| 1 | !REAL:MODEL_LAYER:INITIALIZATION |
|---|
| 2 | |
|---|
| 3 | #ifndef VERT_UNIT |
|---|
| 4 | ! This MODULE holds the routines which are used to perform various initializations |
|---|
| 5 | ! for the individual domains, specifically for the Eulerian, mass-based coordinate. |
|---|
| 6 | |
|---|
| 7 | !----------------------------------------------------------------------- |
|---|
| 8 | |
|---|
| 9 | MODULE module_initialize_real |
|---|
| 10 | |
|---|
| 11 | USE module_bc |
|---|
| 12 | USE module_configure |
|---|
| 13 | USE module_domain |
|---|
| 14 | USE module_io_domain |
|---|
| 15 | USE module_model_constants |
|---|
| 16 | USE module_state_description |
|---|
| 17 | USE module_timing |
|---|
| 18 | USE module_soil_pre |
|---|
| 19 | USE module_date_time |
|---|
| 20 | USE module_llxy |
|---|
| 21 | #ifdef DM_PARALLEL |
|---|
| 22 | USE module_dm |
|---|
| 23 | USE module_comm_dm, ONLY : & |
|---|
| 24 | HALO_EM_INIT_1_sub & |
|---|
| 25 | ,HALO_EM_INIT_2_sub & |
|---|
| 26 | ,HALO_EM_INIT_3_sub & |
|---|
| 27 | ,HALO_EM_INIT_4_sub & |
|---|
| 28 | ,HALO_EM_INIT_5_sub & |
|---|
| 29 | ,HALO_EM_VINTERP_UV_1_sub |
|---|
| 30 | #endif |
|---|
| 31 | |
|---|
| 32 | REAL , SAVE :: p_top_save |
|---|
| 33 | INTEGER :: internal_time_loop |
|---|
| 34 | |
|---|
| 35 | CONTAINS |
|---|
| 36 | |
|---|
| 37 | !------------------------------------------------------------------- |
|---|
| 38 | |
|---|
| 39 | SUBROUTINE init_domain ( grid ) |
|---|
| 40 | |
|---|
| 41 | IMPLICIT NONE |
|---|
| 42 | |
|---|
| 43 | ! Input space and data. No gridded meteorological data has been stored, though. |
|---|
| 44 | |
|---|
| 45 | ! TYPE (domain), POINTER :: grid |
|---|
| 46 | TYPE (domain) :: grid |
|---|
| 47 | |
|---|
| 48 | ! Local data. |
|---|
| 49 | |
|---|
| 50 | INTEGER :: idum1, idum2 |
|---|
| 51 | |
|---|
| 52 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
|---|
| 53 | |
|---|
| 54 | CALL init_domain_rk( grid & |
|---|
| 55 | ! |
|---|
| 56 | #include "actual_new_args.inc" |
|---|
| 57 | ! |
|---|
| 58 | ) |
|---|
| 59 | END SUBROUTINE init_domain |
|---|
| 60 | |
|---|
| 61 | !------------------------------------------------------------------- |
|---|
| 62 | |
|---|
| 63 | SUBROUTINE init_domain_rk ( grid & |
|---|
| 64 | ! |
|---|
| 65 | #include "dummy_new_args.inc" |
|---|
| 66 | ! |
|---|
| 67 | ) |
|---|
| 68 | |
|---|
| 69 | USE module_optional_input |
|---|
| 70 | IMPLICIT NONE |
|---|
| 71 | |
|---|
| 72 | ! Input space and data. No gridded meteorological data has been stored, though. |
|---|
| 73 | |
|---|
| 74 | ! TYPE (domain), POINTER :: grid |
|---|
| 75 | TYPE (domain) :: grid |
|---|
| 76 | |
|---|
| 77 | #include "dummy_new_decl.inc" |
|---|
| 78 | |
|---|
| 79 | TYPE (grid_config_rec_type) :: config_flags |
|---|
| 80 | |
|---|
| 81 | ! Local domain indices and counters. |
|---|
| 82 | |
|---|
| 83 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
|---|
| 84 | INTEGER :: loop , num_seaice_changes |
|---|
| 85 | |
|---|
| 86 | INTEGER :: ids, ide, jds, jde, kds, kde, & |
|---|
| 87 | ims, ime, jms, jme, kms, kme, & |
|---|
| 88 | its, ite, jts, jte, kts, kte, & |
|---|
| 89 | ips, ipe, jps, jpe, kps, kpe, & |
|---|
| 90 | i, j, k |
|---|
| 91 | |
|---|
| 92 | INTEGER :: imsx, imex, jmsx, jmex, kmsx, kmex, & |
|---|
| 93 | ipsx, ipex, jpsx, jpex, kpsx, kpex, & |
|---|
| 94 | imsy, imey, jmsy, jmey, kmsy, kmey, & |
|---|
| 95 | ipsy, ipey, jpsy, jpey, kpsy, kpey |
|---|
| 96 | |
|---|
| 97 | INTEGER :: ns |
|---|
| 98 | |
|---|
| 99 | ! Local data |
|---|
| 100 | |
|---|
| 101 | INTEGER :: error |
|---|
| 102 | INTEGER :: im, num_3d_m, num_3d_s |
|---|
| 103 | REAL :: p_surf, p_level |
|---|
| 104 | REAL :: cof1, cof2 |
|---|
| 105 | REAL :: qvf , qvf1 , qvf2 , pd_surf |
|---|
| 106 | REAL :: p00 , t00 , a , tiso |
|---|
| 107 | REAL :: hold_znw , ptemp |
|---|
| 108 | REAL :: vap_pres_mb , sat_vap_pres_mb |
|---|
| 109 | LOGICAL :: were_bad |
|---|
| 110 | |
|---|
| 111 | LOGICAL :: stretch_grid, dry_sounding, debug |
|---|
| 112 | INTEGER IICOUNT |
|---|
| 113 | |
|---|
| 114 | REAL :: p_top_requested , temp |
|---|
| 115 | INTEGER :: num_metgrid_levels |
|---|
| 116 | REAL , DIMENSION(max_eta) :: eta_levels |
|---|
| 117 | REAL :: max_dz |
|---|
| 118 | |
|---|
| 119 | ! INTEGER , PARAMETER :: nl_max = 1000 |
|---|
| 120 | ! REAL , DIMENSION(nl_max) :: grid%dn |
|---|
| 121 | |
|---|
| 122 | integer::oops1,oops2 |
|---|
| 123 | |
|---|
| 124 | REAL :: zap_close_levels |
|---|
| 125 | INTEGER :: force_sfc_in_vinterp |
|---|
| 126 | INTEGER :: interp_type , lagrange_order , extrap_type , t_extrap_type |
|---|
| 127 | LOGICAL :: lowest_lev_from_sfc , use_levels_below_ground , use_surface |
|---|
| 128 | LOGICAL :: we_have_tavgsfc , we_have_tsk |
|---|
| 129 | |
|---|
| 130 | INTEGER :: lev500 , loop_count |
|---|
| 131 | REAL :: zl , zu , pl , pu , z500 , dz500 , tvsfc , dpmu |
|---|
| 132 | |
|---|
| 133 | LOGICAL , PARAMETER :: want_full_levels = .TRUE. |
|---|
| 134 | LOGICAL , PARAMETER :: want_half_levels = .FALSE. |
|---|
| 135 | |
|---|
| 136 | CHARACTER (LEN=80) :: a_message |
|---|
| 137 | REAL :: max_mf |
|---|
| 138 | |
|---|
| 139 | ! Excluded middle. |
|---|
| 140 | |
|---|
| 141 | LOGICAL :: any_valid_points |
|---|
| 142 | INTEGER :: i_valid , j_valid |
|---|
| 143 | |
|---|
| 144 | !-- Carsel and Parrish [1988] |
|---|
| 145 | REAL , DIMENSION(100) :: lqmi |
|---|
| 146 | |
|---|
| 147 | REAL :: t_start , t_end |
|---|
| 148 | |
|---|
| 149 | ! Dimension information stored in grid data structure. |
|---|
| 150 | |
|---|
| 151 | CALL cpu_time(t_start) |
|---|
| 152 | CALL get_ijk_from_grid ( grid , & |
|---|
| 153 | ids, ide, jds, jde, kds, kde, & |
|---|
| 154 | ims, ime, jms, jme, kms, kme, & |
|---|
| 155 | ips, ipe, jps, jpe, kps, kpe, & |
|---|
| 156 | imsx, imex, jmsx, jmex, kmsx, kmex, & |
|---|
| 157 | ipsx, ipex, jpsx, jpex, kpsx, kpex, & |
|---|
| 158 | imsy, imey, jmsy, jmey, kmsy, kmey, & |
|---|
| 159 | ipsy, ipey, jpsy, jpey, kpsy, kpey ) |
|---|
| 160 | its = ips ; ite = ipe ; jts = jps ; jte = jpe ; kts = kps ; kte = kpe |
|---|
| 161 | |
|---|
| 162 | |
|---|
| 163 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
|---|
| 164 | |
|---|
| 165 | ! Send out a quick message about the time steps based on the map scale factors. |
|---|
| 166 | |
|---|
| 167 | IF ( ( internal_time_loop .EQ. 1 ) .AND. ( grid%id .EQ. 1 ) .AND. ( .NOT. config_flags%map_proj .EQ. PROJ_CASSINI ) ) THEN |
|---|
| 168 | max_mf = grid%msft(its,jts) |
|---|
| 169 | DO j=jts,MIN(jde-1,jte) |
|---|
| 170 | DO i=its,MIN(ide-1,ite) |
|---|
| 171 | max_mf = MAX ( max_mf , grid%msft(i,j) ) |
|---|
| 172 | END DO |
|---|
| 173 | END DO |
|---|
| 174 | #if ( defined(DM_PARALLEL) && ! defined(STUBMPI) ) |
|---|
| 175 | max_mf = wrf_dm_max_real ( max_mf ) |
|---|
| 176 | #endif |
|---|
| 177 | WRITE ( a_message , FMT='(A,F5.2,A)' ) 'Max map factor in domain 1 = ',max_mf,'. Scale the dt in the model accordingly.' |
|---|
| 178 | CALL wrf_message ( a_message ) |
|---|
| 179 | END IF |
|---|
| 180 | |
|---|
| 181 | ! Check to see if the boundary conditions are set properly in the namelist file. |
|---|
| 182 | ! This checks for sufficiency and redundancy. |
|---|
| 183 | |
|---|
| 184 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
|---|
| 185 | |
|---|
| 186 | ! Some sort of "this is the first time" initialization. Who knows. |
|---|
| 187 | |
|---|
| 188 | grid%step_number = 0 |
|---|
| 189 | grid%itimestep=0 |
|---|
| 190 | |
|---|
| 191 | ! Pull in the info in the namelist to compare it to the input data. |
|---|
| 192 | |
|---|
| 193 | grid%real_data_init_type = model_config_rec%real_data_init_type |
|---|
| 194 | |
|---|
| 195 | ! To define the base state, we call a USER MODIFIED routine to set the three |
|---|
| 196 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
|---|
| 197 | ! and A (temperature difference, from 1000 mb to 300 mb, K). |
|---|
| 198 | |
|---|
| 199 | CALL const_module_initialize ( p00 , t00 , a , tiso ) |
|---|
| 200 | |
|---|
| 201 | ! Save these constants to write out in model output file |
|---|
| 202 | |
|---|
| 203 | grid%t00 = t00 |
|---|
| 204 | grid%p00 = p00 |
|---|
| 205 | grid%tlp = a |
|---|
| 206 | grid%tiso = tiso |
|---|
| 207 | |
|---|
| 208 | ! Are there any hold-ups to us bypassing the middle of the domain? These |
|---|
| 209 | ! holdups would be situations where we need data in the middle of the domain. |
|---|
| 210 | ! FOr example, if this si the first time period, we need the full domain |
|---|
| 211 | ! processed for ICs. Also, if there is some sort of gridded FDDA turned on, or |
|---|
| 212 | ! if the SST update is activated, then we can't just blow off the middle of the |
|---|
| 213 | ! domain all willy-nilly. Other cases of these hold-ups? Sure - what if the |
|---|
| 214 | ! user wants to smooth the CG topo, we need several rows and columns available. |
|---|
| 215 | ! What if the lat/lon proj is used, then we need to run a spectral filter on |
|---|
| 216 | ! the topo. Both are killers when trying to ignore data in the middle of the |
|---|
| 217 | ! domain. |
|---|
| 218 | |
|---|
| 219 | ! If hold_ups = .F., then there are no hold-ups to excluding the middle |
|---|
| 220 | ! domain processing. If hold_ups = .T., then there are hold-ups, and we |
|---|
| 221 | ! must process the middle of the domain. |
|---|
| 222 | |
|---|
| 223 | hold_ups = ( internal_time_loop .EQ. 1 ) .OR. & |
|---|
| 224 | ( config_flags%grid_fdda .NE. 0 ) .OR. & |
|---|
| 225 | ( config_flags%sst_update .EQ. 1 ) .OR. & |
|---|
| 226 | ( config_flags%all_ic_times ) .OR. & |
|---|
| 227 | ( config_flags%smooth_cg_topo ) .OR. & |
|---|
| 228 | ( config_flags%map_proj .EQ. PROJ_CASSINI ) |
|---|
| 229 | |
|---|
| 230 | ! There are a few checks that we need to do when the input data comes in with the middle |
|---|
| 231 | ! excluded by WPS. |
|---|
| 232 | |
|---|
| 233 | IF ( flag_excluded_middle .NE. 0 ) THEN |
|---|
| 234 | |
|---|
| 235 | ! If this time period of data from WPS has the middle excluded, it had better be OK for |
|---|
| 236 | ! us to have a hole. |
|---|
| 237 | |
|---|
| 238 | IF ( hold_ups ) THEN |
|---|
| 239 | WRITE ( a_message,* ) 'None of the following are allowed to be TRUE : ' |
|---|
| 240 | CALL wrf_message ( a_message ) |
|---|
| 241 | WRITE ( a_message,* ) ' ( internal_time_loop .EQ. 1 ) ', ( internal_time_loop .EQ. 1 ) |
|---|
| 242 | CALL wrf_message ( a_message ) |
|---|
| 243 | WRITE ( a_message,* ) ' ( config_flags%grid_fdda .NE. 0 ) ', ( config_flags%grid_fdda .NE. 0 ) |
|---|
| 244 | CALL wrf_message ( a_message ) |
|---|
| 245 | WRITE ( a_message,* ) ' ( config_flags%sst_update .EQ. 1 ) ', ( config_flags%sst_update .EQ. 1 ) |
|---|
| 246 | CALL wrf_message ( a_message ) |
|---|
| 247 | WRITE ( a_message,* ) ' ( config_flags%all_ic_times ) ', ( config_flags%all_ic_times ) |
|---|
| 248 | CALL wrf_message ( a_message ) |
|---|
| 249 | WRITE ( a_message,* ) ' ( config_flags%smooth_cg_topo ) ', ( config_flags%smooth_cg_topo ) |
|---|
| 250 | CALL wrf_message ( a_message ) |
|---|
| 251 | WRITE ( a_message,* ) ' ( config_flags%map_proj .EQ. PROJ_CASSINI ) ', ( config_flags%map_proj .EQ. PROJ_CASSINI ) |
|---|
| 252 | CALL wrf_message ( a_message ) |
|---|
| 253 | |
|---|
| 254 | WRITE ( a_message,* ) 'Problems, we cannot have excluded middle data from WPS' |
|---|
| 255 | CALL wrf_error_fatal ( a_message ) |
|---|
| 256 | END IF |
|---|
| 257 | |
|---|
| 258 | ! Make sure that the excluded middle data from metgrid is "wide enough". We only have to check |
|---|
| 259 | ! when the excluded middle was actually used in WPS. |
|---|
| 260 | |
|---|
| 261 | IF ( config_flags%spec_bdy_width .GT. flag_excluded_middle ) THEN |
|---|
| 262 | WRITE ( a_message,* ) 'The WRF &bdy_control namelist.input spec_bdy_width = ', config_flags%spec_bdy_width |
|---|
| 263 | CALL wrf_message ( a_message ) |
|---|
| 264 | WRITE ( a_message,* ) 'The WPS &metgrid namelist.wps process_only_bdy width = ',flag_excluded_middle |
|---|
| 265 | CALL wrf_message ( a_message ) |
|---|
| 266 | WRITE ( a_message,* ) 'WPS process_only_bdy must be >= WRF spec_bdy_width' |
|---|
| 267 | CALL wrf_error_fatal ( a_message ) |
|---|
| 268 | END IF |
|---|
| 269 | END IF |
|---|
| 270 | em_width = config_flags%spec_bdy_width |
|---|
| 271 | |
|---|
| 272 | ! We need to find if there are any valid non-excluded-middle points in this |
|---|
| 273 | ! tile. If so, then we need to hang on to a valid i,j location. |
|---|
| 274 | |
|---|
| 275 | any_valid_points = .false. |
|---|
| 276 | find_valid : DO j = jts,jte |
|---|
| 277 | DO i = its,ite |
|---|
| 278 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 279 | any_valid_points = .true. |
|---|
| 280 | i_valid = i |
|---|
| 281 | j_valid = j |
|---|
| 282 | EXIT find_valid |
|---|
| 283 | END DO |
|---|
| 284 | END DO find_valid |
|---|
| 285 | |
|---|
| 286 | ! Replace traditional seaice field with optional seaice (AFWA source) |
|---|
| 287 | |
|---|
| 288 | IF ( flag_icefrac .EQ. 1 ) THEN |
|---|
| 289 | DO j=jts,MIN(jde-1,jte) |
|---|
| 290 | DO i=its,MIN(ide-1,ite) |
|---|
| 291 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 292 | grid%xice(i,j) = grid%icefrac_gc(i,j) |
|---|
| 293 | END DO |
|---|
| 294 | END DO |
|---|
| 295 | END IF |
|---|
| 296 | |
|---|
| 297 | ! Fix the snow (water equivalent depth, kg/m^2) and the snowh (physical snow |
|---|
| 298 | ! depth, m) fields. |
|---|
| 299 | |
|---|
| 300 | IF ( ( flag_snow .EQ. 0 ) .AND. ( flag_snowh .EQ. 0 ) ) THEN |
|---|
| 301 | DO j=jts,MIN(jde-1,jte) |
|---|
| 302 | DO i=its,MIN(ide-1,ite) |
|---|
| 303 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 304 | grid%snow(i,j) = 0. |
|---|
| 305 | grid%snowh(i,j) = 0. |
|---|
| 306 | END DO |
|---|
| 307 | END DO |
|---|
| 308 | |
|---|
| 309 | ELSE IF ( ( flag_snow .EQ. 0 ) .AND. ( flag_snowh .EQ. 1 ) ) THEN |
|---|
| 310 | DO j=jts,MIN(jde-1,jte) |
|---|
| 311 | DO i=its,MIN(ide-1,ite) |
|---|
| 312 | ! ( m -> kg/m^2 ) & ( reduce to liquid, 5:1 ratio ) |
|---|
| 313 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 314 | grid%snow(i,j) = grid%snowh(i,j) * 1000. / 5. |
|---|
| 315 | END DO |
|---|
| 316 | END DO |
|---|
| 317 | |
|---|
| 318 | ELSE IF ( ( flag_snow .EQ. 1 ) .AND. ( flag_snowh .EQ. 0 ) ) THEN |
|---|
| 319 | DO j=jts,MIN(jde-1,jte) |
|---|
| 320 | DO i=its,MIN(ide-1,ite) |
|---|
| 321 | ! ( kg/m^2 -> m) & ( liquid to snow depth, 5:1 ratio ) |
|---|
| 322 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 323 | grid%snowh(i,j) = grid%snow(i,j) / 1000. * 5. |
|---|
| 324 | END DO |
|---|
| 325 | END DO |
|---|
| 326 | |
|---|
| 327 | END IF |
|---|
| 328 | |
|---|
| 329 | ! For backward compatibility, we might need to assign the map factors from |
|---|
| 330 | ! what they were, to what they are. |
|---|
| 331 | |
|---|
| 332 | IF ( ( config_flags%polar ) .AND. ( flag_mf_xy .EQ. 1 ) ) THEN |
|---|
| 333 | DO j=max(jds+1,jts),min(jde-1,jte) |
|---|
| 334 | DO i=its,min(ide-1,ite) |
|---|
| 335 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 336 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
|---|
| 337 | END DO |
|---|
| 338 | END DO |
|---|
| 339 | IF(jts == jds) THEN |
|---|
| 340 | DO i=its,ite |
|---|
| 341 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 342 | grid%msfvx(i,jts) = 0. |
|---|
| 343 | grid%msfvx_inv(i,jts) = 0. |
|---|
| 344 | END DO |
|---|
| 345 | END IF |
|---|
| 346 | IF(jte == jde) THEN |
|---|
| 347 | DO i=its,ite |
|---|
| 348 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 349 | grid%msfvx(i,jte) = 0. |
|---|
| 350 | grid%msfvx_inv(i,jte) = 0. |
|---|
| 351 | END DO |
|---|
| 352 | END IF |
|---|
| 353 | ELSE IF ( ( config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .EQ. 1 ) ) THEN |
|---|
| 354 | DO j=jts,jte |
|---|
| 355 | DO i=its,min(ide-1,ite) |
|---|
| 356 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 357 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
|---|
| 358 | END DO |
|---|
| 359 | END DO |
|---|
| 360 | ELSE IF ( ( .NOT. config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .NE. 1 ) ) THEN |
|---|
| 361 | DO j=jts,jte |
|---|
| 362 | DO i=its,ite |
|---|
| 363 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 364 | grid%msfvx(i,j) = grid%msfv(i,j) |
|---|
| 365 | grid%msfvy(i,j) = grid%msfv(i,j) |
|---|
| 366 | grid%msfux(i,j) = grid%msfu(i,j) |
|---|
| 367 | grid%msfuy(i,j) = grid%msfu(i,j) |
|---|
| 368 | grid%msftx(i,j) = grid%msft(i,j) |
|---|
| 369 | grid%msfty(i,j) = grid%msft(i,j) |
|---|
| 370 | ENDDO |
|---|
| 371 | ENDDO |
|---|
| 372 | DO j=jts,min(jde,jte) |
|---|
| 373 | DO i=its,min(ide-1,ite) |
|---|
| 374 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 375 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
|---|
| 376 | END DO |
|---|
| 377 | END DO |
|---|
| 378 | ELSE IF ( ( .NOT. config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .EQ. 1 ) ) THEN |
|---|
| 379 | IF ( grid%msfvx(its,jts) .EQ. 0 ) THEN |
|---|
| 380 | CALL wrf_error_fatal ( 'Maybe you do not have the new map factors, try re-running geogrid' ) |
|---|
| 381 | END IF |
|---|
| 382 | DO j=jts,min(jde,jte) |
|---|
| 383 | DO i=its,min(ide-1,ite) |
|---|
| 384 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 385 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
|---|
| 386 | END DO |
|---|
| 387 | END DO |
|---|
| 388 | ELSE IF ( ( config_flags%map_proj .EQ. PROJ_CASSINI ) .AND. ( flag_mf_xy .NE. 1 ) ) THEN |
|---|
| 389 | CALL wrf_error_fatal ( 'Neither SI data nor older metgrid data can initialize a global domain' ) |
|---|
| 390 | ENDIF |
|---|
| 391 | |
|---|
| 392 | ! Check to see what available surface temperatures we have. |
|---|
| 393 | |
|---|
| 394 | IF ( flag_tavgsfc .EQ. 1 ) THEN |
|---|
| 395 | we_have_tavgsfc = .TRUE. |
|---|
| 396 | ELSE |
|---|
| 397 | we_have_tavgsfc = .FALSE. |
|---|
| 398 | END IF |
|---|
| 399 | |
|---|
| 400 | IF ( flag_tsk .EQ. 1 ) THEN |
|---|
| 401 | we_have_tsk = .TRUE. |
|---|
| 402 | ELSE |
|---|
| 403 | we_have_tsk = .FALSE. |
|---|
| 404 | END IF |
|---|
| 405 | |
|---|
| 406 | IF ( config_flags%use_tavg_for_tsk ) THEN |
|---|
| 407 | IF ( we_have_tsk .OR. we_have_tavgsfc ) THEN |
|---|
| 408 | ! we are OK |
|---|
| 409 | ELSE |
|---|
| 410 | CALL wrf_error_fatal ( 'We either need TSK or TAVGSFC, verify these fields are coming from WPS' ) |
|---|
| 411 | END IF |
|---|
| 412 | |
|---|
| 413 | ! Since we require a skin temperature in the model, we can use the average 2-m temperature if provided. |
|---|
| 414 | |
|---|
| 415 | IF ( we_have_tavgsfc ) THEN |
|---|
| 416 | DO j=jts,min(jde,jte) |
|---|
| 417 | DO i=its,min(ide-1,ite) |
|---|
| 418 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 419 | grid%tsk(i,j) = grid%tavgsfc(i,j) |
|---|
| 420 | END DO |
|---|
| 421 | END DO |
|---|
| 422 | END IF |
|---|
| 423 | END IF |
|---|
| 424 | |
|---|
| 425 | ! Is there any vertical interpolation to do? The "old" data comes in on the correct |
|---|
| 426 | ! vertical locations already. |
|---|
| 427 | |
|---|
| 428 | IF ( flag_metgrid .EQ. 1 ) THEN ! <----- START OF VERTICAL INTERPOLATION PART ----> |
|---|
| 429 | |
|---|
| 430 | ! If this is data from the PINTERP program, it is emulating METGRID output. |
|---|
| 431 | ! One of the caveats of this data is the way that the vertical structure is |
|---|
| 432 | ! handled. We take the k=1 level and toss it (it is disposable), and we |
|---|
| 433 | ! swap in the surface data. This is done for all of the 3d fields about |
|---|
| 434 | ! which we show some interest: u, v, t, rh, ght, and p. For u, v, and rh, |
|---|
| 435 | ! we assume no interesting vertical structure, and just assign the 1000 mb |
|---|
| 436 | ! data. We directly use the 2-m temp for surface temp. We use the surface |
|---|
| 437 | ! pressure field and the topography elevation for the lowest level of |
|---|
| 438 | ! pressure and height, respectively. |
|---|
| 439 | |
|---|
| 440 | IF ( flag_pinterp .EQ. 1 ) THEN |
|---|
| 441 | |
|---|
| 442 | WRITE ( a_message , * ) 'Data from P_INTERP program, filling k=1 level with artificial surface fields.' |
|---|
| 443 | CALL wrf_message ( a_message ) |
|---|
| 444 | DO j=jts,jte |
|---|
| 445 | DO i=its,ite |
|---|
| 446 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 447 | grid%u_gc(i,1,j) = grid%u_gc(i,2,j) |
|---|
| 448 | grid%v_gc(i,1,j) = grid%v_gc(i,2,j) |
|---|
| 449 | grid%rh_gc(i,1,j) = grid%rh_gc(i,2,j) |
|---|
| 450 | grid%t_gc(i,1,j) = grid%t2(i,j) |
|---|
| 451 | grid%ght_gc(i,1,j) = grid%ht(i,j) |
|---|
| 452 | grid%p_gc(i,1,j) = grid%psfc(i,j) |
|---|
| 453 | END DO |
|---|
| 454 | END DO |
|---|
| 455 | flag_psfc = 0 |
|---|
| 456 | |
|---|
| 457 | END IF |
|---|
| 458 | |
|---|
| 459 | ! Variables that are named differently between SI and WPS. |
|---|
| 460 | |
|---|
| 461 | DO j = jts, MIN(jte,jde-1) |
|---|
| 462 | DO i = its, MIN(ite,ide-1) |
|---|
| 463 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 464 | grid%tsk(i,j) = grid%tsk_gc(i,j) |
|---|
| 465 | grid%tmn(i,j) = grid%tmn_gc(i,j) |
|---|
| 466 | grid%xlat(i,j) = grid%xlat_gc(i,j) |
|---|
| 467 | grid%xlong(i,j) = grid%xlong_gc(i,j) |
|---|
| 468 | grid%ht(i,j) = grid%ht_gc(i,j) |
|---|
| 469 | END DO |
|---|
| 470 | END DO |
|---|
| 471 | |
|---|
| 472 | ! A user could request that the most coarse grid has the |
|---|
| 473 | ! topography along the outer boundary smoothed. This smoothing |
|---|
| 474 | ! is similar to the coarse/nest interface. The outer rows and |
|---|
| 475 | ! cols come from the existing large scale topo, and then the |
|---|
| 476 | ! next several rows/cols are a linear ramp of the large scale |
|---|
| 477 | ! model and the hi-res topo from WPS. We only do this for the |
|---|
| 478 | ! coarse grid since we are going to make the interface consistent |
|---|
| 479 | ! in the model betwixt the CG and FG domains. |
|---|
| 480 | |
|---|
| 481 | IF ( ( config_flags%smooth_cg_topo ) .AND. & |
|---|
| 482 | ( grid%id .EQ. 1 ) .AND. & |
|---|
| 483 | ( flag_soilhgt .EQ. 1) ) THEN |
|---|
| 484 | CALL blend_terrain ( grid%toposoil , grid%ht , & |
|---|
| 485 | ids , ide , jds , jde , 1 , 1 , & |
|---|
| 486 | ims , ime , jms , jme , 1 , 1 , & |
|---|
| 487 | ips , ipe , jps , jpe , 1 , 1 ) |
|---|
| 488 | |
|---|
| 489 | END IF |
|---|
| 490 | |
|---|
| 491 | ! Filter the input topography if this is a polar projection. |
|---|
| 492 | |
|---|
| 493 | IF ( ( config_flags%polar ) .AND. ( grid%fft_filter_lat .GT. 90 ) ) THEN |
|---|
| 494 | CALL wrf_error_fatal ( 'If the polar boundary condition is used, then fft_filter_lat must be set in namelist.input' ) |
|---|
| 495 | END IF |
|---|
| 496 | |
|---|
| 497 | IF ( config_flags%map_proj .EQ. PROJ_CASSINI ) THEN |
|---|
| 498 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
|---|
| 499 | |
|---|
| 500 | ! We stick the topo and map fac in an unused 3d array. The map scale |
|---|
| 501 | ! factor and computational latitude are passed along for the ride |
|---|
| 502 | ! (part of the transpose process - we only do 3d arrays) to determine |
|---|
| 503 | ! "how many" values are used to compute the mean. We want a number |
|---|
| 504 | ! that is consistent with the original grid resolution. |
|---|
| 505 | |
|---|
| 506 | |
|---|
| 507 | DO j = jts, MIN(jte,jde-1) |
|---|
| 508 | DO k = kts, kte |
|---|
| 509 | DO i = its, MIN(ite,ide-1) |
|---|
| 510 | grid%t_init(i,k,j) = 1. |
|---|
| 511 | END DO |
|---|
| 512 | END DO |
|---|
| 513 | DO i = its, MIN(ite,ide-1) |
|---|
| 514 | grid%t_init(i,1,j) = grid%ht(i,j) |
|---|
| 515 | grid%t_init(i,2,j) = grid%msftx(i,j) |
|---|
| 516 | grid%t_init(i,3,j) = grid%clat(i,j) |
|---|
| 517 | END DO |
|---|
| 518 | END DO |
|---|
| 519 | |
|---|
| 520 | # include "XPOSE_POLAR_FILTER_TOPO_z2x.inc" |
|---|
| 521 | |
|---|
| 522 | ! Retrieve the 2d arrays for topo, map factors, and the |
|---|
| 523 | ! computational latitude. |
|---|
| 524 | |
|---|
| 525 | DO j = jpsx, MIN(jpex,jde-1) |
|---|
| 526 | DO i = ipsx, MIN(ipex,ide-1) |
|---|
| 527 | grid%ht_xxx(i,j) = grid%t_xxx(i,1,j) |
|---|
| 528 | grid%mf_xxx(i,j) = grid%t_xxx(i,2,j) |
|---|
| 529 | grid%clat_xxx(i,j) = grid%t_xxx(i,3,j) |
|---|
| 530 | END DO |
|---|
| 531 | END DO |
|---|
| 532 | |
|---|
| 533 | ! Get a mean topo field that is consistent with the grid |
|---|
| 534 | ! distance on each computational latitude loop. |
|---|
| 535 | |
|---|
| 536 | CALL filter_topo ( grid%ht_xxx , grid%clat_xxx , grid%mf_xxx , & |
|---|
| 537 | grid%fft_filter_lat , & |
|---|
| 538 | ids, ide, jds, jde, 1 , 1 , & |
|---|
| 539 | imsx, imex, jmsx, jmex, 1, 1, & |
|---|
| 540 | ipsx, ipex, jpsx, jpex, 1, 1 ) |
|---|
| 541 | |
|---|
| 542 | ! Stick the filtered topo back into the dummy 3d array to |
|---|
| 543 | ! transpose it back to "all z on a patch". |
|---|
| 544 | |
|---|
| 545 | DO j = jpsx, MIN(jpex,jde-1) |
|---|
| 546 | DO i = ipsx, MIN(ipex,ide-1) |
|---|
| 547 | grid%t_xxx(i,1,j) = grid%ht_xxx(i,j) |
|---|
| 548 | END DO |
|---|
| 549 | END DO |
|---|
| 550 | |
|---|
| 551 | # include "XPOSE_POLAR_FILTER_TOPO_x2z.inc" |
|---|
| 552 | |
|---|
| 553 | ! Get the un-transposed topo data. |
|---|
| 554 | |
|---|
| 555 | DO j = jts, MIN(jte,jde-1) |
|---|
| 556 | DO i = its, MIN(ite,ide-1) |
|---|
| 557 | grid%ht(i,j) = grid%t_init(i,1,j) |
|---|
| 558 | END DO |
|---|
| 559 | END DO |
|---|
| 560 | #else |
|---|
| 561 | CALL filter_topo ( grid%ht , grid%clat , grid%msftx , & |
|---|
| 562 | grid%fft_filter_lat , & |
|---|
| 563 | ids, ide, jds, jde, 1,1, & |
|---|
| 564 | ims, ime, jms, jme, 1,1, & |
|---|
| 565 | its, ite, jts, jte, 1,1 ) |
|---|
| 566 | #endif |
|---|
| 567 | END IF |
|---|
| 568 | |
|---|
| 569 | ! If we have any input low-res surface pressure, we store it. |
|---|
| 570 | |
|---|
| 571 | IF ( flag_psfc .EQ. 1 ) THEN |
|---|
| 572 | DO j = jts, MIN(jte,jde-1) |
|---|
| 573 | DO i = its, MIN(ite,ide-1) |
|---|
| 574 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 575 | grid%psfc_gc(i,j) = grid%psfc(i,j) |
|---|
| 576 | grid%p_gc(i,1,j) = grid%psfc(i,j) |
|---|
| 577 | END DO |
|---|
| 578 | END DO |
|---|
| 579 | END IF |
|---|
| 580 | |
|---|
| 581 | ! If we have the low-resolution surface elevation, stick that in the |
|---|
| 582 | ! "input" locations of the 3d height. We still have the "hi-res" topo |
|---|
| 583 | ! stuck in the grid%ht array. The grid%landmask if test is required as some sources |
|---|
| 584 | ! have ZERO elevation over water (thank you very much). |
|---|
| 585 | |
|---|
| 586 | IF ( flag_soilhgt .EQ. 1) THEN |
|---|
| 587 | DO j = jts, MIN(jte,jde-1) |
|---|
| 588 | DO i = its, MIN(ite,ide-1) |
|---|
| 589 | ! IF ( grid%landmask(i,j) .GT. 0.5 ) THEN |
|---|
| 590 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 591 | grid%ght_gc(i,1,j) = grid%toposoil(i,j) |
|---|
| 592 | grid%ht_gc(i,j)= grid%toposoil(i,j) |
|---|
| 593 | ! END IF |
|---|
| 594 | END DO |
|---|
| 595 | END DO |
|---|
| 596 | END IF |
|---|
| 597 | |
|---|
| 598 | ! The number of vertical levels in the input data. There is no staggering for |
|---|
| 599 | ! different variables. |
|---|
| 600 | |
|---|
| 601 | num_metgrid_levels = grid%num_metgrid_levels |
|---|
| 602 | |
|---|
| 603 | ! For UM data, swap incoming extra (theta-based) pressure with the standardly |
|---|
| 604 | ! named (rho-based) pressure. |
|---|
| 605 | |
|---|
| 606 | IF ( flag_ptheta .EQ. 1 ) THEN |
|---|
| 607 | DO j = jts, MIN(jte,jde-1) |
|---|
| 608 | DO k = 1 , num_metgrid_levels |
|---|
| 609 | DO i = its, MIN(ite,ide-1) |
|---|
| 610 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 611 | ptemp = grid%p_gc(i,k,j) |
|---|
| 612 | grid%p_gc(i,k,j) = grid%prho_gc(i,k,j) |
|---|
| 613 | grid%prho_gc(i,k,j) = ptemp |
|---|
| 614 | END DO |
|---|
| 615 | END DO |
|---|
| 616 | END DO |
|---|
| 617 | |
|---|
| 618 | ! For UM data, the "surface" and the "first hybrid" level for the theta-level data fields are the same. |
|---|
| 619 | ! Average the surface (k=1) and the second hybrid level (k=num_metgrid_levels-1) to get the first hybrid |
|---|
| 620 | ! layer. We only do this for the theta-level data: pressure, temperature, specific humidity, and |
|---|
| 621 | ! geopotential height (i.e. we do not modify u, v, or the rho-based pressure). |
|---|
| 622 | |
|---|
| 623 | DO j = jts, MIN(jte,jde-1) |
|---|
| 624 | DO i = its, MIN(ite,ide-1) |
|---|
| 625 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 626 | grid% p_gc(i,num_metgrid_levels,j) = ( grid% p_gc(i,1,j) + grid% p_gc(i,num_metgrid_levels-1,j) ) * 0.5 |
|---|
| 627 | grid% t_gc(i,num_metgrid_levels,j) = ( grid% t_gc(i,1,j) + grid% t_gc(i,num_metgrid_levels-1,j) ) * 0.5 |
|---|
| 628 | grid% sh_gc(i,num_metgrid_levels,j) = ( grid% sh_gc(i,1,j) + grid% sh_gc(i,num_metgrid_levels-1,j) ) * 0.5 |
|---|
| 629 | grid%ght_gc(i,num_metgrid_levels,j) = ( grid%ght_gc(i,1,j) + grid%ght_gc(i,num_metgrid_levels-1,j) ) * 0.5 |
|---|
| 630 | END DO |
|---|
| 631 | END DO |
|---|
| 632 | END IF |
|---|
| 633 | |
|---|
| 634 | ! Check for and semi-fix missing surface fields. |
|---|
| 635 | |
|---|
| 636 | IF ( grid%p_gc(i_valid,num_metgrid_levels,j_valid) .LT. grid%p_gc(i_valid,2,j_valid) ) THEN |
|---|
| 637 | k = 2 |
|---|
| 638 | ELSE |
|---|
| 639 | k = num_metgrid_levels |
|---|
| 640 | END IF |
|---|
| 641 | |
|---|
| 642 | IF ( grid%t_gc(i_valid,1,j_valid) .EQ. -1.E30 ) THEN |
|---|
| 643 | DO j = jts, MIN(jte,jde-1) |
|---|
| 644 | DO i = its, MIN(ite,ide-1) |
|---|
| 645 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 646 | grid%t_gc(i,1,j) = grid%t_gc(i,k,j) |
|---|
| 647 | END DO |
|---|
| 648 | END DO |
|---|
| 649 | config_flags%use_surface = .FALSE. |
|---|
| 650 | grid%use_surface = .FALSE. |
|---|
| 651 | WRITE ( a_message , * ) 'Missing surface temp, replaced with closest level, use_surface set to false.' |
|---|
| 652 | CALL wrf_message ( a_message ) |
|---|
| 653 | END IF |
|---|
| 654 | |
|---|
| 655 | IF ( grid%rh_gc(i_valid,1,j_valid) .EQ. -1.E30 ) THEN |
