[1] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | MODULE diagphy_mod |
---|
| 5 | |
---|
| 6 | CONTAINS |
---|
| 7 | |
---|
| 8 | SUBROUTINE diagphy(airephy,tit,iprt & |
---|
| 9 | & , tops, topl, sols, soll, sens & |
---|
| 10 | & , evap, rain_fall, snow_fall, ts & |
---|
| 11 | & , d_etp_tot, d_qt_tot, d_ec_tot & |
---|
| 12 | & , fs_bound, fq_bound) |
---|
| 13 | !C====================================================================== |
---|
| 14 | !C |
---|
| 15 | !C Purpose: |
---|
| 16 | !C Compute the thermal flux and the watter mass flux at the atmosphere |
---|
| 17 | !c boundaries. Print them and also the atmospheric enthalpy change and |
---|
| 18 | !C the atmospheric mass change. |
---|
| 19 | !C |
---|
| 20 | !C Arguments: |
---|
| 21 | !C airephy-------input-R- grid area |
---|
| 22 | !C tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) |
---|
| 23 | !C iprt--------input-I- PRINT level ( <=0 : no PRINT) |
---|
| 24 | !C tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. |
---|
| 25 | !C topl(klon)--input-R- LW rad. at TOA (W/m2), positive down |
---|
| 26 | !C sols(klon)--input-R- Net SW flux above surface (W/m2), positive up |
---|
| 27 | !C (i.e. -1 * flux absorbed by the surface) |
---|
| 28 | !C soll(klon)--input-R- Net LW flux above surface (W/m2), positive up |
---|
| 29 | !C (i.e. flux emited - flux absorbed by the surface) |
---|
| 30 | !C sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down |
---|
| 31 | !C evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux |
---|
| 32 | !C (kg/m2/s), positive up |
---|
| 33 | !C rain_fall(klon) |
---|
| 34 | !C --input-R- Liquid watter mass flux (kg/m2/s), positive down |
---|
| 35 | !C snow_fall(klon) |
---|
| 36 | !C --input-R- Solid watter mass flux (kg/m2/s), positive down |
---|
| 37 | !C ts(klon)----input-R- Surface temperature (K) |
---|
| 38 | !C d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy |
---|
| 39 | !C change (W/m2) |
---|
| 40 | !C d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass |
---|
| 41 | !C change (kg/m2/s) |
---|
| 42 | !C d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy |
---|
| 43 | !C change (W/m2) |
---|
| 44 | !C |
---|
| 45 | !C fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) |
---|
| 46 | !C fq_bound---output-R- Watter mass flux at the atmosphere boundaries (kg/m2/s) |
---|
| 47 | !C |
---|
| 48 | !C J.L. Dufresne, July 2002 |
---|
| 49 | !C Version prise sur ~rlmd833/LMDZOR_201102/modipsl/modeles/LMDZ.3.3/libf/phylmd |
---|
| 50 | !C le 25 Novembre 2002. |
---|
| 51 | !C====================================================================== |
---|
| 52 | !C |
---|
| 53 | use dimphy |
---|
| 54 | implicit none |
---|
| 55 | |
---|
| 56 | #include "dimensions.h" |
---|
| 57 | !ccccc#include "dimphy.h" |
---|
| 58 | #include "YOMCST.h" |
---|
| 59 | #include "YOETHF.h" |
---|
| 60 | !C |
---|
| 61 | !C Input variables |
---|
| 62 | real airephy(klon) |
---|
| 63 | CHARACTER*15 tit |
---|
| 64 | INTEGER iprt |
---|
| 65 | real tops(klon),topl(klon),sols(klon),soll(klon) |
---|
| 66 | real sens(klon),evap(klon),rain_fall(klon),snow_fall(klon) |
---|
| 67 | REAL ts(klon) |
---|
| 68 | REAL d_etp_tot, d_qt_tot, d_ec_tot |
---|
| 69 | !c Output variables |
---|
| 70 | REAL fs_bound, fq_bound |
---|
| 71 | !C |
---|
| 72 | !C Local variables |
---|
| 73 | real stops,stopl,ssols,ssoll |
---|
| 74 | real ssens,sfront,slat |
---|
| 75 | real airetot, zcpvap, zcwat, zcice |
---|
| 76 | REAL rain_fall_tot, snow_fall_tot, evap_tot |
---|
| 77 | !C |
---|
| 78 | integer i |
---|
| 79 | !C |
---|
| 80 | integer pas |
---|
[142] | 81 | |
---|
| 82 | save pas |
---|
| 83 | data pas/0/ |
---|
| 84 | !$OMP THREADPRIVATE(pas) |
---|
| 85 | !C |
---|
| 86 | |
---|
[31] | 87 | ! L. Fita, LMD July 2014 |
---|
[142] | 88 | CHARACTER(LEN=50) :: errmsg, fname, varname |
---|
| 89 | LOGICAL :: found |
---|
| 90 | REAL :: largest |
---|
[31] | 91 | |
---|
| 92 | fname = 'diagphy' |
---|
| 93 | errmsg = 'ERROR -- error -- ERROR -- error' |
---|
[142] | 94 | largest = 10.e4 |
---|
[31] | 95 | |
---|
[1] | 96 | pas=pas+1 |
---|
| 97 | stops=0. |
---|
| 98 | stopl=0. |
---|
| 99 | ssols=0. |
---|
| 100 | ssoll=0. |
---|
| 101 | ssens=0. |
---|
| 102 | sfront = 0. |
---|
| 103 | evap_tot = 0. |
---|
| 104 | rain_fall_tot = 0. |
---|
| 105 | snow_fall_tot = 0. |
---|
| 106 | airetot=0. |
---|
| 107 | !C |
---|
| 108 | !C Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de |
---|
| 109 | !C la glace, on travaille par difference a la chaleur specifique de l' |
