1195 | !C from *gwdrag* |
|---|
| 1196 | !C |
|---|
| 1197 | !C explicit arguments : |
|---|
| 1198 | !C -------------------- |
|---|
| 1199 | !C ==== inputs === |
|---|
| 1200 | !C |
|---|
| 1201 | !C ==== outputs === |
|---|
| 1202 | !C |
|---|
| 1203 | !C implicit arguments : none |
|---|
| 1204 | !C -------------------- |
|---|
| 1205 | !C |
|---|
| 1206 | !C method: |
|---|
| 1207 | !C ------- |
|---|
| 1208 | !C the stress profile for gravity waves is computed as follows: |
|---|
| 1209 | !C it decreases linearly with heights from the ground |
|---|
| 1210 | !C to the low-level indicated by kkcrith, |
|---|
| 1211 | !C to simulates lee waves or |
|---|
| 1212 | !C low-level gravity wave breaking. |
|---|
| 1213 | !C above it is constant, except when the waves encounter a critical |
|---|
| 1214 | !C level (kcrit) or when they break. |
|---|
| 1215 | !C The stress is also uniformly distributed above the level |
|---|
| 1216 | !C nstra. |
|---|
| 1217 | !C |
|---|
| 1218 | USE dimphy |
|---|
| 1219 | IMPLICIT NONE |
|---|
| 1220 | |
|---|
| 1221 | !cym#include "dimensions.h" |
|---|
| 1222 | !cym#include "dimphy.h" |
|---|
| 1223 | #include "YOMCST.h" |
|---|
| 1224 | #include "YOEGWD.h" |
|---|
| 1225 | |
|---|
| 1226 | !C----------------------------------------------------------------------- |
|---|
| 1227 | !C |
|---|
| 1228 | !C* 0.1 ARGUMENTS |
|---|
| 1229 | !C --------- |
|---|
| 1230 | !C |
|---|
| 1231 | integer nlon,nlev,kgwd |
|---|
| 1232 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon) & |
|---|
| 1233 | & ,kdx(nlon),ktest(nlon) & |
|---|
| 1234 | & ,kkenvh(nlon),kknu(nlon),kknu2(nlon) |
|---|
| 1235 | !C |
|---|
| 1236 | real paphm1(nlon,nlev+1), pstab(nlon,nlev+1), & |
|---|
| 1237 | & prho (nlon,nlev+1), pvph (nlon,nlev+1), & |
|---|
| 1238 | & pri (nlon,nlev+1), ptfr (nlon), ptau(nlon,nlev+1) |
|---|
| 1239 | real pdmod (nlon) , pnu (nlon) , psig(nlon), & |
|---|
| 1240 | & pgamma(nlon) , pstd(nlon) , ppic(nlon), pval(nlon) |
|---|
| 1241 | |
|---|
| 1242 | !C----------------------------------------------------------------------- |
|---|
| 1243 | !C |
|---|
| 1244 | !C* 0.2 local arrays |
|---|
| 1245 | !C ------------ |
|---|
| 1246 | !C |
|---|
| 1247 | integer jl,jk |
|---|
| 1248 | real zsqr,zalfa,zriw,zdel,zb,zalpha,zdz2n,zdelp,zdelpt |
|---|
| 1249 | |
|---|
| 1250 | real zdz2 (klon,klev) , znorm(klon) , zoro(klon) |
|---|
| 1251 | real ztau (klon,klev+1) |
|---|
| 1252 | !C |
|---|
| 1253 | !C----------------------------------------------------------------------- |
|---|
| 1254 | !C |
|---|
| 1255 | !C* 1. INITIALIZATION |
|---|
| 1256 | !C -------------- |
|---|
| 1257 | !C |
|---|
| 1258 | !C print *,' entree gwprofil' |
|---|
| 1259 | 100 CONTINUE |
|---|
| 1260 | !C |
|---|
| 1261 | !C |
|---|
| 1262 | !C* COMPUTATIONAL CONSTANTS. |
|---|
| 1263 | !C ------------- ---------- |
|---|
| 1264 | !C |
|---|
| 1265 | do 400 jl=kidia,kfdia |
|---|
| 1266 | if(ktest(jl).eq.1)then |
|---|
| 1267 | zoro(jl)=psig(jl)*pdmod(jl)/4./pstd(jl) |
|---|
| 1268 | ztau(jl,klev+1)=ptau(jl,klev+1) |
|---|
| 1269 | !c print *,jl,ptau(jl,klev+1) |
|---|
| 1270 | ztau(jl,kkcrith(jl))=grahilo*ptau(jl,klev+1) |
|---|
| 1271 | endif |
|---|
| 1272 | 400 continue |
|---|
| 1273 | |
|---|
| 1274 | !C |
|---|
| 1275 | do 430 jk=klev+1,1,-1 |
|---|
| 1276 | !C |
|---|
| 1277 | !C |
|---|
| 1278 | !C* 4.1 constant shear stress until top of the |
|---|
| 1279 | !C low-level breaking/trapped layer |
|---|
| 1280 | 410 CONTINUE |
|---|
| 1281 | !C |
|---|
| 1282 | do 411 jl=kidia,kfdia |
|---|
| 1283 | if(ktest(jl).eq.1)then |
|---|
| 1284 | if(jk.gt.kkcrith(jl)) then |
|---|
| 1285 | zdelp=paphm1(jl,jk)-paphm1(jl,klev+1) |
|---|
| 1286 | zdelpt=paphm1(jl,kkcrith(jl))-paphm1(jl,klev+1) |
|---|
| 1287 | ptau(jl,jk)=ztau(jl,klev+1)+zdelp/zdelpt* & |
|---|
| 1288 | & (ztau(jl,kkcrith(jl))-ztau(jl,klev+1)) |
|---|
| 1289 | else |
|---|
| 1290 | ptau(jl,jk)=ztau(jl,kkcrith(jl)) |
|---|
| 1291 | endif |
|---|
| 1292 | endif |
|---|
| 1293 | 411 continue |
|---|
| 1294 | !C |
|---|
| 1295 | !C* 4.15 constant shear stress until the top of the |
|---|
| 1296 | !C low level flow layer. |
|---|
| 1297 | 415 continue |
|---|
| 1298 | !C |
|---|
| 1299 | !C |
|---|
| 1300 | !C* 4.2 wave displacement at next level. |
|---|
| 1301 | !C |
|---|
| 1302 | 420 continue |
|---|
| 1303 | !C |
|---|
| 1304 | 430 continue |
|---|
| 1305 | |
|---|
| 1306 | !C |