|---|
| 656 | DO j = jts, MIN(jte,jde-1) |
|---|
| 657 | DO i = its, MIN(ite,ide-1) |
|---|
| 658 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 659 | grid%rh_gc(i,1,j) = grid%rh_gc(i,k,j) |
|---|
| 660 | END DO |
|---|
| 661 | END DO |
|---|
| 662 | config_flags%use_surface = .FALSE. |
|---|
| 663 | grid%use_surface = .FALSE. |
|---|
| 664 | WRITE ( a_message , * ) 'Missing surface RH, replaced with closest level, use_surface set to false.' |
|---|
| 665 | CALL wrf_message ( a_message ) |
|---|
| 666 | END IF |
|---|
| 667 | |
|---|
| 668 | IF ( grid%u_gc(i_valid,1,j_valid) .EQ. -1.E30 ) THEN |
|---|
| 669 | DO j = jts, MIN(jte,jde-1) |
|---|
| 670 | DO i = its, ite |
|---|
| 671 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 672 | grid%u_gc(i,1,j) = grid%u_gc(i,k,j) |
|---|
| 673 | END DO |
|---|
| 674 | END DO |
|---|
| 675 | config_flags%use_surface = .FALSE. |
|---|
| 676 | grid%use_surface = .FALSE. |
|---|
| 677 | WRITE ( a_message , * ) 'Missing surface u wind, replaced with closest level, use_surface set to false.' |
|---|
| 678 | CALL wrf_message ( a_message ) |
|---|
| 679 | END IF |
|---|
| 680 | |
|---|
| 681 | IF ( grid%v_gc(i_valid,1,j_valid) .EQ. -1.E30 ) THEN |
|---|
| 682 | DO j = jts, jte |
|---|
| 683 | DO i = its, MIN(ite,ide-1) |
|---|
| 684 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 685 | grid%v_gc(i,1,j) = grid%v_gc(i,k,j) |
|---|
| 686 | END DO |
|---|
| 687 | END DO |
|---|
| 688 | config_flags%use_surface = .FALSE. |
|---|
| 689 | grid%use_surface = .FALSE. |
|---|
| 690 | WRITE ( a_message , * ) 'Missing surface v wind, replaced with closest level, use_surface set to false.' |
|---|
| 691 | CALL wrf_message ( a_message ) |
|---|
| 692 | END IF |
|---|
| 693 | |
|---|
| 694 | |
|---|
| 695 | ! Compute the mixing ratio from the input relative humidity. |
|---|
| 696 | |
|---|
| 697 | IF ( ( flag_qv .NE. 1 ) .AND. ( flag_sh .NE. 1 ) ) THEN |
|---|
| 698 | IF ( grid%p_gc(i_valid,num_metgrid_levels,j_valid) .LT. grid%p_gc(i_valid,2,j_valid) ) THEN |
|---|
| 699 | k = 2 |
|---|
| 700 | ELSE |
|---|
| 701 | k = num_metgrid_levels |
|---|
| 702 | END IF |
|---|
| 703 | |
|---|
| 704 | IF ( config_flags%rh2qv_method .eq. 1 ) THEN |
|---|
| 705 | CALL rh_to_mxrat1(grid%rh_gc, grid%t_gc, grid%p_gc, grid%qv_gc , & |
|---|
| 706 | config_flags%rh2qv_wrt_liquid , & |
|---|
| 707 | config_flags%qv_max_p_safe , & |
|---|
| 708 | config_flags%qv_max_flag , config_flags%qv_max_value , & |
|---|
| 709 | config_flags%qv_min_p_safe , & |
|---|
| 710 | config_flags%qv_min_flag , config_flags%qv_min_value , & |
|---|
| 711 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 712 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 713 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 714 | ELSE IF ( config_flags%rh2qv_method .eq. 2 ) THEN |
|---|
| 715 | CALL rh_to_mxrat2(grid%rh_gc, grid%t_gc, grid%p_gc, grid%qv_gc , & |
|---|
| 716 | config_flags%rh2qv_wrt_liquid , & |
|---|
| 717 | config_flags%qv_max_p_safe , & |
|---|
| 718 | config_flags%qv_max_flag , config_flags%qv_max_value , & |
|---|
| 719 | config_flags%qv_min_p_safe , & |
|---|
| 720 | config_flags%qv_min_flag , config_flags%qv_min_value , & |
|---|
| 721 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 722 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 723 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 724 | END IF |
|---|
| 725 | |
|---|
| 726 | |
|---|
| 727 | ELSE IF ( flag_sh .EQ. 1 ) THEN |
|---|
| 728 | IF ( grid%p_gc(i_valid,num_metgrid_levels,j_valid) .LT. grid%p_gc(i_valid,2,j_valid) ) THEN |
|---|
| 729 | k = 2 |
|---|
| 730 | ELSE |
|---|
| 731 | k = num_metgrid_levels |
|---|
| 732 | END IF |
|---|
| 733 | IF ( grid%sh_gc(i_valid,kts,j_valid) .LT. 1.e-6 ) THEN |
|---|
| 734 | DO j = jts, MIN(jte,jde-1) |
|---|
| 735 | DO i = its, MIN(ite,ide-1) |
|---|
| 736 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 737 | grid%sh_gc(i,1,j) = grid%sh_gc(i,k,j) |
|---|
| 738 | END DO |
|---|
| 739 | END DO |
|---|
| 740 | END IF |
|---|
| 741 | |
|---|
| 742 | DO j = jts, MIN(jte,jde-1) |
|---|
| 743 | DO k = 1 , num_metgrid_levels |
|---|
| 744 | DO i = its, MIN(ite,ide-1) |
|---|
| 745 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 746 | grid%qv_gc(i,k,j) = grid%sh_gc(i,k,j) /( 1. - grid%sh_gc(i,k,j) ) |
|---|
| 747 | sat_vap_pres_mb = 0.6112*10.*EXP(17.67*(grid%t_gc(i,k,j)-273.15)/(grid%t_gc(i,k,j)-29.65)) |
|---|
| 748 | vap_pres_mb = grid%qv_gc(i,k,j) * grid%p_gc(i,k,j)/100. / (grid%qv_gc(i,k,j) + 0.622 ) |
|---|
| 749 | IF ( sat_vap_pres_mb .GT. 0 ) THEN |
|---|
| 750 | grid%rh_gc(i,k,j) = ( vap_pres_mb / sat_vap_pres_mb ) * 100. |
|---|
| 751 | ELSE |
|---|
| 752 | grid%rh_gc(i,k,j) = 0. |
|---|
| 753 | END IF |
|---|
| 754 | END DO |
|---|
| 755 | END DO |
|---|
| 756 | END DO |
|---|
| 757 | |
|---|
| 758 | END IF |
|---|
| 759 | |
|---|
| 760 | ! Some data sets do not provide a 3d geopotential height field. |
|---|
| 761 | |
|---|
| 762 | IF ( grid%ght_gc(i_valid,grid%num_metgrid_levels/2,j_valid) .LT. 1 ) THEN |
|---|
| 763 | DO j = jts, MIN(jte,jde-1) |
|---|
| 764 | DO k = kts+1 , grid%num_metgrid_levels |
|---|
| 765 | DO i = its, MIN(ite,ide-1) |
|---|
| 766 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 767 | grid%ght_gc(i,k,j) = grid%ght_gc(i,k-1,j) - & |
|---|
| 768 | R_d / g * 0.5 * ( grid%t_gc(i,k ,j) * ( 1 + 0.608 * grid%qv_gc(i,k ,j) ) + & |
|---|
| 769 | grid%t_gc(i,k-1,j) * ( 1 + 0.608 * grid%qv_gc(i,k-1,j) ) ) * & |
|---|
| 770 | LOG ( grid%p_gc(i,k,j) / grid%p_gc(i,k-1,j) ) |
|---|
| 771 | END DO |
|---|
| 772 | END DO |
|---|
| 773 | END DO |
|---|
| 774 | END IF |
|---|
| 775 | |
|---|
| 776 | ! Assign surface fields with original input values. If this is hybrid data, |
|---|
| 777 | ! the values are not exactly representative. However - this is only for |
|---|
| 778 | ! plotting purposes and such at the 0h of the forecast, so we are not all that |
|---|
| 779 | ! worried. |
|---|
| 780 | |
|---|
| 781 | DO j = jts, min(jde-1,jte) |
|---|
| 782 | DO i = its, min(ide,ite) |
|---|
| 783 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 784 | grid%u10(i,j)=grid%u_gc(i,1,j) |
|---|
| 785 | END DO |
|---|
| 786 | END DO |
|---|
| 787 | |
|---|
| 788 | DO j = jts, min(jde,jte) |
|---|
| 789 | DO i = its, min(ide-1,ite) |
|---|
| 790 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 791 | grid%v10(i,j)=grid%v_gc(i,1,j) |
|---|
| 792 | END DO |
|---|
| 793 | END DO |
|---|
| 794 | |
|---|
| 795 | DO j = jts, min(jde-1,jte) |
|---|
| 796 | DO i = its, min(ide-1,ite) |
|---|
| 797 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 798 | grid%t2(i,j)=grid%t_gc(i,1,j) |
|---|
| 799 | END DO |
|---|
| 800 | END DO |
|---|
| 801 | |
|---|
| 802 | IF ( flag_qv .EQ. 1 ) THEN |
|---|
| 803 | DO j = jts, min(jde-1,jte) |
|---|
| 804 | DO i = its, min(ide-1,ite) |
|---|
| 805 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 806 | grid%q2(i,j)=grid%qv_gc(i,1,j) |
|---|
| 807 | END DO |
|---|
| 808 | END DO |
|---|
| 809 | END IF |
|---|
| 810 | |
|---|
| 811 | ! The requested ptop for real data cases. |
|---|
| 812 | |
|---|
| 813 | p_top_requested = grid%p_top_requested |
|---|
| 814 | |
|---|
| 815 | ! Compute the top pressure, grid%p_top. For isobaric data, this is just the |
|---|
| 816 | ! top level. For the generalized vertical coordinate data, we find the |
|---|
| 817 | ! max pressure on the top level. We have to be careful of two things: |
|---|
| 818 | ! 1) the value has to be communicated, 2) the value can not increase |
|---|
| 819 | ! at subsequent times from the initial value. |
|---|
| 820 | |
|---|
| 821 | IF ( internal_time_loop .EQ. 1 ) THEN |
|---|
| 822 | CALL find_p_top ( grid%p_gc , grid%p_top , & |
|---|
| 823 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 824 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 825 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 826 | |
|---|
| 827 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
|---|
| 828 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
|---|
| 829 | #endif |
|---|
| 830 | |
|---|
| 831 | ! Compare the requested grid%p_top with the value available from the input data. |
|---|
| 832 | |
|---|
| 833 | IF ( p_top_requested .LT. grid%p_top ) THEN |
|---|
| 834 | print *,'p_top_requested = ',p_top_requested |
|---|
| 835 | print *,'allowable grid%p_top in data = ',grid%p_top |
|---|
| 836 | CALL wrf_error_fatal ( 'p_top_requested < grid%p_top possible from data' ) |
|---|
| 837 | END IF |
|---|
| 838 | |
|---|
| 839 | ! The grid%p_top valus is the max of what is available from the data and the |
|---|
| 840 | ! requested value. We have already compared <, so grid%p_top is directly set to |
|---|
| 841 | ! the value in the namelist. |
|---|
| 842 | |
|---|
| 843 | grid%p_top = p_top_requested |
|---|
| 844 | |
|---|
| 845 | ! For subsequent times, we have to remember what the grid%p_top for the first |
|---|
| 846 | ! time was. Why? If we have a generalized vert coordinate, the grid%p_top value |
|---|
| 847 | ! could fluctuate. |
|---|
| 848 | |
|---|
| 849 | p_top_save = grid%p_top |
|---|
| 850 | |
|---|
| 851 | ELSE |
|---|
| 852 | CALL find_p_top ( grid%p_gc , grid%p_top , & |
|---|
| 853 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 854 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 855 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 856 | |
|---|
| 857 | #if ( defined( DM_PARALLEL ) && ( ! defined( STUBMPI ) ) ) |
|---|
| 858 | grid%p_top = wrf_dm_max_real ( grid%p_top ) |
|---|
| 859 | #endif |
|---|
| 860 | IF ( grid%p_top .GT. p_top_save ) THEN |
|---|
| 861 | print *,'grid%p_top from last time period = ',p_top_save |
|---|
| 862 | print *,'grid%p_top from this time period = ',grid%p_top |
|---|
| 863 | CALL wrf_error_fatal ( 'grid%p_top > previous value' ) |
|---|
| 864 | END IF |
|---|
| 865 | grid%p_top = p_top_save |
|---|
| 866 | ENDIF |
|---|
| 867 | |
|---|
| 868 | ! Get the monthly values interpolated to the current date for the traditional monthly |
|---|
| 869 | ! fields of green-ness fraction and background albedo. |
|---|
| 870 | |
|---|
| 871 | CALL monthly_interp_to_date ( grid%greenfrac , current_date , grid%vegfra , & |
|---|
| 872 | ids , ide , jds , jde , kds , kde , & |
|---|
| 873 | ims , ime , jms , jme , kms , kme , & |
|---|
| 874 | its , ite , jts , jte , kts , kte ) |
|---|
| 875 | |
|---|
| 876 | CALL monthly_interp_to_date ( grid%albedo12m , current_date , grid%albbck , & |
|---|
| 877 | ids , ide , jds , jde , kds , kde , & |
|---|
| 878 | ims , ime , jms , jme , kms , kme , & |
|---|
| 879 | its , ite , jts , jte , kts , kte ) |
|---|
| 880 | |
|---|
| 881 | ! Get the min/max of each i,j for the monthly green-ness fraction. |
|---|
| 882 | |
|---|
| 883 | CALL monthly_min_max ( grid%greenfrac , grid%shdmin , grid%shdmax , & |
|---|
| 884 | ids , ide , jds , jde , kds , kde , & |
|---|
| 885 | ims , ime , jms , jme , kms , kme , & |
|---|
| 886 | its , ite , jts , jte , kts , kte ) |
|---|
| 887 | |
|---|
| 888 | ! The model expects the green-ness values in percent, not fraction. |
|---|
| 889 | |
|---|
| 890 | DO j = jts, MIN(jte,jde-1) |
|---|
| 891 | DO i = its, MIN(ite,ide-1) |
|---|
| 892 | grid%vegfra(i,j) = grid%vegfra(i,j) * 100. |
|---|
| 893 | grid%shdmax(i,j) = grid%shdmax(i,j) * 100. |
|---|
| 894 | grid%shdmin(i,j) = grid%shdmin(i,j) * 100. |
|---|
| 895 | END DO |
|---|
| 896 | END DO |
|---|
| 897 | |
|---|
| 898 | ! The model expects the albedo fields as a fraction, not a percent. Set the |
|---|
| 899 | ! water values to 8%. |
|---|
| 900 | |
|---|
| 901 | DO j = jts, MIN(jte,jde-1) |
|---|
| 902 | DO i = its, MIN(ite,ide-1) |
|---|
| 903 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 904 | grid%albbck(i,j) = grid%albbck(i,j) / 100. |
|---|
| 905 | grid%snoalb(i,j) = grid%snoalb(i,j) / 100. |
|---|
| 906 | IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
|---|
| 907 | grid%albbck(i,j) = 0.08 |
|---|
| 908 | grid%snoalb(i,j) = 0.08 |
|---|
| 909 | END IF |
|---|
| 910 | END DO |
|---|
| 911 | END DO |
|---|
| 912 | |
|---|
| 913 | ! If the pressure levels in the middle of the atmosphere are upside down, then |
|---|
| 914 | ! this is hybrid data. Computing the new surface pressure should use sfcprs2. |
|---|
| 915 | |
|---|
| 916 | IF ( grid%p_gc(i_valid,num_metgrid_levels/2,j_valid) .LT. grid%p_gc(i_valid,num_metgrid_levels/2+1,j_valid) ) THEN |
|---|
| 917 | config_flags%sfcp_to_sfcp = .TRUE. |
|---|
| 918 | END IF |
|---|
| 919 | |
|---|
| 920 | ! Two ways to get the surface pressure. 1) If we have the low-res input surface |
|---|
| 921 | ! pressure and the low-res topography, then we can do a simple hydrostatic |
|---|
| 922 | ! relation. 2) Otherwise we compute the surface pressure from the sea-level |
|---|
| 923 | ! pressure. |
|---|
| 924 | ! Note that on output, grid%psfc is now hi-res. The low-res surface pressure and |
|---|
| 925 | ! elevation are grid%psfc_gc and grid%ht_gc (same as grid%ght_gc(k=1)). |
|---|
| 926 | |
|---|
| 927 | IF ( ( flag_psfc .EQ. 1 ) .AND. & |
|---|
| 928 | ( flag_soilhgt .EQ. 1 ) .AND. & |
|---|
| 929 | ( flag_slp .EQ. 1 ) .AND. & |
|---|
| 930 | ( .NOT. config_flags%sfcp_to_sfcp ) ) THEN |
|---|
| 931 | CALL sfcprs3(grid%ght_gc, grid%p_gc, grid%ht, & |
|---|
| 932 | grid%pslv_gc, grid%psfc, & |
|---|
| 933 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 934 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 935 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 936 | ELSE IF ( ( flag_psfc .EQ. 1 ) .AND. & |
|---|
| 937 | ( flag_soilhgt .EQ. 1 ) .AND. & |
|---|
| 938 | ( config_flags%sfcp_to_sfcp ) ) THEN |
|---|
| 939 | CALL sfcprs2(grid%t_gc, grid%qv_gc, grid%ght_gc, grid%psfc_gc, grid%ht, & |
|---|
| 940 | grid%tavgsfc, grid%p_gc, grid%psfc, we_have_tavgsfc, & |
|---|
| 941 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 942 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 943 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 944 | ELSE IF ( flag_slp .EQ. 1 ) THEN |
|---|
| 945 | CALL sfcprs (grid%t_gc, grid%qv_gc, grid%ght_gc, grid%pslv_gc, grid%ht, & |
|---|
| 946 | grid%tavgsfc, grid%p_gc, grid%psfc, we_have_tavgsfc, & |
|---|
| 947 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 948 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 949 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 950 | ELSE |
|---|
| 951 | WRITE(a_message,FMT='(3(A,I2),A,L1)') 'ERROR in psfc: flag_psfc = ',flag_psfc, & |
|---|
| 952 | ', flag_soilhgt = ',flag_soilhgt , & |
|---|
| 953 | ', flag_slp = ',flag_slp , & |
|---|
| 954 | ', sfcp_to_sfcp = ',config_flags%sfcp_to_sfcp |
|---|
| 955 | CALL wrf_message ( a_message ) |
|---|
| 956 | CALL wrf_error_fatal ( 'not enough info for a p sfc computation' ) |
|---|
| 957 | END IF |
|---|
| 958 | |
|---|
| 959 | ! If we have no input surface pressure, we'd better stick something in there. |
|---|
| 960 | |
|---|
| 961 | IF ( flag_psfc .NE. 1 ) THEN |
|---|
| 962 | DO j = jts, MIN(jte,jde-1) |
|---|
| 963 | DO i = its, MIN(ite,ide-1) |
|---|
| 964 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 965 | grid%psfc_gc(i,j) = grid%psfc(i,j) |
|---|
| 966 | grid%p_gc(i,1,j) = grid%psfc(i,j) |
|---|
| 967 | END DO |
|---|
| 968 | END DO |
|---|
| 969 | END IF |
|---|
| 970 | |
|---|
| 971 | ! Integrate the mixing ratio to get the vapor pressure. |
|---|
| 972 | |
|---|
| 973 | CALL integ_moist ( grid%qv_gc , grid%p_gc , grid%pd_gc , grid%t_gc , grid%ght_gc , grid%intq_gc , & |
|---|
| 974 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 975 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 976 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 977 | |
|---|
| 978 | ! If this is UM data, the same moisture removed from the "theta" level pressure data can |
|---|
| 979 | ! be removed from the "rho" level pressures. This is an approximation. We'll revisit to |
|---|
| 980 | ! see if this is a bad idea. |
|---|
| 981 | |
|---|
| 982 | IF ( flag_ptheta .EQ. 1 ) THEN |
|---|
| 983 | DO j = jts, MIN(jte,jde-1) |
|---|
| 984 | DO k = num_metgrid_levels-1 , 1 , -1 |
|---|
| 985 | DO i = its, MIN(ite,ide-1) |
|---|
| 986 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 987 | ptemp = ((grid%p_gc(i,k,j) - grid%pd_gc(i,k,j)) + (grid%p_gc(i,k+1,j) - grid%pd_gc(i,k+1,j)))/2 |
|---|
| 988 | grid%pdrho_gc(i,k,j) = grid%prho_gc(i,k,j) - ptemp |
|---|
| 989 | END DO |
|---|
| 990 | END DO |
|---|
| 991 | END DO |
|---|
| 992 | END IF |
|---|
| 993 | |
|---|
| 994 | |
|---|
| 995 | ! Compute the difference between the dry, total surface pressure (input) and the |
|---|
| 996 | ! dry top pressure (constant). |
|---|
| 997 | |
|---|
| 998 | CALL p_dts ( grid%mu0 , grid%intq_gc , grid%psfc , grid%p_top , & |
|---|
| 999 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 1000 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 1001 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 1002 | |
|---|
| 1003 | ! Compute the dry, hydrostatic surface pressure. |
|---|
| 1004 | |
|---|
| 1005 | CALL p_dhs ( grid%pdhs , grid%ht , p00 , t00 , a , & |
|---|
| 1006 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1007 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1008 | its , ite , jts , jte , kts , kte ) |
|---|
| 1009 | |
|---|
| 1010 | ! Compute the eta levels if not defined already. |
|---|
| 1011 | |
|---|
| 1012 | IF ( grid%znw(1) .NE. 1.0 ) THEN |
|---|
| 1013 | |
|---|
| 1014 | eta_levels(1:kde) = model_config_rec%eta_levels(1:kde) |
|---|
| 1015 | max_dz = model_config_rec%max_dz |
|---|
| 1016 | |
|---|
| 1017 | CALL compute_eta ( grid%znw , & |
|---|
| 1018 | eta_levels , max_eta , max_dz , & |
|---|
| 1019 | grid%p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , tiso , & |
|---|
| 1020 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1021 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1022 | its , ite , jts , jte , kts , kte ) |
|---|
| 1023 | END IF |
|---|
| 1024 | |
|---|
| 1025 | ! The input field is temperature, we want potential temp. |
|---|
| 1026 | |
|---|
| 1027 | CALL t_to_theta ( grid%t_gc , grid%p_gc , p00 , & |
|---|
| 1028 | ids , ide , jds , jde , 1 , num_metgrid_levels , & |
|---|
| 1029 | ims , ime , jms , jme , 1 , num_metgrid_levels , & |
|---|
| 1030 | its , ite , jts , jte , 1 , num_metgrid_levels ) |
|---|
| 1031 | |
|---|
| 1032 | IF ( flag_slp .EQ. 1 ) THEN |
|---|
| 1033 | |
|---|
| 1034 | ! On the eta surfaces, compute the dry pressure = mu eta, stored in |
|---|
| 1035 | ! grid%pb, since it is a pressure, and we don't need another kms:kme 3d |
|---|
| 1036 | ! array floating around. The grid%pb array is re-computed as the base pressure |
|---|
| 1037 | ! later after the vertical interpolations are complete. |
|---|
| 1038 | |
|---|
| 1039 | CALL p_dry ( grid%mu0 , grid%znw , grid%p_top , grid%pb , want_full_levels , & |
|---|
| 1040 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1041 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1042 | its , ite , jts , jte , kts , kte ) |
|---|
| 1043 | |
|---|
| 1044 | ! All of the vertical interpolations are done in dry-pressure space. The |
|---|
| 1045 | ! input data has had the moisture removed (grid%pd_gc). The target levels (grid%pb) |
|---|
| 1046 | ! had the vapor pressure removed from the surface pressure, then they were |
|---|
| 1047 | ! scaled by the eta levels. |
|---|
| 1048 | |
|---|
| 1049 | interp_type = 2 |
|---|
| 1050 | lagrange_order = grid%lagrange_order |
|---|
| 1051 | lowest_lev_from_sfc = .FALSE. |
|---|
| 1052 | use_levels_below_ground = .TRUE. |
|---|
| 1053 | use_surface = .TRUE. |
|---|
| 1054 | zap_close_levels = grid%zap_close_levels |
|---|
| 1055 | force_sfc_in_vinterp = 0 |
|---|
| 1056 | t_extrap_type = grid%t_extrap_type |
|---|
| 1057 | extrap_type = 1 |
|---|
| 1058 | |
|---|
| 1059 | ! For the height field, the lowest level pressure is the slp (approximately "dry"). The |
|---|
| 1060 | ! lowest level of the input height field (to be associated with slp) then is an array |
|---|
| 1061 | ! of zeros. |
|---|
| 1062 | |
|---|
| 1063 | DO j = jts, MIN(jte,jde-1) |
|---|
| 1064 | DO i = its, MIN(ite,ide-1) |
|---|
| 1065 | grid%psfc_gc(i,j) = grid%pd_gc(i,1,j) |
|---|
| 1066 | grid%pd_gc(i,1,j) = grid%pslv_gc(i,j) - ( grid%p_gc(i,1,j) - grid%pd_gc(i,1,j) ) |
|---|
| 1067 | grid%ht_gc(i,j) = grid%ght_gc(i,1,j) |
|---|
| 1068 | grid%ght_gc(i,1,j) = 0. |
|---|
| 1069 | END DO |
|---|
| 1070 | END DO |
|---|
| 1071 | |
|---|
| 1072 | CALL vert_interp ( grid%ght_gc , grid%pd_gc , grid%ph0 , grid%pb , & |
|---|
| 1073 | num_metgrid_levels , 'Z' , & |
|---|
| 1074 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1075 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1076 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1077 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1078 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1079 | its , ite , jts , jte , kts , kte ) |
|---|
| 1080 | |
|---|
| 1081 | ! Put things back to normal. |
|---|
| 1082 | |
|---|
| 1083 | DO j = jts, MIN(jte,jde-1) |
|---|
| 1084 | DO i = its, MIN(ite,ide-1) |
|---|
| 1085 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1086 | grid%pd_gc(i,1,j) = grid%psfc_gc(i,j) |
|---|
| 1087 | grid%ght_gc(i,1,j) = grid%ht_gc(i,j) |
|---|
| 1088 | END DO |
|---|
| 1089 | END DO |
|---|
| 1090 | |
|---|
| 1091 | END IF |
|---|
| 1092 | |
|---|
| 1093 | ! Now the rest of the variables on half-levels to inteprolate. |
|---|
| 1094 | |
|---|
| 1095 | CALL p_dry ( grid%mu0 , grid%znw , grid%p_top , grid%pb , want_half_levels , & |
|---|
| 1096 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1097 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1098 | its , ite , jts , jte , kts , kte ) |
|---|
| 1099 | |
|---|
| 1100 | interp_type = grid%interp_type |
|---|
| 1101 | lagrange_order = grid%lagrange_order |
|---|
| 1102 | lowest_lev_from_sfc = grid%lowest_lev_from_sfc |
|---|
| 1103 | use_levels_below_ground = grid%use_levels_below_ground |
|---|
| 1104 | use_surface = grid%use_surface |
|---|
| 1105 | zap_close_levels = grid%zap_close_levels |
|---|
| 1106 | force_sfc_in_vinterp = grid%force_sfc_in_vinterp |
|---|
| 1107 | t_extrap_type = grid%t_extrap_type |
|---|
| 1108 | extrap_type = grid%extrap_type |
|---|
| 1109 | |
|---|
| 1110 | ! Interpolate RH, diagnose Qv later when have temp and pressure. Temporarily |
|---|
| 1111 | ! store this in the u_1 space, for later diagnosis into Qv and stored into moist. |
|---|
| 1112 | |
|---|
| 1113 | CALL vert_interp ( grid%rh_gc , grid%pd_gc , grid%u_1 , grid%pb , & |
|---|
| 1114 | num_metgrid_levels , 'Q' , & |
|---|
| 1115 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1116 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1117 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1118 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1119 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1120 | its , ite , jts , jte , kts , kte ) |
|---|
| 1121 | |
|---|
| 1122 | CALL vert_interp ( grid%t_gc , grid%pd_gc , grid%t_2 , grid%pb , & |
|---|
| 1123 | num_metgrid_levels , 'T' , & |
|---|
| 1124 | interp_type , lagrange_order , t_extrap_type , & |
|---|
| 1125 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1126 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1127 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1128 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1129 | its , ite , jts , jte , kts , kte ) |
|---|
| 1130 | |
|---|
| 1131 | CALL vert_interp ( grid%p_gc , grid%pd_gc , grid%p , grid%pb , & |
|---|
| 1132 | num_metgrid_levels , 'T' , & |
|---|
| 1133 | interp_type , lagrange_order , t_extrap_type , & |
|---|
| 1134 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1135 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1136 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1137 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1138 | its , ite , jts , jte , kts , kte ) |
|---|
| 1139 | |
|---|
| 1140 | ! Do not have full pressure on eta levels, get a first guess at Qv by using |
|---|
| 1141 | ! dry pressure. The use of u_1 (rh) and v_1 (temperature) is temporary. |
|---|
| 1142 | ! We fix the approximation to Qv after the total pressure is available on |
|---|
| 1143 | ! eta surfaces. |
|---|
| 1144 | |
|---|
| 1145 | grid%v_1 = grid%t_2 |
|---|
| 1146 | CALL theta_to_t ( grid%v_1 , grid%p , p00 , & |
|---|
| 1147 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1148 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1149 | its , ite , jts , jte , kts , kte ) |
|---|
| 1150 | |
|---|
| 1151 | IF ( config_flags%rh2qv_method .eq. 1 ) THEN |
|---|
| 1152 | CALL rh_to_mxrat1(grid%u_1, grid%v_1, grid%p , moist(:,:,:,P_QV) , & |
|---|
| 1153 | config_flags%rh2qv_wrt_liquid , & |
|---|
| 1154 | config_flags%qv_max_p_safe , & |
|---|
| 1155 | config_flags%qv_max_flag , config_flags%qv_max_value , & |
|---|
| 1156 | config_flags%qv_min_p_safe , & |
|---|
| 1157 | config_flags%qv_min_flag , config_flags%qv_min_value , & |
|---|
| 1158 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1159 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1160 | its , ite , jts , jte , kts , kte-1 ) |
|---|
| 1161 | ELSE IF ( config_flags%rh2qv_method .eq. 2 ) THEN |
|---|
| 1162 | CALL rh_to_mxrat2(grid%u_1, grid%v_1, grid%p , moist(:,:,:,P_QV) , & |
|---|
| 1163 | config_flags%rh2qv_wrt_liquid , & |
|---|
| 1164 | config_flags%qv_max_p_safe , & |
|---|
| 1165 | config_flags%qv_max_flag , config_flags%qv_max_value , & |
|---|
| 1166 | config_flags%qv_min_p_safe , & |
|---|
| 1167 | config_flags%qv_min_flag , config_flags%qv_min_value , & |
|---|
| 1168 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1169 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1170 | its , ite , jts , jte , kts , kte-1 ) |
|---|
| 1171 | END IF |
|---|
| 1172 | |
|---|
| 1173 | num_3d_m = num_moist |
|---|
| 1174 | num_3d_s = num_scalar |
|---|
| 1175 | |
|---|
| 1176 | IF ( flag_qr .EQ. 1 ) THEN |
|---|
| 1177 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1178 | IF ( im .EQ. P_QR ) THEN |
|---|
| 1179 | CALL vert_interp ( grid%qr_gc , grid%pd_gc , moist(:,:,:,P_QR) , grid%pb , & |
|---|
| 1180 | num_metgrid_levels , 'Q' , & |
|---|
| 1181 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1182 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1183 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1184 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1185 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1186 | its , ite , jts , jte , kts , kte ) |
|---|
| 1187 | END IF |
|---|
| 1188 | END DO |
|---|
| 1189 | END IF |
|---|
| 1190 | |
|---|
| 1191 | IF ( flag_qc .EQ. 1 ) THEN |
|---|
| 1192 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1193 | IF ( im .EQ. P_QC ) THEN |
|---|
| 1194 | CALL vert_interp ( grid%qc_gc , grid%pd_gc , moist(:,:,:,P_QC) , grid%pb , & |
|---|
| 1195 | num_metgrid_levels , 'Q' , & |
|---|
| 1196 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1197 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1198 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1199 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1200 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1201 | its , ite , jts , jte , kts , kte ) |
|---|
| 1202 | END IF |
|---|
| 1203 | END DO |
|---|
| 1204 | END IF |
|---|
| 1205 | |
|---|
| 1206 | IF ( flag_qi .EQ. 1 ) THEN |
|---|
| 1207 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1208 | IF ( im .EQ. P_QI ) THEN |
|---|
| 1209 | CALL vert_interp ( grid%qi_gc , grid%pd_gc , moist(:,:,:,P_QI) , grid%pb , & |
|---|
| 1210 | num_metgrid_levels , 'Q' , & |
|---|
| 1211 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1212 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1213 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1214 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1215 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1216 | its , ite , jts , jte , kts , kte ) |
|---|
| 1217 | END IF |
|---|
| 1218 | END DO |
|---|
| 1219 | END IF |
|---|
| 1220 | |
|---|
| 1221 | IF ( flag_qs .EQ. 1 ) THEN |
|---|
| 1222 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1223 | IF ( im .EQ. P_QS ) THEN |
|---|
| 1224 | CALL vert_interp ( grid%qs_gc , grid%pd_gc , moist(:,:,:,P_QS) , grid%pb , & |
|---|
| 1225 | num_metgrid_levels , 'Q' , & |
|---|
| 1226 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1227 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1228 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1229 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1230 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1231 | its , ite , jts , jte , kts , kte ) |
|---|
| 1232 | END IF |
|---|
| 1233 | END DO |
|---|
| 1234 | END IF |
|---|
| 1235 | |
|---|
| 1236 | IF ( flag_qg .EQ. 1 ) THEN |
|---|
| 1237 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1238 | IF ( im .EQ. P_QG ) THEN |
|---|
| 1239 | CALL vert_interp ( grid%qg_gc , grid%pd_gc , moist(:,:,:,P_QG) , grid%pb , & |
|---|
| 1240 | num_metgrid_levels , 'Q' , & |
|---|
| 1241 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1242 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1243 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1244 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1245 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1246 | its , ite , jts , jte , kts , kte ) |
|---|
| 1247 | END IF |
|---|
| 1248 | END DO |
|---|
| 1249 | END IF |
|---|
| 1250 | |
|---|
| 1251 | IF ( flag_qh .EQ. 1 ) THEN |
|---|
| 1252 | DO im = PARAM_FIRST_SCALAR, num_3d_m |
|---|
| 1253 | IF ( im .EQ. P_QH ) THEN |
|---|
| 1254 | CALL vert_interp ( grid%qh_gc , grid%pd_gc , moist(:,:,:,P_QH) , grid%pb , & |
|---|
| 1255 | num_metgrid_levels , 'Q' , & |
|---|