---|
| 110 | !c air sec. En effet, comme on travaille a niveau de pression donne, |
---|
| 111 | !C toute variation de la masse d'un constituant est totalement |
---|
| 112 | !c compense par une variation de masse d'air. |
---|
| 113 | !C |
---|
| 114 | zcpvap=RCPV-RCPD |
---|
| 115 | zcwat=RCW-RCPD |
---|
| 116 | zcice=RCS-RCPD |
---|
| 117 | !C |
---|
| 118 | do i=1,klon |
---|
| 119 | stops=stops+tops(i)*airephy(i) |
---|
| 120 | stopl=stopl+topl(i)*airephy(i) |
---|
| 121 | ssols=ssols+sols(i)*airephy(i) |
---|
| 122 | ssoll=ssoll+soll(i)*airephy(i) |
---|
| 123 | ssens=ssens+sens(i)*airephy(i) |
---|
| 124 | sfront = sfront & |
---|
| 125 | & + ( evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice & |
---|
| 126 | & ) *ts(i) *airephy(i) |
---|
| 127 | evap_tot = evap_tot + evap(i)*airephy(i) |
---|
| 128 | rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) |
---|
| 129 | snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) |
---|
| 130 | airetot=airetot+airephy(i) |
---|
| 131 | enddo |
---|
| 132 | stops=stops/airetot |
---|
| 133 | stopl=stopl/airetot |
---|
| 134 | ssols=ssols/airetot |
---|
| 135 | ssoll=ssoll/airetot |
---|
| 136 | ssens=ssens/airetot |
---|
| 137 | sfront = sfront/airetot |
---|
| 138 | evap_tot = evap_tot /airetot |
---|
| 139 | rain_fall_tot = rain_fall_tot/airetot |
---|
| 140 | snow_fall_tot = snow_fall_tot/airetot |
---|
| 141 | !C |
---|
| 142 | slat = RLVTT * rain_fall_tot + RLSTT * snow_fall_tot |
---|
| 143 | !C Heat flux at atm. boundaries |
---|
| 144 | fs_bound = stops-stopl - (ssols+ssoll)+ssens+sfront & |
---|
| 145 | & + slat |
---|
| 146 | !C Watter flux at atm. boundaries |
---|
| 147 | fq_bound = evap_tot - rain_fall_tot -snow_fall_tot |
---|
| 148 | !C |
---|
| 149 | IF (iprt.ge.1) write(6,6666) & |
---|
| 150 | & tit, pas, fs_bound, d_etp_tot, fq_bound, d_qt_tot |
---|
| 151 | !C |
---|
| 152 | IF (iprt.ge.1) write(6,6668) & |
---|
| 153 | & tit, pas, d_etp_tot+d_ec_tot-fs_bound, d_qt_tot-fq_bound |
---|
| 154 | !C |
---|
| 155 | IF (iprt.ge.2) write(6,6667) & |
---|
| 156 | & tit, pas, stops,stopl,ssols,ssoll,ssens,slat,evap_tot & |
---|
| 157 | & ,rain_fall_tot+snow_fall_tot |
---|
| 158 | |
---|
[31] | 159 | ! L. Fita, LMD July 2014. Checking for consistency |
---|
[142] | 160 | IF (fs_bound .NE. fs_bound .OR. ABS(fs_bound) > largest) THEN |
---|
[31] | 161 | PRINT *,TRIM(errmsg) |
---|
[142] | 162 | PRINT *,' ' // TRIM(fname) // ': Wrong fs_bound= ',fs_bound,' !!!' |
---|
[31] | 163 | PRINT *,' fs_bound: Heat flux at atm. boundaries' |
---|
| 164 | PRINT *,' fs_bound = stops-stopl - (ssols+ssoll)+ssens+sfront' |
---|
[142] | 165 | PRINT *,' airetot= ',airetot |
---|
[240] | 166 | IF (airetot .NE. airetot .OR. ABS(airetot) > largest*10.e16) THEN |
---|
[142] | 167 | varname = 'airephy' |
---|
[240] | 168 | CALL check_var(fname, varname, airephy, klon, largest*10.e15, .FALSE.) |
---|
[142] | 169 | END IF |
---|
| 170 | PRINT *,' stops= ',stops |
---|
| 171 | IF (stops .NE. stops .OR. ABS(stops) > largest) THEN |
---|
| 172 | varname = 'tops' |
---|
| 173 | CALL check_var(fname, varname, tops, klon, largest, .FALSE.) |
---|
| 174 | END IF |
---|
| 175 | PRINT *,' stopl= ',stopl |
---|
| 176 | IF (stopl .NE. stopl .OR. ABS(stopl) > largest) THEN |
---|
| 177 | varname = 'topl' |
---|
| 178 | CALL check_var(fname, varname, topl, klon, largest, .FALSE.) |
---|
| 179 | END IF |
---|
[31] | 180 | PRINT *,' ssols= ',ssols |
---|
[142] | 181 | IF (ssols .NE. ssols .OR. ABS(ssols) > largest) THEN |
---|
| 182 | varname = 'sols' |
---|
| 183 | CALL check_var(fname, varname, sols, klon, largest, .FALSE.) |
---|
| 184 | END IF |
---|
[31] | 185 | PRINT *,' ssoll= ',ssoll |
---|
[142] | 186 | IF (ssoll .NE. ssoll .OR. ABS(ssoll) > largest) THEN |
---|
| 187 | varname = 'soll' |
---|
| 188 | CALL check_var(fname, varname, soll, klon, largest, .FALSE.) |
---|
| 189 | END IF |
---|
[31] | 190 | PRINT *,' ssens= ',ssens |
---|
[142] | 191 | IF (ssens .NE. ssens .OR. ABS(ssens) > largest) THEN |
---|
| 192 | varname = 'sens' |
---|
| 193 | CALL check_var(fname, varname, sens, klon, largest, .FALSE.) |
---|
| 194 | END IF |
---|
[31] | 195 | PRINT *,' sfront= ',sfront |
---|
[142] | 196 | IF (sfront .NE. sfront .OR. ABS(sfront) > largest) THEN |
---|
| 197 | varname = 'evap' |
---|
| 198 | CALL check_var(fname, varname, evap, klon, largest, .FALSE.) |
---|
| 199 | varname = 'rain_fall' |
---|
| 200 | CALL check_var(fname, varname, rain_fall, klon, largest, .FALSE.) |
---|
| 201 | varname = 'snow_fall' |
---|