|---|
| 1307 | !C* 4.4 wave richardson number, new wave displacement |
|---|
| 1308 | !C* and stress: breaking evaluation and critical |
|---|
| 1309 | !C level |
|---|
| 1310 | !C |
|---|
| 1311 | |
|---|
| 1312 | do 440 jk=klev,1,-1 |
|---|
| 1313 | |
|---|
| 1314 | do 441 jl=kidia,kfdia |
|---|
| 1315 | if(ktest(jl).eq.1)then |
|---|
| 1316 | znorm(jl)=prho(jl,jk)*sqrt(pstab(jl,jk))*pvph(jl,jk) |
|---|
| 1317 | zdz2(jl,jk)=ptau(jl,jk)/amax1(znorm(jl),gssec)/zoro(jl) |
|---|
| 1318 | endif |
|---|
| 1319 | 441 continue |
|---|
| 1320 | |
|---|
| 1321 | do 442 jl=kidia,kfdia |
|---|
| 1322 | if(ktest(jl).eq.1)then |
|---|
| 1323 | if(jk.lt.kkcrith(jl)) then |
|---|
| 1324 | if((ptau(jl,jk+1).lt.gtsec).or.(jk.le.kcrit(jl))) then |
|---|
| 1325 | ptau(jl,jk)=0.0 |
|---|
| 1326 | else |
|---|
| 1327 | zsqr=sqrt(pri(jl,jk)) |
|---|
| 1328 | zalfa=sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl,jk) |
|---|
| 1329 | zriw=pri(jl,jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
|---|
| 1330 | if(zriw.lt.grcrit) then |
|---|
| 1331 | !C print *,' breaking!!!',ptau(jl,jk) |
|---|
| 1332 | zdel=4./zsqr/grcrit+1./grcrit**2+4./grcrit |
|---|
| 1333 | zb=1./grcrit+2./zsqr |
|---|
| 1334 | zalpha=0.5*(-zb+sqrt(zdel)) |
|---|
| 1335 | zdz2n=(pvph(jl,jk)*zalpha)**2/pstab(jl,jk) |
|---|
| 1336 | ptau(jl,jk)=znorm(jl)*zdz2n*zoro(jl) |
|---|
| 1337 | endif |
|---|
| 1338 | |
|---|
| 1339 | ptau(jl,jk)=amin1(ptau(jl,jk),ptau(jl,jk+1)) |
|---|
| 1340 | |
|---|
| 1341 | endif |
|---|
| 1342 | endif |
|---|
| 1343 | endif |
|---|
| 1344 | 442 continue |
|---|
| 1345 | 440 continue |
|---|
| 1346 | |
|---|
| 1347 | !C REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
|---|
| 1348 | |
|---|
| 1349 | do 530 jl=kidia,kfdia |
|---|
| 1350 | if(ktest(jl).eq.1)then |
|---|
| 1351 | ztau(jl,kkcrith(jl)-1)=ptau(jl,kkcrith(jl)-1) |
|---|
| 1352 | ztau(jl,nstra)=ptau(jl,nstra) |
|---|
| 1353 | endif |
|---|
| 1354 | 530 continue |
|---|
| 1355 | |
|---|
| 1356 | do 531 jk=1,klev |
|---|
| 1357 | |
|---|
| 1358 | do 532 jl=kidia,kfdia |
|---|
| 1359 | if(ktest(jl).eq.1)then |
|---|
| 1360 | |
|---|
| 1361 | if(jk.gt.kkcrith(jl)-1)then |
|---|
| 1362 | |
|---|
| 1363 | zdelp=paphm1(jl,jk)-paphm1(jl,klev+1 ) |
|---|
| 1364 | zdelpt=paphm1(jl,kkcrith(jl)-1)-paphm1(jl,klev+1 ) |
|---|
| 1365 | ptau(jl,jk)=ztau(jl,klev+1 ) + & |
|---|
| 1366 | & (ztau(jl,kkcrith(jl)-1)-ztau(jl,klev+1 ) )* & |
|---|
| 1367 | & zdelp/zdelpt |
|---|
| 1368 | endif |
|---|
| 1369 | endif |
|---|
| 1370 | |
|---|
| 1371 | 532 continue |
|---|
| 1372 | |
|---|
| 1373 | !C REORGANISATION AT THE MODEL TOP.... |
|---|
| 1374 | |
|---|
| 1375 | do 533 jl=kidia,kfdia |
|---|
| 1376 | if(ktest(jl).eq.1)then |
|---|
| 1377 | |
|---|
| 1378 | if(jk.lt.nstra)then |
|---|
| 1379 | |
|---|
| 1380 | zdelp =paphm1(jl,nstra) |
|---|
| 1381 | zdelpt=paphm1(jl,jk) |
|---|
| 1382 | ptau(jl,jk)=ztau(jl,nstra)*zdelpt/zdelp |
|---|
| 1383 | !c ptau(jl,jk)=ztau(jl,nstra) |
|---|
| 1384 | |
|---|
| 1385 | endif |
|---|
| 1386 | |
|---|
| 1387 | endif |
|---|
| 1388 | |
|---|
| 1389 | 533 continue |
|---|
| 1390 | |
|---|
| 1391 | |
|---|
| 1392 | 531 continue |
|---|
| 1393 | |
|---|
| 1394 | |
|---|
| 1395 | 123 format(i4,1x,20(f6.3,1x)) |
|---|
| 1396 | |
|---|
| 1397 | |
|---|
| 1398 | return |
|---|
| 1399 | end subroutine gwprofil_strato |
|---|
| 1400 | |
|---|
| 1401 | subroutine lift_noro_strato (nlon,nlev,dtime,paprs,pplay, & |
|---|
| 1402 | & plat,pmea,pstd, psig, pgam, pthe, ppic,pval, & |
|---|
| 1403 | & kgwd,kdx,ktest, & |
|---|
| 1404 | & t, u, v, & |
|---|
| 1405 | & pulow, pvlow, pustr, pvstr, & |
|---|
| 1406 | & d_t, d_u, d_v) |
|---|
| 1407 | !c |
|---|
| 1408 | USE dimphy |
|---|
| 1409 | implicit none |
|---|
| 1410 | !c====================================================================== |
|---|
| 1411 | !c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
|---|
| 1412 | !c Object: Mountain lift interface (enhanced vortex stretching). |
|---|
| 1413 | !c Made necessary because: |
|---|
| 1414 | !C 1. in the LMD-GCM Layers are from bottom to top, |
|---|
| 1415 | !C contrary to most European GCM. |
|---|
| 1416 | !c 2. the altitude above ground of each model layers |
|---|
| 1417 | !c needs to be known (variable zgeom) |
|---|
| 1418 | !c====================================================================== |
|---|
| 1419 | !c Explicit Arguments: |
|---|
| 1420 | !c ================== |