| 1256 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1257 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1258 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1259 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1260 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1261 | its , ite , jts , jte , kts , kte ) |
|---|
| 1262 | END IF |
|---|
| 1263 | END DO |
|---|
| 1264 | END IF |
|---|
| 1265 | |
|---|
| 1266 | IF ( flag_qni .EQ. 1 ) THEN |
|---|
| 1267 | DO im = PARAM_FIRST_SCALAR, num_3d_s |
|---|
| 1268 | IF ( im .EQ. P_QNI ) THEN |
|---|
| 1269 | CALL vert_interp ( grid%qni_gc , grid%pd_gc , scalar(:,:,:,P_QNI) , grid%pb , & |
|---|
| 1270 | num_metgrid_levels , 'Q' , & |
|---|
| 1271 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1272 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1273 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1274 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1275 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1276 | its , ite , jts , jte , kts , kte ) |
|---|
| 1277 | END IF |
|---|
| 1278 | END DO |
|---|
| 1279 | END IF |
|---|
| 1280 | |
|---|
| 1281 | ! If this is UM data, put the dry rho-based pressure back into the dry pressure array. |
|---|
| 1282 | ! Since the dry pressure is no longer needed, no biggy. |
|---|
| 1283 | |
|---|
| 1284 | IF ( flag_ptheta .EQ. 1 ) THEN |
|---|
| 1285 | DO j = jts, MIN(jte,jde-1) |
|---|
| 1286 | DO k = 1 , num_metgrid_levels |
|---|
| 1287 | DO i = its, MIN(ite,ide-1) |
|---|
| 1288 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1289 | grid%pd_gc(i,k,j) = grid%prho_gc(i,k,j) |
|---|
| 1290 | END DO |
|---|
| 1291 | END DO |
|---|
| 1292 | END DO |
|---|
| 1293 | END IF |
|---|
| 1294 | |
|---|
| 1295 | #ifdef DM_PARALLEL |
|---|
| 1296 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
|---|
| 1297 | |
|---|
| 1298 | ! For the U and V vertical interpolation, we need the pressure defined |
|---|
| 1299 | ! at both the locations for the horizontal momentum, which we get by |
|---|
| 1300 | ! averaging two pressure values (i and i-1 for U, j and j-1 for V). The |
|---|
| 1301 | ! pressure field on input (grid%pd_gc) and the pressure of the new coordinate |
|---|
| 1302 | ! (grid%pb) are both communicated with an 8 stencil. |
|---|
| 1303 | |
|---|
| 1304 | # include "HALO_EM_VINTERP_UV_1.inc" |
|---|
| 1305 | #endif |
|---|
| 1306 | |
|---|
| 1307 | CALL vert_interp ( grid%u_gc , grid%pd_gc , grid%u_2 , grid%pb , & |
|---|
| 1308 | num_metgrid_levels , 'U' , & |
|---|
| 1309 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1310 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1311 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1312 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1313 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1314 | its , ite , jts , jte , kts , kte ) |
|---|
| 1315 | |
|---|
| 1316 | CALL vert_interp ( grid%v_gc , grid%pd_gc , grid%v_2 , grid%pb , & |
|---|
| 1317 | num_metgrid_levels , 'V' , & |
|---|
| 1318 | interp_type , lagrange_order , extrap_type , & |
|---|
| 1319 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 1320 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 1321 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1322 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1323 | its , ite , jts , jte , kts , kte ) |
|---|
| 1324 | |
|---|
| 1325 | END IF ! <----- END OF VERTICAL INTERPOLATION PART ----> |
|---|
| 1326 | |
|---|
| 1327 | ! Set the temperature of the inland lakes to tavgsfc if the temperature is available |
|---|
| 1328 | ! and islake is > num_veg_cat |
|---|
| 1329 | |
|---|
| 1330 | num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
|---|
| 1331 | CALL nl_get_iswater ( grid%id , grid%iswater ) |
|---|
| 1332 | CALL nl_get_islake ( grid%id , grid%islake ) |
|---|
| 1333 | |
|---|
| 1334 | IF ( grid%islake < 0 ) THEN |
|---|
| 1335 | CALL wrf_debug ( 0 , 'Old data, no inland lake information') |
|---|
| 1336 | ELSE |
|---|
| 1337 | IF ( we_have_tavgsfc ) THEN |
|---|
| 1338 | |
|---|
| 1339 | CALL wrf_debug ( 0 , 'Using inland lakes with average surface temperature') |
|---|
| 1340 | DO j=jts,MIN(jde-1,jte) |
|---|
| 1341 | DO i=its,MIN(ide-1,ite) |
|---|
| 1342 | IF ( grid%landusef(i,grid%islake,j) >= 0.5 ) THEN |
|---|
| 1343 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1344 | grid%sst(i,j) = grid%tavgsfc(i,j) |
|---|
| 1345 | grid%tsk(i,j) = grid%tavgsfc(i,j) |
|---|
| 1346 | END IF |
|---|
| 1347 | END DO |
|---|
| 1348 | END DO |
|---|
| 1349 | |
|---|
| 1350 | ELSE ! We don't have tavgsfc |
|---|
| 1351 | |
|---|
| 1352 | CALL wrf_debug ( 0 , 'No average surface temperature for use with inland lakes') |
|---|
| 1353 | |
|---|
| 1354 | END IF |
|---|
| 1355 | DO j=jts,MIN(jde-1,jte) |
|---|
| 1356 | DO i=its,MIN(ide-1,ite) |
|---|
| 1357 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1358 | grid%landusef(i,grid%iswater,j) = grid%landusef(i,grid%iswater,j) + & |
|---|
| 1359 | grid%landusef(i,grid%islake,j) |
|---|
| 1360 | grid%landusef(i,grid%islake,j) = 0. |
|---|
| 1361 | END DO |
|---|
| 1362 | END DO |
|---|
| 1363 | |
|---|
| 1364 | END IF |
|---|
| 1365 | |
|---|
| 1366 | ! Save the grid%tsk field for later use in the sea ice surface temperature |
|---|
| 1367 | ! for the Noah LSM scheme. |
|---|
| 1368 | |
|---|
| 1369 | DO j = jts, MIN(jte,jde-1) |
|---|
| 1370 | DO i = its, MIN(ite,ide-1) |
|---|
| 1371 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1372 | grid%tsk_save(i,j) = grid%tsk(i,j) |
|---|
| 1373 | END DO |
|---|
| 1374 | END DO |
|---|
| 1375 | |
|---|
| 1376 | ! Protect against bad grid%tsk values over water by supplying grid%sst (if it is |
|---|
| 1377 | ! available, and if the grid%sst is reasonable). |
|---|
| 1378 | |
|---|
| 1379 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1380 | DO i = its, MIN(ide-1,ite) |
|---|
| 1381 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1382 | IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
|---|
| 1383 | ( grid%sst(i,j) .GT. 170. ) .AND. ( grid%sst(i,j) .LT. 400. ) ) THEN |
|---|
| 1384 | grid%tsk(i,j) = grid%sst(i,j) |
|---|
| 1385 | ENDIF |
|---|
| 1386 | END DO |
|---|
| 1387 | END DO |
|---|
| 1388 | |
|---|
| 1389 | ! Take the data from the input file and store it in the variables that |
|---|
| 1390 | ! use the WRF naming and ordering conventions. |
|---|
| 1391 | |
|---|
| 1392 | DO j = jts, MIN(jte,jde-1) |
|---|
| 1393 | DO i = its, MIN(ite,ide-1) |
|---|
| 1394 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1395 | IF ( grid%snow(i,j) .GE. 10. ) then |
|---|
| 1396 | grid%snowc(i,j) = 1. |
|---|
| 1397 | ELSE |
|---|
| 1398 | grid%snowc(i,j) = 0.0 |
|---|
| 1399 | END IF |
|---|
| 1400 | END DO |
|---|
| 1401 | END DO |
|---|
| 1402 | |
|---|
| 1403 | ! Set flag integers for presence of snowh and soilw fields |
|---|
| 1404 | |
|---|
| 1405 | grid%ifndsnowh = flag_snowh |
|---|
| 1406 | IF (num_sw_levels_input .GE. 1) THEN |
|---|
| 1407 | grid%ifndsoilw = 1 |
|---|
| 1408 | ELSE |
|---|
| 1409 | grid%ifndsoilw = 0 |
|---|
| 1410 | END IF |
|---|
| 1411 | |
|---|
| 1412 | ! We require input data for the various LSM schemes. |
|---|
| 1413 | |
|---|
| 1414 | enough_data : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 1415 | |
|---|
| 1416 | CASE (LSMSCHEME) |
|---|
| 1417 | IF ( num_st_levels_input .LT. 2 ) THEN |
|---|
| 1418 | CALL wrf_error_fatal ( 'Not enough soil temperature data for Noah LSM scheme.') |
|---|
| 1419 | END IF |
|---|
| 1420 | |
|---|
| 1421 | CASE (RUCLSMSCHEME) |
|---|
| 1422 | IF ( num_st_levels_input .LT. 2 ) THEN |
|---|
| 1423 | CALL wrf_error_fatal ( 'Not enough soil temperature data for RUC LSM scheme.') |
|---|
| 1424 | END IF |
|---|
| 1425 | |
|---|
| 1426 | CASE (PXLSMSCHEME) |
|---|
| 1427 | IF ( num_st_levels_input .LT. 2 ) THEN |
|---|
| 1428 | CALL wrf_error_fatal ( 'Not enough soil temperature data for P-X LSM scheme.') |
|---|
| 1429 | END IF |
|---|
| 1430 | |
|---|
| 1431 | END SELECT enough_data |
|---|
| 1432 | |
|---|
| 1433 | interpolate_soil_tmw : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 1434 | |
|---|
| 1435 | CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME, PXLSMSCHEME ) |
|---|
| 1436 | CALL process_soil_real ( grid%tsk , grid%tmn , grid%tavgsfc, & |
|---|
| 1437 | grid%landmask , grid%sst , grid%ht, grid%toposoil, & |
|---|
| 1438 | st_input , sm_input , sw_input , & |
|---|
| 1439 | st_levels_input , sm_levels_input , sw_levels_input , & |
|---|
| 1440 | grid%zs , grid%dzs , grid%tslb , grid%smois , grid%sh2o , & |
|---|
| 1441 | flag_sst , flag_tavgsfc, & |
|---|
| 1442 | flag_soilhgt, flag_soil_layers, flag_soil_levels, & |
|---|
| 1443 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1444 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1445 | its , ite , jts , jte , kts , kte , & |
|---|
| 1446 | model_config_rec%sf_surface_physics(grid%id) , & |
|---|
| 1447 | model_config_rec%num_soil_layers , & |
|---|
| 1448 | model_config_rec%real_data_init_type , & |
|---|
| 1449 | num_st_levels_input , num_sm_levels_input , num_sw_levels_input , & |
|---|
| 1450 | num_st_levels_alloc , num_sm_levels_alloc , num_sw_levels_alloc ) |
|---|
| 1451 | |
|---|
| 1452 | END SELECT interpolate_soil_tmw |
|---|
| 1453 | |
|---|
| 1454 | ! surface_input_source=1 => use data from static file (fractional category as input) |
|---|
| 1455 | ! surface_input_source=2 => use data from grib file (dominant category as input) |
|---|
| 1456 | ! surface_input_source=3 => use dominant data from static file (dominant category as input) |
|---|
| 1457 | |
|---|
| 1458 | IF ( config_flags%surface_input_source .EQ. 1 ) THEN |
|---|
| 1459 | |
|---|
| 1460 | ! Generate the vegetation and soil category information from the fractional input |
|---|
| 1461 | ! data, or use the existing dominant category fields if they exist. |
|---|
| 1462 | |
|---|
| 1463 | grid%vegcat (its,jts) = 0 |
|---|
| 1464 | grid%soilcat(its,jts) = 0 |
|---|
| 1465 | |
|---|
| 1466 | num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
|---|
| 1467 | num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
|---|
| 1468 | num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
|---|
| 1469 | |
|---|
| 1470 | CALL process_percent_cat_new ( grid%landmask , & |
|---|
| 1471 | grid%landusef , grid%soilctop , grid%soilcbot , & |
|---|
| 1472 | grid%isltyp , grid%ivgtyp , & |
|---|
| 1473 | num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
|---|
| 1474 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1475 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1476 | its , ite , jts , jte , kts , kte , & |
|---|
| 1477 | model_config_rec%iswater(grid%id) ) |
|---|
| 1478 | |
|---|
| 1479 | ! Make all the veg/soil parms the same so as not to confuse the developer. |
|---|
| 1480 | |
|---|
| 1481 | DO j = jts , MIN(jde-1,jte) |
|---|
| 1482 | DO i = its , MIN(ide-1,ite) |
|---|
| 1483 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1484 | grid%vegcat(i,j) = grid%ivgtyp(i,j) |
|---|
| 1485 | grid%soilcat(i,j) = grid%isltyp(i,j) |
|---|
| 1486 | END DO |
|---|
| 1487 | END DO |
|---|
| 1488 | |
|---|
| 1489 | ELSE IF ( config_flags%surface_input_source .EQ. 2 ) THEN |
|---|
| 1490 | |
|---|
| 1491 | ! Do we have dominant soil and veg data from the input already? |
|---|
| 1492 | |
|---|
| 1493 | IF ( grid%soilcat(i_valid,j_valid) .GT. 0.5 ) THEN |
|---|
| 1494 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1495 | DO i = its, MIN(ide-1,ite) |
|---|
| 1496 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1497 | grid%isltyp(i,j) = NINT( grid%soilcat(i,j) ) |
|---|
| 1498 | END DO |
|---|
| 1499 | END DO |
|---|
| 1500 | END IF |
|---|
| 1501 | IF ( grid%vegcat(i_valid,j_valid) .GT. 0.5 ) THEN |
|---|
| 1502 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1503 | DO i = its, MIN(ide-1,ite) |
|---|
| 1504 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1505 | grid%ivgtyp(i,j) = NINT( grid%vegcat(i,j) ) |
|---|
| 1506 | END DO |
|---|
| 1507 | END DO |
|---|
| 1508 | END IF |
|---|
| 1509 | |
|---|
| 1510 | ELSE IF ( config_flags%surface_input_source .EQ. 3 ) THEN |
|---|
| 1511 | |
|---|
| 1512 | ! Do we have dominant soil and veg data from the static input already? |
|---|
| 1513 | |
|---|
| 1514 | IF ( grid%sct_dom_gc(i_valid,j_valid) .GT. 0.5 ) THEN |
|---|
| 1515 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1516 | DO i = its, MIN(ide-1,ite) |
|---|
| 1517 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1518 | grid%isltyp(i,j) = NINT( grid%sct_dom_gc(i,j) ) |
|---|
| 1519 | grid%soilcat(i,j) = grid%isltyp(i,j) |
|---|
| 1520 | END DO |
|---|
| 1521 | END DO |
|---|
| 1522 | ELSE |
|---|
| 1523 | WRITE ( a_message , * ) 'You have set surface_input_source = 3, but your geogrid data does not have valid dominant soil data.' |
|---|
| 1524 | CALL wrf_error_fatal ( a_message ) |
|---|
| 1525 | END IF |
|---|
| 1526 | IF ( grid%lu_index(i_valid,j_valid) .GT. 0.5 ) THEN |
|---|
| 1527 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1528 | DO i = its, MIN(ide-1,ite) |
|---|
| 1529 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1530 | grid%ivgtyp(i,j) = NINT( grid%lu_index(i,j) ) |
|---|
| 1531 | grid%vegcat(i,j) = grid%ivgtyp(i,j) |
|---|
| 1532 | END DO |
|---|
| 1533 | END DO |
|---|
| 1534 | ELSE |
|---|
| 1535 | WRITE ( a_message , * ) 'You have set surface_input_source = 3, but your geogrid data does not have valid dominant land use data.' |
|---|
| 1536 | CALL wrf_error_fatal ( a_message ) |
|---|
| 1537 | END IF |
|---|
| 1538 | |
|---|
| 1539 | END IF |
|---|
| 1540 | |
|---|
| 1541 | ! Adjustments for the seaice field PRIOR to the grid%tslb computations. This is |
|---|
| 1542 | ! is for the 5-layer scheme. |
|---|
| 1543 | |
|---|
| 1544 | num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
|---|
| 1545 | num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
|---|
| 1546 | num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
|---|
| 1547 | CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
|---|
| 1548 | CALL nl_get_isice ( grid%id , grid%isice ) |
|---|
| 1549 | CALL nl_get_iswater ( grid%id , grid%iswater ) |
|---|
| 1550 | CALL adjust_for_seaice_pre ( grid%xice , grid%landmask , grid%tsk , grid%ivgtyp , grid%vegcat , grid%lu_index , & |
|---|
| 1551 | grid%xland , grid%landusef , grid%isltyp , grid%soilcat , grid%soilctop , & |
|---|
| 1552 | grid%soilcbot , grid%tmn , & |
|---|
| 1553 | grid%seaice_threshold , & |
|---|
| 1554 | config_flags%fractional_seaice, & |
|---|
| 1555 | num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
|---|
| 1556 | grid%iswater , grid%isice , & |
|---|
| 1557 | model_config_rec%sf_surface_physics(grid%id) , & |
|---|
| 1558 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1559 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1560 | its , ite , jts , jte , kts , kte ) |
|---|
| 1561 | |
|---|
| 1562 | ! Land use assignment. |
|---|
| 1563 | |
|---|
| 1564 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1565 | DO i = its, MIN(ide-1,ite) |
|---|
| 1566 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1567 | grid%lu_index(i,j) = grid%ivgtyp(i,j) |
|---|
| 1568 | IF ( grid%lu_index(i,j) .NE. model_config_rec%iswater(grid%id) ) THEN |
|---|
| 1569 | grid%landmask(i,j) = 1 |
|---|
| 1570 | grid%xland(i,j) = 1 |
|---|
| 1571 | ELSE |
|---|
| 1572 | grid%landmask(i,j) = 0 |
|---|
| 1573 | grid%xland(i,j) = 2 |
|---|
| 1574 | END IF |
|---|
| 1575 | END DO |
|---|
| 1576 | END DO |
|---|
| 1577 | |
|---|
| 1578 | |
|---|
| 1579 | ! Fix grid%tmn and grid%tsk. |
|---|
| 1580 | |
|---|
| 1581 | fix_tsk_tmn : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 1582 | |
|---|
| 1583 | CASE ( SLABSCHEME , LSMSCHEME , RUCLSMSCHEME, PXLSMSCHEME ) |
|---|
| 1584 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1585 | DO i = its, MIN(ide-1,ite) |
|---|
| 1586 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1587 | IF ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. ( flag_sst .EQ. 1 ) .AND. & |
|---|
| 1588 | ( grid%sst(i,j) .GT. 170. ) .AND. ( grid%sst(i,j) .LT. 400. ) ) THEN |
|---|
| 1589 | grid%tmn(i,j) = grid%sst(i,j) |
|---|
| 1590 | grid%tsk(i,j) = grid%sst(i,j) |
|---|
| 1591 | ELSE IF ( grid%landmask(i,j) .LT. 0.5 ) THEN |
|---|
| 1592 | grid%tmn(i,j) = grid%tsk(i,j) |
|---|
| 1593 | END IF |
|---|
| 1594 | END DO |
|---|
| 1595 | END DO |
|---|
| 1596 | END SELECT fix_tsk_tmn |
|---|
| 1597 | |
|---|
| 1598 | ! Is the grid%tsk reasonable? |
|---|
| 1599 | |
|---|
| 1600 | IF ( internal_time_loop .NE. 1 ) THEN |
|---|
| 1601 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1602 | DO i = its, MIN(ide-1,ite) |
|---|
| 1603 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1604 | IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
|---|
| 1605 | grid%tsk(i,j) = grid%t_2(i,1,j) |
|---|
| 1606 | END IF |
|---|
| 1607 | END DO |
|---|
| 1608 | END DO |
|---|
| 1609 | ELSE |
|---|
| 1610 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1611 | DO i = its, MIN(ide-1,ite) |
|---|
| 1612 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1613 | IF ( grid%tsk(i,j) .LT. 170 .or. grid%tsk(i,j) .GT. 400. ) THEN |
|---|
| 1614 | print *,'error in the grid%tsk' |
|---|
| 1615 | print *,'i,j=',i,j |
|---|
| 1616 | print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 1617 | print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
|---|
| 1618 | if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
|---|
| 1619 | grid%tsk(i,j)=grid%tmn(i,j) |
|---|
| 1620 | else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
|---|
| 1621 | grid%tsk(i,j)=grid%sst(i,j) |
|---|
| 1622 | else |
|---|
| 1623 | CALL wrf_error_fatal ( 'grid%tsk unreasonable' ) |
|---|
| 1624 | end if |
|---|
| 1625 | END IF |
|---|
| 1626 | END DO |
|---|
| 1627 | END DO |
|---|
| 1628 | END IF |
|---|
| 1629 | |
|---|
| 1630 | ! Is the grid%tmn reasonable? |
|---|
| 1631 | |
|---|
| 1632 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1633 | DO i = its, MIN(ide-1,ite) |
|---|
| 1634 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1635 | IF ( ( ( grid%tmn(i,j) .LT. 170. ) .OR. ( grid%tmn(i,j) .GT. 400. ) ) & |
|---|
| 1636 | .AND. ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
|---|
| 1637 | IF ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) THEN |
|---|
| 1638 | print *,'error in the grid%tmn' |
|---|
| 1639 | print *,'i,j=',i,j |
|---|
| 1640 | print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 1641 | print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
|---|
| 1642 | END IF |
|---|
| 1643 | |
|---|
| 1644 | if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
|---|
| 1645 | grid%tmn(i,j)=grid%tsk(i,j) |
|---|
| 1646 | else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
|---|
| 1647 | grid%tmn(i,j)=grid%sst(i,j) |
|---|
| 1648 | else |
|---|
| 1649 | CALL wrf_error_fatal ( 'grid%tmn unreasonable' ) |
|---|
| 1650 | endif |
|---|
| 1651 | END IF |
|---|
| 1652 | END DO |
|---|
| 1653 | END DO |
|---|
| 1654 | |
|---|
| 1655 | |
|---|
| 1656 | ! Minimum soil values, residual, from RUC LSM scheme. For input from Noah or EC, and using |
|---|
| 1657 | ! RUC LSM scheme, this must be subtracted from the input total soil moisture. For |
|---|
| 1658 | ! input RUC data and using the Noah LSM scheme, this value must be added to the soil |
|---|
| 1659 | ! moisture input. |
|---|
| 1660 | |
|---|
| 1661 | lqmi(1:num_soil_top_cat) = & |
|---|
| 1662 | (/0.045, 0.057, 0.065, 0.067, 0.034, 0.078, 0.10, & |
|---|
| 1663 | 0.089, 0.095, 0.10, 0.070, 0.068, 0.078, 0.0, & |
|---|
| 1664 | 0.004, 0.065 /) |
|---|
| 1665 | ! 0.004, 0.065, 0.020, 0.004, 0.008 /) ! has extra levels for playa, lava, and white sand |
|---|
| 1666 | |
|---|
| 1667 | ! At the initial time we care about values of soil moisture and temperature, other times are |
|---|
| 1668 | ! ignored by the model, so we ignore them, too. |
|---|
| 1669 | |
|---|
| 1670 | IF ( domain_ClockIsStartTime(grid) ) THEN |
|---|
| 1671 | account_for_zero_soil_moisture : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 1672 | |
|---|
| 1673 | CASE ( LSMSCHEME ) |
|---|
| 1674 | iicount = 0 |
|---|
| 1675 | IF ( flag_soil_layers == 1 ) THEN |
|---|
| 1676 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1677 | DO i = its, MIN(ide-1,ite) |
|---|
| 1678 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1679 | IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 170 ) .and. & |
|---|
| 1680 | ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
|---|
| 1681 | print *,'Noah -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
|---|
| 1682 | iicount = iicount + 1 |
|---|
| 1683 | grid%smois(i,:,j) = 0.005 |
|---|
| 1684 | END IF |
|---|
| 1685 | END DO |
|---|
| 1686 | END DO |
|---|
| 1687 | IF ( iicount .GT. 0 ) THEN |
|---|
| 1688 | print *,'Noah -> Noah: total number of small soil moisture locations = ',iicount |
|---|
| 1689 | END IF |
|---|
| 1690 | ELSE IF ( flag_soil_levels == 1 ) THEN |
|---|
| 1691 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1692 | DO i = its, MIN(ide-1,ite) |
|---|
| 1693 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1694 | grid%smois(i,:,j) = MAX ( grid%smois(i,:,j) + lqmi(grid%isltyp(i,j)) , 0.005 ) |
|---|
| 1695 | END DO |
|---|
| 1696 | END DO |
|---|
| 1697 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1698 | DO i = its, MIN(ide-1,ite) |
|---|
| 1699 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1700 | IF ( (grid%landmask(i,j).gt.0.5) .and. ( grid%tslb(i,1,j) .gt. 170 ) .and. & |
|---|
| 1701 | ( grid%tslb(i,1,j) .lt. 400 ) .and. ( grid%smois(i,1,j) .lt. 0.005 ) ) then |
|---|
| 1702 | print *,'RUC -> Noah: bad soil moisture at i,j = ',i,j,grid%smois(i,:,j) |
|---|
| 1703 | iicount = iicount + 1 |
|---|
| 1704 | grid%smois(i,:,j) = 0.005 |
|---|
| 1705 | END IF |
|---|
| 1706 | END DO |
|---|
| 1707 | END DO |
|---|
| 1708 | IF ( iicount .GT. 0 ) THEN |
|---|
| 1709 | print *,'RUC -> Noah: total number of small soil moisture locations = ',iicount |
|---|
| 1710 | END IF |
|---|
| 1711 | END IF |
|---|
| 1712 | |
|---|
| 1713 | CASE ( RUCLSMSCHEME ) |
|---|
| 1714 | iicount = 0 |
|---|
| 1715 | IF ( flag_soil_layers == 1 ) THEN |
|---|
| 1716 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1717 | DO i = its, MIN(ide-1,ite) |
|---|
| 1718 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1719 | grid%smois(i,:,j) = MAX ( grid%smois(i,:,j) - lqmi(grid%isltyp(i,j)) , 0.005 ) |
|---|
| 1720 | END DO |
|---|
| 1721 | END DO |
|---|
| 1722 | ELSE IF ( flag_soil_levels == 1 ) THEN |
|---|
| 1723 | ! no op |
|---|
| 1724 | END IF |
|---|
| 1725 | |
|---|
| 1726 | CASE ( PXLSMSCHEME ) |
|---|
| 1727 | iicount = 0 |
|---|
| 1728 | IF ( flag_soil_layers == 1 ) THEN |
|---|
| 1729 | ! no op |
|---|
| 1730 | ELSE IF ( flag_soil_levels == 1 ) THEN |
|---|
| 1731 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1732 | DO i = its, MIN(ide-1,ite) |
|---|
| 1733 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1734 | grid%smois(i,:,j) = MAX ( grid%smois(i,:,j) + lqmi(grid%isltyp(i,j)) , 0.005 ) |
|---|
| 1735 | END DO |
|---|
| 1736 | END DO |
|---|
| 1737 | END IF |
|---|
| 1738 | |
|---|
| 1739 | END SELECT account_for_zero_soil_moisture |
|---|
| 1740 | END IF |
|---|
| 1741 | |
|---|
| 1742 | ! Is the grid%tslb reasonable? |
|---|
| 1743 | |
|---|
| 1744 | IF ( internal_time_loop .NE. 1 ) THEN |
|---|
| 1745 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1746 | DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 1747 | DO i = its, MIN(ide-1,ite) |
|---|
| 1748 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1749 | IF ( grid%tslb(i,ns,j) .LT. 170 .or. grid%tslb(i,ns,j) .GT. 400. ) THEN |
|---|
| 1750 | grid%tslb(i,ns,j) = grid%t_2(i,1,j) |
|---|
| 1751 | grid%smois(i,ns,j) = 0.3 |
|---|
| 1752 | END IF |
|---|
| 1753 | END DO |
|---|
| 1754 | END DO |
|---|
| 1755 | END DO |
|---|
| 1756 | ELSE |
|---|
| 1757 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1758 | DO i = its, MIN(ide-1,ite) |
|---|
| 1759 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1760 | IF ( ( ( grid%tslb(i,1,j) .LT. 170. ) .OR. ( grid%tslb(i,1,j) .GT. 400. ) ) .AND. & |
|---|
| 1761 | ( grid%landmask(i,j) .GT. 0.5 ) ) THEN |
|---|
| 1762 | IF ( ( model_config_rec%sf_surface_physics(grid%id) .NE. LSMSCHEME ) .AND. & |
|---|
| 1763 | ( model_config_rec%sf_surface_physics(grid%id) .NE. RUCLSMSCHEME ).AND. & |
|---|
| 1764 | ( model_config_rec%sf_surface_physics(grid%id) .NE. PXLSMSCHEME ) ) THEN |
|---|
| 1765 | print *,'error in the grid%tslb' |
|---|
| 1766 | print *,'i,j=',i,j |
|---|
| 1767 | print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 1768 | print *,'grid%tsk, grid%sst, grid%tmn=',grid%tsk(i,j),grid%sst(i,j),grid%tmn(i,j) |
|---|
| 1769 | print *,'grid%tslb = ',grid%tslb(i,:,j) |
|---|
| 1770 | print *,'old grid%smois = ',grid%smois(i,:,j) |
|---|
| 1771 | grid%smois(i,1,j) = 0.3 |
|---|
| 1772 | grid%smois(i,2,j) = 0.3 |
|---|
| 1773 | grid%smois(i,3,j) = 0.3 |
|---|
| 1774 | grid%smois(i,4,j) = 0.3 |
|---|
| 1775 | END IF |
|---|
| 1776 | |
|---|
| 1777 | IF ( (grid%tsk(i,j).GT.170. .AND. grid%tsk(i,j).LT.400.) .AND. & |
|---|
| 1778 | (grid%tmn(i,j).GT.170. .AND. grid%tmn(i,j).LT.400.) ) THEN |
|---|
| 1779 | fake_soil_temp : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
|---|
| 1780 | CASE ( SLABSCHEME ) |
|---|
| 1781 | DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 1782 | grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
|---|
| 1783 | grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
|---|
| 1784 | END DO |
|---|
| 1785 | CASE ( LSMSCHEME , RUCLSMSCHEME, PXLSMSCHEME ) |
|---|
| 1786 | CALL wrf_error_fatal ( 'Assigned constant soil moisture to 0.3, stopping') |
|---|
| 1787 | DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 1788 | grid%tslb(i,ns,j) = ( grid%tsk(i,j)*(3.0 - grid%zs(ns)) + & |
|---|
| 1789 | grid%tmn(i,j)*(0.0 - grid%zs(ns)) ) /(3.0 - 0.0) |
|---|
| 1790 | END DO |
|---|
| 1791 | END SELECT fake_soil_temp |
|---|
| 1792 | else if(grid%tsk(i,j).gt.170. .and. grid%tsk(i,j).lt.400.)then |
|---|
| 1793 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 1' ) |
|---|
| 1794 | DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 1795 | grid%tslb(i,ns,j)=grid%tsk(i,j) |
|---|
| 1796 | END DO |
|---|
| 1797 | else if(grid%sst(i,j).gt.170. .and. grid%sst(i,j).lt.400.)then |
|---|
| 1798 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 2' ) |
|---|
| 1799 | DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 1800 | grid%tslb(i,ns,j)=grid%sst(i,j) |
|---|
| 1801 | END DO |
|---|
| 1802 | else if(grid%tmn(i,j).gt.170. .and. grid%tmn(i,j).lt.400.)then |
|---|
| 1803 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 3' ) |
|---|
| 1804 | DO ns = 1 , model_config_rec%num_soil_layers |
|---|
| 1805 | grid%tslb(i,ns,j)=grid%tmn(i,j) |
|---|
| 1806 | END DO |
|---|
| 1807 | else |
|---|
| 1808 | CALL wrf_error_fatal ( 'grid%tslb unreasonable 4' ) |
|---|
| 1809 | endif |
|---|
| 1810 | END IF |
|---|
| 1811 | END DO |
|---|
| 1812 | END DO |
|---|
| 1813 | END IF |
|---|
| 1814 | |
|---|
| 1815 | ! Adjustments for the seaice field AFTER the grid%tslb computations. This is |
|---|
| 1816 | ! is for the Noah LSM scheme. |
|---|
| 1817 | |
|---|
| 1818 | num_veg_cat = SIZE ( grid%landusef , DIM=2 ) |
|---|
| 1819 | num_soil_top_cat = SIZE ( grid%soilctop , DIM=2 ) |
|---|
| 1820 | num_soil_bot_cat = SIZE ( grid%soilcbot , DIM=2 ) |
|---|
| 1821 | CALL nl_get_seaice_threshold ( grid%id , grid%seaice_threshold ) |
|---|
| 1822 | CALL nl_get_isice ( grid%id , grid%isice ) |
|---|
| 1823 | CALL nl_get_iswater ( grid%id , grid%iswater ) |
|---|
| 1824 | CALL adjust_for_seaice_post ( grid%xice , grid%landmask , grid%tsk , grid%tsk_save , & |
|---|
| 1825 | grid%ivgtyp , grid%vegcat , grid%lu_index , & |
|---|
| 1826 | grid%xland , grid%landusef , grid%isltyp , grid%soilcat , & |
|---|
| 1827 | grid%soilctop , & |
|---|
| 1828 | grid%soilcbot , grid%tmn , grid%vegfra , & |
|---|
| 1829 | grid%tslb , grid%smois , grid%sh2o , & |
|---|
| 1830 | grid%seaice_threshold , & |
|---|
| 1831 | grid%sst,flag_sst, & |
|---|
| 1832 | config_flags%fractional_seaice, & |
|---|
| 1833 | num_veg_cat , num_soil_top_cat , num_soil_bot_cat , & |
|---|
| 1834 | model_config_rec%num_soil_layers , & |
|---|
| 1835 | grid%iswater , grid%isice , & |
|---|
| 1836 | model_config_rec%sf_surface_physics(grid%id) , & |
|---|
| 1837 | ids , ide , jds , jde , kds , kde , & |
|---|
| 1838 | ims , ime , jms , jme , kms , kme , & |
|---|
| 1839 | its , ite , jts , jte , kts , kte ) |
|---|
| 1840 | |
|---|
| 1841 | ! Let us make sure (again) that the grid%landmask and the veg/soil categories match. |
|---|
| 1842 | |
|---|
| 1843 | oops1=0 |
|---|
| 1844 | oops2=0 |
|---|
| 1845 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1846 | DO i = its, MIN(ide-1,ite) |
|---|
| 1847 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1848 | IF ( ( ( grid%landmask(i,j) .LT. 0.5 ) .AND. & |
|---|
| 1849 | ( grid%ivgtyp(i,j) .NE. config_flags%iswater .OR. grid%isltyp(i,j) .NE. 14 ) ) .OR. & |
|---|
| 1850 | ( ( grid%landmask(i,j) .GT. 0.5 ) .AND. & |
|---|
| 1851 | ( grid%ivgtyp(i,j) .EQ. config_flags%iswater .OR. grid%isltyp(i,j) .EQ. 14 ) ) ) THEN |
|---|
| 1852 | IF ( grid%tslb(i,1,j) .GT. 1. ) THEN |
|---|
| 1853 | oops1=oops1+1 |
|---|
| 1854 | grid%ivgtyp(i,j) = 5 |
|---|
| 1855 | grid%isltyp(i,j) = 8 |
|---|
| 1856 | grid%landmask(i,j) = 1 |
|---|
| 1857 | grid%xland(i,j) = 1 |
|---|
| 1858 | ELSE IF ( grid%sst(i,j) .GT. 1. ) THEN |
|---|
| 1859 | oops2=oops2+1 |
|---|
| 1860 | grid%ivgtyp(i,j) = config_flags%iswater |
|---|
| 1861 | grid%isltyp(i,j) = 14 |
|---|
| 1862 | grid%landmask(i,j) = 0 |
|---|
| 1863 | grid%xland(i,j) = 2 |
|---|
| 1864 | ELSE |
|---|
| 1865 | print *,'the grid%landmask and soil/veg cats do not match' |
|---|
| 1866 | print *,'i,j=',i,j |
|---|
| 1867 | print *,'grid%landmask=',grid%landmask(i,j) |
|---|
| 1868 | print *,'grid%ivgtyp=',grid%ivgtyp(i,j) |