| 202 | CALL check_var(fname, varname, snow_fall, klon, largest, .FALSE.) |
---|
| 203 | varname = 'ts' |
---|
| 204 | CALL check_var(fname, varname, ts, klon, largest, .FALSE.) |
---|
| 205 | END IF |
---|
[31] | 206 | STOP |
---|
| 207 | END IF |
---|
| 208 | |
---|
[142] | 209 | IF (d_etp_tot .NE. d_etp_tot .OR. ABS(d_etp_tot) > largest) THEN |
---|
[31] | 210 | PRINT *,TRIM(errmsg) |
---|
[142] | 211 | PRINT *,' ' // TRIM(fname) // ': Wrong d_etp_tot= ',d_etp_tot,' !!!' |
---|
| 212 | PRINT *,' d_etp_tot: Heat flux equivalent to atmospheric enthalpy' // & |
---|
| 213 | ' change (W/m2)' |
---|
| 214 | PRINT *,' d_etp_tot = input value !' |
---|
| 215 | STOP |
---|
| 216 | END IF |
---|
| 217 | |
---|
| 218 | IF (fq_bound .NE. fq_bound .OR. ABS(fq_bound) > largest) THEN |
---|
| 219 | PRINT *,TRIM(errmsg) |
---|
| 220 | PRINT *,' ' // TRIM(fname) // ': Wrong fq_bound= ',fs_bound,' !!!' |
---|
[31] | 221 | PRINT *,' fq_bound: Watter flux at atm. boundaries' |
---|
| 222 | PRINT *,' fq_bound = evap_tot - rain_fall_tot -snow_fall_tot' |
---|
| 223 | PRINT *,' evap_tot= ',evap_tot |
---|
[142] | 224 | PRINT *,' airetot= ',airetot |
---|
[240] | 225 | IF (airetot .NE. airetot .OR. ABS(airetot) > largest*10.e15) THEN |
---|
[142] | 226 | varname = 'airephy' |
---|
[240] | 227 | CALL check_var(fname, varname, airephy, klon, largest*10.e15, .FALSE.) |
---|
[142] | 228 | END IF |
---|
| 229 | IF (evap_tot .NE. evap_tot .OR. ABS(evap_tot) > largest) THEN |
---|
| 230 | varname = 'evap' |
---|
| 231 | CALL check_var(fname, varname, evap, klon, largest, .FALSE.) |
---|
| 232 | END IF |
---|
[31] | 233 | PRINT *,' rain_fall_tot= ',rain_fall_tot |
---|
[142] | 234 | IF (rain_fall_tot .NE. rain_fall_tot .OR. ABS(rain_fall_tot) > largest) THEN |
---|
| 235 | varname = 'rain_fall' |
---|
| 236 | CALL check_var(fname, varname, rain_fall, klon, largest, .FALSE.) |
---|
| 237 | END IF |
---|
[31] | 238 | PRINT *,' snow_fall_tot= ',snow_fall_tot |
---|
[142] | 239 | IF (snow_fall_tot .NE. snow_fall_tot .OR. ABS(snow_fall_tot) > largest) THEN |
---|
| 240 | varname = 'snow_fall' |
---|
| 241 | CALL check_var(fname, varname, snow_fall, klon, largest, .FALSE.) |
---|
| 242 | END IF |
---|
[31] | 243 | STOP |
---|
| 244 | END IF |
---|
| 245 | |
---|
[142] | 246 | IF (d_qt_tot .NE. d_qt_tot .OR. ABS(d_qt_tot) > largest) THEN |
---|
| 247 | PRINT *,TRIM(errmsg) |
---|
| 248 | PRINT *,' ' // TRIM(fname) // ': Wrong d_qt_tot= ',d_qt_tot,' !!!' |
---|
| 249 | PRINT *,' d_qt_tot: Mass flux equivalent to atmospheric watter mass' // & |
---|
| 250 | ' change (kg/m2/s)' |
---|
| 251 | PRINT *,' d_qt_tot = input value !' |
---|
| 252 | STOP |
---|
| 253 | END IF |
---|
| 254 | |
---|
[1] | 255 | return |
---|
| 256 | |
---|
| 257 | 6666 format('Phys. Flux Budget ',a15,1i6,2f8.2,2(1pE13.5)) |
---|
| 258 | 6667 format('Phys. Boundary Flux ',a15,1i6,6f8.2,2(1pE13.5)) |
---|
| 259 | 6668 format('Phys. Total Budget ',a15,1i6,f8.2,2(1pE13.5)) |
---|
| 260 | |
---|
| 261 | end SUBROUTINE diagphy |
---|
| 262 | |
---|
[142] | 263 | !L. Fita, LMD 2004. Check variable |
---|
| 264 | SUBROUTINE check_var(funcn, varn, var, sizev, bigvalue, stoprun) |
---|
| 265 | ! Subroutine to check the consistency of a variable |
---|
| 266 | ! * NaN value: by definition is variable /= variable |
---|
| 267 | ! * bigvalue: threshold for the variable |
---|
| 268 | |
---|
| 269 | IMPLICIT NONE |
---|
| 270 | |
---|
| 271 | #include "dimensions.h" |
---|
| 272 | |
---|
| 273 | INTEGER, INTENT(IN) :: sizev |
---|
| 274 | CHARACTER(LEN=50), INTENT(IN) :: funcn, varn |
---|
| 275 | REAL, DIMENSION(sizev), INTENT(IN) :: var |
---|
| 276 | REAL, INTENT(IN) :: bigvalue |
---|
| 277 | LOGICAL, INTENT(IN) :: stoprun |
---|
| 278 | |
---|
| 279 | ! Local |
---|
| 280 | INTEGER :: i, wrongi, xpt, ypt |
---|
| 281 | CHARACTER(LEN=50) :: errmsg |
---|
| 282 | LOGICAL :: found |
---|
| 283 | REAL, DIMENSION(sizev) :: wrongvalues |
---|
| 284 | INTEGER, DIMENSION(sizev) :: wronggridpt |
---|
| 285 | |
---|
| 286 | !!!!!!! Variables |
---|
| 287 | ! funcn: at which functino of part of the program variable is checked |
---|
| 288 | ! varn: name of the variable |
---|
| 289 | ! var: variable to check |
---|
| 290 | ! sizev: size of the variable |
---|
| 291 | ! bigvalue: biggest attenaible value for the variable |
---|
| 292 | ! stoprun: Should the run stop if it founds a problem? |
---|
| 293 | |
---|
| 294 | errmsg = 'ERROR -- error -- ERROR -- error' |
---|
| 295 | |
---|
| 296 | found = .FALSE. |
---|
| 297 | wrongi = 0 |
---|
| 298 | DO i=1,sizev |
---|