|---|
| 1421 | !c nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 1422 | !c nlev----input-I-Number of vertical levels |
|---|
| 1423 | !c dtime---input-R-Time-step (s) |
|---|
| 1424 | !c paprs---input-R-Pressure in semi layers (Pa) |
|---|
| 1425 | !c pplay---input-R-Pressure model-layers (Pa) |
|---|
| 1426 | !c t-------input-R-temperature (K) |
|---|
| 1427 | !c u-------input-R-Horizontal wind (m/s) |
|---|
| 1428 | !c v-------input-R-Meridional wind (m/s) |
|---|
| 1429 | !c pmea----input-R-Mean Orography (m) |
|---|
| 1430 | !C pstd----input-R-SSO standard deviation (m) |
|---|
| 1431 | !c psig----input-R-SSO slope |
|---|
| 1432 | !c pgam----input-R-SSO Anisotropy |
|---|
| 1433 | !c pthe----input-R-SSO Angle |
|---|
| 1434 | !c ppic----input-R-SSO Peacks elevation (m) |
|---|
| 1435 | !c pval----input-R-SSO Valleys elevation (m) |
|---|
| 1436 | !c |
|---|
| 1437 | !c kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 1438 | !c ktest--input-I: Flags to indicate active points |
|---|
| 1439 | !c kdx----input-I: Locate the physical location of an active point. |
|---|
| 1440 | |
|---|
| 1441 | !c pulow, pvlow -output-R: Low-level wind |
|---|
| 1442 | !c pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
|---|
| 1443 | !c |
|---|
| 1444 | !c d_t-----output-R: T increment |
|---|
| 1445 | !c d_u-----output-R: U increment |
|---|
| 1446 | !c d_v-----output-R: V increment |
|---|
| 1447 | !c |
|---|
| 1448 | !c Implicit Arguments: |
|---|
| 1449 | !c =================== |
|---|
| 1450 | !c |
|---|
| 1451 | !c iim--common-I: Number of longitude intervals |
|---|
| 1452 | !c jjm--common-I: Number of latitude intervals |
|---|
| 1453 | !c klon-common-I: Number of points seen by the physics |
|---|
| 1454 | !c (iim+1)*(jjm+1) for instance |
|---|
| 1455 | !c klev-common-I: Number of vertical layers |
|---|
| 1456 | !c====================================================================== |
|---|
| 1457 | !c Local Variables: |
|---|
| 1458 | !c ================ |
|---|
| 1459 | !c |
|---|
| 1460 | !c zgeom-----R: Altitude of layer above ground |
|---|
| 1461 | !c pt, pu, pv --R: t u v from top to bottom |
|---|
| 1462 | !c pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
|---|
| 1463 | !c papmf: pressure at model layer (from top to bottom) |
|---|
| 1464 | !c papmh: pressure at model 1/2 layer (from top to bottom) |
|---|
| 1465 | !c |
|---|
| 1466 | !c====================================================================== |
|---|
| 1467 | |
|---|
| 1468 | !cym#include "dimensions.h" |
|---|
| 1469 | !cym#include "dimphy.h" |
|---|
| 1470 | #include "YOMCST.h" |
|---|
| 1471 | #include "YOEGWD.h" |
|---|
| 1472 | !c |
|---|
| 1473 | !c ARGUMENTS |
|---|
| 1474 | !c |
|---|
| 1475 | INTEGER nlon,nlev |
|---|
| 1476 | REAL dtime |
|---|
| 1477 | REAL paprs(klon,klev+1) |
|---|
| 1478 | REAL pplay(klon,klev) |
|---|
| 1479 | REAL plat(nlon),pmea(nlon) |
|---|
| 1480 | REAL pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
|---|
| 1481 | REAL ppic(nlon),pval(nlon) |
|---|
| 1482 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
|---|
| 1483 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
|---|
| 1484 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
|---|
| 1485 | !c |
|---|
| 1486 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
|---|
| 1487 | !c |
|---|
| 1488 | !c Variables locales: |
|---|
| 1489 | !c |
|---|
| 1490 | REAL zgeom(klon,klev) |
|---|
| 1491 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
|---|
| 1492 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
|---|
| 1493 | REAL papmf(klon,klev),papmh(klon,klev+1) |
|---|
| 1494 | !c |
|---|
| 1495 | !c initialiser les variables de sortie (pour securite) |
|---|
| 1496 | !c |
|---|
| 1497 | |
|---|
| 1498 | !c print *,'in lift_noro' |
|---|
| 1499 | DO i = 1,klon |
|---|
| 1500 | pulow(i) = 0.0 |
|---|
| 1501 | pvlow(i) = 0.0 |
|---|
| 1502 | pustr(i) = 0.0 |
|---|
| 1503 | pvstr(i) = 0.0 |
|---|
| 1504 | ENDDO |
|---|
| 1505 | DO k = 1, klev |
|---|
| 1506 | DO i = 1, klon |
|---|
| 1507 | d_t(i,k) = 0.0 |
|---|
| 1508 | d_u(i,k) = 0.0 |
|---|
| 1509 | d_v(i,k) = 0.0 |
|---|
| 1510 | pdudt(i,k)=0.0 |
|---|
| 1511 | pdvdt(i,k)=0.0 |
|---|
| 1512 | pdtdt(i,k)=0.0 |
|---|
| 1513 | ENDDO |
|---|
| 1514 | ENDDO |
|---|
| 1515 | !c |
|---|
| 1516 | !c preparer les variables d'entree (attention: l'ordre des niveaux |
|---|