|---|
| 1869 | print *,'grid%isltyp=',grid%isltyp(i,j) |
|---|
| 1870 | print *,'iswater=', config_flags%iswater |
|---|
| 1871 | print *,'grid%tslb=',grid%tslb(i,:,j) |
|---|
| 1872 | print *,'grid%sst=',grid%sst(i,j) |
|---|
| 1873 | CALL wrf_error_fatal ( 'mismatch_landmask_ivgtyp' ) |
|---|
| 1874 | END IF |
|---|
| 1875 | END IF |
|---|
| 1876 | END DO |
|---|
| 1877 | END DO |
|---|
| 1878 | if (oops1.gt.0) then |
|---|
| 1879 | print *,'points artificially set to land : ',oops1 |
|---|
| 1880 | endif |
|---|
| 1881 | if(oops2.gt.0) then |
|---|
| 1882 | print *,'points artificially set to water: ',oops2 |
|---|
| 1883 | endif |
|---|
| 1884 | ! fill grid%sst array with grid%tsk if missing in real input (needed for time-varying grid%sst in wrf) |
|---|
| 1885 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1886 | DO i = its, MIN(ide-1,ite) |
|---|
| 1887 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1888 | IF ( flag_sst .NE. 1 ) THEN |
|---|
| 1889 | grid%sst(i,j) = grid%tsk(i,j) |
|---|
| 1890 | ENDIF |
|---|
| 1891 | END DO |
|---|
| 1892 | END DO |
|---|
| 1893 | !tgs set snoalb to land value if the water point is covered with ice |
|---|
| 1894 | DO j = jts, MIN(jde-1,jte) |
|---|
| 1895 | DO i = its, MIN(ide-1,ite) |
|---|
| 1896 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1897 | IF ( grid%ivgtyp(i,j) .EQ. config_flags%isice) THEN |
|---|
| 1898 | grid%snoalb(i,j) = 0.75 |
|---|
| 1899 | ENDIF |
|---|
| 1900 | END DO |
|---|
| 1901 | END DO |
|---|
| 1902 | |
|---|
| 1903 | ! From the full level data, we can get the half levels, reciprocals, and layer |
|---|
| 1904 | ! thicknesses. These are all defined at half level locations, so one less level. |
|---|
| 1905 | ! We allow the vertical coordinate to *accidently* come in upside down. We want |
|---|
| 1906 | ! the first full level to be the ground surface. |
|---|
| 1907 | |
|---|
| 1908 | ! Check whether grid%znw (full level) data are truly full levels. If not, we need to adjust them |
|---|
| 1909 | ! to be full levels. |
|---|
| 1910 | ! in this test, we check if grid%znw(1) is neither 0 nor 1 (within a tolerance of 10**-5) |
|---|
| 1911 | |
|---|
| 1912 | were_bad = .false. |
|---|
| 1913 | IF ( ( (grid%znw(1).LT.(1-1.E-5) ) .OR. ( grid%znw(1).GT.(1+1.E-5) ) ).AND. & |
|---|
| 1914 | ( (grid%znw(1).LT.(0-1.E-5) ) .OR. ( grid%znw(1).GT.(0+1.E-5) ) ) ) THEN |
|---|
| 1915 | were_bad = .true. |
|---|
| 1916 | print *,'Your grid%znw input values are probably half-levels. ' |
|---|
| 1917 | print *,grid%znw |
|---|
| 1918 | print *,'WRF expects grid%znw values to be full levels. ' |
|---|
| 1919 | print *,'Adjusting now to full levels...' |
|---|
| 1920 | ! We want to ignore the first value if it's negative |
|---|
| 1921 | IF (grid%znw(1).LT.0) THEN |
|---|
| 1922 | grid%znw(1)=0 |
|---|
| 1923 | END IF |
|---|
| 1924 | DO k=2,kde |
|---|
| 1925 | grid%znw(k)=2*grid%znw(k)-grid%znw(k-1) |
|---|
| 1926 | END DO |
|---|
| 1927 | END IF |
|---|
| 1928 | |
|---|
| 1929 | ! Let's check our changes |
|---|
| 1930 | |
|---|
| 1931 | IF ( ( ( grid%znw(1) .LT. (1-1.E-5) ) .OR. ( grid%znw(1) .GT. (1+1.E-5) ) ).AND. & |
|---|
| 1932 | ( ( grid%znw(1) .LT. (0-1.E-5) ) .OR. ( grid%znw(1) .GT. (0+1.E-5) ) ) ) THEN |
|---|
| 1933 | print *,'The input grid%znw height values were half-levels or erroneous. ' |
|---|
| 1934 | print *,'Attempts to treat the values as half-levels and change them ' |
|---|
| 1935 | print *,'to valid full levels failed.' |
|---|
| 1936 | CALL wrf_error_fatal("bad grid%znw values from input files") |
|---|
| 1937 | ELSE IF ( were_bad ) THEN |
|---|
| 1938 | print *,'...adjusted. grid%znw array now contains full eta level values. ' |
|---|
| 1939 | ENDIF |
|---|
| 1940 | |
|---|
| 1941 | IF ( grid%znw(1) .LT. grid%znw(kde) ) THEN |
|---|
| 1942 | DO k=1, kde/2 |
|---|
| 1943 | hold_znw = grid%znw(k) |
|---|
| 1944 | grid%znw(k)=grid%znw(kde+1-k) |
|---|
| 1945 | grid%znw(kde+1-k)=hold_znw |
|---|
| 1946 | END DO |
|---|
| 1947 | END IF |
|---|
| 1948 | |
|---|
| 1949 | DO k=1, kde-1 |
|---|
| 1950 | grid%dnw(k) = grid%znw(k+1) - grid%znw(k) |
|---|
| 1951 | grid%rdnw(k) = 1./grid%dnw(k) |
|---|
| 1952 | grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) |
|---|
| 1953 | END DO |
|---|
| 1954 | |
|---|
| 1955 | ! Now the same sort of computations with the half eta levels, even ANOTHER |
|---|
| 1956 | ! level less than the one above. |
|---|
| 1957 | |
|---|
| 1958 | DO k=2, kde-1 |
|---|
| 1959 | grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) |
|---|
| 1960 | grid%rdn(k) = 1./grid%dn(k) |
|---|
| 1961 | grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) |
|---|
| 1962 | grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) |
|---|
| 1963 | END DO |
|---|
| 1964 | |
|---|
| 1965 | ! Scads of vertical coefficients. |
|---|
| 1966 | |
|---|
| 1967 | cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) |
|---|
| 1968 | cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) |
|---|
| 1969 | |
|---|
| 1970 | grid%cf1 = grid%fnp(2) + cof1 |
|---|
| 1971 | grid%cf2 = grid%fnm(2) - cof1 - cof2 |
|---|
| 1972 | grid%cf3 = cof2 |
|---|
| 1973 | |
|---|
| 1974 | grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) |
|---|
| 1975 | grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) |
|---|
| 1976 | |
|---|
| 1977 | ! Inverse grid distances. |
|---|
| 1978 | |
|---|
| 1979 | grid%rdx = 1./config_flags%dx |
|---|
| 1980 | grid%rdy = 1./config_flags%dy |
|---|
| 1981 | |
|---|
| 1982 | ! Some of the many weird geopotential initializations that we'll see today: grid%ph0 is total, |
|---|
| 1983 | ! and grid%ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
|---|
| 1984 | ! at the lowest level to terrain elevation * gravity. |
|---|
| 1985 | |
|---|
| 1986 | DO j=jts,jte |
|---|
| 1987 | DO i=its,ite |
|---|
| 1988 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 1989 | grid%ph0(i,1,j) = grid%ht(i,j) * g |
|---|
| 1990 | grid%ph_2(i,1,j) = 0. |
|---|
| 1991 | END DO |
|---|
| 1992 | END DO |
|---|
| 1993 | |
|---|
| 1994 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
|---|
| 1995 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
|---|
| 1996 | ! from equation of state. The potential temperature is a perturbation from t0. |
|---|
| 1997 | |
|---|
| 1998 | DO j = jts, MIN(jte,jde-1) |
|---|
| 1999 | DO i = its, MIN(ite,ide-1) |
|---|
| 2000 | |
|---|
| 2001 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2002 | |
|---|
| 2003 | ! Base state pressure is a function of eta level and terrain, only, plus |
|---|
| 2004 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
|---|
| 2005 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
|---|
| 2006 | |
|---|
| 2007 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
|---|
| 2008 | |
|---|
| 2009 | |
|---|
| 2010 | DO k = 1, kte-1 |
|---|
| 2011 | grid%php(i,k,j) = grid%znw(k)*(p_surf - grid%p_top) + grid%p_top ! temporary, full lev base pressure |
|---|
| 2012 | grid%pb(i,k,j) = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
|---|
| 2013 | temp = MAX ( tiso, t00 + A*LOG(grid%pb(i,k,j)/p00) ) |
|---|
| 2014 | ! temp = t00 + A*LOG(grid%pb(i,k,j)/p00) |
|---|
| 2015 | grid%t_init(i,k,j) = temp*(p00/grid%pb(i,k,j))**(r_d/cp) - t0 |
|---|
| 2016 | grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm |
|---|
| 2017 | END DO |
|---|
| 2018 | |
|---|
| 2019 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
|---|
| 2020 | |
|---|
| 2021 | grid%mub(i,j) = p_surf - grid%p_top |
|---|
| 2022 | |
|---|
| 2023 | ! Dry surface pressure is defined as the following (this mu is from the input file |
|---|
| 2024 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
|---|
| 2025 | |
|---|
| 2026 | pd_surf = grid%mu0(i,j) + grid%p_top |
|---|
| 2027 | |
|---|
| 2028 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
|---|
| 2029 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
|---|
| 2030 | ! This field is on full levels. |
|---|
| 2031 | |
|---|
| 2032 | grid%phb(i,1,j) = grid%ht(i,j) * g |
|---|
| 2033 | DO k = 2,kte |
|---|
| 2034 | grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) |
|---|
| 2035 | END DO |
|---|
| 2036 | END DO |
|---|
| 2037 | END DO |
|---|
| 2038 | |
|---|
| 2039 | ! Fill in the outer rows and columns to allow us to be sloppy. |
|---|
| 2040 | |
|---|
| 2041 | IF ( ite .EQ. ide ) THEN |
|---|
| 2042 | i = ide |
|---|
| 2043 | DO j = jts, MIN(jde-1,jte) |
|---|
| 2044 | grid%mub(i,j) = grid%mub(i-1,j) |
|---|
| 2045 | grid%mu_2(i,j) = grid%mu_2(i-1,j) |
|---|
| 2046 | DO k = 1, kte-1 |
|---|
| 2047 | grid%pb(i,k,j) = grid%pb(i-1,k,j) |
|---|
| 2048 | grid%t_init(i,k,j) = grid%t_init(i-1,k,j) |
|---|
| 2049 | grid%alb(i,k,j) = grid%alb(i-1,k,j) |
|---|
| 2050 | END DO |
|---|
| 2051 | DO k = 1, kte |
|---|
| 2052 | grid%phb(i,k,j) = grid%phb(i-1,k,j) |
|---|
| 2053 | END DO |
|---|
| 2054 | END DO |
|---|
| 2055 | END IF |
|---|
| 2056 | |
|---|
| 2057 | IF ( jte .EQ. jde ) THEN |
|---|
| 2058 | j = jde |
|---|
| 2059 | DO i = its, ite |
|---|
| 2060 | grid%mub(i,j) = grid%mub(i,j-1) |
|---|
| 2061 | grid%mu_2(i,j) = grid%mu_2(i,j-1) |
|---|
| 2062 | DO k = 1, kte-1 |
|---|
| 2063 | grid%pb(i,k,j) = grid%pb(i,k,j-1) |
|---|
| 2064 | grid%t_init(i,k,j) = grid%t_init(i,k,j-1) |
|---|
| 2065 | grid%alb(i,k,j) = grid%alb(i,k,j-1) |
|---|
| 2066 | END DO |
|---|
| 2067 | DO k = 1, kte |
|---|
| 2068 | grid%phb(i,k,j) = grid%phb(i,k,j-1) |
|---|
| 2069 | END DO |
|---|
| 2070 | END DO |
|---|
| 2071 | END IF |
|---|
| 2072 | |
|---|
| 2073 | ! Compute the perturbation dry pressure (grid%mub + grid%mu_2 + ptop = dry grid%psfc). |
|---|
| 2074 | |
|---|
| 2075 | DO j = jts, min(jde-1,jte) |
|---|
| 2076 | DO i = its, min(ide-1,ite) |
|---|
| 2077 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2078 | grid%mu_2(i,j) = grid%mu0(i,j) - grid%mub(i,j) |
|---|
| 2079 | END DO |
|---|
| 2080 | END DO |
|---|
| 2081 | |
|---|
| 2082 | ! Fill in the outer rows and columns to allow us to be sloppy. |
|---|
| 2083 | |
|---|
| 2084 | IF ( ite .EQ. ide ) THEN |
|---|
| 2085 | i = ide |
|---|
| 2086 | DO j = jts, MIN(jde-1,jte) |
|---|
| 2087 | grid%mu_2(i,j) = grid%mu_2(i-1,j) |
|---|
| 2088 | END DO |
|---|
| 2089 | END IF |
|---|
| 2090 | |
|---|
| 2091 | IF ( jte .EQ. jde ) THEN |
|---|
| 2092 | j = jde |
|---|
| 2093 | DO i = its, ite |
|---|
| 2094 | grid%mu_2(i,j) = grid%mu_2(i,j-1) |
|---|
| 2095 | END DO |
|---|
| 2096 | END IF |
|---|
| 2097 | |
|---|
| 2098 | lev500 = 0 |
|---|
| 2099 | DO j = jts, min(jde-1,jte) |
|---|
| 2100 | DO i = its, min(ide-1,ite) |
|---|
| 2101 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2102 | |
|---|
| 2103 | ! Assign the potential temperature (perturbation from t0) and qv on all the mass |
|---|
| 2104 | ! point locations. |
|---|
| 2105 | |
|---|
| 2106 | DO k = 1 , kde-1 |
|---|
| 2107 | grid%t_2(i,k,j) = grid%t_2(i,k,j) - t0 |
|---|
| 2108 | END DO |
|---|
| 2109 | |
|---|
| 2110 | dpmu = 10001. |
|---|
| 2111 | loop_count = 0 |
|---|
| 2112 | |
|---|
| 2113 | DO WHILE ( ( ABS(dpmu) .GT. 10. ) .AND. & |
|---|
| 2114 | ( loop_count .LT. 5 ) ) |
|---|
| 2115 | |
|---|
| 2116 | loop_count = loop_count + 1 |
|---|
| 2117 | |
|---|
| 2118 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
|---|
| 2119 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
|---|
| 2120 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
|---|
| 2121 | |
|---|
| 2122 | k = kte-1 |
|---|
| 2123 | |
|---|
| 2124 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
|---|
| 2125 | qvf2 = 1./(1.+qvf1) |
|---|
| 2126 | qvf1 = qvf1*qvf2 |
|---|
| 2127 | |
|---|
| 2128 | grid%p(i,k,j) = - 0.5*(grid%mu_2(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 |
|---|
| 2129 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 2130 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf& |
|---|
| 2131 | *(((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 2132 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
|---|
| 2133 | grid%p_hyd(i,k,j) = grid%p(i,k,j) + grid%pb(i,k,j) |
|---|
| 2134 | |
|---|
| 2135 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
|---|
| 2136 | ! inverse density fields (total and perturbation). |
|---|
| 2137 | |
|---|
| 2138 | DO k=kte-2,1,-1 |
|---|
| 2139 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
|---|
| 2140 | qvf2 = 1./(1.+qvf1) |
|---|
| 2141 | qvf1 = qvf1*qvf2 |
|---|
| 2142 | grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_2(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) |
|---|
| 2143 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 2144 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf* & |
|---|
| 2145 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 2146 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
|---|
| 2147 | grid%p_hyd(i,k,j) = grid%p(i,k,j) + grid%pb(i,k,j) |
|---|
| 2148 | END DO |
|---|
| 2149 | |
|---|
| 2150 | #if 1 |
|---|
| 2151 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
|---|
| 2152 | ! the model, grid%al (inverse density) is computed from the geopotential. |
|---|
| 2153 | |
|---|
| 2154 | DO k = 2,kte |
|---|
| 2155 | grid%ph_2(i,k,j) = grid%ph_2(i,k-1,j) - & |
|---|
| 2156 | grid%dnw(k-1) * ( (grid%mub(i,j)+grid%mu_2(i,j))*grid%al(i,k-1,j) & |
|---|
| 2157 | + grid%mu_2(i,j)*grid%alb(i,k-1,j) ) |
|---|
| 2158 | grid%ph0(i,k,j) = grid%ph_2(i,k,j) + grid%phb(i,k,j) |
|---|
| 2159 | END DO |
|---|
| 2160 | #else |
|---|
| 2161 | ! Get the perturbation geopotential from the 3d height array from WPS. |
|---|
| 2162 | |
|---|
| 2163 | DO k = 2,kte |
|---|
| 2164 | grid%ph_2(i,k,j) = grid%ph0(i,k,j)*g - grid%phb(i,k,j) |
|---|
| 2165 | END DO |
|---|
| 2166 | #endif |
|---|
| 2167 | |
|---|
| 2168 | ! Adjust the column pressure so that the computed 500 mb height is close to the |
|---|
| 2169 | ! input value (of course, not when we are doing hybrid input). |
|---|
| 2170 | |
|---|
| 2171 | IF ( ( flag_metgrid .EQ. 1 ) .AND. ( i .EQ. i_valid ) .AND. ( j .EQ. j_valid ) ) THEN |
|---|
| 2172 | DO k = 1 , num_metgrid_levels |
|---|
| 2173 | IF ( ABS ( grid%p_gc(i,k,j) - 50000. ) .LT. 1. ) THEN |
|---|
| 2174 | lev500 = k |
|---|
| 2175 | EXIT |
|---|
| 2176 | END IF |
|---|
| 2177 | END DO |
|---|
| 2178 | END IF |
|---|
| 2179 | |
|---|
| 2180 | ! We only do the adjustment of height if we have the input data on pressure |
|---|
| 2181 | ! surfaces, and folks have asked to do this option. |
|---|
| 2182 | |
|---|
| 2183 | IF ( ( flag_metgrid .EQ. 1 ) .AND. & |
|---|
| 2184 | ( flag_ptheta .EQ. 1 ) .AND. & |
|---|
| 2185 | ( config_flags%adjust_heights ) .AND. & |
|---|
| 2186 | ( lev500 .NE. 0 ) ) THEN |
|---|
| 2187 | |
|---|
| 2188 | DO k = 2 , kte-1 |
|---|
| 2189 | |
|---|
| 2190 | ! Get the pressures on the full eta levels (grid%php is defined above as |
|---|
| 2191 | ! the full-lev base pressure, an easy array to use for 3d space). |
|---|
| 2192 | |
|---|
| 2193 | pl = grid%php(i,k ,j) + & |
|---|
| 2194 | ( grid%p(i,k-1 ,j) * ( grid%znw(k ) - grid%znu(k ) ) + & |
|---|
| 2195 | grid%p(i,k ,j) * ( grid%znu(k-1 ) - grid%znw(k ) ) ) / & |
|---|
| 2196 | ( grid%znu(k-1 ) - grid%znu(k ) ) |
|---|
| 2197 | pu = grid%php(i,k+1,j) + & |
|---|
| 2198 | ( grid%p(i,k-1+1,j) * ( grid%znw(k +1) - grid%znu(k+1) ) + & |
|---|
| 2199 | grid%p(i,k +1,j) * ( grid%znu(k-1+1) - grid%znw(k+1) ) ) / & |
|---|
| 2200 | ( grid%znu(k-1+1) - grid%znu(k+1) ) |
|---|
| 2201 | |
|---|
| 2202 | ! If these pressure levels trap 500 mb, use them to interpolate |
|---|
| 2203 | ! to the 500 mb level of the computed height. |
|---|
| 2204 | |
|---|
| 2205 | IF ( ( pl .GE. 50000. ) .AND. ( pu .LT. 50000. ) ) THEN |
|---|
| 2206 | zl = ( grid%ph_2(i,k ,j) + grid%phb(i,k ,j) ) / g |
|---|
| 2207 | zu = ( grid%ph_2(i,k+1,j) + grid%phb(i,k+1,j) ) / g |
|---|
| 2208 | |
|---|
| 2209 | z500 = ( zl * ( LOG(50000.) - LOG(pu ) ) + & |
|---|
| 2210 | zu * ( LOG(pl ) - LOG(50000.) ) ) / & |
|---|
| 2211 | ( LOG(pl) - LOG(pu) ) |
|---|
| 2212 | ! z500 = ( zl * ( (50000.) - (pu ) ) + & |
|---|
| 2213 | ! zu * ( (pl ) - (50000.) ) ) / & |
|---|
| 2214 | ! ( (pl) - (pu) ) |
|---|
| 2215 | |
|---|
| 2216 | ! Compute the difference of the 500 mb heights (computed minus input), and |
|---|
| 2217 | ! then the change in grid%mu_2. The grid%php is still full-levels, base pressure. |
|---|
| 2218 | |
|---|
| 2219 | dz500 = z500 - grid%ght_gc(i,lev500,j) |
|---|
| 2220 | tvsfc = ((grid%t_2(i,1,j)+t0)*((grid%p(i,1,j)+grid%php(i,1,j))/p1000mb)**(r_d/cp)) * & |
|---|
| 2221 | (1.+0.6*moist(i,1,j,P_QV)) |
|---|
| 2222 | dpmu = ( grid%php(i,1,j) + grid%p(i,1,j) ) * EXP ( g * dz500 / ( r_d * tvsfc ) ) |
|---|
| 2223 | dpmu = dpmu - ( grid%php(i,1,j) + grid%p(i,1,j) ) |
|---|
| 2224 | grid%mu_2(i,j) = grid%mu_2(i,j) - dpmu |
|---|
| 2225 | EXIT |
|---|
| 2226 | END IF |
|---|
| 2227 | |
|---|
| 2228 | END DO |
|---|
| 2229 | ELSE |
|---|
| 2230 | dpmu = 0. |
|---|
| 2231 | END IF |
|---|
| 2232 | |
|---|
| 2233 | END DO |
|---|
| 2234 | |
|---|
| 2235 | END DO |
|---|
| 2236 | END DO |
|---|
| 2237 | |
|---|
| 2238 | ! If this is data from the SI, then we probably do not have the original |
|---|
| 2239 | ! surface data laying around. Note that these are all the lowest levels |
|---|
| 2240 | ! of the respective 3d arrays. For surface pressure, we assume that the |
|---|
| 2241 | ! vertical gradient of grid%p prime is zilch. This is not all that important. |
|---|
| 2242 | ! These are filled in so that the various plotting routines have something |
|---|
| 2243 | ! to play with at the initial time for the model. |
|---|
| 2244 | |
|---|
| 2245 | IF ( flag_metgrid .NE. 1 ) THEN |
|---|
| 2246 | DO j = jts, min(jde-1,jte) |
|---|
| 2247 | DO i = its, min(ide,ite) |
|---|
| 2248 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2249 | grid%u10(i,j)=grid%u_2(i,1,j) |
|---|
| 2250 | END DO |
|---|
| 2251 | END DO |
|---|
| 2252 | |
|---|
| 2253 | DO j = jts, min(jde,jte) |
|---|
| 2254 | DO i = its, min(ide-1,ite) |
|---|
| 2255 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2256 | grid%v10(i,j)=grid%v_2(i,1,j) |
|---|
| 2257 | END DO |
|---|
| 2258 | END DO |
|---|
| 2259 | |
|---|
| 2260 | DO j = jts, min(jde-1,jte) |
|---|
| 2261 | DO i = its, min(ide-1,ite) |
|---|
| 2262 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2263 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
|---|
| 2264 | grid%psfc(i,j)=p_surf + grid%p(i,1,j) |
|---|
| 2265 | grid%q2(i,j)=moist(i,1,j,P_QV) |
|---|
| 2266 | grid%th2(i,j)=grid%t_2(i,1,j)+300. |
|---|
| 2267 | grid%t2(i,j)=grid%th2(i,j)*(((grid%p(i,1,j)+grid%pb(i,1,j))/p00)**(r_d/cp)) |
|---|
| 2268 | END DO |
|---|
| 2269 | END DO |
|---|
| 2270 | |
|---|
| 2271 | ! If this data is from WPS, then we have previously assigned the surface |
|---|
| 2272 | ! data for u, v, and t. If we have an input qv, welp, we assigned that one, |
|---|
| 2273 | ! too. Now we pick up the left overs, and if RH came in - we assign the |
|---|
| 2274 | ! mixing ratio. |
|---|
| 2275 | |
|---|
| 2276 | ELSE IF ( flag_metgrid .EQ. 1 ) THEN |
|---|
| 2277 | |
|---|
| 2278 | DO j = jts, min(jde-1,jte) |
|---|
| 2279 | DO i = its, min(ide-1,ite) |
|---|
| 2280 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2281 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 ) |
|---|
| 2282 | ! grid%psfc(i,j)=p_surf + grid%p(i,1,j) |
|---|
| 2283 | grid%th2(i,j)=grid%t2(i,j)*(p00/(grid%p(i,1,j)+grid%pb(i,1,j)))**(r_d/cp) |
|---|
| 2284 | END DO |
|---|
| 2285 | END DO |
|---|
| 2286 | IF ( flag_qv .NE. 1 ) THEN |
|---|
| 2287 | DO j = jts, min(jde-1,jte) |
|---|
| 2288 | DO i = its, min(ide-1,ite) |
|---|
| 2289 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2290 | grid%q2(i,j)=moist(i,1,j,P_QV) |
|---|
| 2291 | END DO |
|---|
| 2292 | END DO |
|---|
| 2293 | END IF |
|---|
| 2294 | |
|---|
| 2295 | END IF |
|---|
| 2296 | CALL cpu_time(t_end) |
|---|
| 2297 | |
|---|
| 2298 | ! Set flag to denote that we are saving original values of HT, MUB, and |
|---|
| 2299 | ! PHB for 2-way nesting and cycling. |
|---|
| 2300 | |
|---|
| 2301 | grid%save_topo_from_real=1 |
|---|
| 2302 | |
|---|
| 2303 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
|---|
| 2304 | #ifdef DM_PARALLEL |
|---|
| 2305 | # include "HALO_EM_INIT_1.inc" |
|---|
| 2306 | # include "HALO_EM_INIT_2.inc" |
|---|
| 2307 | # include "HALO_EM_INIT_3.inc" |
|---|
| 2308 | # include "HALO_EM_INIT_4.inc" |
|---|
| 2309 | # include "HALO_EM_INIT_5.inc" |
|---|
| 2310 | #endif |
|---|
| 2311 | |
|---|
| 2312 | RETURN |
|---|
| 2313 | |
|---|
| 2314 | END SUBROUTINE init_domain_rk |
|---|
| 2315 | |
|---|
| 2316 | !--------------------------------------------------------------------- |
|---|
| 2317 | |
|---|
| 2318 | SUBROUTINE const_module_initialize ( p00 , t00 , a , tiso ) |
|---|
| 2319 | USE module_configure |
|---|
| 2320 | IMPLICIT NONE |
|---|
| 2321 | ! For the real-data-cases only. |
|---|
| 2322 | REAL , INTENT(OUT) :: p00 , t00 , a , tiso |
|---|
| 2323 | CALL nl_get_base_pres ( 1 , p00 ) |
|---|
| 2324 | CALL nl_get_base_temp ( 1 , t00 ) |
|---|
| 2325 | CALL nl_get_base_lapse ( 1 , a ) |
|---|
| 2326 | CALL nl_get_iso_temp ( 1 , tiso ) |
|---|
| 2327 | END SUBROUTINE const_module_initialize |
|---|
| 2328 | |
|---|
| 2329 | !------------------------------------------------------------------- |
|---|
| 2330 | |
|---|
| 2331 | SUBROUTINE rebalance_driver ( grid ) |
|---|
| 2332 | |
|---|
| 2333 | IMPLICIT NONE |
|---|
| 2334 | |
|---|
| 2335 | TYPE (domain) :: grid |
|---|
| 2336 | |
|---|
| 2337 | CALL rebalance( grid & |
|---|
| 2338 | ! |
|---|
| 2339 | #include "actual_new_args.inc" |
|---|
| 2340 | ! |
|---|
| 2341 | ) |
|---|
| 2342 | |
|---|
| 2343 | END SUBROUTINE rebalance_driver |
|---|
| 2344 | |
|---|
| 2345 | !--------------------------------------------------------------------- |
|---|
| 2346 | |
|---|
| 2347 | SUBROUTINE rebalance ( grid & |
|---|
| 2348 | ! |
|---|
| 2349 | #include "dummy_new_args.inc" |
|---|
| 2350 | ! |
|---|
| 2351 | ) |
|---|
| 2352 | IMPLICIT NONE |
|---|
| 2353 | |
|---|
| 2354 | TYPE (domain) :: grid |
|---|
| 2355 | |
|---|
| 2356 | #include "dummy_new_decl.inc" |
|---|
| 2357 | |
|---|
| 2358 | TYPE (grid_config_rec_type) :: config_flags |
|---|
| 2359 | |
|---|
| 2360 | REAL :: p_surf , pd_surf, p_surf_int , pb_int , ht_hold |
|---|
| 2361 | REAL :: qvf , qvf1 , qvf2 |
|---|
| 2362 | REAL :: p00 , t00 , a , tiso |
|---|
| 2363 | REAL , DIMENSION(:,:,:) , ALLOCATABLE :: t_init_int |
|---|
| 2364 | |
|---|
| 2365 | ! Local domain indices and counters. |
|---|
| 2366 | |
|---|
| 2367 | INTEGER :: num_veg_cat , num_soil_top_cat , num_soil_bot_cat |
|---|
| 2368 | |
|---|
| 2369 | INTEGER :: & |
|---|
| 2370 | ids, ide, jds, jde, kds, kde, & |
|---|
| 2371 | ims, ime, jms, jme, kms, kme, & |
|---|
| 2372 | its, ite, jts, jte, kts, kte, & |
|---|
| 2373 | ips, ipe, jps, jpe, kps, kpe, & |
|---|
| 2374 | i, j, k |
|---|
| 2375 | |
|---|
| 2376 | REAL :: temp, temp_int |
|---|
| 2377 | |
|---|
| 2378 | SELECT CASE ( model_data_order ) |
|---|
| 2379 | CASE ( DATA_ORDER_ZXY ) |
|---|
| 2380 | kds = grid%sd31 ; kde = grid%ed31 ; |
|---|
| 2381 | ids = grid%sd32 ; ide = grid%ed32 ; |
|---|
| 2382 | jds = grid%sd33 ; jde = grid%ed33 ; |
|---|
| 2383 | |
|---|
| 2384 | kms = grid%sm31 ; kme = grid%em31 ; |
|---|
| 2385 | ims = grid%sm32 ; ime = grid%em32 ; |
|---|
| 2386 | jms = grid%sm33 ; jme = grid%em33 ; |
|---|
| 2387 | |
|---|
| 2388 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
|---|
| 2389 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
|---|
| 2390 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 2391 | |
|---|
| 2392 | CASE ( DATA_ORDER_XYZ ) |
|---|
| 2393 | ids = grid%sd31 ; ide = grid%ed31 ; |
|---|
| 2394 | jds = grid%sd32 ; jde = grid%ed32 ; |
|---|
| 2395 | kds = grid%sd33 ; kde = grid%ed33 ; |
|---|
| 2396 | |
|---|
| 2397 | ims = grid%sm31 ; ime = grid%em31 ; |
|---|
| 2398 | jms = grid%sm32 ; jme = grid%em32 ; |
|---|
| 2399 | kms = grid%sm33 ; kme = grid%em33 ; |
|---|
| 2400 | |
|---|
| 2401 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
|---|
| 2402 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
|---|
| 2403 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 2404 | |
|---|
| 2405 | CASE ( DATA_ORDER_XZY ) |
|---|
| 2406 | ids = grid%sd31 ; ide = grid%ed31 ; |
|---|
| 2407 | kds = grid%sd32 ; kde = grid%ed32 ; |
|---|
| 2408 | jds = grid%sd33 ; jde = grid%ed33 ; |
|---|
| 2409 | |
|---|
| 2410 | ims = grid%sm31 ; ime = grid%em31 ; |
|---|
| 2411 | kms = grid%sm32 ; kme = grid%em32 ; |
|---|
| 2412 | jms = grid%sm33 ; jme = grid%em33 ; |
|---|
| 2413 | |
|---|
| 2414 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
|---|
| 2415 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
|---|
| 2416 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
|---|
| 2417 | |
|---|
| 2418 | END SELECT |
|---|
| 2419 | |
|---|
| 2420 | ALLOCATE ( t_init_int(ims:ime,kms:kme,jms:jme) ) |
|---|
| 2421 | |
|---|
| 2422 | ! Fill config_flags the options for a particular domain |
|---|
| 2423 | |
|---|
| 2424 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
|---|
| 2425 | |
|---|
| 2426 | ! Some of the many weird geopotential initializations that we'll see today: grid%ph0 is total, |
|---|
| 2427 | ! and grid%ph_2 is a perturbation from the base state geopotential. We set the base geopotential |
|---|
| 2428 | ! at the lowest level to terrain elevation * gravity. |
|---|
| 2429 | |
|---|
| 2430 | DO j=jts,jte |
|---|
| 2431 | DO i=its,ite |
|---|
| 2432 | grid%ph0(i,1,j) = grid%ht_fine(i,j) * g |
|---|
| 2433 | grid%ph_2(i,1,j) = 0. |
|---|
| 2434 | END DO |
|---|
| 2435 | END DO |
|---|
| 2436 | |
|---|
| 2437 | ! To define the base state, we call a USER MODIFIED routine to set the three |
|---|
| 2438 | ! necessary constants: p00 (sea level pressure, Pa), t00 (sea level temperature, K), |
|---|
| 2439 | ! and A (temperature difference, from 1000 mb to 300 mb, K), and constant stratosphere |
|---|
| 2440 | ! temp (tiso, K) either from input file or from namelist (for backward compatibiliy). |
|---|
| 2441 | |
|---|
| 2442 | IF ( config_flags%use_baseparam_fr_nml ) then |
|---|
| 2443 | ! get these from namelist |
|---|
| 2444 | CALL wrf_message('ndown: using namelist constants') |
|---|
| 2445 | CALL const_module_initialize ( p00 , t00 , a , tiso ) |
|---|
| 2446 | ELSE |
|---|
| 2447 | ! get these constants from model data |
|---|
| 2448 | CALL wrf_message('ndown: using constants from file') |
|---|
| 2449 | t00 = grid%t00 |
|---|
| 2450 | p00 = grid%p00 |
|---|
| 2451 | a = grid%tlp |
|---|
| 2452 | tiso = grid%tiso |
|---|
| 2453 | |
|---|
| 2454 | IF (t00 .LT. 100. .or. p00 .LT. 10000.) THEN |
|---|
| 2455 | WRITE(wrf_err_message,*)& |
|---|
| 2456 | 'ndown_em: did not find base state parameters in wrfout. Add use_baseparam_fr_nml = .t. in &dynamics and rerun' |
|---|
| 2457 | CALL wrf_error_fatal(TRIM(wrf_err_message)) |
|---|
| 2458 | ENDIF |
|---|
| 2459 | ENDIF |
|---|
| 2460 | |
|---|
| 2461 | ! Base state potential temperature and inverse density (alpha = 1/rho) from |
|---|
| 2462 | ! the half eta levels and the base-profile surface pressure. Compute 1/rho |
|---|
| 2463 | ! from equation of state. The potential temperature is a perturbation from t0. |
|---|
| 2464 | |
|---|
| 2465 | DO j = jts, MIN(jte,jde-1) |
|---|
| 2466 | DO i = its, MIN(ite,ide-1) |
|---|
| 2467 | |
|---|
| 2468 | ! Base state pressure is a function of eta level and terrain, only, plus |
|---|
| 2469 | ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level |
|---|
| 2470 | ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K). |
|---|
| 2471 | ! The fine grid terrain is ht_fine, the interpolated is grid%ht. |
|---|
| 2472 | |
|---|
| 2473 | p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht_fine(i,j)/a/r_d ) **0.5 ) |
|---|
| 2474 | p_surf_int = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j) /a/r_d ) **0.5 ) |
|---|
| 2475 | |
|---|
| 2476 | DO k = 1, kte-1 |
|---|
| 2477 | grid%pb(i,k,j) = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
|---|
| 2478 | pb_int = grid%znu(k)*(p_surf_int - grid%p_top) + grid%p_top |
|---|
| 2479 | temp = MAX ( tiso, t00 + A*LOG(grid%pb(i,k,j)/p00) ) |
|---|
| 2480 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 2481 | grid%t_init(i,k,j) = temp*(p00/grid%pb(i,k,j))**(r_d/cp) - t0 |
|---|
| 2482 | ! grid%t_init(i,k,j) = (t00 + A*LOG(grid%pb(i,k,j)/p00))*(p00/grid%pb(i,k,j))**(r_d/cp) - t0 |
|---|
| 2483 | temp_int = MAX ( tiso, t00 + A*LOG(pb_int /p00) ) |
|---|
| 2484 | t_init_int(i,k,j)= temp_int*(p00/pb_int )**(r_d/cp) - t0 |
|---|
| 2485 | ! t_init_int(i,k,j)= (t00 + A*LOG(pb_int /p00))*(p00/pb_int )**(r_d/cp) - t0 |
|---|
| 2486 | grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm |
|---|
| 2487 | END DO |
|---|
| 2488 | |
|---|
| 2489 | ! Base state mu is defined as base state surface pressure minus grid%p_top |
|---|
| 2490 | |
|---|
| 2491 | grid%mub(i,j) = p_surf - grid%p_top |
|---|
| 2492 | |
|---|
| 2493 | ! Dry surface pressure is defined as the following (this mu is from the input file |
|---|
| 2494 | ! computed from the dry pressure). Here the dry pressure is just reconstituted. |
|---|
| 2495 | |
|---|
| 2496 | pd_surf = ( grid%mub(i,j) + grid%mu_2(i,j) ) + grid%p_top |
|---|
| 2497 | |
|---|
| 2498 | ! Integrate base geopotential, starting at terrain elevation. This assures that |
|---|
| 2499 | ! the base state is in exact hydrostatic balance with respect to the model equations. |
|---|
| 2500 | ! This field is on full levels. |
|---|
| 2501 | |
|---|
| 2502 | grid%phb(i,1,j) = grid%ht_fine(i,j) * g |
|---|
| 2503 | DO k = 2,kte |
|---|
| 2504 | grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) |
|---|
| 2505 | END DO |
|---|
| 2506 | END DO |
|---|
| 2507 | END DO |
|---|
| 2508 | |
|---|
| 2509 | ! Replace interpolated terrain with fine grid values. |
|---|
| 2510 | |
|---|
| 2511 | DO j = jts, MIN(jte,jde-1) |
|---|
| 2512 | DO i = its, MIN(ite,ide-1) |
|---|