| 299 | IF (var(i) /= var(i) .OR. ABS(var(i)) > bigvalue ) THEN |
---|
| 300 | IF (wrongi == 0) found = .TRUE. |
---|
| 301 | wrongi = wrongi + 1 |
---|
| 302 | wrongvalues(wrongi) = var(i) |
---|
| 303 | wronggridpt(wrongi) = i |
---|
| 304 | END IF |
---|
| 305 | END DO |
---|
| 306 | |
---|
| 307 | IF (found) THEN |
---|
| 308 | PRINT *,TRIM(errmsg) |
---|
| 309 | PRINT *," at '" // TRIM(funcn) // "' variable '" //TRIM(varn)// & |
---|
| 310 | "' is wrong in Nvalues= ",wrongi,' at i (x, y) value___' |
---|
| 311 | DO i=1,wrongi |
---|
| 312 | ypt = INT(wronggridpt(i)/wiim) + 1 |
---|
| 313 | xpt = wronggridpt(i) - (ypt-1)*wiim |
---|
| 314 | PRINT *,wronggridpt(i), '(',xpt,', ',ypt,')', wrongvalues(i) |
---|
| 315 | END DO |
---|
| 316 | IF (stoprun) THEN |
---|
| 317 | STOP |
---|
| 318 | END IF |
---|
| 319 | END IF |
---|
| 320 | |
---|
| 321 | RETURN |
---|
| 322 | |
---|
| 323 | END SUBROUTINE check_var |
---|
| 324 | |
---|
| 325 | SUBROUTINE check_var3D(funcn, varn, var, sizev, zsize, bigvalue, stoprun) |
---|
| 326 | ! Subroutine to check the consistency of a 3D LMDSZ - variable (klon, klev) ! |
---|
| 327 | ! * NaN value: by definition is variable /= variable |
---|
| 328 | ! * bigvalue: threshold for the variable |
---|
| 329 | |
---|
| 330 | IMPLICIT NONE |
---|
| 331 | |
---|
| 332 | #include "dimensions.h" |
---|
| 333 | |
---|
| 334 | INTEGER, INTENT(IN) :: sizev, zsize |
---|
| 335 | CHARACTER(LEN=50), INTENT(IN) :: funcn, varn |
---|
| 336 | REAL, DIMENSION(sizev,zsize), INTENT(IN) :: var |
---|
| 337 | REAL, INTENT(IN) :: bigvalue |
---|
| 338 | LOGICAL, INTENT(IN) :: stoprun |
---|
| 339 | |
---|
| 340 | ! Local |
---|
| 341 | INTEGER :: i, k, wrongi, xpt, ypt |
---|
| 342 | CHARACTER(LEN=50) :: errmsg |
---|
| 343 | LOGICAL :: found |
---|
| 344 | REAL, DIMENSION(sizev*zsize) :: wrongvalues |
---|
| 345 | INTEGER, DIMENSION(sizev*zsize,2) :: wronggridpt |
---|
| 346 | |
---|
| 347 | !!!!!!! Variables |
---|
| 348 | ! funcn: at which functino of part of the program variable is checked |
---|
| 349 | ! varn: name of the variable |
---|
| 350 | ! var: variable to check |
---|
| 351 | ! sizev: size of the variable |
---|
| 352 | ! zsize: vertical size of the variable |
---|
| 353 | ! bigvalue: biggest attenaible value for the variable |
---|
| 354 | ! stoprun: Should the run stop if it founds a problem? |
---|
| 355 | |
---|
| 356 | errmsg = 'ERROR -- error -- ERROR -- error' |
---|
| 357 | |
---|
| 358 | found = .FALSE. |
---|
| 359 | wrongi = 0 |
---|
| 360 | DO i=1,sizev |
---|
| 361 | DO k=1,zsize |
---|
| 362 | IF (var(i,k) /= var(i,k) .OR. ABS(var(i,k)) > bigvalue ) THEN |
---|
| 363 | IF (wrongi == 0) found = .TRUE. |
---|
| 364 | wrongi = wrongi + 1 |
---|
| 365 | wrongvalues(wrongi) = var(i,k) |
---|
| 366 | wronggridpt(wrongi,1) = i |
---|
| 367 | wronggridpt(wrongi,2) = k |
---|
| 368 | END IF |
---|
| 369 | END DO |
---|
| 370 | END DO |
---|
| 371 | |
---|
| 372 | IF (found) THEN |
---|
| 373 | PRINT *,TRIM(errmsg) |
---|
| 374 | PRINT *," at '" // TRIM(funcn) // "' variable '" //TRIM(varn)// & |
---|
| 375 | "' is wrong in Nvalues= ",wrongi,' at i (x,y) k value___' |
---|
| 376 | DO i=1,wrongi |
---|
| 377 | ypt = INT(wronggridpt(i,1)/wiim) + 1 |
---|
| 378 | xpt = wronggridpt(i,1) - (ypt-1)*wiim |
---|
| 379 | PRINT *,wronggridpt(i,1), '(',xpt,', ',ypt,')', wronggridpt(i,2), wrongvalues(i) |
---|
| 380 | END DO |
---|
| 381 | IF (stoprun) THEN |
---|
| 382 | STOP |
---|
| 383 | END IF |
---|
| 384 | END IF |
---|
| 385 | |
---|
| 386 | RETURN |
---|
| 387 | |
---|
| 388 | END SUBROUTINE check_var3D |
---|
| 389 | |
---|
| 390 | |
---|
[1] | 391 | !C====================================================================== |
---|
| 392 | SUBROUTINE diagetpq(airephy,tit,iprt,idiag,idiag2,dtime & |
---|
| 393 | & ,t,q,ql,qs,u,v,paprs,pplay & |
---|
| 394 | & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
| 395 | !C====================================================================== |
---|
| 396 | !C |
---|
| 397 | !C Purpose: |
---|
| 398 | !C Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, |
---|
| 399 | !C et calcul le flux de chaleur et le flux d'eau necessaire a ces |
---|
| 400 | !C changements. Ces valeurs sont moyennees sur la surface de tout |
---|
| 401 | !C le globe et sont exprime en W/2 et kg/s/m2 |
---|
| 402 | !C Outil pour diagnostiquer la conservation de l'energie |
---|
| 403 | !C et de la masse dans la physique. Suppose que les niveau de |
---|
| 404 | !c pression entre couche ne varie pas entre 2 appels. |
---|
| 405 | !C |
---|