| 1517 | !c verticaux augmente du haut vers le bas) |
|---|
| 1518 | !c |
|---|
| 1519 | DO k = 1, klev |
|---|
| 1520 | DO i = 1, klon |
|---|
| 1521 | pt(i,k) = t(i,klev-k+1) |
|---|
| 1522 | pu(i,k) = u(i,klev-k+1) |
|---|
| 1523 | pv(i,k) = v(i,klev-k+1) |
|---|
| 1524 | papmf(i,k) = pplay(i,klev-k+1) |
|---|
| 1525 | ENDDO |
|---|
| 1526 | ENDDO |
|---|
| 1527 | DO k = 1, klev+1 |
|---|
| 1528 | DO i = 1, klon |
|---|
| 1529 | papmh(i,k) = paprs(i,klev-k+2) |
|---|
| 1530 | ENDDO |
|---|
| 1531 | ENDDO |
|---|
| 1532 | DO i = 1, klon |
|---|
| 1533 | zgeom(i,klev) = RD * pt(i,klev) & |
|---|
| 1534 | & * LOG(papmh(i,klev+1)/papmf(i,klev)) |
|---|
| 1535 | ENDDO |
|---|
| 1536 | DO k = klev-1, 1, -1 |
|---|
| 1537 | DO i = 1, klon |
|---|
| 1538 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 & |
|---|
| 1539 | & * LOG(papmf(i,k+1)/papmf(i,k)) |
|---|
| 1540 | ENDDO |
|---|
| 1541 | ENDDO |
|---|
| 1542 | !c |
|---|
| 1543 | !c appeler la routine principale |
|---|
| 1544 | !c |
|---|
| 1545 | |
|---|
| 1546 | CALL OROLIFT_strato(klon,klev,kgwd,kdx,ktest, & |
|---|
| 1547 | & dtime, & |
|---|
| 1548 | & papmh, papmf, zgeom, & |
|---|
| 1549 | & pt, pu, pv, & |
|---|
| 1550 | & plat,pmea, pstd, psig, pgam, pthe, ppic,pval, & |
|---|
| 1551 | & pulow,pvlow, & |
|---|
| 1552 | & pdudt,pdvdt,pdtdt) |
|---|
| 1553 | !C |
|---|
| 1554 | DO k = 1, klev |
|---|
| 1555 | DO i = 1, klon |
|---|
| 1556 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
|---|
| 1557 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
|---|
| 1558 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
|---|
| 1559 | pustr(i) = pustr(i) & |
|---|
| 1560 | & +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
|---|
| 1561 | pvstr(i) = pvstr(i) & |
|---|
| 1562 | & +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
|---|
| 1563 | ENDDO |
|---|
| 1564 | ENDDO |
|---|
| 1565 | |
|---|
| 1566 | !c print *,' out lift_noro' |
|---|
| 1567 | !c |
|---|
| 1568 | RETURN |
|---|
| 1569 | END subroutine lift_noro_strato |
|---|
| 1570 | |
|---|
| 1571 | subroutine orolift_strato( nlon,nlev & |
|---|
| 1572 | & , kgwd, kdx, ktest & |
|---|
| 1573 | & , ptsphy & |
|---|
| 1574 | & , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 & |
|---|
| 1575 | & , plat & |
|---|
| 1576 | & , pmea, pstd, psig, pgam, pthe,ppic,pval & |
|---|
| 1577 | !C OUTPUTS & |
|---|
| 1578 | & , pulow,pvlow & |
|---|
| 1579 | & , pvom,pvol,pte ) |
|---|
| 1580 | |
|---|
| 1581 | !C |
|---|
| 1582 | !C**** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
|---|
| 1583 | !C |
|---|
| 1584 | !C PURPOSE. |
|---|
| 1585 | !C -------- |
|---|
| 1586 | !C this routine computes the physical tendencies of the |
|---|
| 1587 | !C prognostic variables u,v when enhanced vortex stretching |
|---|
| 1588 | !C is needed. |
|---|
| 1589 | !C |
|---|
| 1590 | !C** INTERFACE. |
|---|
| 1591 | !C ---------- |
|---|
| 1592 | !C CALLED FROM *lift_noro |
|---|
| 1593 | !c explicit arguments : |
|---|
| 1594 | !c -------------------- |
|---|
| 1595 | !c ==== inputs === |
|---|
| 1596 | !c nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 1597 | !c nlev----input-I-Number of vertical levels |
|---|
| 1598 | !c |
|---|
| 1599 | !c kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 1600 | !c ktest--input-I: Flags to indicate active points |
|---|
| 1601 | !c kdx----input-I: Locate the physical location of an active point. |
|---|
| 1602 | !c ptsphy--input-R-Time-step (s) |
|---|
| 1603 | !c paphm1--input-R: pressure at model 1/2 layer |
|---|
| 1604 | !c papm1---input-R: pressure at model layer |
|---|
| 1605 | !c pgeom1--input-R: Altitude of layer above ground |
|---|
| 1606 | !c ptm1, pum1, pvm1--R-: t, u and v |
|---|
| 1607 | !c pmea----input-R-Mean Orography (m) |
|---|
| 1608 | !C pstd----input-R-SSO standard deviation (m) |
|---|
| 1609 | !c psig----input-R-SSO slope |
|---|
| 1610 | !c pgam----input-R-SSO Anisotropy |
|---|
| 1611 | !c pthe----input-R-SSO Angle |
|---|
| 1612 | !c ppic----input-R-SSO Peacks elevation (m) |
|---|
| 1613 | !c pval----input-R-SSO Valleys elevation (m) |
|---|
| 1614 | !c plat----input-R-Latitude (degree) |
|---|
| 1615 | !c |
|---|
| 1616 | !c ==== outputs === |
|---|
| 1617 | !c pulow, pvlow -output-R: Low-level wind |
|---|
| 1618 | !c |
|---|
| 1619 | !c pte -----output-R: T tendency |
|---|
| 1620 | !c pvom-----output-R: U tendency |
|---|
| 1621 | !c pvol-----output-R: V tendency |