| 2513 | grid%ht(i,j) = grid%ht_fine(i,j) |
|---|
| 2514 | END DO |
|---|
| 2515 | END DO |
|---|
| 2516 | |
|---|
| 2517 | ! Perturbation fields. |
|---|
| 2518 | |
|---|
| 2519 | DO j = jts, min(jde-1,jte) |
|---|
| 2520 | DO i = its, min(ide-1,ite) |
|---|
| 2521 | |
|---|
| 2522 | ! The potential temperature is THETAnest = THETAinterp + ( TBARnest - TBARinterp) |
|---|
| 2523 | |
|---|
| 2524 | DO k = 1 , kde-1 |
|---|
| 2525 | grid%t_2(i,k,j) = grid%t_2(i,k,j) + ( grid%t_init(i,k,j) - t_init_int(i,k,j) ) |
|---|
| 2526 | END DO |
|---|
| 2527 | |
|---|
| 2528 | ! Integrate the hydrostatic equation (from the RHS of the bigstep vertical momentum |
|---|
| 2529 | ! equation) down from the top to get the pressure perturbation. First get the pressure |
|---|
| 2530 | ! perturbation, moisture, and inverse density (total and perturbation) at the top-most level. |
|---|
| 2531 | |
|---|
| 2532 | k = kte-1 |
|---|
| 2533 | |
|---|
| 2534 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
|---|
| 2535 | qvf2 = 1./(1.+qvf1) |
|---|
| 2536 | qvf1 = qvf1*qvf2 |
|---|
| 2537 | |
|---|
| 2538 | grid%p(i,k,j) = - 0.5*(grid%mu_2(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 |
|---|
| 2539 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 2540 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf* & |
|---|
| 2541 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 2542 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
|---|
| 2543 | |
|---|
| 2544 | ! Now, integrate down the column to compute the pressure perturbation, and diagnose the two |
|---|
| 2545 | ! inverse density fields (total and perturbation). |
|---|
| 2546 | |
|---|
| 2547 | DO k=kte-2,1,-1 |
|---|
| 2548 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
|---|
| 2549 | qvf2 = 1./(1.+qvf1) |
|---|
| 2550 | qvf1 = qvf1*qvf2 |
|---|
| 2551 | grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_2(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) |
|---|
| 2552 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
|---|
| 2553 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_2(i,k,j)+t0)*qvf* & |
|---|
| 2554 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
|---|
| 2555 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
|---|
| 2556 | END DO |
|---|
| 2557 | |
|---|
| 2558 | ! This is the hydrostatic equation used in the model after the small timesteps. In |
|---|
| 2559 | ! the model, grid%al (inverse density) is computed from the geopotential. |
|---|
| 2560 | |
|---|
| 2561 | DO k = 2,kte |
|---|
| 2562 | grid%ph_2(i,k,j) = grid%ph_2(i,k-1,j) - & |
|---|
| 2563 | grid%dnw(k-1) * ( (grid%mub(i,j)+grid%mu_2(i,j))*grid%al(i,k-1,j) & |
|---|
| 2564 | + grid%mu_2(i,j)*grid%alb(i,k-1,j) ) |
|---|
| 2565 | grid%ph0(i,k,j) = grid%ph_2(i,k,j) + grid%phb(i,k,j) |
|---|
| 2566 | END DO |
|---|
| 2567 | |
|---|
| 2568 | END DO |
|---|
| 2569 | END DO |
|---|
| 2570 | |
|---|
| 2571 | DEALLOCATE ( t_init_int ) |
|---|
| 2572 | |
|---|
| 2573 | ips = its ; ipe = ite ; jps = jts ; jpe = jte ; kps = kts ; kpe = kte |
|---|
| 2574 | #ifdef DM_PARALLEL |
|---|
| 2575 | # include "HALO_EM_INIT_1.inc" |
|---|
| 2576 | # include "HALO_EM_INIT_2.inc" |
|---|
| 2577 | # include "HALO_EM_INIT_3.inc" |
|---|
| 2578 | # include "HALO_EM_INIT_4.inc" |
|---|
| 2579 | # include "HALO_EM_INIT_5.inc" |
|---|
| 2580 | #endif |
|---|
| 2581 | END SUBROUTINE rebalance |
|---|
| 2582 | |
|---|
| 2583 | !--------------------------------------------------------------------- |
|---|
| 2584 | |
|---|
| 2585 | RECURSIVE SUBROUTINE find_my_parent ( grid_ptr_in , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
|---|
| 2586 | |
|---|
| 2587 | ! RAR - Modified to correct problem in which the parent of a child domain could |
|---|
| 2588 | ! not be found in the namelist. This condition typically occurs while using the |
|---|
| 2589 | ! "allow_grid" namelist option when an inactive domain comes before an active |
|---|
| 2590 | ! domain in the list, i.e., the domain number of the active domain is greater than |
|---|
| 2591 | ! that of an inactive domain at the same level. |
|---|
| 2592 | ! |
|---|
| 2593 | USE module_domain |
|---|
| 2594 | |
|---|
| 2595 | TYPE(domain) , POINTER :: grid_ptr_in , grid_ptr_out |
|---|
| 2596 | TYPE(domain) , POINTER :: grid_ptr_sibling |
|---|
| 2597 | INTEGER :: id_wanted , id_i_am |
|---|
| 2598 | INTEGER :: nest ! RAR |
|---|
| 2599 | LOGICAL :: found_the_id |
|---|
| 2600 | |
|---|
| 2601 | found_the_id = .FALSE. |
|---|
| 2602 | grid_ptr_sibling => grid_ptr_in |
|---|
| 2603 | nest = 0 ! RAR |
|---|
| 2604 | |
|---|
| 2605 | DO WHILE ( ASSOCIATED ( grid_ptr_sibling ) ) |
|---|
| 2606 | |
|---|
| 2607 | IF ( grid_ptr_sibling%grid_id .EQ. id_wanted ) THEN |
|---|
| 2608 | found_the_id = .TRUE. |
|---|
| 2609 | grid_ptr_out => grid_ptr_sibling |
|---|
| 2610 | RETURN |
|---|
| 2611 | ! RAR ELSE IF ( grid_ptr_sibling%num_nests .GT. 0 ) THEN |
|---|
| 2612 | ELSE IF ( grid_ptr_sibling%num_nests .GT. 0 .AND. nest .LT. grid_ptr_sibling%num_nests ) THEN |
|---|
| 2613 | nest = nest + 1 ! RAR |
|---|
| 2614 | grid_ptr_sibling => grid_ptr_sibling%nests(nest)%ptr ! RAR |
|---|
| 2615 | CALL find_my_parent ( grid_ptr_sibling , grid_ptr_out , id_i_am , id_wanted , found_the_id ) |
|---|
| 2616 | IF (.NOT. found_the_id) grid_ptr_sibling => grid_ptr_sibling%parents(1)%ptr ! RAR |
|---|
| 2617 | ELSE |
|---|
| 2618 | grid_ptr_sibling => grid_ptr_sibling%sibling |
|---|
| 2619 | END IF |
|---|
| 2620 | |
|---|
| 2621 | END DO |
|---|
| 2622 | |
|---|
| 2623 | END SUBROUTINE find_my_parent |
|---|
| 2624 | |
|---|
| 2625 | !--------------------------------------------------------------------- |
|---|
| 2626 | |
|---|
| 2627 | RECURSIVE SUBROUTINE find_my_parent2 ( grid_ptr_in , grid_ptr_out , id_wanted , found_the_id ) |
|---|
| 2628 | |
|---|
| 2629 | USE module_domain |
|---|
| 2630 | |
|---|
| 2631 | TYPE(domain) , POINTER :: grid_ptr_in |
|---|
| 2632 | TYPE(domain) , POINTER :: grid_ptr_out |
|---|
| 2633 | INTEGER , INTENT(IN ) :: id_wanted |
|---|
| 2634 | LOGICAL , INTENT(OUT) :: found_the_id |
|---|
| 2635 | |
|---|
| 2636 | ! Local |
|---|
| 2637 | |
|---|
| 2638 | TYPE(domain) , POINTER :: grid_ptr_holder |
|---|
| 2639 | INTEGER :: kid |
|---|
| 2640 | |
|---|
| 2641 | ! Initializations |
|---|
| 2642 | |
|---|
| 2643 | found_the_id = .FALSE. |
|---|
| 2644 | grid_ptr_holder => grid_ptr_in |
|---|
| 2645 | |
|---|
| 2646 | |
|---|
| 2647 | ! Have we found the correct location? If so, we can just pop back up with |
|---|
| 2648 | ! the pointer to the right location (i.e. the parent), thank you very much. |
|---|
| 2649 | |
|---|
| 2650 | IF ( id_wanted .EQ. grid_ptr_in%grid_id ) THEN |
|---|
| 2651 | |
|---|
| 2652 | found_the_id = .TRUE. |
|---|
| 2653 | grid_ptr_out => grid_ptr_in |
|---|
| 2654 | |
|---|
| 2655 | |
|---|
| 2656 | ! We gotta keep looking. |
|---|
| 2657 | |
|---|
| 2658 | ELSE |
|---|
| 2659 | |
|---|
| 2660 | ! We drill down and process each nest from this domain. We don't have to |
|---|
| 2661 | ! worry about siblings, as we are running over all of the kids for this parent, |
|---|
| 2662 | ! so it amounts to the same set of domains being tested. |
|---|
| 2663 | |
|---|
| 2664 | loop_over_all_kids : DO kid = 1 , grid_ptr_in%num_nests |
|---|
| 2665 | |
|---|
| 2666 | IF ( ASSOCIATED ( grid_ptr_in%nests(kid)%ptr ) ) THEN |
|---|
| 2667 | |
|---|
| 2668 | CALL find_my_parent2 ( grid_ptr_in%nests(kid)%ptr , grid_ptr_out , id_wanted , found_the_id ) |
|---|
| 2669 | IF ( found_the_id ) THEN |
|---|
| 2670 | EXIT loop_over_all_kids |
|---|
| 2671 | END IF |
|---|
| 2672 | |
|---|
| 2673 | END IF |
|---|
| 2674 | END DO loop_over_all_kids |
|---|
| 2675 | |
|---|
| 2676 | END IF |
|---|
| 2677 | |
|---|
| 2678 | END SUBROUTINE find_my_parent2 |
|---|
| 2679 | |
|---|
| 2680 | #endif |
|---|
| 2681 | |
|---|
| 2682 | !--------------------------------------------------------------------- |
|---|
| 2683 | |
|---|
| 2684 | #ifdef VERT_UNIT |
|---|
| 2685 | |
|---|
| 2686 | !This is a main program for a small unit test for the vertical interpolation. |
|---|
| 2687 | |
|---|
| 2688 | program vint |
|---|
| 2689 | |
|---|
| 2690 | implicit none |
|---|
| 2691 | |
|---|
| 2692 | integer , parameter :: ij = 3 |
|---|
| 2693 | integer , parameter :: keta = 30 |
|---|
| 2694 | integer , parameter :: kgen =20 |
|---|
| 2695 | |
|---|
| 2696 | integer :: ids , ide , jds , jde , kds , kde , & |
|---|
| 2697 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2698 | its , ite , jts , jte , kts , kte |
|---|
| 2699 | |
|---|
| 2700 | integer :: generic |
|---|
| 2701 | |
|---|
| 2702 | real , dimension(1:ij,kgen,1:ij) :: fo , po |
|---|
| 2703 | real , dimension(1:ij,1:keta,1:ij) :: fn_calc , fn_interp , pn |
|---|
| 2704 | |
|---|
| 2705 | integer, parameter :: interp_type = 1 ! 2 |
|---|
| 2706 | ! integer, parameter :: lagrange_order = 2 ! 1 |
|---|
| 2707 | integer :: lagrange_order |
|---|
| 2708 | logical, parameter :: lowest_lev_from_sfc = .FALSE. ! .TRUE. |
|---|
| 2709 | logical, parameter :: use_levels_below_ground = .FALSE. ! .TRUE. |
|---|
| 2710 | logical, parameter :: use_surface = .FALSE. ! .TRUE. |
|---|
| 2711 | real , parameter :: zap_close_levels = 500. ! 100. |
|---|
| 2712 | integer, parameter :: force_sfc_in_vinterp = 0 ! 6 |
|---|
| 2713 | |
|---|
| 2714 | integer :: k |
|---|
| 2715 | |
|---|
| 2716 | ids = 1 ; ide = ij ; jds = 1 ; jde = ij ; kds = 1 ; kde = keta |
|---|
| 2717 | ims = 1 ; ime = ij ; jms = 1 ; jme = ij ; kms = 1 ; kme = keta |
|---|
| 2718 | its = 1 ; ite = ij ; jts = 1 ; jte = ij ; kts = 1 ; kte = keta |
|---|
| 2719 | |
|---|
| 2720 | generic = kgen |
|---|
| 2721 | |
|---|
| 2722 | print *,' ' |
|---|
| 2723 | print *,'------------------------------------' |
|---|
| 2724 | print *,'UNIT TEST FOR VERTICAL INTERPOLATION' |
|---|
| 2725 | print *,'------------------------------------' |
|---|
| 2726 | print *,' ' |
|---|
| 2727 | do lagrange_order = 1 , 2 |
|---|
| 2728 | print *,' ' |
|---|
| 2729 | print *,'------------------------------------' |
|---|
| 2730 | print *,'Lagrange Order = ',lagrange_order |
|---|
| 2731 | print *,'------------------------------------' |
|---|
| 2732 | print *,' ' |
|---|
| 2733 | call fillitup ( fo , po , fn_calc , pn , & |
|---|
| 2734 | ids , ide , jds , jde , kds , kde , & |
|---|
| 2735 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2736 | its , ite , jts , jte , kts , kte , & |
|---|
| 2737 | generic , lagrange_order ) |
|---|
| 2738 | |
|---|
| 2739 | print *,' ' |
|---|
| 2740 | print *,'Level Pressure Field' |
|---|
| 2741 | print *,' (Pa) (generic)' |
|---|
| 2742 | print *,'------------------------------------' |
|---|
| 2743 | print *,' ' |
|---|
| 2744 | do k = 1 , generic |
|---|
| 2745 | write (*,fmt='(i2,2x,f12.3,1x,g15.8)' ) & |
|---|
| 2746 | k,po(2,k,2),fo(2,k,2) |
|---|
| 2747 | end do |
|---|
| 2748 | print *,' ' |
|---|
| 2749 | |
|---|
| 2750 | call vert_interp ( fo , po , fn_interp , pn , & |
|---|
| 2751 | generic , 'T' , & |
|---|
| 2752 | interp_type , lagrange_order , & |
|---|
| 2753 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 2754 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 2755 | ids , ide , jds , jde , kds , kde , & |
|---|
| 2756 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2757 | its , ite , jts , jte , kts , kte ) |
|---|
| 2758 | |
|---|
| 2759 | print *,'Multi-Order Interpolator' |
|---|
| 2760 | print *,'------------------------------------' |
|---|
| 2761 | print *,' ' |
|---|
| 2762 | print *,'Level Pressure Field Field Field' |
|---|
| 2763 | print *,' (Pa) Calc Interp Diff' |
|---|
| 2764 | print *,'------------------------------------' |
|---|
| 2765 | print *,' ' |
|---|
| 2766 | do k = kts , kte-1 |
|---|
| 2767 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
|---|
| 2768 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
|---|
| 2769 | end do |
|---|
| 2770 | |
|---|
| 2771 | call vert_interp_old ( fo , po , fn_interp , pn , & |
|---|
| 2772 | generic , 'T' , & |
|---|
| 2773 | interp_type , lagrange_order , & |
|---|
| 2774 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 2775 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 2776 | ids , ide , jds , jde , kds , kde , & |
|---|
| 2777 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2778 | its , ite , jts , jte , kts , kte ) |
|---|
| 2779 | |
|---|
| 2780 | print *,'Linear Interpolator' |
|---|
| 2781 | print *,'------------------------------------' |
|---|
| 2782 | print *,' ' |
|---|
| 2783 | print *,'Level Pressure Field Field Field' |
|---|
| 2784 | print *,' (Pa) Calc Interp Diff' |
|---|
| 2785 | print *,'------------------------------------' |
|---|
| 2786 | print *,' ' |
|---|
| 2787 | do k = kts , kte-1 |
|---|
| 2788 | write (*,fmt='(i2,2x,f12.3,1x,3(g15.7))' ) & |
|---|
| 2789 | k,pn(2,k,2),fn_calc(2,k,2),fn_interp(2,k,2),fn_calc(2,k,2)-fn_interp(2,k,2) |
|---|
| 2790 | end do |
|---|
| 2791 | end do |
|---|
| 2792 | |
|---|
| 2793 | end program vint |
|---|
| 2794 | |
|---|
| 2795 | subroutine wrf_error_fatal (string) |
|---|
| 2796 | character (len=*) :: string |
|---|
| 2797 | print *,string |
|---|
| 2798 | stop |
|---|
| 2799 | end subroutine wrf_error_fatal |
|---|
| 2800 | |
|---|
| 2801 | subroutine fillitup ( fo , po , fn , pn , & |
|---|
| 2802 | ids , ide , jds , jde , kds , kde , & |
|---|
| 2803 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2804 | its , ite , jts , jte , kts , kte , & |
|---|
| 2805 | generic , lagrange_order ) |
|---|
| 2806 | |
|---|
| 2807 | implicit none |
|---|
| 2808 | |
|---|
| 2809 | integer , intent(in) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 2810 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2811 | its , ite , jts , jte , kts , kte |
|---|
| 2812 | |
|---|
| 2813 | integer , intent(in) :: generic , lagrange_order |
|---|
| 2814 | |
|---|
| 2815 | real , dimension(ims:ime,generic,jms:jme) , intent(out) :: fo , po |
|---|
| 2816 | real , dimension(ims:ime,kms:kme,jms:jme) , intent(out) :: fn , pn |
|---|
| 2817 | |
|---|
| 2818 | integer :: i , j , k |
|---|
| 2819 | |
|---|
| 2820 | real , parameter :: piov2 = 3.14159265358 / 2. |
|---|
| 2821 | |
|---|
| 2822 | k = 1 |
|---|
| 2823 | do j = jts , jte |
|---|
| 2824 | do i = its , ite |
|---|
| 2825 | po(i,k,j) = 102000. |
|---|
| 2826 | end do |
|---|
| 2827 | end do |
|---|
| 2828 | |
|---|
| 2829 | do k = 2 , generic |
|---|
| 2830 | do j = jts , jte |
|---|
| 2831 | do i = its , ite |
|---|
| 2832 | po(i,k,j) = ( 5000. * ( 1 - (k-1) ) + 100000. * ( (k-1) - (generic-1) ) ) / (1. - real(generic-1) ) |
|---|
| 2833 | end do |
|---|
| 2834 | end do |
|---|
| 2835 | end do |
|---|
| 2836 | |
|---|
| 2837 | if ( lagrange_order .eq. 1 ) then |
|---|
| 2838 | do k = 1 , generic |
|---|
| 2839 | do j = jts , jte |
|---|
| 2840 | do i = its , ite |
|---|
| 2841 | fo(i,k,j) = po(i,k,j) |
|---|
| 2842 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
|---|
| 2843 | end do |
|---|
| 2844 | end do |
|---|
| 2845 | end do |
|---|
| 2846 | else if ( lagrange_order .eq. 2 ) then |
|---|
| 2847 | do k = 1 , generic |
|---|
| 2848 | do j = jts , jte |
|---|
| 2849 | do i = its , ite |
|---|
| 2850 | fo(i,k,j) = (((po(i,k,j)-5000.)/102000.)*((102000.-po(i,k,j))/102000.))*102000. |
|---|
| 2851 | ! fo(i,k,j) = sin(po(i,k,j) * piov2 / 102000. ) |
|---|
| 2852 | end do |
|---|
| 2853 | end do |
|---|
| 2854 | end do |
|---|
| 2855 | end if |
|---|
| 2856 | |
|---|
| 2857 | !!!!!!!!!!!! |
|---|
| 2858 | |
|---|
| 2859 | do k = kts , kte |
|---|
| 2860 | do j = jts , jte |
|---|
| 2861 | do i = its , ite |
|---|
| 2862 | pn(i,k,j) = ( 5000. * ( 0 - (k-1) ) + 102000. * ( (k-1) - (kte-1) ) ) / (-1. * real(kte-1) ) |
|---|
| 2863 | end do |
|---|
| 2864 | end do |
|---|
| 2865 | end do |
|---|
| 2866 | |
|---|
| 2867 | do k = kts , kte-1 |
|---|
| 2868 | do j = jts , jte |
|---|
| 2869 | do i = its , ite |
|---|
| 2870 | pn(i,k,j) = ( pn(i,k,j) + pn(i,k+1,j) ) /2. |
|---|
| 2871 | end do |
|---|
| 2872 | end do |
|---|
| 2873 | end do |
|---|
| 2874 | |
|---|
| 2875 | |
|---|
| 2876 | if ( lagrange_order .eq. 1 ) then |
|---|
| 2877 | do k = kts , kte-1 |
|---|
| 2878 | do j = jts , jte |
|---|
| 2879 | do i = its , ite |
|---|
| 2880 | fn(i,k,j) = pn(i,k,j) |
|---|
| 2881 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
|---|
| 2882 | end do |
|---|
| 2883 | end do |
|---|
| 2884 | end do |
|---|
| 2885 | else if ( lagrange_order .eq. 2 ) then |
|---|
| 2886 | do k = kts , kte-1 |
|---|
| 2887 | do j = jts , jte |
|---|
| 2888 | do i = its , ite |
|---|
| 2889 | fn(i,k,j) = (((pn(i,k,j)-5000.)/102000.)*((102000.-pn(i,k,j))/102000.))*102000. |
|---|
| 2890 | ! fn(i,k,j) = sin(pn(i,k,j) * piov2 / 102000. ) |
|---|
| 2891 | end do |
|---|
| 2892 | end do |
|---|
| 2893 | end do |
|---|
| 2894 | end if |
|---|
| 2895 | |
|---|
| 2896 | end subroutine fillitup |
|---|
| 2897 | |
|---|
| 2898 | #endif |
|---|
| 2899 | |
|---|
| 2900 | !--------------------------------------------------------------------- |
|---|
| 2901 | |
|---|
| 2902 | SUBROUTINE vert_interp ( fo , po , fnew , pnu , & |
|---|
| 2903 | generic , var_type , & |
|---|
| 2904 | interp_type , lagrange_order , extrap_type , & |
|---|
| 2905 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 2906 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 2907 | ids , ide , jds , jde , kds , kde , & |
|---|
| 2908 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2909 | its , ite , jts , jte , kts , kte ) |
|---|
| 2910 | |
|---|
| 2911 | ! Vertically interpolate the new field. The original field on the original |
|---|
| 2912 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
|---|
| 2913 | |
|---|
| 2914 | IMPLICIT NONE |
|---|
| 2915 | |
|---|
| 2916 | INTEGER , INTENT(IN) :: interp_type , lagrange_order , extrap_type |
|---|
| 2917 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc , use_levels_below_ground , use_surface |
|---|
| 2918 | REAL , INTENT(IN) :: zap_close_levels |
|---|
| 2919 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
|---|
| 2920 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 2921 | ims , ime , jms , jme , kms , kme , & |
|---|
| 2922 | its , ite , jts , jte , kts , kte |
|---|
| 2923 | INTEGER , INTENT(IN) :: generic |
|---|
| 2924 | |
|---|
| 2925 | CHARACTER (LEN=1) :: var_type |
|---|
| 2926 | |
|---|
| 2927 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: fo , po |
|---|
| 2928 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
|---|
| 2929 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
|---|
| 2930 | |
|---|
| 2931 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: forig , porig |
|---|
| 2932 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
|---|
| 2933 | |
|---|
| 2934 | ! Local vars |
|---|
| 2935 | |
|---|
| 2936 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 , knext |
|---|
| 2937 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
|---|
| 2938 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
|---|
| 2939 | INTEGER , DIMENSION(ims:ime ) :: ks |
|---|
| 2940 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
|---|
| 2941 | INTEGER :: count , zap , zap_below , zap_above , kst , kcount |
|---|
| 2942 | INTEGER :: kinterp_start , kinterp_end , sfc_level |
|---|
| 2943 | |
|---|
| 2944 | LOGICAL :: any_below_ground |
|---|
| 2945 | |
|---|
| 2946 | REAL :: p1 , p2 , pn, hold |
|---|
| 2947 | REAL , DIMENSION(1:generic) :: ordered_porig , ordered_forig |
|---|
| 2948 | REAL , DIMENSION(kts:kte) :: ordered_pnew , ordered_fnew |
|---|
| 2949 | |
|---|
| 2950 | ! Excluded middle. |
|---|
| 2951 | |
|---|
| 2952 | LOGICAL :: any_valid_points |
|---|
| 2953 | INTEGER :: i_valid , j_valid |
|---|
| 2954 | LOGICAL :: flip_data_required |
|---|
| 2955 | |
|---|
| 2956 | ! Horiontal loop bounds for different variable types. |
|---|
| 2957 | |
|---|
| 2958 | IF ( var_type .EQ. 'U' ) THEN |
|---|
| 2959 | istart = its |
|---|
| 2960 | iend = ite |
|---|
| 2961 | jstart = jts |
|---|
| 2962 | jend = MIN(jde-1,jte) |
|---|
| 2963 | kstart = kts |
|---|
| 2964 | kend = kte-1 |
|---|
| 2965 | DO j = jstart,jend |
|---|
| 2966 | DO k = 1,generic |
|---|
| 2967 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 2968 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2969 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
|---|
| 2970 | END DO |
|---|
| 2971 | END DO |
|---|
| 2972 | IF ( ids .EQ. its ) THEN |
|---|
| 2973 | DO k = 1,generic |
|---|
| 2974 | porig(its,k,j) = po(its,k,j) |
|---|
| 2975 | END DO |
|---|
| 2976 | END IF |
|---|
| 2977 | IF ( ide .EQ. ite ) THEN |
|---|
| 2978 | DO k = 1,generic |
|---|
| 2979 | porig(ite,k,j) = po(ite-1,k,j) |
|---|
| 2980 | END DO |
|---|
| 2981 | END IF |
|---|
| 2982 | |
|---|
| 2983 | DO k = kstart,kend |
|---|
| 2984 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 2985 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 2986 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
|---|
| 2987 | END DO |
|---|
| 2988 | END DO |
|---|
| 2989 | IF ( ids .EQ. its ) THEN |
|---|
| 2990 | DO k = kstart,kend |
|---|
| 2991 | pnew(its,k,j) = pnu(its,k,j) |
|---|
| 2992 | END DO |
|---|
| 2993 | END IF |
|---|
| 2994 | IF ( ide .EQ. ite ) THEN |
|---|
| 2995 | DO k = kstart,kend |
|---|
| 2996 | pnew(ite,k,j) = pnu(ite-1,k,j) |
|---|
| 2997 | END DO |
|---|
| 2998 | END IF |
|---|
| 2999 | END DO |
|---|
| 3000 | ELSE IF ( var_type .EQ. 'V' ) THEN |
|---|
| 3001 | istart = its |
|---|
| 3002 | iend = MIN(ide-1,ite) |
|---|
| 3003 | jstart = jts |
|---|
| 3004 | jend = jte |
|---|
| 3005 | kstart = kts |
|---|
| 3006 | kend = kte-1 |
|---|
| 3007 | DO i = istart,iend |
|---|
| 3008 | DO k = 1,generic |
|---|
| 3009 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 3010 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3011 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
|---|
| 3012 | END DO |
|---|
| 3013 | END DO |
|---|
| 3014 | IF ( jds .EQ. jts ) THEN |
|---|
| 3015 | DO k = 1,generic |
|---|
| 3016 | porig(i,k,jts) = po(i,k,jts) |
|---|
| 3017 | END DO |
|---|
| 3018 | END IF |
|---|
| 3019 | IF ( jde .EQ. jte ) THEN |
|---|
| 3020 | DO k = 1,generic |
|---|
| 3021 | porig(i,k,jte) = po(i,k,jte-1) |
|---|
| 3022 | END DO |
|---|
| 3023 | END IF |
|---|
| 3024 | |
|---|
| 3025 | DO k = kstart,kend |
|---|
| 3026 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 3027 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3028 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
|---|
| 3029 | END DO |
|---|
| 3030 | END DO |
|---|
| 3031 | IF ( jds .EQ. jts ) THEN |
|---|
| 3032 | DO k = kstart,kend |
|---|
| 3033 | pnew(i,k,jts) = pnu(i,k,jts) |
|---|
| 3034 | END DO |
|---|
| 3035 | END IF |
|---|
| 3036 | IF ( jde .EQ. jte ) THEN |
|---|
| 3037 | DO k = kstart,kend |
|---|
| 3038 | pnew(i,k,jte) = pnu(i,k,jte-1) |
|---|
| 3039 | END DO |
|---|
| 3040 | END IF |
|---|
| 3041 | END DO |
|---|
| 3042 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
|---|
| 3043 | istart = its |
|---|
| 3044 | iend = MIN(ide-1,ite) |
|---|
| 3045 | jstart = jts |
|---|
| 3046 | jend = MIN(jde-1,jte) |
|---|
| 3047 | kstart = kts |
|---|
| 3048 | kend = kte |
|---|
| 3049 | DO j = jstart,jend |
|---|
| 3050 | DO k = 1,generic |
|---|
| 3051 | DO i = istart,iend |
|---|
| 3052 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3053 | porig(i,k,j) = po(i,k,j) |
|---|
| 3054 | END DO |
|---|
| 3055 | END DO |
|---|
| 3056 | |
|---|
| 3057 | DO k = kstart,kend |
|---|
| 3058 | DO i = istart,iend |
|---|
| 3059 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3060 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3061 | END DO |
|---|
| 3062 | END DO |
|---|
| 3063 | END DO |
|---|
| 3064 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
|---|
| 3065 | istart = its |
|---|
| 3066 | iend = MIN(ide-1,ite) |
|---|
| 3067 | jstart = jts |
|---|
| 3068 | jend = MIN(jde-1,jte) |
|---|
| 3069 | kstart = kts |
|---|
| 3070 | kend = kte-1 |
|---|
| 3071 | DO j = jstart,jend |
|---|
| 3072 | DO k = 1,generic |
|---|
| 3073 | DO i = istart,iend |
|---|
| 3074 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3075 | porig(i,k,j) = po(i,k,j) |
|---|
| 3076 | END DO |
|---|
| 3077 | END DO |
|---|
| 3078 | |
|---|
| 3079 | DO k = kstart,kend |
|---|
| 3080 | DO i = istart,iend |
|---|
| 3081 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3082 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3083 | END DO |
|---|
| 3084 | END DO |
|---|
| 3085 | END DO |
|---|
| 3086 | ELSE |
|---|
| 3087 | istart = its |
|---|
| 3088 | iend = MIN(ide-1,ite) |
|---|
| 3089 | jstart = jts |
|---|
| 3090 | jend = MIN(jde-1,jte) |
|---|
| 3091 | kstart = kts |
|---|
| 3092 | kend = kte-1 |
|---|
| 3093 | DO j = jstart,jend |
|---|
| 3094 | DO k = 1,generic |
|---|
| 3095 | DO i = istart,iend |
|---|
| 3096 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3097 | porig(i,k,j) = po(i,k,j) |
|---|
| 3098 | END DO |
|---|
| 3099 | END DO |
|---|
| 3100 | |
|---|
| 3101 | DO k = kstart,kend |
|---|
| 3102 | DO i = istart,iend |
|---|
| 3103 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3104 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3105 | END DO |
|---|
| 3106 | END DO |
|---|
| 3107 | END DO |
|---|
| 3108 | END IF |
|---|
| 3109 | |
|---|
| 3110 | ! We need to find if there are any valid non-excluded-middle points in this |
|---|
| 3111 | ! tile. If so, then we need to hang on to a valid i,j location. |
|---|
| 3112 | |
|---|
| 3113 | any_valid_points = .false. |
|---|
| 3114 | find_valid : DO j = jstart , jend |
|---|
| 3115 | DO i = istart , iend |
|---|
| 3116 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3117 | any_valid_points = .true. |
|---|
| 3118 | i_valid = i |
|---|
| 3119 | j_valid = j |
|---|
| 3120 | EXIT find_valid |
|---|
| 3121 | END DO |
|---|
| 3122 | END DO find_valid |
|---|
| 3123 | IF ( .NOT. any_valid_points ) THEN |
|---|
| 3124 | RETURN |
|---|
| 3125 | END IF |
|---|
| 3126 | |
|---|
| 3127 | IF ( porig(i_valid,2,j_valid) .LT. porig(i_valid,generic,j_valid) ) THEN |
|---|
| 3128 | flip_data_required = .true. |
|---|
| 3129 | ELSE |
|---|
| 3130 | flip_data_required = .false. |
|---|
| 3131 | END IF |
|---|
| 3132 | |
|---|
| 3133 | DO j = jstart , jend |
|---|
| 3134 | |
|---|
| 3135 | ! The lowest level is the surface. Levels 2 through "generic" are supposed to |
|---|
| 3136 | ! be "bottom-up". Flip if they are not. This is based on the input pressure |
|---|
| 3137 | ! array. |
|---|
| 3138 | |
|---|
| 3139 | IF ( flip_data_required ) THEN |
|---|
| 3140 | DO kn = 2 , ( generic + 1 ) / 2 |
|---|
| 3141 | DO i = istart , iend |
|---|
| 3142 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3143 | hold = porig(i,kn,j) |
|---|
| 3144 | porig(i,kn,j) = porig(i,generic+2-kn,j) |
|---|
| 3145 | porig(i,generic+2-kn,j) = hold |
|---|
| 3146 | forig(i,kn,j) = fo (i,generic+2-kn,j) |
|---|
| 3147 | forig(i,generic+2-kn,j) = fo (i,kn,j) |
|---|
| 3148 | END DO |
|---|
| 3149 | END DO |
|---|
| 3150 | DO i = istart , iend |
|---|
| 3151 | forig(i,1,j) = fo (i,1,j) |
|---|
| 3152 | END DO |
|---|
| 3153 | IF ( MOD(generic,2) .EQ. 0 ) THEN |
|---|
| 3154 | k=generic/2 + 1 |
|---|
| 3155 | DO i = istart , iend |
|---|
| 3156 | forig(i,k,j) = fo (i,k,j) |
|---|
| 3157 | END DO |
|---|
| 3158 | END IF |
|---|
| 3159 | ELSE |
|---|
| 3160 | DO kn = 1 , generic |
|---|
| 3161 | DO i = istart , iend |
|---|
| 3162 | forig(i,kn,j) = fo (i,kn,j) |
|---|
| 3163 | END DO |
|---|
| 3164 | END DO |
|---|
| 3165 | END IF |
|---|
| 3166 | |
|---|
| 3167 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
|---|
| 3168 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
|---|
| 3169 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
|---|
| 3170 | ! in the vertical interpolation. |
|---|
| 3171 | |
|---|
| 3172 | DO i = istart , iend |
|---|
| 3173 | ko_above_sfc(i) = -1 |
|---|
| 3174 | END DO |
|---|
| 3175 | DO ko = kstart+1 , generic |
|---|
| 3176 | DO i = istart , iend |
|---|
| 3177 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3178 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
|---|
| 3179 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
|---|
| 3180 | ko_above_sfc(i) = ko |
|---|
| 3181 | END IF |
|---|
| 3182 | END IF |
|---|
| 3183 | END DO |
|---|
| 3184 | END DO |
|---|
| 3185 | |
|---|
| 3186 | ! Piece together columns of the original input data. Pass the vertical columns to |
|---|
| 3187 | ! the iterpolator. |
|---|
| 3188 | |
|---|
| 3189 | DO i = istart , iend |
|---|
| 3190 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 3191 | |
|---|
| 3192 | ! If the surface value is in the middle of the array, three steps: 1) do the |
|---|
| 3193 | ! values below the ground (this is just to catch the occasional value that is |
|---|
| 3194 | ! inconsistently below the surface based on input data), 2) do the surface level, then |
|---|
| 3195 | ! 3) add in the levels that are above the surface. For the levels next to the surface, |
|---|
| 3196 | ! we check to remove any levels that are "too close". When building the column of input |
|---|
| 3197 | ! pressures, we also attend to the request for forcing the surface analysis to be used |
|---|
| 3198 | ! in a few lower eta-levels. |
|---|
| 3199 | |
|---|
| 3200 | ! Fill in the column from up to the level just below the surface with the input |
|---|
| 3201 | ! presssure and the input field (orig or old, which ever). For an isobaric input |
|---|
| 3202 | ! file, this data is isobaric. |
|---|
| 3203 | |
|---|
| 3204 | ! How many levels have we skipped in the input column. |
|---|
| 3205 | |
|---|
| 3206 | zap = 0 |
|---|
| 3207 | zap_below = 0 |
|---|
| 3208 | zap_above = 0 |
|---|
| 3209 | |
|---|
| 3210 | IF ( ko_above_sfc(i) .GT. 2 ) THEN |
|---|
| 3211 | count = 1 |
|---|
| 3212 | DO ko = 2 , ko_above_sfc(i)-1 |
|---|
| 3213 | ordered_porig(count) = porig(i,ko,j) |
|---|