| 406 | !C Plusieurs de ces diagnostics peuvent etre fait en parallele: les |
---|
| 407 | !c bilans sont sauvegardes dans des tableaux indices. On parlera |
---|
| 408 | !C "d'indice de diagnostic" |
---|
| 409 | !c |
---|
| 410 | !C |
---|
| 411 | !c====================================================================== |
---|
| 412 | !C Arguments: |
---|
| 413 | !C airephy-------input-R- grid area |
---|
| 414 | !C tit-----imput-A15- Comment added in PRINT (CHARACTER*15) |
---|
| 415 | !C iprt----input-I- PRINT level ( <=1 : no PRINT) |
---|
| 416 | !C idiag---input-I- indice dans lequel sera range les nouveaux |
---|
| 417 | !C bilans d' entalpie et de masse |
---|
| 418 | !C idiag2--input-I-les nouveaux bilans d'entalpie et de masse |
---|
| 419 | !C sont compare au bilan de d'enthalpie de masse de |
---|
| 420 | !C l'indice numero idiag2 |
---|
| 421 | !C Cas parriculier : si idiag2=0, pas de comparaison, on |
---|
| 422 | !c sort directement les bilans d'enthalpie et de masse |
---|
| 423 | !C dtime----input-R- time step (s) |
---|
| 424 | !c t--------input-R- temperature (K) |
---|
| 425 | !c q--------input-R- vapeur d'eau (kg/kg) |
---|
| 426 | !c ql-------input-R- liquid watter (kg/kg) |
---|
| 427 | !c qs-------input-R- solid watter (kg/kg) |
---|
| 428 | !c u--------input-R- vitesse u |
---|
| 429 | !c v--------input-R- vitesse v |
---|
| 430 | !c paprs----input-R- pression a intercouche (Pa) |
---|
| 431 | !c pplay----input-R- pression au milieu de couche (Pa) |
---|
| 432 | !c |
---|
| 433 | !C the following total value are computed by UNIT of earth surface |
---|
| 434 | !C |
---|
| 435 | !C d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy |
---|
| 436 | !c change (J/m2) during one time step (dtime) for the whole |
---|
| 437 | !C atmosphere (air, watter vapour, liquid and solid) |
---|
| 438 | !C d_qt------output-R- total water mass flux (kg/m2/s) defined as the |
---|
| 439 | !C total watter (kg/m2) change during one time step (dtime), |
---|
| 440 | !C d_qw------output-R- same, for the watter vapour only (kg/m2/s) |
---|
| 441 | !C d_ql------output-R- same, for the liquid watter only (kg/m2/s) |
---|
| 442 | !C d_qs------output-R- same, for the solid watter only (kg/m2/s) |
---|
| 443 | !C d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column |
---|
| 444 | !C |
---|
| 445 | !C other (COMMON...) |
---|
| 446 | !C RCPD, RCPV, .... |
---|
| 447 | !C |
---|
| 448 | !C J.L. Dufresne, July 2002 |
---|
| 449 | !c====================================================================== |
---|
| 450 | |
---|
| 451 | USE dimphy |
---|
| 452 | IMPLICIT NONE |
---|
| 453 | !C |
---|
| 454 | #include "dimensions.h" |
---|
| 455 | !cccccc#include "dimphy.h" |
---|
| 456 | #include "YOMCST.h" |
---|
| 457 | #include "YOETHF.h" |
---|
| 458 | !C |
---|
| 459 | !c Input variables |
---|
| 460 | real airephy(klon) |
---|
| 461 | CHARACTER*15 tit |
---|
| 462 | INTEGER iprt,idiag, idiag2 |
---|
| 463 | REAL dtime |
---|
| 464 | REAL t(klon,klev), q(klon,klev), ql(klon,klev), qs(klon,klev) |
---|
| 465 | REAL u(klon,klev), v(klon,klev) |
---|
| 466 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 467 | !c Output variables |
---|
| 468 | REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
| 469 | !C |
---|
| 470 | !C Local variables |
---|
| 471 | !c |
---|
| 472 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot & |
---|
| 473 | & , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
| 474 | !c h_vcol_tot-- total enthalpy of vertical air column |
---|
| 475 | !C (air with watter vapour, liquid and solid) (J/m2) |
---|
| 476 | !c h_dair_tot-- total enthalpy of dry air (J/m2) |
---|
| 477 | !c h_qw_tot---- total enthalpy of watter vapour (J/m2) |
---|
| 478 | !c h_ql_tot---- total enthalpy of liquid watter (J/m2) |
---|
| 479 | !c h_qs_tot---- total enthalpy of solid watter (J/m2) |
---|
| 480 | !c qw_tot------ total mass of watter vapour (kg/m2) |
---|
| 481 | !c ql_tot------ total mass of liquid watter (kg/m2) |
---|
| 482 | !c qs_tot------ total mass of solid watter (kg/m2) |
---|
| 483 | !c ec_tot------ total cinetic energy (kg/m2) |
---|
| 484 | !C |
---|
| 485 | REAL zairm(klon,klev) ! layer air mass (kg/m2) |
---|
| 486 | REAL zqw_col(klon) |
---|
| 487 | REAL zql_col(klon) |
---|
| 488 | REAL zqs_col(klon) |
---|
| 489 | REAL zec_col(klon) |
---|
| 490 | REAL zh_dair_col(klon) |
---|
| 491 | REAL zh_qw_col(klon), zh_ql_col(klon), zh_qs_col(klon) |
---|
| 492 | !C |
---|
| 493 | REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs |
---|
| 494 | !C |
---|