|---|
| 1622 | !c |
|---|
| 1623 | !c |
|---|
| 1624 | !c Implicit Arguments: |
|---|
| 1625 | !c =================== |
|---|
| 1626 | !c |
|---|
| 1627 | !c klon-common-I: Number of points seen by the physics |
|---|
| 1628 | !c klev-common-I: Number of vertical layers |
|---|
| 1629 | !c |
|---|
| 1630 | |
|---|
| 1631 | !C ---------- |
|---|
| 1632 | !C |
|---|
| 1633 | !C AUTHOR. |
|---|
| 1634 | !C ------- |
|---|
| 1635 | !C F.LOTT LMD 22/11/95 |
|---|
| 1636 | !C |
|---|
| 1637 | USE dimphy |
|---|
| 1638 | implicit none |
|---|
| 1639 | !C |
|---|
| 1640 | !C |
|---|
| 1641 | !cym#include "dimensions.h" |
|---|
| 1642 | !cym#include "dimphy.h" |
|---|
| 1643 | #include "YOMCST.h" |
|---|
| 1644 | #include "YOEGWD.h" |
|---|
| 1645 | !C----------------------------------------------------------------------- |
|---|
| 1646 | !C |
|---|
| 1647 | !C* 0.1 ARGUMENTS |
|---|
| 1648 | !C --------- |
|---|
| 1649 | !C |
|---|
| 1650 | !C |
|---|
| 1651 | integer nlon,nlev,kgwd |
|---|
| 1652 | real ptsphy |
|---|
| 1653 | real pte(nlon,nlev), & |
|---|
| 1654 | & pvol(nlon,nlev), & |
|---|
| 1655 | & pvom(nlon,nlev), & |
|---|
| 1656 | & pulow(nlon), & |
|---|
| 1657 | & pvlow(nlon) |
|---|
| 1658 | real pum1(nlon,nlev), & |
|---|
| 1659 | & pvm1(nlon,nlev), & |
|---|
| 1660 | & ptm1(nlon,nlev), & |
|---|
| 1661 | & plat(nlon),pmea(nlon), & |
|---|
| 1662 | & pstd(nlon),psig(nlon),pgam(nlon), & |
|---|
| 1663 | & pthe(nlon),ppic(nlon),pval(nlon), & |
|---|
| 1664 | & pgeom1(nlon,nlev), & |
|---|
| 1665 | & papm1(nlon,nlev), & |
|---|
| 1666 | & paphm1(nlon,nlev+1) |
|---|
| 1667 | !C |
|---|
| 1668 | INTEGER KDX(NLON),KTEST(NLON) |
|---|
| 1669 | !C----------------------------------------------------------------------- |
|---|
| 1670 | !C |
|---|
| 1671 | !C* 0.2 local arrays |
|---|
| 1672 | |
|---|
| 1673 | integer jl,ilevh,jk |
|---|
| 1674 | real zhgeo,zdelp,zslow,zsqua,zscav,zbet |
|---|
| 1675 | !C ------------ |
|---|
| 1676 | integer iknub(klon), & |
|---|
| 1677 | & iknul(klon) |
|---|
| 1678 | logical ll1(klon,klev+1) |
|---|
| 1679 | !C |
|---|
| 1680 | real ztau(klon,klev+1), & |
|---|
| 1681 | & ztav(klon,klev+1), & |
|---|
| 1682 | & zrho(klon,klev+1) |
|---|
| 1683 | real zdudt(klon), & |
|---|
| 1684 | & zdvdt(klon) |
|---|
| 1685 | real zhcrit(klon,klev) |
|---|
| 1686 | |
|---|
| 1687 | logical lifthigh |
|---|
| 1688 | real zcons1,ztmst |
|---|
| 1689 | CHARACTER (LEN=20) :: modname='orolift_strato' |
|---|
| 1690 | CHARACTER (LEN=80) :: abort_message |
|---|
| 1691 | |
|---|
| 1692 | |
|---|
| 1693 | !C----------------------------------------------------------------------- |
|---|
| 1694 | !C |
|---|
| 1695 | !C* 1.1 initialisations |
|---|
| 1696 | !C --------------- |
|---|
| 1697 | |
|---|
| 1698 | lifthigh=.false. |
|---|
| 1699 | |
|---|
| 1700 | if(nlon.ne.klon.or.nlev.ne.klev) then |
|---|
| 1701 | abort_message = 'pb dimension' |
|---|
| 1702 | CALL abort_gcm (modname,abort_message,1) |
|---|
| 1703 | ENDIF |
|---|
| 1704 | zcons1=1./rd |
|---|
| 1705 | ztmst=ptsphy |
|---|
| 1706 | !C |
|---|
| 1707 | do 1001 jl=kidia,kfdia |
|---|
| 1708 | zrho(jl,klev+1) =0.0 |
|---|
| 1709 | pulow(jl) =0.0 |
|---|
| 1710 | pvlow(jl) =0.0 |
|---|
| 1711 | iknub(JL) =klev |
|---|
| 1712 | iknul(JL) =klev |
|---|
| 1713 | ilevh=klev/3 |
|---|
| 1714 | ll1(jl,klev+1)=.false. |
|---|
| 1715 | do 1000 jk=1,klev |
|---|
| 1716 | pvom(jl,jk)=0.0 |
|---|
| 1717 | pvol(jl,jk)=0.0 |
|---|
| 1718 | pte (jl,jk)=0.0 |
|---|
| 1719 | 1000 continue |
|---|
| 1720 | 1001 continue |
|---|
| 1721 | |
|---|
| 1722 | !C |
|---|
| 1723 | !C* 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
|---|
| 1724 | !C* LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
|---|
| 1725 | !C* THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
|---|
| 1726 | !C |
|---|
| 1727 | !C |
|---|
| 1728 | !C |
|---|
| 1729 | do 2006 jk=klev,1,-1 |
|---|
| 1730 | do 2007 jl=kidia,kfdia |
|---|
| 1731 | if(ktest(jl).eq.1) then |
|---|
| 1732 | zhcrit(jl,jk)=amax1(ppic(jl)-pval(jl),100.) |
|---|
| 1733 | zhgeo=pgeom1(jl,jk)/rg |
|---|
| 1734 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
|---|
| 1735 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
|---|
| 1736 | iknub(jl)=jk |
|---|
| 1737 | endif |
|---|
| 1738 | endif |
|---|
| 1739 | 2007 continue |
|---|
| 1740 | 2006 continue |
|---|
| 1741 | !C |
|---|
| 1742 | |
|---|
| 1743 | do 2010 jl=kidia,kfdia |