| 3214 | ordered_forig(count) = forig(i,ko,j) |
|---|
| 3215 | count = count + 1 |
|---|
| 3216 | END DO |
|---|
| 3217 | |
|---|
| 3218 | ! Make sure the pressure just below the surface is not "too close", this |
|---|
| 3219 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
|---|
| 3220 | ! instance, we toss out the offending level (NOT the surface one) by simply |
|---|
| 3221 | ! decrementing the accumulating loop counter. |
|---|
| 3222 | |
|---|
| 3223 | IF ( ordered_porig(count-1) - porig(i,1,j) .LT. zap_close_levels ) THEN |
|---|
| 3224 | count = count -1 |
|---|
| 3225 | zap = 1 |
|---|
| 3226 | zap_below = 1 |
|---|
| 3227 | END IF |
|---|
| 3228 | |
|---|
| 3229 | ! Add in the surface values. |
|---|
| 3230 | |
|---|
| 3231 | ordered_porig(count) = porig(i,1,j) |
|---|
| 3232 | ordered_forig(count) = forig(i,1,j) |
|---|
| 3233 | count = count + 1 |
|---|
| 3234 | |
|---|
| 3235 | ! A usual way to do the vertical interpolation is to pay more attention to the |
|---|
| 3236 | ! surface data. Why? Well it has about 20x the density as the upper air, so we |
|---|
| 3237 | ! hope the analysis is better there. We more strongly use this data by artificially |
|---|
| 3238 | ! tossing out levels above the surface that are beneath a certain number of prescribed |
|---|
| 3239 | ! eta levels at this (i,j). The "zap" value is how many levels of input we are |
|---|
| 3240 | ! removing, which is used to tell the interpolator how many valid values are in |
|---|
| 3241 | ! the column. The "count" value is the increment to the index of levels, and is |
|---|
| 3242 | ! only used for assignments. |
|---|
| 3243 | |
|---|
| 3244 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
|---|
| 3245 | |
|---|
| 3246 | ! Get the pressure at the eta level. We want to remove all input pressure levels |
|---|
| 3247 | ! between the level above the surface to the pressure at this eta surface. That |
|---|
| 3248 | ! forces the surface value to be used through the selected eta level. Keep track |
|---|
| 3249 | ! of two things: the level to use above the eta levels, and how many levels we are |
|---|
| 3250 | ! skipping. |
|---|
| 3251 | |
|---|
| 3252 | knext = ko_above_sfc(i) |
|---|
| 3253 | find_level : DO ko = ko_above_sfc(i) , generic |
|---|
| 3254 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
|---|
| 3255 | knext = ko |
|---|
| 3256 | exit find_level |
|---|
| 3257 | ELSE |
|---|
| 3258 | zap = zap + 1 |
|---|
| 3259 | zap_above = zap_above + 1 |
|---|
| 3260 | END IF |
|---|
| 3261 | END DO find_level |
|---|
| 3262 | |
|---|
| 3263 | ! No request for special interpolation, so we just assign the next level to use |
|---|
| 3264 | ! above the surface as, ta da, the first level above the surface. I know, wow. |
|---|
| 3265 | |
|---|
| 3266 | ELSE |
|---|
| 3267 | knext = ko_above_sfc(i) |
|---|
| 3268 | END IF |
|---|
| 3269 | |
|---|
| 3270 | ! One more time, make sure the pressure just above the surface is not "too close", this |
|---|
| 3271 | ! will cause havoc with the higher order interpolators. In case of a "too close" |
|---|
| 3272 | ! instance, we toss out the offending level above the surface (NOT the surface one) by simply |
|---|
| 3273 | ! incrementing the loop counter. Here, count-1 is the surface level and knext is either |
|---|
| 3274 | ! the next level up OR it is the level above the prescribed number of eta surfaces. |
|---|
| 3275 | |
|---|
| 3276 | IF ( ordered_porig(count-1) - porig(i,knext,j) .LT. zap_close_levels ) THEN |
|---|
| 3277 | kst = knext+1 |
|---|
| 3278 | zap = zap + 1 |
|---|
| 3279 | zap_above = zap_above + 1 |
|---|
| 3280 | ELSE |
|---|
| 3281 | kst = knext |
|---|
| 3282 | END IF |
|---|
| 3283 | |
|---|
| 3284 | DO ko = kst , generic |
|---|
| 3285 | ordered_porig(count) = porig(i,ko,j) |
|---|
| 3286 | ordered_forig(count) = forig(i,ko,j) |
|---|
| 3287 | count = count + 1 |
|---|
| 3288 | END DO |
|---|
| 3289 | |
|---|
| 3290 | ! This is easy, the surface is the lowest level, just stick them in, in this order. OK, |
|---|
| 3291 | ! there are a couple of subtleties. We have to check for that special interpolation that |
|---|
| 3292 | ! skips some input levels so that the surface is used for the lowest few eta levels. Also, |
|---|
| 3293 | ! we must make sure that we still do not have levels that are "too close" together. |
|---|
| 3294 | |
|---|
| 3295 | ELSE |
|---|
| 3296 | |
|---|
| 3297 | ! Initialize no input levels have yet been removed from consideration. |
|---|
| 3298 | |
|---|
| 3299 | zap = 0 |
|---|
| 3300 | |
|---|
| 3301 | ! The surface is the lowest level, so it gets set right away to location 1. |
|---|
| 3302 | |
|---|
| 3303 | ordered_porig(1) = porig(i,1,j) |
|---|
| 3304 | ordered_forig(1) = forig(i,1,j) |
|---|
| 3305 | |
|---|
| 3306 | ! We start filling in the array at loc 2, as in just above the level we just stored. |
|---|
| 3307 | |
|---|
| 3308 | count = 2 |
|---|
| 3309 | |
|---|
| 3310 | ! Are we forcing the interpolator to skip valid input levels so that the |
|---|
| 3311 | ! surface data is used through more levels? Essentially as above. |
|---|
| 3312 | |
|---|
| 3313 | IF ( force_sfc_in_vinterp .GT. 0 ) THEN |
|---|
| 3314 | knext = 2 |
|---|
| 3315 | find_level2: DO ko = 2 , generic |
|---|
| 3316 | IF ( porig(i,ko,j) .LE. pnew(i,force_sfc_in_vinterp,j) ) THEN |
|---|
| 3317 | knext = ko |
|---|
| 3318 | exit find_level2 |
|---|
| 3319 | ELSE |
|---|
| 3320 | zap = zap + 1 |
|---|
| 3321 | zap_above = zap_above + 1 |
|---|
| 3322 | END IF |
|---|
| 3323 | END DO find_level2 |
|---|
| 3324 | ELSE |
|---|
| 3325 | knext = 2 |
|---|
| 3326 | END IF |
|---|
| 3327 | |
|---|
| 3328 | ! Fill in the data above the surface. The "knext" index is either the one |
|---|
| 3329 | ! just above the surface OR it is the index associated with the level that |
|---|
| 3330 | ! is just above the pressure at this (i,j) of the top eta level that is to |
|---|
| 3331 | ! be directly impacted with the surface level in interpolation. |
|---|
| 3332 | |
|---|
| 3333 | DO ko = knext , generic |
|---|
| 3334 | IF ( ( ordered_porig(count-1) - porig(i,ko,j) .LT. zap_close_levels ) .AND. & |
|---|
| 3335 | ( ko .LT. generic ) ) THEN |
|---|
| 3336 | zap = zap + 1 |
|---|
| 3337 | zap_above = zap_above + 1 |
|---|
| 3338 | CYCLE |
|---|
| 3339 | END IF |
|---|
| 3340 | ordered_porig(count) = porig(i,ko,j) |
|---|
| 3341 | ordered_forig(count) = forig(i,ko,j) |
|---|
| 3342 | count = count + 1 |
|---|
| 3343 | END DO |
|---|
| 3344 | |
|---|
| 3345 | END IF |
|---|
| 3346 | |
|---|
| 3347 | ! Now get the column of the "new" pressure data. So, this one is easy. |
|---|
| 3348 | |
|---|
| 3349 | DO kn = kstart , kend |
|---|
| 3350 | ordered_pnew(kn) = pnew(i,kn,j) |
|---|
| 3351 | END DO |
|---|
| 3352 | |
|---|
| 3353 | ! How many levels (count) are we shipping to the Lagrange interpolator. |
|---|
| 3354 | |
|---|
| 3355 | IF ( ( use_levels_below_ground ) .AND. ( use_surface ) ) THEN |
|---|
| 3356 | |
|---|
| 3357 | ! Use all levels, including the input surface, and including the pressure |
|---|
| 3358 | ! levels below ground. We know to stop when we have reached the top of |
|---|
| 3359 | ! the input pressure data. |
|---|
| 3360 | |
|---|
| 3361 | count = 0 |
|---|
| 3362 | find_how_many_1 : DO ko = 1 , generic |
|---|
| 3363 | IF ( porig(i,generic,j) .EQ. ordered_porig(ko) ) THEN |
|---|
| 3364 | count = count + 1 |
|---|
| 3365 | EXIT find_how_many_1 |
|---|
| 3366 | ELSE |
|---|
| 3367 | count = count + 1 |
|---|
| 3368 | END IF |
|---|
| 3369 | END DO find_how_many_1 |
|---|
| 3370 | kinterp_start = 1 |
|---|
| 3371 | kinterp_end = kinterp_start + count - 1 |
|---|
| 3372 | |
|---|
| 3373 | ELSE IF ( ( use_levels_below_ground ) .AND. ( .NOT. use_surface ) ) THEN |
|---|
| 3374 | |
|---|
| 3375 | ! Use all levels (excluding the input surface) and including the pressure |
|---|
| 3376 | ! levels below ground. We know to stop when we have reached the top of |
|---|
| 3377 | ! the input pressure data. |
|---|
| 3378 | |
|---|
| 3379 | count = 0 |
|---|
| 3380 | find_sfc_2 : DO ko = 1 , generic |
|---|
| 3381 | IF ( porig(i,1,j) .EQ. ordered_porig(ko) ) THEN |
|---|
| 3382 | sfc_level = ko |
|---|
| 3383 | EXIT find_sfc_2 |
|---|
| 3384 | END IF |
|---|
| 3385 | END DO find_sfc_2 |
|---|
| 3386 | |
|---|
| 3387 | DO ko = sfc_level , generic-1 |
|---|
| 3388 | ordered_porig(ko) = ordered_porig(ko+1) |
|---|
| 3389 | ordered_forig(ko) = ordered_forig(ko+1) |
|---|
| 3390 | END DO |
|---|
| 3391 | ordered_porig(generic) = 1.E-5 |
|---|
| 3392 | ordered_forig(generic) = 1.E10 |
|---|
| 3393 | |
|---|
| 3394 | count = 0 |
|---|
| 3395 | find_how_many_2 : DO ko = 1 , generic |
|---|
| 3396 | IF ( porig(i,generic,j) .EQ. ordered_porig(ko) ) THEN |
|---|
| 3397 | count = count + 1 |
|---|
| 3398 | EXIT find_how_many_2 |
|---|
| 3399 | ELSE |
|---|
| 3400 | count = count + 1 |
|---|
| 3401 | END IF |
|---|
| 3402 | END DO find_how_many_2 |
|---|
| 3403 | kinterp_start = 1 |
|---|
| 3404 | kinterp_end = kinterp_start + count - 1 |
|---|
| 3405 | |
|---|
| 3406 | ELSE IF ( ( .NOT. use_levels_below_ground ) .AND. ( use_surface ) ) THEN |
|---|
| 3407 | |
|---|
| 3408 | ! Use all levels above the input surface pressure. |
|---|
| 3409 | |
|---|
| 3410 | kcount = ko_above_sfc(i)-1-zap_below |
|---|
| 3411 | count = 0 |
|---|
| 3412 | DO ko = 1 , generic |
|---|
| 3413 | IF ( porig(i,ko,j) .EQ. ordered_porig(kcount) ) THEN |
|---|
| 3414 | ! write (6,fmt='(f11.3,f11.3,g11.5)') porig(i,ko,j),ordered_porig(kcount),ordered_forig(kcount) |
|---|
| 3415 | kcount = kcount + 1 |
|---|
| 3416 | count = count + 1 |
|---|
| 3417 | ELSE |
|---|
| 3418 | ! write (6,fmt='(f11.3 )') porig(i,ko,j) |
|---|
| 3419 | END IF |
|---|
| 3420 | END DO |
|---|
| 3421 | kinterp_start = ko_above_sfc(i)-1-zap_below |
|---|
| 3422 | kinterp_end = kinterp_start + count - 1 |
|---|
| 3423 | |
|---|
| 3424 | END IF |
|---|
| 3425 | |
|---|
| 3426 | ! The polynomials are either in pressure or LOG(pressure). |
|---|
| 3427 | |
|---|
| 3428 | IF ( interp_type .EQ. 1 ) THEN |
|---|
| 3429 | CALL lagrange_setup ( var_type , interp_type , & |
|---|
| 3430 | ordered_porig(kinterp_start:kinterp_end) , & |
|---|
| 3431 | ordered_forig(kinterp_start:kinterp_end) , & |
|---|
| 3432 | count , lagrange_order , extrap_type , & |
|---|
| 3433 | ordered_pnew(kstart:kend) , ordered_fnew , kend-kstart+1 ,i,j) |
|---|
| 3434 | ELSE |
|---|
| 3435 | CALL lagrange_setup ( var_type , interp_type , & |
|---|
| 3436 | LOG(ordered_porig(kinterp_start:kinterp_end)) , & |
|---|
| 3437 | ordered_forig(kinterp_start:kinterp_end) , & |
|---|
| 3438 | count , lagrange_order , extrap_type , & |
|---|
| 3439 | LOG(ordered_pnew(kstart:kend)) , ordered_fnew , kend-kstart+1 ,i,j) |
|---|
| 3440 | END IF |
|---|
| 3441 | |
|---|
| 3442 | ! Save the computed data. |
|---|
| 3443 | |
|---|
| 3444 | DO kn = kstart , kend |
|---|
| 3445 | fnew(i,kn,j) = ordered_fnew(kn) |
|---|
| 3446 | END DO |
|---|
| 3447 | |
|---|
| 3448 | ! There may have been a request to have the surface data from the input field |
|---|
| 3449 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
|---|
| 3450 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
|---|
| 3451 | |
|---|
| 3452 | IF ( lowest_lev_from_sfc ) THEN |
|---|
| 3453 | fnew(i,1,j) = forig(i,ko_above_sfc(i)-1,j) |
|---|
| 3454 | END IF |
|---|
| 3455 | |
|---|
| 3456 | END DO |
|---|
| 3457 | |
|---|
| 3458 | END DO |
|---|
| 3459 | |
|---|
| 3460 | END SUBROUTINE vert_interp |
|---|
| 3461 | |
|---|
| 3462 | !--------------------------------------------------------------------- |
|---|
| 3463 | |
|---|
| 3464 | SUBROUTINE vert_interp_old ( forig , po , fnew , pnu , & |
|---|
| 3465 | generic , var_type , & |
|---|
| 3466 | interp_type , lagrange_order , extrap_type , & |
|---|
| 3467 | lowest_lev_from_sfc , use_levels_below_ground , use_surface , & |
|---|
| 3468 | zap_close_levels , force_sfc_in_vinterp , & |
|---|
| 3469 | ids , ide , jds , jde , kds , kde , & |
|---|
| 3470 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3471 | its , ite , jts , jte , kts , kte ) |
|---|
| 3472 | |
|---|
| 3473 | ! Vertically interpolate the new field. The original field on the original |
|---|
| 3474 | ! pressure levels is provided, and the new pressure surfaces to interpolate to. |
|---|
| 3475 | |
|---|
| 3476 | IMPLICIT NONE |
|---|
| 3477 | |
|---|
| 3478 | INTEGER , INTENT(IN) :: interp_type , lagrange_order , extrap_type |
|---|
| 3479 | LOGICAL , INTENT(IN) :: lowest_lev_from_sfc , use_levels_below_ground , use_surface |
|---|
| 3480 | REAL , INTENT(IN) :: zap_close_levels |
|---|
| 3481 | INTEGER , INTENT(IN) :: force_sfc_in_vinterp |
|---|
| 3482 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 3483 | ims , ime , jms , jme , kms , kme , & |
|---|
| 3484 | its , ite , jts , jte , kts , kte |
|---|
| 3485 | INTEGER , INTENT(IN) :: generic |
|---|
| 3486 | |
|---|
| 3487 | CHARACTER (LEN=1) :: var_type |
|---|
| 3488 | |
|---|
| 3489 | REAL , DIMENSION(ims:ime,generic,jms:jme) , INTENT(IN) :: forig , po |
|---|
| 3490 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: pnu |
|---|
| 3491 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: fnew |
|---|
| 3492 | |
|---|
| 3493 | REAL , DIMENSION(ims:ime,generic,jms:jme) :: porig |
|---|
| 3494 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) :: pnew |
|---|
| 3495 | |
|---|
| 3496 | ! Local vars |
|---|
| 3497 | |
|---|
| 3498 | INTEGER :: i , j , k , ko , kn , k1 , k2 , ko_1 , ko_2 |
|---|
| 3499 | INTEGER :: istart , iend , jstart , jend , kstart , kend |
|---|
| 3500 | INTEGER , DIMENSION(ims:ime,kms:kme ) :: k_above , k_below |
|---|
| 3501 | INTEGER , DIMENSION(ims:ime ) :: ks |
|---|
| 3502 | INTEGER , DIMENSION(ims:ime ) :: ko_above_sfc |
|---|
| 3503 | |
|---|
| 3504 | LOGICAL :: any_below_ground |
|---|
| 3505 | |
|---|
| 3506 | REAL :: p1 , p2 , pn |
|---|
| 3507 | integer vert_extrap |
|---|
| 3508 | vert_extrap = 0 |
|---|
| 3509 | |
|---|
| 3510 | ! Horiontal loop bounds for different variable types. |
|---|
| 3511 | |
|---|
| 3512 | IF ( var_type .EQ. 'U' ) THEN |
|---|
| 3513 | istart = its |
|---|
| 3514 | iend = ite |
|---|
| 3515 | jstart = jts |
|---|
| 3516 | jend = MIN(jde-1,jte) |
|---|
| 3517 | kstart = kts |
|---|
| 3518 | kend = kte-1 |
|---|
| 3519 | DO j = jstart,jend |
|---|
| 3520 | DO k = 1,generic |
|---|
| 3521 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 3522 | porig(i,k,j) = ( po(i,k,j) + po(i-1,k,j) ) * 0.5 |
|---|
| 3523 | END DO |
|---|
| 3524 | END DO |
|---|
| 3525 | IF ( ids .EQ. its ) THEN |
|---|
| 3526 | DO k = 1,generic |
|---|
| 3527 | porig(its,k,j) = po(its,k,j) |
|---|
| 3528 | END DO |
|---|
| 3529 | END IF |
|---|
| 3530 | IF ( ide .EQ. ite ) THEN |
|---|
| 3531 | DO k = 1,generic |
|---|
| 3532 | porig(ite,k,j) = po(ite-1,k,j) |
|---|
| 3533 | END DO |
|---|
| 3534 | END IF |
|---|
| 3535 | |
|---|
| 3536 | DO k = kstart,kend |
|---|
| 3537 | DO i = MAX(ids+1,its) , MIN(ide-1,ite) |
|---|
| 3538 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i-1,k,j) ) * 0.5 |
|---|
| 3539 | END DO |
|---|
| 3540 | END DO |
|---|
| 3541 | IF ( ids .EQ. its ) THEN |
|---|
| 3542 | DO k = kstart,kend |
|---|
| 3543 | pnew(its,k,j) = pnu(its,k,j) |
|---|
| 3544 | END DO |
|---|
| 3545 | END IF |
|---|
| 3546 | IF ( ide .EQ. ite ) THEN |
|---|
| 3547 | DO k = kstart,kend |
|---|
| 3548 | pnew(ite,k,j) = pnu(ite-1,k,j) |
|---|
| 3549 | END DO |
|---|
| 3550 | END IF |
|---|
| 3551 | END DO |
|---|
| 3552 | ELSE IF ( var_type .EQ. 'V' ) THEN |
|---|
| 3553 | istart = its |
|---|
| 3554 | iend = MIN(ide-1,ite) |
|---|
| 3555 | jstart = jts |
|---|
| 3556 | jend = jte |
|---|
| 3557 | kstart = kts |
|---|
| 3558 | kend = kte-1 |
|---|
| 3559 | DO i = istart,iend |
|---|
| 3560 | DO k = 1,generic |
|---|
| 3561 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 3562 | porig(i,k,j) = ( po(i,k,j) + po(i,k,j-1) ) * 0.5 |
|---|
| 3563 | END DO |
|---|
| 3564 | END DO |
|---|
| 3565 | IF ( jds .EQ. jts ) THEN |
|---|
| 3566 | DO k = 1,generic |
|---|
| 3567 | porig(i,k,jts) = po(i,k,jts) |
|---|
| 3568 | END DO |
|---|
| 3569 | END IF |
|---|
| 3570 | IF ( jde .EQ. jte ) THEN |
|---|
| 3571 | DO k = 1,generic |
|---|
| 3572 | porig(i,k,jte) = po(i,k,jte-1) |
|---|
| 3573 | END DO |
|---|
| 3574 | END IF |
|---|
| 3575 | |
|---|
| 3576 | DO k = kstart,kend |
|---|
| 3577 | DO j = MAX(jds+1,jts) , MIN(jde-1,jte) |
|---|
| 3578 | pnew(i,k,j) = ( pnu(i,k,j) + pnu(i,k,j-1) ) * 0.5 |
|---|
| 3579 | END DO |
|---|
| 3580 | END DO |
|---|
| 3581 | IF ( jds .EQ. jts ) THEN |
|---|
| 3582 | DO k = kstart,kend |
|---|
| 3583 | pnew(i,k,jts) = pnu(i,k,jts) |
|---|
| 3584 | END DO |
|---|
| 3585 | END IF |
|---|
| 3586 | IF ( jde .EQ. jte ) THEN |
|---|
| 3587 | DO k = kstart,kend |
|---|
| 3588 | pnew(i,k,jte) = pnu(i,k,jte-1) |
|---|
| 3589 | END DO |
|---|
| 3590 | END IF |
|---|
| 3591 | END DO |
|---|
| 3592 | ELSE IF ( ( var_type .EQ. 'W' ) .OR. ( var_type .EQ. 'Z' ) ) THEN |
|---|
| 3593 | istart = its |
|---|
| 3594 | iend = MIN(ide-1,ite) |
|---|
| 3595 | jstart = jts |
|---|
| 3596 | jend = MIN(jde-1,jte) |
|---|
| 3597 | kstart = kts |
|---|
| 3598 | kend = kte |
|---|
| 3599 | DO j = jstart,jend |
|---|
| 3600 | DO k = 1,generic |
|---|
| 3601 | DO i = istart,iend |
|---|
| 3602 | porig(i,k,j) = po(i,k,j) |
|---|
| 3603 | END DO |
|---|
| 3604 | END DO |
|---|
| 3605 | |
|---|
| 3606 | DO k = kstart,kend |
|---|
| 3607 | DO i = istart,iend |
|---|
| 3608 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3609 | END DO |
|---|
| 3610 | END DO |
|---|
| 3611 | END DO |
|---|
| 3612 | ELSE IF ( ( var_type .EQ. 'T' ) .OR. ( var_type .EQ. 'Q' ) ) THEN |
|---|
| 3613 | istart = its |
|---|
| 3614 | iend = MIN(ide-1,ite) |
|---|
| 3615 | jstart = jts |
|---|
| 3616 | jend = MIN(jde-1,jte) |
|---|
| 3617 | kstart = kts |
|---|
| 3618 | kend = kte-1 |
|---|
| 3619 | DO j = jstart,jend |
|---|
| 3620 | DO k = 1,generic |
|---|
| 3621 | DO i = istart,iend |
|---|
| 3622 | porig(i,k,j) = po(i,k,j) |
|---|
| 3623 | END DO |
|---|
| 3624 | END DO |
|---|
| 3625 | |
|---|
| 3626 | DO k = kstart,kend |
|---|
| 3627 | DO i = istart,iend |
|---|
| 3628 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3629 | END DO |
|---|
| 3630 | END DO |
|---|
| 3631 | END DO |
|---|
| 3632 | ELSE |
|---|
| 3633 | istart = its |
|---|
| 3634 | iend = MIN(ide-1,ite) |
|---|
| 3635 | jstart = jts |
|---|
| 3636 | jend = MIN(jde-1,jte) |
|---|
| 3637 | kstart = kts |
|---|
| 3638 | kend = kte-1 |
|---|
| 3639 | DO j = jstart,jend |
|---|
| 3640 | DO k = 1,generic |
|---|
| 3641 | DO i = istart,iend |
|---|
| 3642 | porig(i,k,j) = po(i,k,j) |
|---|
| 3643 | END DO |
|---|
| 3644 | END DO |
|---|
| 3645 | |
|---|
| 3646 | DO k = kstart,kend |
|---|
| 3647 | DO i = istart,iend |
|---|
| 3648 | pnew(i,k,j) = pnu(i,k,j) |
|---|
| 3649 | END DO |
|---|
| 3650 | END DO |
|---|
| 3651 | END DO |
|---|
| 3652 | END IF |
|---|
| 3653 | |
|---|
| 3654 | DO j = jstart , jend |
|---|
| 3655 | |
|---|
| 3656 | ! Skip all of the levels below ground in the original data based upon the surface pressure. |
|---|
| 3657 | ! The ko_above_sfc is the index in the pressure array that is above the surface. If there |
|---|
| 3658 | ! are no levels underground, this is index = 2. The remaining levels are eligible for use |
|---|
| 3659 | ! in the vertical interpolation. |
|---|
| 3660 | |
|---|
| 3661 | DO i = istart , iend |
|---|
| 3662 | ko_above_sfc(i) = -1 |
|---|
| 3663 | END DO |
|---|
| 3664 | DO ko = kstart+1 , kend |
|---|
| 3665 | DO i = istart , iend |
|---|
| 3666 | IF ( ko_above_sfc(i) .EQ. -1 ) THEN |
|---|
| 3667 | IF ( porig(i,1,j) .GT. porig(i,ko,j) ) THEN |
|---|
| 3668 | ko_above_sfc(i) = ko |
|---|
| 3669 | END IF |
|---|
| 3670 | END IF |
|---|
| 3671 | END DO |
|---|
| 3672 | END DO |
|---|
| 3673 | |
|---|
| 3674 | ! Initialize interpolation location. These are the levels in the original pressure |
|---|
| 3675 | ! data that are physically below and above the targeted new pressure level. |
|---|
| 3676 | |
|---|
| 3677 | DO kn = kts , kte |
|---|
| 3678 | DO i = its , ite |
|---|
| 3679 | k_above(i,kn) = -1 |
|---|
| 3680 | k_below(i,kn) = -2 |
|---|
| 3681 | END DO |
|---|
| 3682 | END DO |
|---|
| 3683 | |
|---|
| 3684 | ! Starting location is no lower than previous found location. This is for O(n logn) |
|---|
| 3685 | ! and not O(n^2), where n is the number of vertical levels to search. |
|---|
| 3686 | |
|---|
| 3687 | DO i = its , ite |
|---|
| 3688 | ks(i) = 1 |
|---|
| 3689 | END DO |
|---|
| 3690 | |
|---|
| 3691 | ! Find trapping layer for interpolation. The kn index runs through all of the "new" |
|---|
| 3692 | ! levels of data. |
|---|
| 3693 | |
|---|
| 3694 | DO kn = kstart , kend |
|---|
| 3695 | |
|---|
| 3696 | DO i = istart , iend |
|---|
| 3697 | |
|---|
| 3698 | ! For each "new" level (kn), we search to find the trapping levels in the "orig" |
|---|
| 3699 | ! data. Most of the time, the "new" levels are the eta surfaces, and the "orig" |
|---|
| 3700 | ! levels are the input pressure levels. |
|---|
| 3701 | |
|---|
| 3702 | found_trap_above : DO ko = ks(i) , generic-1 |
|---|
| 3703 | |
|---|
| 3704 | ! Because we can have levels in the interpolation that are not valid, |
|---|
| 3705 | ! let's toss out any candidate orig pressure values that are below ground |
|---|
| 3706 | ! based on the surface pressure. If the level =1, then this IS the surface |
|---|
| 3707 | ! level, so we HAVE to keep that one, but maybe not the ones above. If the |
|---|
| 3708 | ! level (ks) is NOT=1, then we have to just CYCLE our loop to find a legit |
|---|
| 3709 | ! below-pressure value. If we are not below ground, then we choose two |
|---|
| 3710 | ! neighboring levels to test whether they surround the new pressure level. |
|---|
| 3711 | |
|---|
| 3712 | ! The input trapping levels that we are trying is the surface and the first valid |
|---|
| 3713 | ! level above the surface. |
|---|
| 3714 | |
|---|
| 3715 | IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .EQ. 1 ) ) THEN |
|---|
| 3716 | ko_1 = ko |
|---|
| 3717 | ko_2 = ko_above_sfc(i) |
|---|
| 3718 | |
|---|
| 3719 | ! The "below" level is underground, cycle until we get to a valid pressure |
|---|
| 3720 | ! above ground. |
|---|
| 3721 | |
|---|
| 3722 | ELSE IF ( ( ko .LT. ko_above_sfc(i) ) .AND. ( ko .NE. 1 ) ) THEN |
|---|
| 3723 | CYCLE found_trap_above |
|---|
| 3724 | |
|---|
| 3725 | ! The "below" level is above the surface, so we are in the clear to test these |
|---|
| 3726 | ! two levels out. |
|---|
| 3727 | |
|---|
| 3728 | ELSE |
|---|
| 3729 | ko_1 = ko |
|---|
| 3730 | ko_2 = ko+1 |
|---|
| 3731 | |
|---|
| 3732 | END IF |
|---|
| 3733 | |
|---|
| 3734 | ! The test of the candidate levels: "below" has to have a larger pressure, and |
|---|
| 3735 | ! "above" has to have a smaller pressure. |
|---|
| 3736 | |
|---|
| 3737 | ! OK, we found the correct two surrounding levels. The locations are saved for use in the |
|---|
| 3738 | ! interpolation. |
|---|
| 3739 | |
|---|
| 3740 | IF ( ( porig(i,ko_1,j) .GE. pnew(i,kn,j) ) .AND. & |
|---|
| 3741 | ( porig(i,ko_2,j) .LT. pnew(i,kn,j) ) ) THEN |
|---|
| 3742 | k_above(i,kn) = ko_2 |
|---|
| 3743 | k_below(i,kn) = ko_1 |
|---|
| 3744 | ks(i) = ko_1 |
|---|
| 3745 | EXIT found_trap_above |
|---|
| 3746 | |
|---|
| 3747 | ! What do we do is we need to extrapolate the data underground? This happens when the |
|---|
| 3748 | ! lowest pressure that we have is physically "above" the new target pressure. Our |
|---|
| 3749 | ! actions depend on the type of variable we are interpolating. |
|---|
| 3750 | |
|---|
| 3751 | ELSE IF ( porig(i,1,j) .LT. pnew(i,kn,j) ) THEN |
|---|
| 3752 | |
|---|
| 3753 | ! For horizontal winds and moisture, we keep a constant value under ground. |
|---|
| 3754 | |
|---|
| 3755 | IF ( ( var_type .EQ. 'U' ) .OR. & |
|---|
| 3756 | ( var_type .EQ. 'V' ) .OR. & |
|---|
| 3757 | ( var_type .EQ. 'Q' ) ) THEN |
|---|
| 3758 | k_above(i,kn) = 1 |
|---|
| 3759 | ks(i) = 1 |
|---|
| 3760 | |
|---|
| 3761 | ! For temperature and height, we extrapolate the data. Hopefully, we are not |
|---|
| 3762 | ! extrapolating too far. For pressure level input, the eta levels are always |
|---|
| 3763 | ! contained within the surface to p_top levels, so no extrapolation is ever |
|---|
| 3764 | ! required. |
|---|
| 3765 | |
|---|
| 3766 | ELSE IF ( ( var_type .EQ. 'Z' ) .OR. & |
|---|
| 3767 | ( var_type .EQ. 'T' ) ) THEN |
|---|
| 3768 | k_above(i,kn) = ko_above_sfc(i) |
|---|
| 3769 | k_below(i,kn) = 1 |
|---|
| 3770 | ks(i) = 1 |
|---|
| 3771 | |
|---|
| 3772 | ! Just a catch all right now. |
|---|
| 3773 | |
|---|
| 3774 | ELSE |
|---|
| 3775 | k_above(i,kn) = 1 |
|---|
| 3776 | ks(i) = 1 |
|---|
| 3777 | END IF |
|---|
| 3778 | |
|---|
| 3779 | EXIT found_trap_above |
|---|
| 3780 | |
|---|
| 3781 | ! The other extrapolation that might be required is when we are going above the |
|---|
| 3782 | ! top level of the input data. Usually this means we chose a P_PTOP value that |
|---|
| 3783 | ! was inappropriate, and we should stop and let someone fix this mess. |
|---|
| 3784 | |
|---|
| 3785 | ELSE IF ( porig(i,generic,j) .GT. pnew(i,kn,j) ) THEN |
|---|
| 3786 | print *,'data is too high, try a lower p_top' |
|---|
| 3787 | print *,'pnew=',pnew(i,kn,j) |
|---|
| 3788 | print *,'porig=',porig(i,:,j) |
|---|
| 3789 | CALL wrf_error_fatal ('requested p_top is higher than input data, lower p_top') |
|---|
| 3790 | |
|---|
| 3791 | END IF |
|---|
| 3792 | END DO found_trap_above |
|---|
| 3793 | END DO |
|---|
| 3794 | END DO |
|---|
| 3795 | |
|---|
| 3796 | ! Linear vertical interpolation. |
|---|
| 3797 | |
|---|
| 3798 | DO kn = kstart , kend |
|---|
| 3799 | DO i = istart , iend |
|---|
| 3800 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
|---|
| 3801 | fnew(i,kn,j) = forig(i,1,j) |
|---|
| 3802 | ELSE |
|---|
| 3803 | k2 = MAX ( k_above(i,kn) , 2) |
|---|
| 3804 | k1 = MAX ( k_below(i,kn) , 1) |
|---|
| 3805 | IF ( k1 .EQ. k2 ) THEN |
|---|
| 3806 | CALL wrf_error_fatal ( 'identical values in the interp, bad for divisions' ) |
|---|
| 3807 | END IF |
|---|
| 3808 | IF ( interp_type .EQ. 1 ) THEN |
|---|
| 3809 | p1 = porig(i,k1,j) |
|---|
| 3810 | p2 = porig(i,k2,j) |
|---|
| 3811 | pn = pnew(i,kn,j) |
|---|
| 3812 | ELSE IF ( interp_type .EQ. 2 ) THEN |
|---|
| 3813 | p1 = ALOG(porig(i,k1,j)) |
|---|
| 3814 | p2 = ALOG(porig(i,k2,j)) |
|---|
| 3815 | pn = ALOG(pnew(i,kn,j)) |
|---|
| 3816 | END IF |
|---|
| 3817 | IF ( ( p1-pn) * (p2-pn) > 0. ) THEN |
|---|
| 3818 | ! CALL wrf_error_fatal ( 'both trapping pressures are on the same side of the new pressure' ) |
|---|
| 3819 | ! CALL wrf_debug ( 0 , 'both trapping pressures are on the same side of the new pressure' ) |
|---|
| 3820 | vert_extrap = vert_extrap + 1 |
|---|
| 3821 | END IF |
|---|
| 3822 | fnew(i,kn,j) = ( forig(i,k1,j) * ( p2 - pn ) + & |
|---|
| 3823 | forig(i,k2,j) * ( pn - p1 ) ) / & |
|---|
| 3824 | ( p2 - p1 ) |
|---|
| 3825 | END IF |
|---|
| 3826 | END DO |
|---|
| 3827 | END DO |
|---|
| 3828 | |
|---|
| 3829 | search_below_ground : DO kn = kstart , kend |
|---|
| 3830 | any_below_ground = .FALSE. |
|---|
| 3831 | DO i = istart , iend |
|---|
| 3832 | IF ( k_above(i,kn) .EQ. 1 ) THEN |
|---|
| 3833 | fnew(i,kn,j) = forig(i,1,j) |
|---|
| 3834 | any_below_ground = .TRUE. |
|---|
| 3835 | END IF |
|---|
| 3836 | END DO |
|---|
| 3837 | IF ( .NOT. any_below_ground ) THEN |
|---|
| 3838 | EXIT search_below_ground |
|---|
| 3839 | END IF |
|---|
| 3840 | END DO search_below_ground |
|---|
| 3841 | |
|---|
| 3842 | ! There may have been a request to have the surface data from the input field |
|---|
| 3843 | ! to be assigned as to the lowest eta level. This assumes thin layers (usually |
|---|
| 3844 | ! the isobaric original field has the surface from 2-m T and RH, and 10-m U and V). |
|---|
| 3845 | |
|---|
| 3846 | DO i = istart , iend |
|---|
| 3847 | IF ( lowest_lev_from_sfc ) THEN |
|---|
| 3848 | fnew(i,1,j) = forig(i,ko_above_sfc(i),j) |
|---|
| 3849 | END IF |
|---|
| 3850 | END DO |
|---|
| 3851 | |
|---|
| 3852 | END DO |
|---|
| 3853 | print *,'VERT EXTRAP = ', vert_extrap |
|---|
| 3854 | |
|---|
| 3855 | END SUBROUTINE vert_interp_old |
|---|
| 3856 | |
|---|
| 3857 | !--------------------------------------------------------------------- |
|---|
| 3858 | |
|---|
| 3859 | SUBROUTINE lagrange_setup ( var_type , interp_type , all_x , all_y , all_dim , n , extrap_type , & |
|---|
| 3860 | target_x , target_y , target_dim ,i,j) |
|---|
| 3861 | |
|---|
| 3862 | ! We call a Lagrange polynomial interpolator. The parallel concerns are put off as this |
|---|
| 3863 | ! is initially set up for vertical use. The purpose is an input column of pressure (all_x), |
|---|
| 3864 | ! and the associated pressure level data (all_y). These are assumed to be sorted (ascending |
|---|
| 3865 | ! or descending, no matter). The locations to be interpolated to are the pressures in |
|---|
| 3866 | ! target_x, probably the new vertical coordinate values. The field that is output is the |
|---|
| 3867 | ! target_y, which is defined at the target_x location. Mostly we expect to be 2nd order |
|---|
| 3868 | ! overlapping polynomials, with only a single 2nd order method near the top and bottom. |
|---|
| 3869 | ! When n=1, this is linear; when n=2, this is a second order interpolator. |
|---|
| 3870 | |
|---|
| 3871 | IMPLICIT NONE |
|---|
| 3872 | |
|---|
| 3873 | CHARACTER (LEN=1) :: var_type |
|---|
| 3874 | INTEGER , INTENT(IN) :: interp_type , all_dim , n , extrap_type , target_dim |
|---|
| 3875 | REAL, DIMENSION(all_dim) , INTENT(IN) :: all_x , all_y |
|---|
| 3876 | REAL , DIMENSION(target_dim) , INTENT(IN) :: target_x |
|---|
| 3877 | REAL , DIMENSION(target_dim) , INTENT(OUT) :: target_y |
|---|
| 3878 | |
|---|
| 3879 | ! Brought in for debug purposes, all of the computations are in a single column. |