| 495 | REAL airetot, zcpvap, zcwat, zcice |
---|
| 496 | !C |
---|
| 497 | INTEGER i, k |
---|
| 498 | !C |
---|
| 499 | INTEGER ndiag ! max number of diagnostic in parallel |
---|
| 500 | PARAMETER (ndiag=10) |
---|
| 501 | integer pas(ndiag) |
---|
| 502 | save pas |
---|
| 503 | data pas/ndiag*0/ |
---|
| 504 | !$OMP THREADPRIVATE(pas) |
---|
| 505 | !C |
---|
| 506 | REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag) & |
---|
| 507 | & , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag) & |
---|
| 508 | & , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag) |
---|
| 509 | SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre & |
---|
| 510 | & , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre |
---|
| 511 | !$OMP THREADPRIVATE(h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre) |
---|
| 512 | !$OMP THREADPRIVATE(h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre) |
---|
[142] | 513 | |
---|
| 514 | ! L. Fita, LMD July 2014 |
---|
| 515 | CHARACTER(LEN=50) :: errmsg, fname, varname |
---|
| 516 | LOGICAL :: found |
---|
| 517 | REAL :: largest |
---|
| 518 | |
---|
| 519 | fname = 'diagetpq' |
---|
| 520 | errmsg = 'ERROR -- error -- ERROR -- error' |
---|
| 521 | largest = 10.e4 |
---|
[1] | 522 | !c====================================================================== |
---|
| 523 | !C |
---|
| 524 | DO k = 1, klev |
---|
| 525 | DO i = 1, klon |
---|
| 526 | !C layer air mass |
---|
| 527 | zairm(i,k) = (paprs(i,k)-paprs(i,k+1))/RG |
---|
| 528 | ENDDO |
---|
| 529 | END DO |
---|
| 530 | !C |
---|
| 531 | !C Reset variables |
---|
| 532 | DO i = 1, klon |
---|
| 533 | zqw_col(i)=0. |
---|
| 534 | zql_col(i)=0. |
---|
| 535 | zqs_col(i)=0. |
---|
| 536 | zec_col(i) = 0. |
---|
| 537 | zh_dair_col(i) = 0. |
---|
| 538 | zh_qw_col(i) = 0. |
---|
| 539 | zh_ql_col(i) = 0. |
---|
| 540 | zh_qs_col(i) = 0. |
---|
| 541 | ENDDO |
---|
| 542 | !C |
---|
| 543 | zcpvap=RCPV |
---|
| 544 | zcwat=RCW |
---|
| 545 | zcice=RCS |
---|
| 546 | !C |
---|
| 547 | !C Compute vertical sum for each atmospheric column |
---|
| 548 | !C ================================================ |
---|
| 549 | DO k = 1, klev |
---|
| 550 | DO i = 1, klon |
---|
| 551 | !C Watter mass |
---|
| 552 | zqw_col(i) = zqw_col(i) + q(i,k)*zairm(i,k) |
---|
| 553 | zql_col(i) = zql_col(i) + ql(i,k)*zairm(i,k) |
---|
| 554 | zqs_col(i) = zqs_col(i) + qs(i,k)*zairm(i,k) |
---|
| 555 | !C Cinetic Energy |
---|
| 556 | zec_col(i) = zec_col(i) & |
---|
| 557 | & +0.5*(u(i,k)**2+v(i,k)**2)*zairm(i,k) |
---|
| 558 | !C Air enthalpy |
---|
| 559 | zh_dair_col(i) = zh_dair_col(i) & |
---|
| 560 | & + RCPD*(1.-q(i,k)-ql(i,k)-qs(i,k))*zairm(i,k)*t(i,k) |
---|
| 561 | zh_qw_col(i) = zh_qw_col(i) & |
---|
| 562 | & + zcpvap*q(i,k)*zairm(i,k)*t(i,k) |
---|
| 563 | zh_ql_col(i) = zh_ql_col(i) & |
---|
| 564 | & + zcwat*ql(i,k)*zairm(i,k)*t(i,k) & |
---|
| 565 | & - RLVTT*ql(i,k)*zairm(i,k) |
---|
| 566 | zh_qs_col(i) = zh_qs_col(i) & |
---|
| 567 | & + zcice*qs(i,k)*zairm(i,k)*t(i,k) & |
---|
| 568 | & - RLSTT*qs(i,k)*zairm(i,k) |
---|
| 569 | |
---|
| 570 | END DO |
---|
| 571 | ENDDO |
---|
| 572 | |
---|
| 573 | !C |
---|
| 574 | !C Mean over the planete surface |
---|
| 575 | !C ============================= |
---|
| 576 | qw_tot = 0. |
---|
| 577 | ql_tot = 0. |
---|
| 578 | qs_tot = 0. |
---|
| 579 | ec_tot = 0. |
---|
| 580 | h_vcol_tot = 0. |
---|
| 581 | h_dair_tot = 0. |
---|
| 582 | h_qw_tot = 0. |
---|
| 583 | h_ql_tot = 0. |
---|
| 584 | h_qs_tot = 0. |
---|
| 585 | airetot=0. |
---|
| 586 | !C |
---|
| 587 | do i=1,klon |
---|
| 588 | qw_tot = qw_tot + zqw_col(i)*airephy(i) |
---|
| 589 | ql_tot = ql_tot + zql_col(i)*airephy(i) |
---|
| 590 | qs_tot = qs_tot + zqs_col(i)*airephy(i) |
---|
| 591 | ec_tot = ec_tot + zec_col(i)*airephy(i) |
---|
| 592 | h_dair_tot = h_dair_tot + zh_dair_col(i)*airephy(i) |
---|
| 593 | h_qw_tot = h_qw_tot + zh_qw_col(i)*airephy(i) |
---|
| 594 | h_ql_tot = h_ql_tot + zh_ql_col(i)*airephy(i) |
---|
| 595 | h_qs_tot = h_qs_tot + zh_qs_col(i)*airephy(i) |
---|
| 596 | airetot=airetot+airephy(i) |
---|
| 597 | END DO |
---|
| 598 | !C |
---|
| 599 | qw_tot = qw_tot/airetot |
---|
| 600 | ql_tot = ql_tot/airetot |
---|
| 601 | qs_tot = qs_tot/airetot |
---|
| 602 | ec_tot = ec_tot/airetot |
---|
| 603 | h_dair_tot = h_dair_tot/airetot |
---|
| 604 | h_qw_tot = h_qw_tot/airetot |
---|
| 605 | h_ql_tot = h_ql_tot/airetot |
---|
| 606 | h_qs_tot = h_qs_tot/airetot |
---|
| 607 | !C |
---|
| 608 | h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot |
---|
| 609 | !C |
---|
| 610 | !C Compute the change of the atmospheric state compare to the one |
---|
| 611 | !C stored in "idiag2", and convert it in flux. THis computation |
---|
| 612 | !C is performed IF idiag2 /= 0 and IF it is not the first CALL |
---|
| 613 | !c for "idiag" |
---|
| 614 | !C =================================== |
---|
| 615 | !C |
---|
| 616 | IF ( (idiag2.gt.0) .and. (pas(idiag2) .ne. 0) ) THEN |
---|
| 617 | d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime |
---|
| 618 | d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime |
---|
| 619 | d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime |
---|
| 620 | d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime |
---|
| 621 | d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime |
---|
| 622 | d_qw = (qw_tot - qw_pre(idiag2) )/dtime |
---|
| 623 | d_ql = (ql_tot - ql_pre(idiag2) )/dtime |
---|
| 624 | d_qs = (qs_tot - qs_pre(idiag2) )/dtime |
---|
| 625 | d_ec = (ec_tot - ec_pre(idiag2) )/dtime |
---|
| 626 | d_qt = d_qw + d_ql + d_qs |
---|
| 627 | |
---|
| 628 | ELSE |
---|
| 629 | d_h_vcol = 0. |
---|
| 630 | d_h_dair = 0. |
---|
| 631 | d_h_qw = 0. |
---|
| 632 | d_h_ql = 0. |
---|
| 633 | d_h_qs = 0. |
---|
| 634 | d_qw = 0. |
---|
| 635 | d_ql = 0. |
---|
| 636 | d_qs = 0. |
---|
| 637 | d_ec = 0. |
---|
| 638 | d_qt = 0. |
---|
| 639 | ENDIF |
---|
| 640 | !C |
---|
| 641 | IF (iprt.ge.2) THEN |
---|
| 642 | WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs |
---|
| 643 | 9000 format('Phys. Watter Mass Budget (kg/m2/s)',A15 & |
---|
| 644 | & ,1i6,10(1pE14.6)) |
---|
| 645 | WRITE(6,9001) tit,pas(idiag), d_h_vcol |
---|
| 646 | 9001 format('Phys. Enthalpy Budget (W/m2) ',A15,1i6,10(F8.2)) |
---|
| 647 | WRITE(6,9002) tit,pas(idiag), d_ec |
---|
| 648 | 9002 format('Phys. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F8.2)) |
---|
| 649 | END IF |
---|
| 650 | !C |
---|
| 651 | !C Store the new atmospheric state in "idiag" |
---|
| 652 | !C |
---|
| 653 | pas(idiag)=pas(idiag)+1 |
---|
| 654 | h_vcol_pre(idiag) = h_vcol_tot |
---|
| 655 | h_dair_pre(idiag) = h_dair_tot |
---|
| 656 | h_qw_pre(idiag) = h_qw_tot |
---|
| 657 | h_ql_pre(idiag) = h_ql_tot |
---|
| 658 | h_qs_pre(idiag) = h_qs_tot |
---|
| 659 | qw_pre(idiag) = qw_tot |
---|
| 660 | ql_pre(idiag) = ql_tot |
---|
| 661 | qs_pre(idiag) = qs_tot |
---|
| 662 | ec_pre (idiag) = ec_tot |
---|
| 663 | !C |
---|
[142] | 664 | IF (d_h_vcol .NE. d_h_vcol .OR. ABS(d_h_vcol) > largest) THEN |
---|
| 665 | PRINT *,TRIM(errmsg) |
---|
| 666 | PRINT *,' ' // TRIM(fname) // ': Wrong d_h_vcol= ',d_h_vcol,' !!!' |
---|
| 667 | PRINT *,' d_h_vcol: Heat flux (W/m2) define as the Enthalpy change' // & |
---|
| 668 | ' (J/m2) during one time step (dtime) for the whole atmosphere (air,' // & |
---|
| 669 | ' watter vapour, liquid and solid)' |
---|
| 670 | PRINT *,' d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )' |
---|
| 671 | PRINT *,' h_vcol_tot= ',h_vcol_tot |
---|
| 672 | IF (h_vcol_tot .NE. h_vcol_tot .OR. ABS(h_vcol_tot) > largest) THEN |
---|
| 673 | PRINT *,' h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot' |
---|
| 674 | PRINT *,' airetot= ',airetot |
---|
[240] | 675 | IF (airetot .NE. airetot .OR. ABS(airetot) > largest*10.e15) THEN |
---|
[142] | 676 | varname = 'airephy' |
---|
[240] | 677 | CALL check_var(fname, varname, airephy, klon, largest*10.e15, .FALSE.) |
---|
[142] | 678 | END IF |
---|
| 679 | PRINT *,' h_dair_tot= ',h_dair_tot |
---|
| 680 | IF (h_dair_tot .NE. h_dair_tot .OR. ABS(h_dair_tot) > largest*10.e6) THEN |
---|
| 681 | varname = 'zh_dair_col' |
---|
| 682 | CALL check_var(fname, varname, zh_dair_col, klon, largest*10.e6, .FALSE.) |
---|
| 683 | PRINT *,' zh_dair_col = func(q,ql,qs,paprs,t)' |
---|
| 684 | varname = 'q' |
---|
| 685 | CALL check_var3D(fname, varname, q, klon, klev, largest, .FALSE.) |
---|
| 686 | varname = 'ql' |
---|
| 687 | CALL check_var3D(fname, varname, ql, klon, klev, largest, .FALSE.) |
---|
| 688 | varname = 'qs' |
---|
| 689 | CALL check_var3D(fname, varname, qs, klon, klev, largest, .FALSE.) |
---|
| 690 | varname = 'paprs' |
---|
| 691 | CALL check_var3D(fname, varname, paprs, klon, klev, largest*10.e6, .FALSE.) |
---|
| 692 | varname = 't' |
---|
| 693 | CALL check_var3D(fname, varname, t, klon, klev, largest, .FALSE.) |
---|
| 694 | END IF |
---|
| 695 | PRINT *,' h_qw_tot= ',h_qw_tot |
---|
| 696 | IF (h_qw_tot .NE. h_qw_tot .OR. ABS(h_qw_tot) > largest*10.e4) THEN |
---|
| 697 | varname = 'zh_qw_col' |
---|