|---|
| 1744 | if(ktest(jl).eq.1) then |
|---|
| 1745 | iknub(jl)=max(iknub(jl),klev/2) |
|---|
| 1746 | iknul(jl)=max(iknul(jl),2*klev/3) |
|---|
| 1747 | if(iknub(jl).gt.nktopg) iknub(jl)=nktopg |
|---|
| 1748 | if(iknub(jl).eq.nktopg) iknul(jl)=klev |
|---|
| 1749 | if(iknub(jl).eq.iknul(jl)) iknub(jl)=iknul(jl)-1 |
|---|
| 1750 | endif |
|---|
| 1751 | 2010 continue |
|---|
| 1752 | |
|---|
| 1753 | do 223 jk=klev,2,-1 |
|---|
| 1754 | do 222 jl=kidia,kfdia |
|---|
| 1755 | zrho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
|---|
| 1756 | 222 continue |
|---|
| 1757 | 223 continue |
|---|
| 1758 | !c print *,' dans orolift: 223' |
|---|
| 1759 | |
|---|
| 1760 | !C******************************************************************** |
|---|
| 1761 | !C |
|---|
| 1762 | !c* define low level flow |
|---|
| 1763 | !C ------------------- |
|---|
| 1764 | do 2115 jk=klev,1,-1 |
|---|
| 1765 | do 2116 jl=kidia,kfdia |
|---|
| 1766 | if(ktest(jl).eq.1) THEN |
|---|
| 1767 | if(jk.ge.iknub(jl).and.jk.le.iknul(jl)) then |
|---|
| 1768 | pulow(JL)=pulow(JL)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
|---|
| 1769 | pvlow(JL)=pvlow(JL)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
|---|
| 1770 | zrho(JL,klev+1)=zrho(JL,klev+1) & |
|---|
| 1771 | & +zrho(JL,JK)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
|---|
| 1772 | endif |
|---|
| 1773 | endif |
|---|
| 1774 | 2116 continue |
|---|
| 1775 | 2115 continue |
|---|
| 1776 | do 2110 jl=kidia,kfdia |
|---|
| 1777 | if(ktest(jl).eq.1) then |
|---|
| 1778 | pulow(JL)=pulow(JL)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
|---|
| 1779 | pvlow(JL)=pvlow(JL)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
|---|
| 1780 | zrho(JL,klev+1)=zrho(Jl,klev+1) & |
|---|
| 1781 | & /(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
|---|
| 1782 | endif |
|---|
| 1783 | 2110 continue |
|---|
| 1784 | |
|---|
| 1785 | |
|---|
| 1786 | 200 continue |
|---|
| 1787 | |
|---|
| 1788 | !C*********************************************************** |
|---|
| 1789 | !C |
|---|
| 1790 | !C* 3. COMPUTE MOUNTAIN LIFT |
|---|
| 1791 | !C |
|---|
| 1792 | 300 continue |
|---|
| 1793 | !C |
|---|
| 1794 | do 301 jl=kidia,kfdia |
|---|
| 1795 | if(ktest(jl).eq.1) then |
|---|
| 1796 | ztau(jl,klev+1)= - gklift*zrho(jl,klev+1)*2.*romega* & |
|---|
| 1797 | !c * (2*pstd(jl)+pmea(jl))* & |
|---|
| 1798 | & 2*pstd(jl)* & |
|---|
| 1799 | & sin(rpi/180.*plat(jl))*pvlow(jl) |
|---|
| 1800 | ztav(jl,klev+1)= gklift*zrho(jl,klev+1)*2.*romega* & |
|---|
| 1801 | !c * (2*pstd(jl)+pmea(jl))* & |
|---|
| 1802 | & 2*pstd(jl)* & |
|---|
| 1803 | & sin(rpi/180.*plat(jl))*pulow(jl) |
|---|
| 1804 | else |
|---|
| 1805 | ztau(jl,klev+1)=0.0 |
|---|
| 1806 | ztav(jl,klev+1)=0.0 |
|---|
| 1807 | endif |
|---|
| 1808 | 301 continue |
|---|
| 1809 | |
|---|
| 1810 | !C |
|---|
| 1811 | !C* 4. COMPUTE LIFT PROFILE |
|---|
| 1812 | !C* -------------------- |
|---|
| 1813 | !C |
|---|
| 1814 | |
|---|
| 1815 | 400 continue |
|---|
| 1816 | |
|---|
| 1817 | do 401 jk=1,klev |
|---|
| 1818 | do 401 jl=kidia,kfdia |
|---|
| 1819 | if(ktest(jl).eq.1) then |
|---|
| 1820 | ztau(jl,jk)=ztau(jl,klev+1)*paphm1(jl,jk)/paphm1(jl,klev+1) |
|---|
| 1821 | ztav(jl,jk)=ztav(jl,klev+1)*paphm1(jl,jk)/paphm1(jl,klev+1) |
|---|
| 1822 | else |
|---|
| 1823 | ztau(jl,jk)=0.0 |
|---|
| 1824 | ztav(jl,jk)=0.0 |
|---|
| 1825 | endif |
|---|
| 1826 | 401 continue |
|---|
| 1827 | !C |
|---|
| 1828 | !C |
|---|
| 1829 | !C* 5. COMPUTE TENDENCIES. |
|---|
| 1830 | !C* ------------------- |
|---|
| 1831 | if(lifthigh)then |
|---|
| 1832 | !C |
|---|
| 1833 | 500 continue |
|---|
| 1834 | !C |
|---|
| 1835 | !C EXPLICIT SOLUTION AT ALL LEVELS |
|---|
| 1836 | !C |
|---|
| 1837 | do 524 jk=1,klev |
|---|
| 1838 | do 523 jl=kidia,kfdia |
|---|
| 1839 | if(ktest(jl).eq.1) then |
|---|
| 1840 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
|---|
| 1841 | zdudt(jl)=-rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
|---|
| 1842 | zdvdt(jl)=-rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
|---|
| 1843 | endif |
|---|
| 1844 | 523 continue |
|---|
| 1845 | 524 continue |
|---|
| 1846 | !C |
|---|
| 1847 | !C PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
|---|
| 1848 | !C |
|---|
| 1849 | do 530 jk=1,klev |
|---|
| 1850 | do 530 jl=kidia,kfdia |
|---|
| 1851 | if(ktest(jl).eq.1) then |
|---|
| 1852 | |
|---|