|---|
| 3880 | |
|---|
| 3881 | INTEGER , INTENT(IN) :: i,j |
|---|
| 3882 | |
|---|
| 3883 | ! Local vars |
|---|
| 3884 | |
|---|
| 3885 | REAL , DIMENSION(n+1) :: x , y |
|---|
| 3886 | REAL :: a , b |
|---|
| 3887 | REAL :: target_y_1 , target_y_2 |
|---|
| 3888 | LOGICAL :: found_loc |
|---|
| 3889 | INTEGER :: loop , loc_center_left , loc_center_right , ist , iend , target_loop |
|---|
| 3890 | INTEGER :: vboundb , vboundt |
|---|
| 3891 | |
|---|
| 3892 | ! Local vars for the problem of extrapolating theta below ground. |
|---|
| 3893 | |
|---|
| 3894 | REAL :: temp_1 , temp_2 , temp_3 , temp_y |
|---|
| 3895 | REAL :: depth_of_extrap_in_p , avg_of_extrap_p , temp_extrap_starting_point , dhdp , dh , dt |
|---|
| 3896 | REAL , PARAMETER :: RovCp = rcp |
|---|
| 3897 | REAL , PARAMETER :: CRC_const1 = 11880.516 ! m |
|---|
| 3898 | REAL , PARAMETER :: CRC_const2 = 0.1902632 ! |
|---|
| 3899 | REAL , PARAMETER :: CRC_const3 = 0.0065 ! K/km |
|---|
| 3900 | REAL, DIMENSION(all_dim) :: all_x_full |
|---|
| 3901 | REAL , DIMENSION(target_dim) :: target_x_full |
|---|
| 3902 | |
|---|
| 3903 | IF ( all_dim .LT. n+1 ) THEN |
|---|
| 3904 | print *,'all_dim = ',all_dim |
|---|
| 3905 | print *,'order = ',n |
|---|
| 3906 | print *,'i,j = ',i,j |
|---|
| 3907 | print *,'p array = ',all_x |
|---|
| 3908 | print *,'f array = ',all_y |
|---|
| 3909 | print *,'p target= ',target_x |
|---|
| 3910 | CALL wrf_error_fatal ( 'troubles, the interpolating order is too large for this few input values' ) |
|---|
| 3911 | END IF |
|---|
| 3912 | |
|---|
| 3913 | IF ( n .LT. 1 ) THEN |
|---|
| 3914 | CALL wrf_error_fatal ( 'pal, linear is about as low as we go' ) |
|---|
| 3915 | END IF |
|---|
| 3916 | |
|---|
| 3917 | ! We can pinch in the area of the higher order interpolation with vbound. If |
|---|
| 3918 | ! vbound = 0, no pinching. If vbound = m, then we make the lower "m" and upper |
|---|
| 3919 | ! "m" eta levels use a linear interpolation. |
|---|
| 3920 | |
|---|
| 3921 | vboundb = 4 |
|---|
| 3922 | vboundt = 0 |
|---|
| 3923 | |
|---|
| 3924 | ! Loop over the list of target x and y values. |
|---|
| 3925 | |
|---|
| 3926 | DO target_loop = 1 , target_dim |
|---|
| 3927 | |
|---|
| 3928 | ! Find the two trapping x values, and keep the indices. |
|---|
| 3929 | |
|---|
| 3930 | found_loc = .FALSE. |
|---|
| 3931 | find_trap : DO loop = 1 , all_dim -1 |
|---|
| 3932 | a = target_x(target_loop) - all_x(loop) |
|---|
| 3933 | b = target_x(target_loop) - all_x(loop+1) |
|---|
| 3934 | IF ( a*b .LE. 0.0 ) THEN |
|---|
| 3935 | loc_center_left = loop |
|---|
| 3936 | loc_center_right = loop+1 |
|---|
| 3937 | found_loc = .TRUE. |
|---|
| 3938 | EXIT find_trap |
|---|
| 3939 | END IF |
|---|
| 3940 | END DO find_trap |
|---|
| 3941 | |
|---|
| 3942 | IF ( ( .NOT. found_loc ) .AND. ( target_x(target_loop) .GT. all_x(1) ) ) THEN |
|---|
| 3943 | |
|---|
| 3944 | ! Get full pressure back so that our extrpolations make sense. |
|---|
| 3945 | |
|---|
| 3946 | IF ( interp_type .EQ. 1 ) THEN |
|---|
| 3947 | all_x_full = all_x |
|---|
| 3948 | target_x_full = target_x |
|---|
| 3949 | ELSE |
|---|
| 3950 | all_x_full = EXP ( all_x ) |
|---|
| 3951 | target_x_full = EXP ( target_x ) |
|---|
| 3952 | END IF |
|---|
| 3953 | ! Isothermal extrapolation. |
|---|
| 3954 | |
|---|
| 3955 | IF ( ( extrap_type .EQ. 1 ) .AND. ( var_type .EQ. 'T' ) ) THEN |
|---|
| 3956 | |
|---|
| 3957 | temp_1 = all_y(1) * ( all_x_full(1) / 100000. ) ** RovCp |
|---|
| 3958 | target_y(target_loop) = temp_1 * ( 100000. / target_x_full(target_loop) ) ** RovCp |
|---|
| 3959 | |
|---|
| 3960 | ! Standard atmosphere -6.5 K/km lapse rate for the extrapolation. |
|---|
| 3961 | |
|---|
| 3962 | ELSE IF ( ( extrap_type .EQ. 2 ) .AND. ( var_type .EQ. 'T' ) ) THEN |
|---|
| 3963 | |
|---|
| 3964 | depth_of_extrap_in_p = target_x_full(target_loop) - all_x_full(1) |
|---|
| 3965 | avg_of_extrap_p = ( target_x_full(target_loop) + all_x_full(1) ) * 0.5 |
|---|
| 3966 | temp_extrap_starting_point = all_y(1) * ( all_x_full(1) / 100000. ) ** RovCp |
|---|
| 3967 | dhdp = CRC_const1 * CRC_const2 * ( avg_of_extrap_p / 100. ) ** ( CRC_const2 - 1. ) |
|---|
| 3968 | dh = dhdp * ( depth_of_extrap_in_p / 100. ) |
|---|
| 3969 | dt = dh * CRC_const3 |
|---|
| 3970 | target_y(target_loop) = ( temp_extrap_starting_point + dt ) * ( 100000. / target_x_full(target_loop) ) ** RovCp |
|---|
| 3971 | |
|---|
| 3972 | ! Adiabatic extrapolation for theta. |
|---|
| 3973 | |
|---|
| 3974 | ELSE IF ( ( extrap_type .EQ. 3 ) .AND. ( var_type .EQ. 'T' ) ) THEN |
|---|
| 3975 | |
|---|
| 3976 | target_y(target_loop) = all_y(1) |
|---|
| 3977 | |
|---|
| 3978 | |
|---|
| 3979 | ! Wild extrapolation for non-temperature vars. |
|---|
| 3980 | |
|---|
| 3981 | ELSE IF ( extrap_type .EQ. 1 ) THEN |
|---|
| 3982 | |
|---|
| 3983 | target_y(target_loop) = ( all_y(2) * ( target_x(target_loop) - all_x(3) ) + & |
|---|
| 3984 | all_y(3) * ( all_x(2) - target_x(target_loop) ) ) / & |
|---|
| 3985 | ( all_x(2) - all_x(3) ) |
|---|
| 3986 | |
|---|
| 3987 | ! Use a constant value below ground. |
|---|
| 3988 | |
|---|
| 3989 | ELSE IF ( extrap_type .EQ. 2 ) THEN |
|---|
| 3990 | |
|---|
| 3991 | target_y(target_loop) = all_y(1) |
|---|
| 3992 | |
|---|
| 3993 | ELSE IF ( extrap_type .EQ. 3 ) THEN |
|---|
| 3994 | CALL wrf_error_fatal ( 'You are not allowed to use extrap_option #3 for any var except for theta.' ) |
|---|
| 3995 | |
|---|
| 3996 | END IF |
|---|
| 3997 | CYCLE |
|---|
| 3998 | ELSE IF ( .NOT. found_loc ) THEN |
|---|
| 3999 | print *,'i,j = ',i,j |
|---|
| 4000 | print *,'target pressure and value = ',target_x(target_loop),target_y(target_loop) |
|---|
| 4001 | DO loop = 1 , all_dim |
|---|
| 4002 | print *,'column of pressure and value = ',all_x(loop),all_y(loop) |
|---|
| 4003 | END DO |
|---|
| 4004 | CALL wrf_error_fatal ( 'troubles, could not find trapping x locations' ) |
|---|
| 4005 | END IF |
|---|
| 4006 | |
|---|
| 4007 | ! Even or odd order? We can put the value in the middle if this is |
|---|
| 4008 | ! an odd order interpolator. For the even guys, we'll do it twice |
|---|
| 4009 | ! and shift the range one index, then get an average. |
|---|
| 4010 | |
|---|
| 4011 | IF ( MOD(n,2) .NE. 0 ) THEN |
|---|
| 4012 | IF ( ( loc_center_left -(((n+1)/2)-1) .GE. 1 ) .AND. & |
|---|
| 4013 | ( loc_center_right+(((n+1)/2)-1) .LE. all_dim ) ) THEN |
|---|
| 4014 | ist = loc_center_left -(((n+1)/2)-1) |
|---|
| 4015 | iend = ist + n |
|---|
| 4016 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
|---|
| 4017 | ELSE |
|---|
| 4018 | IF ( .NOT. found_loc ) THEN |
|---|
| 4019 | CALL wrf_error_fatal ( 'I doubt this will happen, I will only do 2nd order for now' ) |
|---|
| 4020 | END IF |
|---|
| 4021 | END IF |
|---|
| 4022 | |
|---|
| 4023 | ELSE IF ( ( MOD(n,2) .EQ. 0 ) .AND. & |
|---|
| 4024 | ( ( target_loop .GE. 1 + vboundb ) .AND. ( target_loop .LE. target_dim - vboundt ) ) ) THEN |
|---|
| 4025 | IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
|---|
| 4026 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) .AND. & |
|---|
| 4027 | ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
|---|
| 4028 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
|---|
| 4029 | ist = loc_center_left -(((n )/2)-1) |
|---|
| 4030 | iend = ist + n |
|---|
| 4031 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_1 ) |
|---|
| 4032 | ist = loc_center_left -(((n )/2) ) |
|---|
| 4033 | iend = ist + n |
|---|
| 4034 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y_2 ) |
|---|
| 4035 | target_y(target_loop) = ( target_y_1 + target_y_2 ) * 0.5 |
|---|
| 4036 | |
|---|
| 4037 | ELSE IF ( ( loc_center_left -(((n )/2)-1) .GE. 1 ) .AND. & |
|---|
| 4038 | ( loc_center_right+(((n )/2) ) .LE. all_dim ) ) THEN |
|---|
| 4039 | ist = loc_center_left -(((n )/2)-1) |
|---|
| 4040 | iend = ist + n |
|---|
| 4041 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
|---|
| 4042 | ELSE IF ( ( loc_center_left -(((n )/2) ) .GE. 1 ) .AND. & |
|---|
| 4043 | ( loc_center_right+(((n )/2)-1) .LE. all_dim ) ) THEN |
|---|
| 4044 | ist = loc_center_left -(((n )/2) ) |
|---|
| 4045 | iend = ist + n |
|---|
| 4046 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , n , target_x(target_loop) , target_y(target_loop) ) |
|---|
| 4047 | ELSE |
|---|
| 4048 | CALL wrf_error_fatal ( 'unauthorized area, you should not be here' ) |
|---|
| 4049 | END IF |
|---|
| 4050 | |
|---|
| 4051 | ELSE IF ( MOD(n,2) .EQ. 0 ) THEN |
|---|
| 4052 | ist = loc_center_left |
|---|
| 4053 | iend = loc_center_right |
|---|
| 4054 | CALL lagrange_interp ( all_x(ist:iend) , all_y(ist:iend) , 1 , target_x(target_loop) , target_y(target_loop) ) |
|---|
| 4055 | |
|---|
| 4056 | END IF |
|---|
| 4057 | |
|---|
| 4058 | END DO |
|---|
| 4059 | |
|---|
| 4060 | END SUBROUTINE lagrange_setup |
|---|
| 4061 | |
|---|
| 4062 | !--------------------------------------------------------------------- |
|---|
| 4063 | |
|---|
| 4064 | SUBROUTINE lagrange_interp ( x , y , n , target_x , target_y ) |
|---|
| 4065 | |
|---|
| 4066 | ! Interpolation using Lagrange polynomials. |
|---|
| 4067 | ! P(x) = f(x0)Ln0(x) + ... + f(xn)Lnn(x) |
|---|
| 4068 | ! where Lnk(x) = (x -x0)(x -x1)...(x -xk-1)(x -xk+1)...(x -xn) |
|---|
| 4069 | ! --------------------------------------------- |
|---|
| 4070 | ! (xk-x0)(xk-x1)...(xk-xk-1)(xk-xk+1)...(xk-xn) |
|---|
| 4071 | |
|---|
| 4072 | IMPLICIT NONE |
|---|
| 4073 | |
|---|
| 4074 | INTEGER , INTENT(IN) :: n |
|---|
| 4075 | REAL , DIMENSION(0:n) , INTENT(IN) :: x , y |
|---|
| 4076 | REAL , INTENT(IN) :: target_x |
|---|
| 4077 | |
|---|
| 4078 | REAL , INTENT(OUT) :: target_y |
|---|
| 4079 | |
|---|
| 4080 | ! Local vars |
|---|
| 4081 | |
|---|
| 4082 | INTEGER :: i , k |
|---|
| 4083 | REAL :: numer , denom , Px |
|---|
| 4084 | REAL , DIMENSION(0:n) :: Ln |
|---|
| 4085 | |
|---|
| 4086 | Px = 0. |
|---|
| 4087 | DO i = 0 , n |
|---|
| 4088 | numer = 1. |
|---|
| 4089 | denom = 1. |
|---|
| 4090 | DO k = 0 , n |
|---|
| 4091 | IF ( k .EQ. i ) CYCLE |
|---|
| 4092 | numer = numer * ( target_x - x(k) ) |
|---|
| 4093 | denom = denom * ( x(i) - x(k) ) |
|---|
| 4094 | END DO |
|---|
| 4095 | IF ( denom .NE. 0. ) THEN |
|---|
| 4096 | Ln(i) = y(i) * numer / denom |
|---|
| 4097 | Px = Px + Ln(i) |
|---|
| 4098 | ENDIF |
|---|
| 4099 | END DO |
|---|
| 4100 | target_y = Px |
|---|
| 4101 | |
|---|
| 4102 | END SUBROUTINE lagrange_interp |
|---|
| 4103 | |
|---|
| 4104 | #ifndef VERT_UNIT |
|---|
| 4105 | !--------------------------------------------------------------------- |
|---|
| 4106 | |
|---|
| 4107 | SUBROUTINE p_dry ( mu0 , eta , pdht , pdry , full_levs , & |
|---|
| 4108 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4109 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4110 | its , ite , jts , jte , kts , kte ) |
|---|
| 4111 | |
|---|
| 4112 | ! Compute reference pressure and the reference mu. |
|---|
| 4113 | |
|---|
| 4114 | IMPLICIT NONE |
|---|
| 4115 | |
|---|
| 4116 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4117 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4118 | its , ite , jts , jte , kts , kte |
|---|
| 4119 | |
|---|
| 4120 | LOGICAL :: full_levs |
|---|
| 4121 | |
|---|
| 4122 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: mu0 |
|---|
| 4123 | REAL , DIMENSION( kms:kme ) , INTENT(IN) :: eta |
|---|
| 4124 | REAL :: pdht |
|---|
| 4125 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pdry |
|---|
| 4126 | |
|---|
| 4127 | ! Local vars |
|---|
| 4128 | |
|---|
| 4129 | INTEGER :: i , j , k |
|---|
| 4130 | REAL , DIMENSION( kms:kme ) :: eta_h |
|---|
| 4131 | |
|---|
| 4132 | IF ( full_levs ) THEN |
|---|
| 4133 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4134 | DO k = kts , kte |
|---|
| 4135 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4136 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4137 | pdry(i,k,j) = eta(k) * mu0(i,j) + pdht |
|---|
| 4138 | END DO |
|---|
| 4139 | END DO |
|---|
| 4140 | END DO |
|---|
| 4141 | |
|---|
| 4142 | ELSE |
|---|
| 4143 | DO k = kts , kte-1 |
|---|
| 4144 | eta_h(k) = ( eta(k) + eta(k+1) ) * 0.5 |
|---|
| 4145 | END DO |
|---|
| 4146 | |
|---|
| 4147 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4148 | DO k = kts , kte-1 |
|---|
| 4149 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4150 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4151 | pdry(i,k,j) = eta_h(k) * mu0(i,j) + pdht |
|---|
| 4152 | END DO |
|---|
| 4153 | END DO |
|---|
| 4154 | END DO |
|---|
| 4155 | END IF |
|---|
| 4156 | |
|---|
| 4157 | END SUBROUTINE p_dry |
|---|
| 4158 | |
|---|
| 4159 | !--------------------------------------------------------------------- |
|---|
| 4160 | |
|---|
| 4161 | SUBROUTINE p_dts ( pdts , intq , psfc , p_top , & |
|---|
| 4162 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4163 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4164 | its , ite , jts , jte , kts , kte ) |
|---|
| 4165 | |
|---|
| 4166 | ! Compute difference between the dry, total surface pressure and the top pressure. |
|---|
| 4167 | |
|---|
| 4168 | IMPLICIT NONE |
|---|
| 4169 | |
|---|
| 4170 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4171 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4172 | its , ite , jts , jte , kts , kte |
|---|
| 4173 | |
|---|
| 4174 | REAL , INTENT(IN) :: p_top |
|---|
| 4175 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: psfc |
|---|
| 4176 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: intq |
|---|
| 4177 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(OUT) :: pdts |
|---|
| 4178 | |
|---|
| 4179 | ! Local vars |
|---|
| 4180 | |
|---|
| 4181 | INTEGER :: i , j , k |
|---|
| 4182 | |
|---|
| 4183 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4184 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4185 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4186 | pdts(i,j) = psfc(i,j) - intq(i,j) - p_top |
|---|
| 4187 | END DO |
|---|
| 4188 | END DO |
|---|
| 4189 | |
|---|
| 4190 | END SUBROUTINE p_dts |
|---|
| 4191 | |
|---|
| 4192 | !--------------------------------------------------------------------- |
|---|
| 4193 | |
|---|
| 4194 | SUBROUTINE p_dhs ( pdhs , ht , p0 , t0 , a , & |
|---|
| 4195 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4196 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4197 | its , ite , jts , jte , kts , kte ) |
|---|
| 4198 | |
|---|
| 4199 | ! Compute dry, hydrostatic surface pressure. |
|---|
| 4200 | |
|---|
| 4201 | IMPLICIT NONE |
|---|
| 4202 | |
|---|
| 4203 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4204 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4205 | its , ite , jts , jte , kts , kte |
|---|
| 4206 | |
|---|
| 4207 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(IN) :: ht |
|---|
| 4208 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: pdhs |
|---|
| 4209 | |
|---|
| 4210 | REAL , INTENT(IN) :: p0 , t0 , a |
|---|
| 4211 | |
|---|
| 4212 | ! Local vars |
|---|
| 4213 | |
|---|
| 4214 | INTEGER :: i , j , k |
|---|
| 4215 | |
|---|
| 4216 | REAL , PARAMETER :: Rd = r_d |
|---|
| 4217 | |
|---|
| 4218 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4219 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4220 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4221 | pdhs(i,j) = p0 * EXP ( -t0/a + SQRT ( (t0/a)**2 - 2. * g * ht(i,j)/(a * Rd) ) ) |
|---|
| 4222 | END DO |
|---|
| 4223 | END DO |
|---|
| 4224 | |
|---|
| 4225 | END SUBROUTINE p_dhs |
|---|
| 4226 | |
|---|
| 4227 | !--------------------------------------------------------------------- |
|---|
| 4228 | |
|---|
| 4229 | SUBROUTINE find_p_top ( p , p_top , & |
|---|
| 4230 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4231 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4232 | its , ite , jts , jte , kts , kte ) |
|---|
| 4233 | |
|---|
| 4234 | ! Find the largest pressure in the top level. This is our p_top. We are |
|---|
| 4235 | ! assuming that the top level is the location where the pressure is a minimum |
|---|
| 4236 | ! for each column. In cases where the top surface is not isobaric, a |
|---|
| 4237 | ! communicated value must be shared in the calling routine. Also in cases |
|---|
| 4238 | ! where the top surface is not isobaric, care must be taken that the new |
|---|
| 4239 | ! maximum pressure is not greater than the previous value. This test is |
|---|
| 4240 | ! also handled in the calling routine. |
|---|
| 4241 | |
|---|
| 4242 | IMPLICIT NONE |
|---|
| 4243 | |
|---|
| 4244 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4245 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4246 | its , ite , jts , jte , kts , kte |
|---|
| 4247 | |
|---|
| 4248 | REAL :: p_top |
|---|
| 4249 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
|---|
| 4250 | |
|---|
| 4251 | ! Local vars |
|---|
| 4252 | |
|---|
| 4253 | INTEGER :: i , j , k, min_lev |
|---|
| 4254 | |
|---|
| 4255 | i = its |
|---|
| 4256 | j = jts |
|---|
| 4257 | p_top = p(i,2,j) |
|---|
| 4258 | min_lev = 2 |
|---|
| 4259 | DO k = 2 , kte |
|---|
| 4260 | IF ( p_top .GT. p(i,k,j) ) THEN |
|---|
| 4261 | p_top = p(i,k,j) |
|---|
| 4262 | min_lev = k |
|---|
| 4263 | END IF |
|---|
| 4264 | END DO |
|---|
| 4265 | |
|---|
| 4266 | k = min_lev |
|---|
| 4267 | p_top = p(its,k,jts) |
|---|
| 4268 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4269 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4270 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4271 | p_top = MAX ( p_top , p(i,k,j) ) |
|---|
| 4272 | END DO |
|---|
| 4273 | END DO |
|---|
| 4274 | |
|---|
| 4275 | END SUBROUTINE find_p_top |
|---|
| 4276 | |
|---|
| 4277 | !--------------------------------------------------------------------- |
|---|
| 4278 | |
|---|
| 4279 | SUBROUTINE t_to_theta ( t , p , p00 , & |
|---|
| 4280 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4281 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4282 | its , ite , jts , jte , kts , kte ) |
|---|
| 4283 | |
|---|
| 4284 | ! Compute potential temperature from temperature and pressure. |
|---|
| 4285 | |
|---|
| 4286 | IMPLICIT NONE |
|---|
| 4287 | |
|---|
| 4288 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4289 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4290 | its , ite , jts , jte , kts , kte |
|---|
| 4291 | |
|---|
| 4292 | REAL , INTENT(IN) :: p00 |
|---|
| 4293 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
|---|
| 4294 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: t |
|---|
| 4295 | |
|---|
| 4296 | ! Local vars |
|---|
| 4297 | |
|---|
| 4298 | INTEGER :: i , j , k |
|---|
| 4299 | |
|---|
| 4300 | REAL , PARAMETER :: Rd = r_d |
|---|
| 4301 | |
|---|
| 4302 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4303 | DO k = kts , kte |
|---|
| 4304 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4305 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4306 | t(i,k,j) = t(i,k,j) * ( p00 / p(i,k,j) ) ** (Rd / Cp) |
|---|
| 4307 | END DO |
|---|
| 4308 | END DO |
|---|
| 4309 | END DO |
|---|
| 4310 | |
|---|
| 4311 | END SUBROUTINE t_to_theta |
|---|
| 4312 | |
|---|
| 4313 | |
|---|
| 4314 | !--------------------------------------------------------------------- |
|---|
| 4315 | |
|---|
| 4316 | SUBROUTINE theta_to_t ( t , p , p00 , & |
|---|
| 4317 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4318 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4319 | its , ite , jts , jte , kts , kte ) |
|---|
| 4320 | |
|---|
| 4321 | ! Compute temperature from potential temp and pressure. |
|---|
| 4322 | |
|---|
| 4323 | IMPLICIT NONE |
|---|
| 4324 | |
|---|
| 4325 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4326 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4327 | its , ite , jts , jte , kts , kte |
|---|
| 4328 | |
|---|
| 4329 | REAL , INTENT(IN) :: p00 |
|---|
| 4330 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p |
|---|
| 4331 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: t |
|---|
| 4332 | |
|---|
| 4333 | ! Local vars |
|---|
| 4334 | |
|---|
| 4335 | INTEGER :: i , j , k |
|---|
| 4336 | |
|---|
| 4337 | REAL , PARAMETER :: Rd = r_d |
|---|
| 4338 | CHARACTER (LEN=80) :: mess |
|---|
| 4339 | |
|---|
| 4340 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4341 | DO k = kts , kte-1 |
|---|
| 4342 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4343 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4344 | if ( p(i,k,j) .NE. 0. ) then |
|---|
| 4345 | t(i,k,j) = t(i,k,j) / ( ( p00 / p(i,k,j) ) ** (Rd / Cp) ) |
|---|
| 4346 | else |
|---|
| 4347 | WRITE(mess,*) 'Troubles in theta_to_t' |
|---|
| 4348 | CALL wrf_debug(0,mess) |
|---|
| 4349 | WRITE(mess,*) "i,j,k = ", i,j,k |
|---|
| 4350 | CALL wrf_debug(0,mess) |
|---|
| 4351 | WRITE(mess,*) "p(i,k,j) = ", p(i,k,j) |
|---|
| 4352 | CALL wrf_debug(0,mess) |
|---|
| 4353 | WRITE(mess,*) "t(i,k,j) = ", t(i,k,j) |
|---|
| 4354 | CALL wrf_debug(0,mess) |
|---|
| 4355 | endif |
|---|
| 4356 | END DO |
|---|
| 4357 | END DO |
|---|
| 4358 | END DO |
|---|
| 4359 | |
|---|
| 4360 | END SUBROUTINE theta_to_t |
|---|
| 4361 | |
|---|
| 4362 | !--------------------------------------------------------------------- |
|---|
| 4363 | |
|---|
| 4364 | SUBROUTINE integ_moist ( q_in , p_in , pd_out , t_in , ght_in , intq , & |
|---|
| 4365 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4366 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4367 | its , ite , jts , jte , kts , kte ) |
|---|
| 4368 | |
|---|
| 4369 | ! Integrate the moisture field vertically. Mostly used to get the total |
|---|
| 4370 | ! vapor pressure, which can be subtracted from the total pressure to get |
|---|
| 4371 | ! the dry pressure. |
|---|
| 4372 | |
|---|
| 4373 | IMPLICIT NONE |
|---|
| 4374 | |
|---|
| 4375 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4376 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4377 | its , ite , jts , jte , kts , kte |
|---|
| 4378 | |
|---|
| 4379 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: q_in , p_in , t_in , ght_in |
|---|
| 4380 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: pd_out |
|---|
| 4381 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: intq |
|---|
| 4382 | |
|---|
| 4383 | ! Local vars |
|---|
| 4384 | |
|---|
| 4385 | INTEGER :: i , j , k |
|---|
| 4386 | INTEGER , DIMENSION(ims:ime) :: level_above_sfc |
|---|
| 4387 | REAL , DIMENSION(ims:ime,jms:jme) :: psfc , tsfc , qsfc, zsfc |
|---|
| 4388 | REAL , DIMENSION(ims:ime,kms:kme) :: q , p , t , ght, pd |
|---|
| 4389 | |
|---|
| 4390 | REAL :: rhobar , qbar , dz |
|---|
| 4391 | REAL :: p1 , p2 , t1 , t2 , q1 , q2 , z1, z2 |
|---|
| 4392 | |
|---|
| 4393 | LOGICAL :: upside_down |
|---|
| 4394 | |
|---|
| 4395 | REAL , PARAMETER :: Rd = r_d |
|---|
| 4396 | |
|---|
| 4397 | ! Is the data upside down? |
|---|
| 4398 | |
|---|
| 4399 | |
|---|
| 4400 | find_valid : DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4401 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4402 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4403 | IF ( p_in(i,kts+1,j) .LT. p_in(i,kte,j) ) THEN |
|---|
| 4404 | upside_down = .TRUE. |
|---|
| 4405 | ELSE |
|---|
| 4406 | upside_down = .FALSE. |
|---|
| 4407 | END IF |
|---|
| 4408 | EXIT find_valid |
|---|
| 4409 | END DO |
|---|
| 4410 | END DO find_valid |
|---|
| 4411 | |
|---|
| 4412 | ! Get a surface value, always the first level of a 3d field. |
|---|
| 4413 | |
|---|
| 4414 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4415 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4416 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4417 | psfc(i,j) = p_in(i,kts,j) |
|---|
| 4418 | tsfc(i,j) = t_in(i,kts,j) |
|---|
| 4419 | qsfc(i,j) = q_in(i,kts,j) |
|---|
| 4420 | zsfc(i,j) = ght_in(i,kts,j) |
|---|
| 4421 | END DO |
|---|
| 4422 | END DO |
|---|
| 4423 | |
|---|
| 4424 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4425 | |
|---|
| 4426 | ! Initialize the integrated quantity of moisture to zero. |
|---|
| 4427 | |
|---|
| 4428 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4429 | intq(i,j) = 0. |
|---|
| 4430 | END DO |
|---|
| 4431 | |
|---|
| 4432 | IF ( upside_down ) THEN |
|---|
| 4433 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4434 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4435 | p(i,kts) = p_in(i,kts,j) |
|---|
| 4436 | t(i,kts) = t_in(i,kts,j) |
|---|
| 4437 | q(i,kts) = q_in(i,kts,j) |
|---|
| 4438 | ght(i,kts) = ght_in(i,kts,j) |
|---|
| 4439 | DO k = kts+1,kte |
|---|
| 4440 | p(i,k) = p_in(i,kte+2-k,j) |
|---|
| 4441 | t(i,k) = t_in(i,kte+2-k,j) |
|---|
| 4442 | q(i,k) = q_in(i,kte+2-k,j) |
|---|
| 4443 | ght(i,k) = ght_in(i,kte+2-k,j) |
|---|
| 4444 | END DO |
|---|
| 4445 | END DO |
|---|
| 4446 | ELSE |
|---|
| 4447 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4448 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4449 | DO k = kts,kte |
|---|
| 4450 | p(i,k) = p_in(i,k ,j) |
|---|
| 4451 | t(i,k) = t_in(i,k ,j) |
|---|
| 4452 | q(i,k) = q_in(i,k ,j) |
|---|
| 4453 | ght(i,k) = ght_in(i,k ,j) |
|---|
| 4454 | END DO |
|---|
| 4455 | END DO |
|---|
| 4456 | END IF |
|---|
| 4457 | |
|---|
| 4458 | ! Find the first level above the ground. If all of the levels are above ground, such as |
|---|
| 4459 | ! a terrain following lower coordinate, then the first level above ground is index #2. |
|---|
| 4460 | |
|---|
| 4461 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4462 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4463 | level_above_sfc(i) = -1 |
|---|
| 4464 | IF ( p(i,kts+1) .LT. psfc(i,j) ) THEN |
|---|
| 4465 | level_above_sfc(i) = kts+1 |
|---|
| 4466 | ELSE |
|---|
| 4467 | find_k : DO k = kts+1,kte-1 |
|---|
| 4468 | IF ( ( p(i,k )-psfc(i,j) .GE. 0. ) .AND. & |
|---|
| 4469 | ( p(i,k+1)-psfc(i,j) .LT. 0. ) ) THEN |
|---|
| 4470 | level_above_sfc(i) = k+1 |
|---|
| 4471 | EXIT find_k |
|---|
| 4472 | END IF |
|---|
| 4473 | END DO find_k |
|---|
| 4474 | IF ( level_above_sfc(i) .EQ. -1 ) THEN |
|---|
| 4475 | print *,'i,j = ',i,j |
|---|
| 4476 | print *,'p = ',p(i,:) |
|---|
| 4477 | print *,'p sfc = ',psfc(i,j) |
|---|
| 4478 | CALL wrf_error_fatal ( 'Could not find level above ground') |
|---|
| 4479 | END IF |
|---|
| 4480 | END IF |
|---|
| 4481 | END DO |
|---|
| 4482 | |
|---|
| 4483 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4484 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4485 | |
|---|
| 4486 | ! Account for the moisture above the ground. |
|---|
| 4487 | |
|---|
| 4488 | pd(i,kte) = p(i,kte) |
|---|
| 4489 | DO k = kte-1,level_above_sfc(i),-1 |
|---|
| 4490 | rhobar = ( p(i,k ) / ( Rd * t(i,k ) ) + & |
|---|
| 4491 | p(i,k+1) / ( Rd * t(i,k+1) ) ) * 0.5 |
|---|
| 4492 | qbar = ( q(i,k ) + q(i,k+1) ) * 0.5 |
|---|
| 4493 | dz = ght(i,k+1) - ght(i,k) |
|---|
| 4494 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
|---|
| 4495 | pd(i,k) = p(i,k) - intq(i,j) |
|---|
| 4496 | END DO |
|---|
| 4497 | |
|---|
| 4498 | ! Account for the moisture between the surface and the first level up. |
|---|
| 4499 | |
|---|
| 4500 | IF ( ( p(i,level_above_sfc(i)-1)-psfc(i,j) .GE. 0. ) .AND. & |
|---|
| 4501 | ( p(i,level_above_sfc(i) )-psfc(i,j) .LT. 0. ) .AND. & |
|---|
| 4502 | ( level_above_sfc(i) .GT. kts ) ) THEN |
|---|
| 4503 | p1 = psfc(i,j) |
|---|
| 4504 | p2 = p(i,level_above_sfc(i)) |
|---|
| 4505 | t1 = tsfc(i,j) |
|---|
| 4506 | t2 = t(i,level_above_sfc(i)) |
|---|
| 4507 | q1 = qsfc(i,j) |
|---|
| 4508 | q2 = q(i,level_above_sfc(i)) |
|---|
| 4509 | z1 = zsfc(i,j) |
|---|
| 4510 | z2 = ght(i,level_above_sfc(i)) |
|---|
| 4511 | rhobar = ( p1 / ( Rd * t1 ) + & |
|---|
| 4512 | p2 / ( Rd * t2 ) ) * 0.5 |
|---|
| 4513 | qbar = ( q1 + q2 ) * 0.5 |
|---|
| 4514 | dz = z2 - z1 |
|---|
| 4515 | IF ( dz .GT. 0.1 ) THEN |
|---|
| 4516 | intq(i,j) = intq(i,j) + g * qbar * rhobar / (1. + qbar) * dz |
|---|
| 4517 | END IF |
|---|
| 4518 | |
|---|
| 4519 | ! Fix the underground values. |
|---|
| 4520 | |
|---|
| 4521 | DO k = level_above_sfc(i)-1,kts+1,-1 |
|---|
| 4522 | pd(i,k) = p(i,k) - intq(i,j) |
|---|
| 4523 | END DO |
|---|
| 4524 | END IF |
|---|
| 4525 | pd(i,kts) = psfc(i,j) - intq(i,j) |
|---|
| 4526 | |
|---|
| 4527 | END DO |
|---|
| 4528 | |
|---|
| 4529 | IF ( upside_down ) THEN |
|---|
| 4530 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4531 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4532 | pd_out(i,kts,j) = pd(i,kts) |
|---|
| 4533 | DO k = kts+1,kte |
|---|
| 4534 | pd_out(i,kte+2-k,j) = pd(i,k) |
|---|
| 4535 | END DO |
|---|
| 4536 | END DO |
|---|
| 4537 | ELSE |
|---|
| 4538 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4539 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4540 | DO k = kts,kte |
|---|
| 4541 | pd_out(i,k,j) = pd(i,k) |
|---|
| 4542 | END DO |
|---|
| 4543 | END DO |
|---|
| 4544 | END IF |
|---|
| 4545 | |
|---|
| 4546 | END DO |
|---|
| 4547 | |
|---|
| 4548 | END SUBROUTINE integ_moist |
|---|
| 4549 | |
|---|
| 4550 | !--------------------------------------------------------------------- |
|---|
| 4551 | |
|---|
| 4552 | SUBROUTINE rh_to_mxrat2(rh, t, p, q , wrt_liquid , & |
|---|
| 4553 | qv_max_p_safe , & |
|---|
| 4554 | qv_max_flag , qv_max_value , & |
|---|
| 4555 | qv_min_p_safe , & |
|---|
| 4556 | qv_min_flag , qv_min_value , & |
|---|
| 4557 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4558 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4559 | its , ite , jts , jte , kts , kte ) |
|---|
| 4560 | |
|---|
| 4561 | ! This subroutine computes mixing ratio (q, kg/kg) from basic variables |
|---|
| 4562 | ! pressure (p, Pa), temperature (t, K) and relative humidity (rh, 0-100%). |
|---|
| 4563 | ! Phase transition, liquid water to ice, occurs over (0,-23) temperature range (Celcius). |
|---|
| 4564 | ! Formulation used here is based on: |
|---|
| 4565 | ! WMO, General meteorological standards and recommended practices, |