| 698 | CALL check_var(fname, varname, zh_qw_col, klon, largest*10.e4, .FALSE.) |
---|
| 699 | END IF |
---|
| 700 | PRINT *,' h_ql_tot= ',h_ql_tot |
---|
| 701 | IF (h_ql_tot .NE. h_ql_tot .OR. ABS(h_ql_tot) > largest*10.e2) THEN |
---|
| 702 | varname = 'zh_ql_col' |
---|
| 703 | CALL check_var(fname, varname, zh_ql_col, klon, largest*10.e2, .FALSE.) |
---|
| 704 | END IF |
---|
| 705 | PRINT *,' h_qs_tot= ',h_qs_tot |
---|
| 706 | IF (h_qs_tot .NE. h_qs_tot .OR. ABS(h_qs_tot) > largest) THEN |
---|
| 707 | varname = 'zh_qs_col' |
---|
| 708 | CALL check_var(fname, varname, zh_qs_col, klon, largest, .FALSE.) |
---|
| 709 | END IF |
---|
| 710 | END IF |
---|
| 711 | STOP |
---|
| 712 | END IF |
---|
| 713 | |
---|
| 714 | IF (qw_tot .NE. qw_tot .OR. ABS(qw_tot) > largest) THEN |
---|
| 715 | PRINT *,TRIM(errmsg) |
---|
| 716 | PRINT *,' ' // TRIM(fname) // ': Wrong qw_tot= ',qw_tot,' !!!' |
---|
| 717 | PRINT *,' qw_tot: total mass of watter vapour (kg/m2)' |
---|
| 718 | PRINT *,' qw_tot = f(q,ql,qs,airephy,t,paprs)' |
---|
| 719 | varname = 'airephy' |
---|
[240] | 720 | CALL check_var(fname, varname, airephy, klon, largest*10.e15, .FALSE.) |
---|
[142] | 721 | varname = 'q' |
---|
| 722 | CALL check_var3D(fname, varname, q, klon, klev, largest, .FALSE.) |
---|
| 723 | varname = 'ql' |
---|
| 724 | CALL check_var3D(fname, varname, ql, klon, klev, largest, .FALSE.) |
---|
| 725 | varname = 'qs' |
---|
| 726 | CALL check_var3D(fname, varname, qs, klon, klev, largest, .FALSE.) |
---|
| 727 | varname = 't' |
---|
| 728 | CALL check_var3D(fname, varname, t, klon, klev, largest, .FALSE.) |
---|
| 729 | varname = 'paprs' |
---|
| 730 | CALL check_var3D(fname, varname, paprs, klon, klev, largest, .FALSE.) |
---|
| 731 | STOP |
---|
| 732 | END IF |
---|
| 733 | |
---|
| 734 | IF (ql_tot .NE. ql_tot .OR. ABS(ql_tot) > largest) THEN |
---|
| 735 | PRINT *,TRIM(errmsg) |
---|
| 736 | PRINT *,' ' // TRIM(fname) // ': Wrong ql_tot= ',ql_tot,' !!!' |
---|
| 737 | PRINT *,' ql_tot: total mass of liquid watter (kg/m2)' |
---|
| 738 | PRINT *,' ql_tot = f(ql,airephy,t,paprs)' |
---|
| 739 | varname = 'airephy' |
---|
[240] | 740 | CALL check_var(fname, varname, airephy, klon, largest*10.e15, .FALSE.) |
---|
[142] | 741 | varname = 'ql' |
---|
| 742 | CALL check_var3D(fname, varname, ql, klon, klev, largest, .FALSE.) |
---|
| 743 | varname = 't' |
---|
| 744 | CALL check_var3D(fname, varname, t, klon, klev, largest, .FALSE.) |
---|
| 745 | varname = 'paprs' |
---|
| 746 | CALL check_var3D(fname, varname, paprs, klon, klev, largest, .FALSE.) |
---|
| 747 | STOP |
---|
| 748 | END IF |
---|
| 749 | |
---|
| 750 | IF (qs_tot .NE. qs_tot .OR. ABS(qs_tot) > largest) THEN |
---|
| 751 | PRINT *,TRIM(errmsg) |
---|
| 752 | PRINT *,' ' // TRIM(fname) // ': Wrong qs_tot= ',qs_tot,' !!!' |
---|
| 753 | PRINT *,' qs_tot: total mass of solid watter (kg/m2)' |
---|
| 754 | PRINT *,' qs_tot = f(qs,airephy,t,paprs)' |
---|
| 755 | varname = 'airephy' |
---|
[240] | 756 | CALL check_var(fname, varname, airephy, klon, largest*10.e15, .FALSE.) |
---|
[142] | 757 | varname = 'qs' |
---|
| 758 | CALL check_var3D(fname, varname, qs, klon, klev, largest, .FALSE.) |
---|
| 759 | varname = 't' |
---|
| 760 | CALL check_var3D(fname, varname, t, klon, klev, largest, .FALSE.) |
---|
| 761 | varname = 'paprs' |
---|
| 762 | CALL check_var3D(fname, varname, paprs, klon, klev, largest, .FALSE.) |
---|
| 763 | STOP |
---|
| 764 | END IF |
---|
| 765 | |
---|
| 766 | IF (ec_tot .NE. ec_tot .OR. ABS(ec_tot) > largest*10.e4) THEN |
---|
| 767 | PRINT *,TRIM(errmsg) |
---|
| 768 | PRINT *,' ' // TRIM(fname) // ': Wrong ec_tot= ',ec_tot,' !!!' |
---|
| 769 | PRINT *,' ec_tot: total cinetic energy (kg/m2)' |
---|
| 770 | PRINT *,' ec_tot = f(u,v,airephy,t,paprs)' |
---|
| 771 | varname = 'airephy' |
---|
[240] | 772 | CALL check_var(fname, varname, airephy, klon, largest*10.e15, .FALSE.) |
---|
[142] | 773 | varname = 'u' |
---|
| 774 | CALL check_var3D(fname, varname, u, klon, klev, largest, .FALSE.) |
---|
| 775 | varname = 'v' |
---|
| 776 | CALL check_var3D(fname, varname, v, klon, klev, largest, .FALSE.) |
---|
| 777 | varname = 't' |
---|
| 778 | CALL check_var3D(fname, varname, t, klon, klev, largest, .FALSE.) |
---|
| 779 | varname = 'paprs' |
---|
| 780 | CALL check_var3D(fname, varname, paprs, klon, klev, largest, .FALSE.) |
---|
| 781 | STOP |
---|
| 782 | END IF |
---|
| 783 | |
---|
[1] | 784 | RETURN |
---|
[142] | 785 | |
---|
[1] | 786 | END SUBROUTINE diagetpq |
---|
| 787 | |
---|
| 788 | END MODULE diagphy_mod |
---|
| 789 | |
---|