| 1853 | zslow=sqrt(pulow(jl)**2+pvlow(jl)**2) |
|---|
| 1854 | zsqua=amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2),gvsec) |
|---|
| 1855 | zscav=-zdudt(jl)*pvm1(jl,jk)+zdvdt(jl)*pum1(jl,jk) |
|---|
| 1856 | if(zsqua.gt.gvsec)then |
|---|
| 1857 | pvom(jl,jk)=-zscav*pvm1(jl,jk)/zsqua**2 |
|---|
| 1858 | pvol(jl,jk)= zscav*pum1(jl,jk)/zsqua**2 |
|---|
| 1859 | else |
|---|
| 1860 | pvom(jl,jk)=0.0 |
|---|
| 1861 | pvol(jl,jk)=0.0 |
|---|
| 1862 | endif |
|---|
| 1863 | zsqua=sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
|---|
| 1864 | if(zsqua.lt.zslow)then |
|---|
| 1865 | pvom(jl,jk)=zsqua/zslow*pvom(jl,jk) |
|---|
| 1866 | pvol(jl,jk)=zsqua/zslow*pvol(jl,jk) |
|---|
| 1867 | endif |
|---|
| 1868 | |
|---|
| 1869 | endif |
|---|
| 1870 | 530 continue |
|---|
| 1871 | !C |
|---|
| 1872 | !C 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
|---|
| 1873 | !C ---------------------------------- |
|---|
| 1874 | |
|---|
| 1875 | else |
|---|
| 1876 | |
|---|
| 1877 | do 601 jl=kidia,kfdia |
|---|
| 1878 | if(ktest(jl).eq.1) then |
|---|
| 1879 | do jk=klev,iknub(jl),-1 |
|---|
| 1880 | zbet=gklift*2.*romega*sin(rpi/180.*plat(jl))*ztmst* & |
|---|
| 1881 | & (pgeom1(jl,iknub(jl)-1)-pgeom1(jl, jk))/ & |
|---|
| 1882 | & (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
|---|
| 1883 | zdudt(jl)=-pum1(jl,jk)/ztmst/(1+zbet**2) |
|---|
| 1884 | zdvdt(jl)=-pvm1(jl,jk)/ztmst/(1+zbet**2) |
|---|
| 1885 | pvom(jl,jk)= zbet**2*zdudt(jl) - zbet *zdvdt(jl) |
|---|
| 1886 | pvol(jl,jk)= zbet *zdudt(jl) + zbet**2*zdvdt(jl) |
|---|
| 1887 | enddo |
|---|
| 1888 | endif |
|---|
| 1889 | 601 continue |
|---|
| 1890 | |
|---|
| 1891 | endif |
|---|
| 1892 | |
|---|
| 1893 | !c print *,' out orolift' |
|---|
| 1894 | |
|---|
| 1895 | return |
|---|
| 1896 | end subroutine orolift_strato |
|---|
| 1897 | |
|---|
| 1898 | SUBROUTINE SUGWD_strato(NLON,NLEV,paprs,pplay) |
|---|
| 1899 | !C |
|---|
| 1900 | !C |
|---|
| 1901 | !C**** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
|---|
| 1902 | !C |
|---|
| 1903 | !C PURPOSE. |
|---|
| 1904 | !C -------- |
|---|
| 1905 | !C INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
|---|
| 1906 | !C GRAVITY WAVE DRAG PARAMETRIZATION. |
|---|
| 1907 | !C VERY IMPORTANT: |
|---|
| 1908 | !C ______________ |
|---|
| 1909 | !C THIS ROUTINE SET_UP THE "TUNABLE PARAMETERS" OF THE |
|---|
| 1910 | !C VARIOUS SSO SCHEMES |
|---|
| 1911 | !C |
|---|
| 1912 | !C** INTERFACE. |
|---|
| 1913 | !C ---------- |
|---|
| 1914 | !C CALL *SUGWD* FROM *SUPHEC* |
|---|
| 1915 | !C ----- ------ |
|---|
| 1916 | !C |
|---|
| 1917 | !C EXPLICIT ARGUMENTS : |
|---|
| 1918 | !C -------------------- |
|---|
| 1919 | !C PAPRS,PPLAY : Pressure at semi and full model levels |
|---|
| 1920 | !C NLEV : number of model levels |
|---|
| 1921 | !c NLON : number of points treated in the physics |
|---|
| 1922 | !C |
|---|
| 1923 | !C IMPLICIT ARGUMENTS : |
|---|
| 1924 | !C -------------------- |
|---|
| 1925 | !C COMMON YOEGWD |
|---|
| 1926 | !C-GFRCRIT-R: Critical Non-dimensional mountain Height |
|---|
| 1927 | !C (HNC in (1), LOTT 1999) |
|---|
| 1928 | !C-GKWAKE--R: Bluff-body drag coefficient for low level wake |
|---|
| 1929 | !C (Cd in (2), LOTT 1999) |
|---|
| 1930 | !C-GRCRIT--R: Critical Richardson Number |
|---|
| 1931 | !C (Ric, End of first column p791 of LOTT 1999) |
|---|
| 1932 | !C-GKDRAG--R: Gravity wave drag coefficient |
|---|
| 1933 | !C (G in (3), LOTT 1999) |
|---|
| 1934 | !C-GKLIFT--R: Mountain Lift coefficient |
|---|
| 1935 | !C (Cl in (4), LOTT 1999) |
|---|
| 1936 | !C-GHMAX---R: Not used |
|---|
| 1937 | !C-GRAHILO-R: Set-up the trapped waves fraction |
|---|
| 1938 | !C (Beta , End of first column, LOTT 1999) |
|---|
| 1939 | !C |
|---|
| 1940 | !C-GSIGCR--R: Security value for blocked flow depth |
|---|
| 1941 | !C-NKTOPG--I: Security value for blocked flow level |
|---|
| 1942 | !C-nstra----I: An estimate to qualify the upper levels of |
|---|
| 1943 | !C the model where one wants to impose strees |
|---|
| 1944 | !C profiles |
|---|
| 1945 | !C-GSSECC--R: Security min value for low-level B-V frequency |
|---|
| 1946 | !C-GTSEC---R: Security min value for anisotropy and GW stress. |
|---|
| 1947 | !C-GVSEC---R: Security min value for ulow |
|---|
| 1948 | !C |
|---|
| 1949 | !C |
|---|
| 1950 | !C METHOD. |
|---|
| 1951 | !C ------- |
|---|
| 1952 | !C SEE DOCUMENTATION |
|---|
| 1953 | !C |
|---|
| 1954 | !C EXTERNALS. |
|---|
| 1955 | !C ---------- |
|---|
| 1956 | !C NONE |
|---|
| 1957 | !C |
|---|
| 1958 | !C REFERENCE. |
|---|
| 1959 | !C ---------- |
|---|
| 1960 | !C Lott, 1999: Alleviation of stationary biases in a GCM through... |
|---|
| 1961 | !C Monthly Weather Review, 127, pp 788-801. |
|---|
| 1962 | !C |
|---|
| 1963 | !C AUTHOR. |
|---|
| 1964 | !C ------- |
|---|
| 1965 | !C FRANCOIS LOTT *LMD* |
|---|
| 1966 | !C |
|---|
| 1967 | !C MODIFICATIONS. |
|---|
| 1968 | !C -------------- |
|---|
| 1969 | !C ORIGINAL : 90-01-01 (MARTIN MILLER, ECMWF) |
|---|
| 1970 | !C LAST: 99-07-09 (FRANCOIS LOTT,LMD) |
|---|
| 1971 | !C ------------------------------------------------------------------ |
|---|
| 1972 | USE dimphy |
|---|
| 1973 | USE mod_phys_lmdz_para |
|---|
| 1974 | USE mod_grid_phy_lmdz |
|---|
| 1975 | IMPLICIT NONE |
|---|
| 1976 | !C |
|---|
| 1977 | !C ----------------------------------------------------------------- |
|---|
| 1978 | #include "YOEGWD.h" |
|---|
| 1979 | !C ---------------------------------------------------------------- |
|---|
| 1980 | !C |
|---|
| 1981 | !C ARGUMENTS |
|---|
| 1982 | integer nlon,nlev |
|---|
| 1983 | REAL paprs(nlon,nlev+1) |
|---|
| 1984 | REAL pplay(nlon,nlev) |
|---|
| 1985 | !C |
|---|
| 1986 | INTEGER JK |
|---|
| 1987 | REAL ZPR,ZTOP,ZSIGT,ZPM1R |
|---|
| 1988 | REAL :: pplay_glo(klon_glo,nlev) |
|---|
| 1989 | REAL :: paprs_glo(klon_glo,nlev+1) |
|---|
| 1990 | |
|---|
| 1991 | !C |
|---|
| 1992 | !C* 1. SET THE VALUES OF THE PARAMETERS |
|---|
| 1993 | !C -------------------------------- |
|---|
| 1994 | !C |
|---|
| 1995 | 100 CONTINUE |
|---|
| 1996 | !C |
|---|
| 1997 | PRINT *,' DANS SUGWD NLEV=',NLEV |
|---|
| 1998 | GHMAX=10000. |
|---|
| 1999 | !C |
|---|
| 2000 | ZPR=100000. |
|---|
| 2001 | ZTOP=0.001 |
|---|
| 2002 | ZSIGT=0.94 |
|---|
| 2003 | !cold ZPR=80000. |
|---|
| 2004 | !cold ZSIGT=0.85 |
|---|
| 2005 | !C |
|---|
| 2006 | CALL gather(pplay,pplay_glo) |
|---|
| 2007 | CALL bcast(pplay_glo) |
|---|
| 2008 | CALL gather(paprs,paprs_glo) |
|---|
| 2009 | CALL bcast(paprs_glo) |
|---|
| 2010 | |
|---|
| 2011 | DO 110 JK=1,NLEV |
|---|
| 2012 | ZPM1R=pplay_glo(klon_glo/2+1,jk)/paprs_glo(klon_glo/2+1,1) |
|---|
| 2013 | IF(ZPM1R.GE.ZSIGT)THEN |
|---|
| 2014 | nktopg=JK |
|---|
| 2015 | ENDIF |
|---|
| 2016 | ZPM1R=pplay_glo(klon_glo/2+1,jk)/paprs_glo(klon_glo/2+1,1) |
|---|
| 2017 | IF(ZPM1R.GE.ZTOP)THEN |
|---|
| 2018 | nstra=JK |
|---|
| 2019 | ENDIF |
|---|
| 2020 | 110 CONTINUE |
|---|
| 2021 | !c |
|---|
| 2022 | !c inversion car dans orodrag on compte les niveaux a l'envers |
|---|
| 2023 | nktopg=nlev-nktopg+1 |
|---|
| 2024 | nstra=nlev-nstra |
|---|
| 2025 | print *,' DANS SUGWD nktopg=', nktopg |
|---|
| 2026 | print *,' DANS SUGWD nstra=', nstra |
|---|
| 2027 | !C |
|---|
| 2028 | GSIGCR=0.80 |
|---|
| 2029 | !C |
|---|
| 2030 | GKDRAG=0.1875 |
|---|
| 2031 | GRAHILO=0.1 |
|---|
| 2032 | GRCRIT=1.00 |
|---|
| 2033 | GFRCRIT=1.00 |
|---|
| 2034 | GKWAKE=0.50 |
|---|
| 2035 | !C |
|---|
| 2036 | GKLIFT=0.25 |
|---|
| 2037 | GVCRIT =0.1 |
|---|
| 2038 | |
|---|
| 2039 | WRITE(UNIT=6,FMT='('' *** SSO essential constants ***'')') |
|---|
| 2040 | WRITE(UNIT=6,FMT='('' *** SPECIFIED IN SUGWD ***'')') |
|---|
| 2041 | WRITE(UNIT=6,FMT='('' Gravity wave ct '',E13.7,'' '')')GKDRAG |
|---|
| 2042 | WRITE(UNIT=6,FMT='('' Trapped/total wave dag '',E13.7,'' '')') & |
|---|
| 2043 | & GRAHILO |
|---|
| 2044 | WRITE(UNIT=6,FMT='('' Critical Richardson = '',E13.7,'' '')') & |
|---|
| 2045 | & GRCRIT |
|---|
| 2046 | WRITE(UNIT=6,FMT='('' Critical Froude'',e13.7)') GFRCRIT |
|---|
| 2047 | WRITE(UNIT=6,FMT='('' Low level Wake bluff cte'',e13.7)') GKWAKE |
|---|
| 2048 | WRITE(UNIT=6,FMT='('' Low level lift cte'',e13.7)') GKLIFT |
|---|
| 2049 | |
|---|
| 2050 | !C |
|---|
| 2051 | !C |
|---|
| 2052 | !C ---------------------------------------------------------------- |
|---|
| 2053 | !C |
|---|
| 2054 | !C* 2. SET VALUES OF SECURITY PARAMETERS |
|---|
| 2055 | !C --------------------------------- |
|---|
| 2056 | !C |
|---|
| 2057 | 200 CONTINUE |
|---|
| 2058 | !C |
|---|
| 2059 | GVSEC=0.10 |
|---|
| 2060 | GSSEC=0.0001 |
|---|
| 2061 | !C |
|---|
| 2062 | GTSEC=0.00001 |
|---|
| 2063 | !C |
|---|
| 2064 | RETURN |
|---|
| 2065 | END SUBROUTINE SUGWD_strato |
|---|
| 2066 | |
|---|
| 2067 | END MODULE orografi_strato_mod |
|---|
| 2068 | |
|---|
| 2069 | |
|---|