|---|
| 4566 | ! Appendix A, WMO Technical Regulations, WMO-No. 49, corrigendum, |
|---|
| 4567 | ! August 2000. --TKW 03/30/2011 |
|---|
| 4568 | |
|---|
| 4569 | IMPLICIT NONE |
|---|
| 4570 | |
|---|
| 4571 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4572 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4573 | its , ite , jts , jte , kts , kte |
|---|
| 4574 | |
|---|
| 4575 | LOGICAL , INTENT(IN) :: wrt_liquid |
|---|
| 4576 | |
|---|
| 4577 | REAL , INTENT(IN) :: qv_max_p_safe , qv_max_flag , qv_max_value |
|---|
| 4578 | REAL , INTENT(IN) :: qv_min_p_safe , qv_min_flag , qv_min_value |
|---|
| 4579 | |
|---|
| 4580 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p , t |
|---|
| 4581 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: rh |
|---|
| 4582 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: q |
|---|
| 4583 | |
|---|
| 4584 | ! Local vars |
|---|
| 4585 | |
|---|
| 4586 | REAL, PARAMETER :: T0K = 273.16 |
|---|
| 4587 | REAL, PARAMETER :: Tice = T0K - 23.0 |
|---|
| 4588 | |
|---|
| 4589 | REAL, PARAMETER :: cfe = 1.0/(23.0*23.0) |
|---|
| 4590 | REAL, PARAMETER :: eps = 0.622 |
|---|
| 4591 | |
|---|
| 4592 | ! Coefficients for esat over liquid water |
|---|
| 4593 | REAL, PARAMETER :: cw1 = 10.79574 |
|---|
| 4594 | REAL, PARAMETER :: cw2 = -5.02800 |
|---|
| 4595 | REAL, PARAMETER :: cw3 = 1.50475E-4 |
|---|
| 4596 | REAL, PARAMETER :: cw4 = 0.42873E-3 |
|---|
| 4597 | REAL, PARAMETER :: cw5 = 0.78614 |
|---|
| 4598 | |
|---|
| 4599 | ! Coefficients for esat over ice |
|---|
| 4600 | REAL, PARAMETER :: ci1 = -9.09685 |
|---|
| 4601 | REAL, PARAMETER :: ci2 = -3.56654 |
|---|
| 4602 | REAL, PARAMETER :: ci3 = 0.87682 |
|---|
| 4603 | REAL, PARAMETER :: ci4 = 0.78614 |
|---|
| 4604 | |
|---|
| 4605 | REAL, PARAMETER :: Tn = 273.16 |
|---|
| 4606 | |
|---|
| 4607 | ! 1 ppm is a reasonable estimate for minimum QV even for stratospheric altitudes |
|---|
| 4608 | REAL, PARAMETER :: QV_MIN = 1.e-6 |
|---|
| 4609 | |
|---|
| 4610 | ! Maximum allowed QV is computed under the extreme condition: |
|---|
| 4611 | ! Saturated at 40 degree in Celcius and 1000 hPa |
|---|
| 4612 | REAL, PARAMETER :: QV_MAX = 0.045 |
|---|
| 4613 | |
|---|
| 4614 | ! Need to constrain WVP in the stratosphere where pressure |
|---|
| 4615 | ! is low but tempearure is hot (warm) |
|---|
| 4616 | ! Maximum ratio of e/p, = q/(0.622+q) |
|---|
| 4617 | REAL, PARAMETER :: EP_MAX = QV_MAX/(eps+QV_MAX) |
|---|
| 4618 | |
|---|
| 4619 | INTEGER :: i , j , k |
|---|
| 4620 | |
|---|
| 4621 | REAL :: ew , q1 , t1 |
|---|
| 4622 | REAL :: ta, tb, pw3, pw4, pwr |
|---|
| 4623 | REAL :: es, esw, esi, wvp, pmb, wvpmax |
|---|
| 4624 | |
|---|
| 4625 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4626 | DO k = kts , kte |
|---|
| 4627 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4628 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4629 | rh(i,k,j) = MIN ( MAX ( rh(i,k,j) , 0. ) , 100. ) |
|---|
| 4630 | END DO |
|---|
| 4631 | END DO |
|---|
| 4632 | END DO |
|---|
| 4633 | |
|---|
| 4634 | IF ( wrt_liquid ) THEN |
|---|
| 4635 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4636 | DO k = kts , kte |
|---|
| 4637 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4638 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4639 | Ta=Tn/T(i,k,j) |
|---|
| 4640 | Tb=T(i,k,j)/Tn |
|---|
| 4641 | pw3 = -8.2969*(Tb-1.0) |
|---|
| 4642 | pw4 = 4.76955*(1.0-Ta) |
|---|
| 4643 | pwr = cw1*(1.0-Ta) + cw2*LOG10(Tb) + cw3*(1.0-10.0**pw3) + cw4*(10.0**pw4-1.0) + cw5 |
|---|
| 4644 | es = 10.0**pwr ! Saturation WVP |
|---|
| 4645 | wvp = 0.01*rh(i,k,j)*es ! Actual WVP |
|---|
| 4646 | pmb = p(i,k,j)/100. |
|---|
| 4647 | wvpmax = EP_MAX*pmb ! Prevents unrealistic QV in the stratosphere |
|---|
| 4648 | wvp = MIN(wvp,wvpmax) |
|---|
| 4649 | q(i,k,j) = eps*wvp/(pmb-wvp) |
|---|
| 4650 | END DO |
|---|
| 4651 | END DO |
|---|
| 4652 | END DO |
|---|
| 4653 | |
|---|
| 4654 | ELSE |
|---|
| 4655 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4656 | DO k = kts , kte |
|---|
| 4657 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4658 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4659 | Ta=Tn/T(i,k,j) |
|---|
| 4660 | Tb=T(i,k,j)/Tn |
|---|
| 4661 | IF (t(i,k,j) >= T0K) THEN ! Over liquid water |
|---|
| 4662 | pw3 = -8.2969*(Tb-1.0) |
|---|
| 4663 | pw4 = 4.76955*(1.0-Ta) |
|---|
| 4664 | pwr = cw1*(1.0-Ta) + cw2*LOG10(Tb) + cw3*(1.0-10.0**pw3) + cw4*(10.0**pw4-1.0) + cw5 |
|---|
| 4665 | es = 10.0**pwr |
|---|
| 4666 | wvp = 0.01*rh(i,k,j)*es |
|---|
| 4667 | ELSE IF (t(i,k,j) <= Tice) THEN ! Over ice |
|---|
| 4668 | pwr = ci1*(Ta-1.0) + ci2*LOG10(Ta) + ci3*(1.0-Tb) + ci4 |
|---|
| 4669 | es = 10.0**pwr |
|---|
| 4670 | wvp = 0.01*rh(i,k,j)*es |
|---|
| 4671 | ELSE ! Mixed |
|---|
| 4672 | pw3 = -8.2969*(Tb-1.0) |
|---|
| 4673 | pw4 = 4.76955*(1.0-Ta) |
|---|
| 4674 | pwr = cw1*(1.0-Ta) + cw2*LOG10(Tb) + cw3*(1.0-10.0**pw3) + cw4*(10.0**pw4-1.0) + cw5 |
|---|
| 4675 | esw = 10.0**pwr ! Over liquid water |
|---|
| 4676 | |
|---|
| 4677 | pwr = ci1*(Ta-1.0) + ci2*LOG10(Ta) + ci3*(1.0-Tb) + ci4 |
|---|
| 4678 | esi = 10.0**pwr ! Over ice |
|---|
| 4679 | |
|---|
| 4680 | es = esi + (esw-esi)*cfe*(T(i,k,j)-Tice)*(T(i,k,j)-Tice) |
|---|
| 4681 | wvp = 0.01*rh(i,k,j)*es |
|---|
| 4682 | END IF |
|---|
| 4683 | pmb = p(i,k,j)/100. |
|---|
| 4684 | wvpmax = EP_MAX*pmb ! Prevents unrealistic QV in the stratosphere |
|---|
| 4685 | wvp = MIN(wvp,wvpmax) |
|---|
| 4686 | q(i,k,j) = eps*wvp/(pmb-wvp) |
|---|
| 4687 | END DO |
|---|
| 4688 | END DO |
|---|
| 4689 | END DO |
|---|
| 4690 | END IF |
|---|
| 4691 | |
|---|
| 4692 | ! For pressures above a defined level, reasonable Qv values should be |
|---|
| 4693 | ! a certain value or smaller. If they are larger than this, the input data |
|---|
| 4694 | ! probably had "missing" RH, and we filled in some values. This is an |
|---|
| 4695 | ! attempt to catch those. Also, set the minimum value for the entire |
|---|
| 4696 | ! domain that is above the selected pressure level. |
|---|
| 4697 | |
|---|
| 4698 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4699 | DO k = kts , kte |
|---|
| 4700 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4701 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4702 | IF ( p(i,k,j) .LT. qv_max_p_safe ) THEN |
|---|
| 4703 | IF ( q(i,k,j) .GT. qv_max_flag ) THEN |
|---|
| 4704 | q(i,k,j) = qv_max_value |
|---|
| 4705 | END IF |
|---|
| 4706 | END IF |
|---|
| 4707 | IF ( p(i,k,j) .LT. qv_min_p_safe ) THEN |
|---|
| 4708 | IF ( q(i,k,j) .LT. qv_min_flag ) THEN |
|---|
| 4709 | q(i,k,j) = qv_min_value |
|---|
| 4710 | END IF |
|---|
| 4711 | END IF |
|---|
| 4712 | END DO |
|---|
| 4713 | END DO |
|---|
| 4714 | END DO |
|---|
| 4715 | |
|---|
| 4716 | END SUBROUTINE rh_to_mxrat2 |
|---|
| 4717 | |
|---|
| 4718 | !--------------------------------------------------------------------- |
|---|
| 4719 | |
|---|
| 4720 | SUBROUTINE rh_to_mxrat1(rh, t, p, q , wrt_liquid , & |
|---|
| 4721 | qv_max_p_safe , & |
|---|
| 4722 | qv_max_flag , qv_max_value , & |
|---|
| 4723 | qv_min_p_safe , & |
|---|
| 4724 | qv_min_flag , qv_min_value , & |
|---|
| 4725 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4726 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4727 | its , ite , jts , jte , kts , kte ) |
|---|
| 4728 | |
|---|
| 4729 | IMPLICIT NONE |
|---|
| 4730 | |
|---|
| 4731 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4732 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4733 | its , ite , jts , jte , kts , kte |
|---|
| 4734 | |
|---|
| 4735 | LOGICAL , INTENT(IN) :: wrt_liquid |
|---|
| 4736 | |
|---|
| 4737 | REAL , INTENT(IN) :: qv_max_p_safe , qv_max_flag , qv_max_value |
|---|
| 4738 | REAL , INTENT(IN) :: qv_min_p_safe , qv_min_flag , qv_min_value |
|---|
| 4739 | |
|---|
| 4740 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(IN) :: p , t |
|---|
| 4741 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(INOUT) :: rh |
|---|
| 4742 | REAL , DIMENSION(ims:ime,kms:kme,jms:jme) , INTENT(OUT) :: q |
|---|
| 4743 | |
|---|
| 4744 | ! Local vars |
|---|
| 4745 | |
|---|
| 4746 | INTEGER :: i , j , k |
|---|
| 4747 | |
|---|
| 4748 | REAL :: ew , q1 , t1 |
|---|
| 4749 | |
|---|
| 4750 | REAL, PARAMETER :: T_REF = 0.0 |
|---|
| 4751 | REAL, PARAMETER :: MW_AIR = 28.966 |
|---|
| 4752 | REAL, PARAMETER :: MW_VAP = 18.0152 |
|---|
| 4753 | |
|---|
| 4754 | REAL, PARAMETER :: A0 = 6.107799961 |
|---|
| 4755 | REAL, PARAMETER :: A1 = 4.436518521e-01 |
|---|
| 4756 | REAL, PARAMETER :: A2 = 1.428945805e-02 |
|---|
| 4757 | REAL, PARAMETER :: A3 = 2.650648471e-04 |
|---|
| 4758 | REAL, PARAMETER :: A4 = 3.031240396e-06 |
|---|
| 4759 | REAL, PARAMETER :: A5 = 2.034080948e-08 |
|---|
| 4760 | REAL, PARAMETER :: A6 = 6.136820929e-11 |
|---|
| 4761 | |
|---|
| 4762 | REAL, PARAMETER :: ES0 = 6.1121 |
|---|
| 4763 | |
|---|
| 4764 | REAL, PARAMETER :: C1 = 9.09718 |
|---|
| 4765 | REAL, PARAMETER :: C2 = 3.56654 |
|---|
| 4766 | REAL, PARAMETER :: C3 = 0.876793 |
|---|
| 4767 | REAL, PARAMETER :: EIS = 6.1071 |
|---|
| 4768 | REAL :: RHS |
|---|
| 4769 | REAL, PARAMETER :: TF = 273.16 |
|---|
| 4770 | REAL :: TK |
|---|
| 4771 | |
|---|
| 4772 | REAL :: ES |
|---|
| 4773 | REAL :: QS |
|---|
| 4774 | REAL, PARAMETER :: EPS = 0.622 |
|---|
| 4775 | REAL, PARAMETER :: SVP1 = 0.6112 |
|---|
| 4776 | REAL, PARAMETER :: SVP2 = 17.67 |
|---|
| 4777 | REAL, PARAMETER :: SVP3 = 29.65 |
|---|
| 4778 | REAL, PARAMETER :: SVPT0 = 273.15 |
|---|
| 4779 | |
|---|
| 4780 | CHARACTER (LEN=80) :: mess |
|---|
| 4781 | |
|---|
| 4782 | ! This subroutine computes mixing ratio (q, kg/kg) from basic variables |
|---|
| 4783 | ! pressure (p, Pa), temperature (t, K) and relative humidity (rh, 1-100%). |
|---|
| 4784 | ! The reference temperature (t_ref, C) is used to describe the temperature |
|---|
| 4785 | ! at which the liquid and ice phase change occurs. |
|---|
| 4786 | |
|---|
| 4787 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4788 | DO k = kts , kte-1 |
|---|
| 4789 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4790 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4791 | rh(i,k,j) = MIN ( MAX ( rh(i,k,j) , 0. ) , 100. ) |
|---|
| 4792 | END DO |
|---|
| 4793 | END DO |
|---|
| 4794 | END DO |
|---|
| 4795 | |
|---|
| 4796 | IF ( wrt_liquid ) THEN |
|---|
| 4797 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4798 | DO k = kts , kte-1 |
|---|
| 4799 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4800 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4801 | |
|---|
| 4802 | ! es is reduced by RH here to avoid problems in low-pressure cases |
|---|
| 4803 | if (t(i,k,j) .ne. 0.) then |
|---|
| 4804 | es=.01*rh(i,k,j)*svp1*10.*EXP(svp2*(t(i,k,j)-svpt0)/(t(i,k,j)-svp3)) |
|---|
| 4805 | IF (es .ge. p(i,k,j)/100.)THEN |
|---|
| 4806 | q(i,k,j)=0.0 |
|---|
| 4807 | WRITE(mess,*) 'Warning: vapor pressure exceeds total pressure, setting Qv to 0' |
|---|
| 4808 | CALL wrf_debug(0,mess) |
|---|
| 4809 | ELSE |
|---|
| 4810 | q(i,k,j)=eps*es/(p(i,k,j)/100.-es) |
|---|
| 4811 | ENDIF |
|---|
| 4812 | else |
|---|
| 4813 | q(i,k,j)=0.0 |
|---|
| 4814 | WRITE(mess,*) 't(i,j,k) was 0 at ', i,j,k,', setting Qv to 0' |
|---|
| 4815 | CALL wrf_debug(0,mess) |
|---|
| 4816 | endif |
|---|
| 4817 | END DO |
|---|
| 4818 | END DO |
|---|
| 4819 | END DO |
|---|
| 4820 | |
|---|
| 4821 | ELSE |
|---|
| 4822 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4823 | DO k = kts , kte-1 |
|---|
| 4824 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4825 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4826 | |
|---|
| 4827 | t1 = t(i,k,j) - 273.16 |
|---|
| 4828 | |
|---|
| 4829 | ! Obviously dry. |
|---|
| 4830 | |
|---|
| 4831 | IF ( t1 .lt. -200. ) THEN |
|---|
| 4832 | q(i,k,j) = 0 |
|---|
| 4833 | |
|---|
| 4834 | ELSE |
|---|
| 4835 | |
|---|
| 4836 | ! First compute the ambient vapor pressure of water |
|---|
| 4837 | |
|---|
| 4838 | ! Liquid phase t > 0 C |
|---|
| 4839 | |
|---|
| 4840 | IF ( t1 .GE. t_ref ) THEN |
|---|
| 4841 | ew = a0 + t1 * (a1 + t1 * (a2 + t1 * (a3 + t1 * (a4 + t1 * (a5 + t1 * a6))))) |
|---|
| 4842 | |
|---|
| 4843 | ! Mixed phase -47 C < t < 0 C |
|---|
| 4844 | |
|---|
| 4845 | ELSE IF ( ( t1 .LT. t_ref ) .AND. ( t1 .GE. -47. ) ) THEN |
|---|
| 4846 | ew = es0 * exp(17.67 * t1 / ( t1 + 243.5)) |
|---|
| 4847 | |
|---|
| 4848 | ! Ice phase t < -47 C |
|---|
| 4849 | |
|---|
| 4850 | ELSE IF ( t1 .LT. -47. ) THEN |
|---|
| 4851 | tk = t(i,k,j) |
|---|
| 4852 | rhs = -c1 * (tf / tk - 1.) - c2 * alog10(tf / tk) + & |
|---|
| 4853 | c3 * (1. - tk / tf) + alog10(eis) |
|---|
| 4854 | ew = 10. ** rhs |
|---|
| 4855 | |
|---|
| 4856 | END IF |
|---|
| 4857 | |
|---|
| 4858 | ! Now sat vap pres obtained compute local vapor pressure |
|---|
| 4859 | |
|---|
| 4860 | ew = MAX ( ew , 0. ) * rh(i,k,j) * 0.01 |
|---|
| 4861 | |
|---|
| 4862 | ! Now compute the specific humidity using the partial vapor |
|---|
| 4863 | ! pressures of water vapor (ew) and dry air (p-ew). The |
|---|
| 4864 | ! constants assume that the pressure is in hPa, so we divide |
|---|
| 4865 | ! the pressures by 100. |
|---|
| 4866 | |
|---|
| 4867 | q1 = mw_vap * ew |
|---|
| 4868 | q1 = q1 / (q1 + mw_air * (p(i,k,j)/100. - ew)) |
|---|
| 4869 | |
|---|
| 4870 | q(i,k,j) = q1 / (1. - q1 ) |
|---|
| 4871 | |
|---|
| 4872 | END IF |
|---|
| 4873 | |
|---|
| 4874 | END DO |
|---|
| 4875 | END DO |
|---|
| 4876 | END DO |
|---|
| 4877 | END IF |
|---|
| 4878 | |
|---|
| 4879 | ! For pressures above a defined level, reasonable Qv values should be |
|---|
| 4880 | ! a certain value or smaller. If they are larger than this, the input data |
|---|
| 4881 | ! probably had "missing" RH, and we filled in some values. This is an |
|---|
| 4882 | ! attempt to catch those. Also, set the minimum value for the entire |
|---|
| 4883 | ! domain that is above the selected pressure level. |
|---|
| 4884 | |
|---|
| 4885 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 4886 | DO k = kts , kte-1 |
|---|
| 4887 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 4888 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 4889 | IF ( p(i,k,j) .LT. qv_max_p_safe ) THEN |
|---|
| 4890 | IF ( q(i,k,j) .GT. qv_max_flag ) THEN |
|---|
| 4891 | q(i,k,j) = qv_max_value |
|---|
| 4892 | END IF |
|---|
| 4893 | END IF |
|---|
| 4894 | IF ( p(i,k,j) .LT. qv_min_p_safe ) THEN |
|---|
| 4895 | IF ( q(i,k,j) .LT. qv_min_flag ) THEN |
|---|
| 4896 | q(i,k,j) = qv_min_value |
|---|
| 4897 | END IF |
|---|
| 4898 | END IF |
|---|
| 4899 | END DO |
|---|
| 4900 | END DO |
|---|
| 4901 | END DO |
|---|
| 4902 | |
|---|
| 4903 | END SUBROUTINE rh_to_mxrat1 |
|---|
| 4904 | |
|---|
| 4905 | !--------------------------------------------------------------------- |
|---|
| 4906 | |
|---|
| 4907 | SUBROUTINE compute_eta ( znw , & |
|---|
| 4908 | eta_levels , max_eta , max_dz , & |
|---|
| 4909 | p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , tiso , & |
|---|
| 4910 | ids , ide , jds , jde , kds , kde , & |
|---|
| 4911 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4912 | its , ite , jts , jte , kts , kte ) |
|---|
| 4913 | |
|---|
| 4914 | ! Compute eta levels, either using given values from the namelist (hardly |
|---|
| 4915 | ! a computation, yep, I know), or assuming a constant dz above the PBL, |
|---|
| 4916 | ! knowing p_top and the number of eta levels. |
|---|
| 4917 | |
|---|
| 4918 | IMPLICIT NONE |
|---|
| 4919 | |
|---|
| 4920 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 4921 | ims , ime , jms , jme , kms , kme , & |
|---|
| 4922 | its , ite , jts , jte , kts , kte |
|---|
| 4923 | REAL , INTENT(IN) :: max_dz |
|---|
| 4924 | REAL , INTENT(IN) :: p_top , g , p00 , cvpm , a , r_d , cp , t00 , p1000mb , t0 , tiso |
|---|
| 4925 | INTEGER , INTENT(IN) :: max_eta |
|---|
| 4926 | REAL , DIMENSION (max_eta) , INTENT(IN) :: eta_levels |
|---|
| 4927 | |
|---|
| 4928 | REAL , DIMENSION (kts:kte) , INTENT(OUT) :: znw |
|---|
| 4929 | |
|---|
| 4930 | ! Local vars |
|---|
| 4931 | |
|---|
| 4932 | INTEGER :: k |
|---|
| 4933 | REAL :: mub , t_init , p_surf , pb, ztop, ztop_pbl , dz , temp |
|---|
| 4934 | REAL , DIMENSION(kts:kte) :: dnw |
|---|
| 4935 | |
|---|
| 4936 | INTEGER , PARAMETER :: prac_levels = 17 |
|---|
| 4937 | INTEGER :: loop , loop1 |
|---|
| 4938 | REAL , DIMENSION(prac_levels) :: znw_prac , znu_prac , dnw_prac |
|---|
| 4939 | REAL , DIMENSION(kts:kte) :: alb , phb |
|---|
| 4940 | |
|---|
| 4941 | ! Gee, do the eta levels come in from the namelist? |
|---|
| 4942 | |
|---|
| 4943 | IF ( ABS(eta_levels(1)+1.) .GT. 0.0000001 ) THEN |
|---|
| 4944 | |
|---|
| 4945 | ! Check to see if the array is oriented OK, we can easily fix an upside down oops. |
|---|
| 4946 | |
|---|
| 4947 | IF ( ( ABS(eta_levels(1 )-1.) .LT. 0.0000001 ) .AND. & |
|---|
| 4948 | ( ABS(eta_levels(kde)-0.) .LT. 0.0000001 ) ) THEN |
|---|
| 4949 | DO k = kds+1 , kde-1 |
|---|
| 4950 | znw(k) = eta_levels(k) |
|---|
| 4951 | END DO |
|---|
| 4952 | znw( 1) = 1. |
|---|
| 4953 | znw(kde) = 0. |
|---|
| 4954 | ELSE IF ( ( ABS(eta_levels(kde)-1.) .LT. 0.0000001 ) .AND. & |
|---|
| 4955 | ( ABS(eta_levels(1 )-0.) .LT. 0.0000001 ) ) THEN |
|---|
| 4956 | DO k = kds+1 , kde-1 |
|---|
| 4957 | znw(k) = eta_levels(kde+1-k) |
|---|
| 4958 | END DO |
|---|
| 4959 | znw( 1) = 1. |
|---|
| 4960 | znw(kde) = 0. |
|---|
| 4961 | ELSE |
|---|
| 4962 | CALL wrf_error_fatal ( 'First eta level should be 1.0 and the last 0.0 in namelist' ) |
|---|
| 4963 | END IF |
|---|
| 4964 | |
|---|
| 4965 | ! Check to see if the input full-level eta array is monotonic. |
|---|
| 4966 | |
|---|
| 4967 | DO k = kds , kde-1 |
|---|
| 4968 | IF ( znw(k) .LE. znw(k+1) ) THEN |
|---|
| 4969 | PRINT *,'eta on full levels is not monotonic' |
|---|
| 4970 | PRINT *,'eta (',k,') = ',znw(k) |
|---|
| 4971 | PRINT *,'eta (',k+1,') = ',znw(k+1) |
|---|
| 4972 | CALL wrf_error_fatal ( 'Fix non-monotonic "eta_levels" in the namelist.input file' ) |
|---|
| 4973 | END IF |
|---|
| 4974 | END DO |
|---|
| 4975 | |
|---|
| 4976 | ! Compute eta levels assuming a constant delta z above the PBL. |
|---|
| 4977 | |
|---|
| 4978 | ELSE |
|---|
| 4979 | |
|---|
| 4980 | ! Compute top of the atmosphere with some silly levels. We just want to |
|---|
| 4981 | ! integrate to get a reasonable value for ztop. We use the planned PBL-esque |
|---|
| 4982 | ! levels, and then just coarse resolution above that. We know p_top, and we |
|---|
| 4983 | ! have the base state vars. |
|---|
| 4984 | |
|---|
| 4985 | p_surf = p00 |
|---|
| 4986 | |
|---|
| 4987 | znw_prac = (/ 1.000 , 0.993 , 0.983 , 0.970 , 0.954 , 0.934 , 0.909 , & |
|---|
| 4988 | 0.88 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 , 0.0 /) |
|---|
| 4989 | |
|---|
| 4990 | DO k = 1 , prac_levels - 1 |
|---|
| 4991 | znu_prac(k) = ( znw_prac(k) + znw_prac(k+1) ) * 0.5 |
|---|
| 4992 | dnw_prac(k) = znw_prac(k+1) - znw_prac(k) |
|---|
| 4993 | END DO |
|---|
| 4994 | |
|---|
| 4995 | DO k = 1, prac_levels-1 |
|---|
| 4996 | pb = znu_prac(k)*(p_surf - p_top) + p_top |
|---|
| 4997 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 4998 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 4999 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5000 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5001 | END DO |
|---|
| 5002 | |
|---|
| 5003 | ! Base state mu is defined as base state surface pressure minus p_top |
|---|
| 5004 | |
|---|
| 5005 | mub = p_surf - p_top |
|---|
| 5006 | |
|---|
| 5007 | ! Integrate base geopotential, starting at terrain elevation. |
|---|
| 5008 | |
|---|
| 5009 | phb(1) = 0. |
|---|
| 5010 | DO k = 2,prac_levels |
|---|
| 5011 | phb(k) = phb(k-1) - dnw_prac(k-1)*mub*alb(k-1) |
|---|
| 5012 | END DO |
|---|
| 5013 | |
|---|
| 5014 | ! So, now we know the model top in meters. Get the average depth above the PBL |
|---|
| 5015 | ! of each of the remaining levels. We are going for a constant delta z thickness. |
|---|
| 5016 | |
|---|
| 5017 | ztop = phb(prac_levels) / g |
|---|
| 5018 | ztop_pbl = phb(8 ) / g |
|---|
| 5019 | dz = ( ztop - ztop_pbl ) / REAL ( kde - 8 ) |
|---|
| 5020 | |
|---|
| 5021 | ! Standard levels near the surface so no one gets in trouble. |
|---|
| 5022 | |
|---|
| 5023 | DO k = 1 , 8 |
|---|
| 5024 | znw(k) = znw_prac(k) |
|---|
| 5025 | END DO |
|---|
| 5026 | |
|---|
| 5027 | ! Using d phb(k)/ d eta(k) = -mub * alb(k), eqn 2.9 |
|---|
| 5028 | ! Skamarock et al, NCAR TN 468. Use full levels, so |
|---|
| 5029 | ! use twice the thickness. |
|---|
| 5030 | |
|---|
| 5031 | DO k = 8, kte-1-2 |
|---|
| 5032 | pb = znw(k) * (p_surf - p_top) + p_top |
|---|
| 5033 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 5034 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5035 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5036 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5037 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
|---|
| 5038 | END DO |
|---|
| 5039 | znw(kte-2) = 0.000 |
|---|
| 5040 | |
|---|
| 5041 | ! There is some iteration. We want the top level, ztop, to be |
|---|
| 5042 | ! consistent with the delta z, and we want the half level values |
|---|
| 5043 | ! to be consistent with the eta levels. The inner loop to 10 gets |
|---|
| 5044 | ! the eta levels very accurately, but has a residual at the top, due |
|---|
| 5045 | ! to dz changing. We reset dz five times, and then things seem OK. |
|---|
| 5046 | |
|---|
| 5047 | DO loop1 = 1 , 5 |
|---|
| 5048 | DO loop = 1 , 10 |
|---|
| 5049 | DO k = 8, kte-1-2 |
|---|
| 5050 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
|---|
| 5051 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 5052 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5053 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5054 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5055 | znw(k+1) = znw(k) - dz*g / ( mub*alb(k) ) |
|---|
| 5056 | END DO |
|---|
| 5057 | IF ( ( loop1 .EQ. 5 ) .AND. ( loop .EQ. 10 ) ) THEN |
|---|
| 5058 | print *,'Converged znw(kte) should be about 0.0 = ',znw(kte-2) |
|---|
| 5059 | END IF |
|---|
| 5060 | znw(kte-2) = 0.000 |
|---|
| 5061 | END DO |
|---|
| 5062 | |
|---|
| 5063 | ! Here is where we check the eta levels values we just computed. |
|---|
| 5064 | |
|---|
| 5065 | DO k = 1, kde-1-2 |
|---|
| 5066 | pb = (znw(k)+znw(k+1))*0.5 * (p_surf - p_top) + p_top |
|---|
| 5067 | temp = MAX ( tiso, t00 + A*LOG(pb/p00) ) |
|---|
| 5068 | ! temp = t00 + A*LOG(pb/p00) |
|---|
| 5069 | t_init = temp*(p00/pb)**(r_d/cp) - t0 |
|---|
| 5070 | alb(k) = (r_d/p1000mb)*(t_init+t0)*(pb/p1000mb)**cvpm |
|---|
| 5071 | END DO |
|---|
| 5072 | |
|---|
| 5073 | phb(1) = 0. |
|---|
| 5074 | DO k = 2,kde-2 |
|---|
| 5075 | phb(k) = phb(k-1) - (znw(k)-znw(k-1)) * mub*alb(k-1) |
|---|
| 5076 | END DO |
|---|
| 5077 | |
|---|
| 5078 | ! Reset the model top and the dz, and iterate. |
|---|
| 5079 | |
|---|
| 5080 | ztop = phb(kde-2)/g |
|---|
| 5081 | ztop_pbl = phb(8)/g |
|---|
| 5082 | dz = ( ztop - ztop_pbl ) / REAL ( (kde-2) - 8 ) |
|---|
| 5083 | END DO |
|---|
| 5084 | |
|---|
| 5085 | IF ( dz .GT. max_dz ) THEN |
|---|
| 5086 | print *,'z (m) = ',phb(1)/g |
|---|
| 5087 | do k = 2 ,kte-2 |
|---|
| 5088 | print *,'z (m) and dz (m) = ',phb(k)/g,(phb(k)-phb(k-1))/g |
|---|
| 5089 | end do |
|---|
| 5090 | print *,'dz (m) above fixed eta levels = ',dz |
|---|
| 5091 | print *,'namelist max_dz (m) = ',max_dz |
|---|
| 5092 | print *,'namelist p_top (Pa) = ',p_top |
|---|
| 5093 | CALL wrf_debug ( 0, 'You need one of three things:' ) |
|---|
| 5094 | CALL wrf_debug ( 0, '1) More eta levels to reduce the dz: e_vert' ) |
|---|
| 5095 | CALL wrf_debug ( 0, '2) A lower p_top so your total height is reduced: p_top_requested') |
|---|
| 5096 | CALL wrf_debug ( 0, '3) Increase the maximum allowable eta thickness: max_dz') |
|---|
| 5097 | CALL wrf_debug ( 0, 'All are namelist options') |
|---|
| 5098 | CALL wrf_error_fatal ( 'dz above fixed eta levels is too large') |
|---|
| 5099 | END IF |
|---|
| 5100 | |
|---|
| 5101 | ! Add those 2 levels back into the middle, just above the 8 levels |
|---|
| 5102 | ! that semi define a boundary layer. After we open up the levels, |
|---|
| 5103 | ! then we just linearly interpolate in znw. So now levels 1-8 are |
|---|
| 5104 | ! specified as the fixed boundary layer levels given in this routine. |
|---|
| 5105 | ! The top levels, 12 through kte are those computed. The middle |
|---|
| 5106 | ! levels 9, 10, and 11 are equi-spaced in znw, and are each 1/2 the |
|---|
| 5107 | ! the znw thickness of levels 11 through 12. |
|---|
| 5108 | |
|---|
| 5109 | DO k = kte-2 , 9 , -1 |
|---|
| 5110 | znw(k+2) = znw(k) |
|---|
| 5111 | END DO |
|---|
| 5112 | |
|---|
| 5113 | znw( 9) = 0.75 * znw( 8) + 0.25 * znw(12) |
|---|
| 5114 | znw(10) = 0.50 * znw( 8) + 0.50 * znw(12) |
|---|
| 5115 | znw(11) = 0.25 * znw( 8) + 0.75 * znw(12) |
|---|
| 5116 | |
|---|
| 5117 | END IF |
|---|
| 5118 | |
|---|
| 5119 | END SUBROUTINE compute_eta |
|---|
| 5120 | |
|---|
| 5121 | !--------------------------------------------------------------------- |
|---|
| 5122 | |
|---|
| 5123 | SUBROUTINE monthly_min_max ( field_in , field_min , field_max , & |
|---|
| 5124 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5125 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5126 | its , ite , jts , jte , kts , kte ) |
|---|
| 5127 | |
|---|
| 5128 | ! Plow through each month, find the max, min values for each i,j. |
|---|
| 5129 | |
|---|
| 5130 | IMPLICIT NONE |
|---|
| 5131 | |
|---|
| 5132 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5133 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5134 | its , ite , jts , jte , kts , kte |
|---|
| 5135 | |
|---|
| 5136 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
|---|
| 5137 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_min , field_max |
|---|
| 5138 | |
|---|
| 5139 | ! Local vars |
|---|
| 5140 | |
|---|
| 5141 | INTEGER :: i , j , l |
|---|
| 5142 | REAL :: minner , maxxer |
|---|
| 5143 | |
|---|
| 5144 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5145 | DO i = its , MIN(ide-1,ite) |
|---|
| 5146 | minner = field_in(i,1,j) |
|---|
| 5147 | maxxer = field_in(i,1,j) |
|---|
| 5148 | DO l = 2 , 12 |
|---|
| 5149 | IF ( field_in(i,l,j) .LT. minner ) THEN |
|---|
| 5150 | minner = field_in(i,l,j) |
|---|
| 5151 | END IF |
|---|
| 5152 | IF ( field_in(i,l,j) .GT. maxxer ) THEN |
|---|
| 5153 | maxxer = field_in(i,l,j) |
|---|
| 5154 | END IF |
|---|
| 5155 | END DO |
|---|
| 5156 | field_min(i,j) = minner |
|---|
| 5157 | field_max(i,j) = maxxer |
|---|
| 5158 | END DO |
|---|
| 5159 | END DO |
|---|
| 5160 | |
|---|
| 5161 | END SUBROUTINE monthly_min_max |
|---|
| 5162 | |
|---|
| 5163 | !--------------------------------------------------------------------- |
|---|
| 5164 | |
|---|
| 5165 | SUBROUTINE monthly_interp_to_date ( field_in , date_str , field_out , & |
|---|
| 5166 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5167 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5168 | its , ite , jts , jte , kts , kte ) |
|---|
| 5169 | |
|---|
| 5170 | ! Linrarly in time interpolate data to a current valid time. The data is |
|---|
| 5171 | ! assumed to come in "monthly", valid at the 15th of every month. |
|---|
| 5172 | |
|---|
| 5173 | IMPLICIT NONE |
|---|
| 5174 | |
|---|
| 5175 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5176 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5177 | its , ite , jts , jte , kts , kte |
|---|
| 5178 | |
|---|
| 5179 | CHARACTER (LEN=24) , INTENT(IN) :: date_str |
|---|
| 5180 | REAL , DIMENSION(ims:ime,12,jms:jme) , INTENT(IN) :: field_in |
|---|
| 5181 | REAL , DIMENSION(ims:ime, jms:jme) , INTENT(OUT) :: field_out |
|---|
| 5182 | |
|---|
| 5183 | ! Local vars |
|---|
| 5184 | |
|---|
| 5185 | INTEGER :: i , j , l |
|---|
| 5186 | INTEGER , DIMENSION(0:13) :: middle |
|---|
| 5187 | INTEGER :: target_julyr , target_julday , target_date |
|---|
| 5188 | INTEGER :: julyr , julday , int_month , month1 , month2 |
|---|
| 5189 | REAL :: gmt |
|---|
| 5190 | CHARACTER (LEN=4) :: yr |
|---|
| 5191 | CHARACTER (LEN=2) :: mon , day15 |
|---|
| 5192 | |
|---|
| 5193 | |
|---|
| 5194 | WRITE(day15,FMT='(I2.2)') 15 |
|---|
| 5195 | DO l = 1 , 12 |
|---|
| 5196 | WRITE(mon,FMT='(I2.2)') l |
|---|
| 5197 | CALL get_julgmt ( date_str(1:4)//'-'//mon//'-'//day15//'_'//'00:00:00.0000' , julyr , julday , gmt ) |
|---|
| 5198 | middle(l) = julyr*1000 + julday |
|---|
| 5199 | END DO |
|---|
| 5200 | |
|---|
| 5201 | l = 0 |
|---|
| 5202 | middle(l) = middle( 1) - 31 |
|---|
| 5203 | |
|---|
| 5204 | l = 13 |
|---|
| 5205 | middle(l) = middle(12) + 31 |
|---|
| 5206 | |
|---|
| 5207 | CALL get_julgmt ( date_str , target_julyr , target_julday , gmt ) |
|---|
| 5208 | target_date = target_julyr * 1000 + target_julday |
|---|
| 5209 | find_month : DO l = 0 , 12 |
|---|
| 5210 | IF ( ( middle(l) .LT. target_date ) .AND. ( middle(l+1) .GE. target_date ) ) THEN |
|---|
| 5211 | DO j = jts , MIN ( jde-1 , jte ) |
|---|
| 5212 | DO i = its , MIN (ide-1 , ite ) |
|---|
| 5213 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5214 | int_month = l |
|---|
| 5215 | IF ( ( int_month .EQ. 0 ) .OR. ( int_month .EQ. 12 ) ) THEN |
|---|
| 5216 | month1 = 12 |
|---|
| 5217 | month2 = 1 |
|---|
| 5218 | ELSE |
|---|
| 5219 | month1 = int_month |
|---|
| 5220 | month2 = month1 + 1 |
|---|
| 5221 | END IF |
|---|
| 5222 | field_out(i,j) = ( field_in(i,month2,j) * ( target_date - middle(l) ) + & |
|---|
| 5223 | field_in(i,month1,j) * ( middle(l+1) - target_date ) ) / & |
|---|
| 5224 | ( middle(l+1) - middle(l) ) |
|---|
| 5225 | END DO |
|---|
| 5226 | END DO |
|---|
| 5227 | EXIT find_month |
|---|
| 5228 | END IF |
|---|
| 5229 | END DO find_month |
|---|
| 5230 | |
|---|
| 5231 | END SUBROUTINE monthly_interp_to_date |
|---|
| 5232 | |
|---|
| 5233 | !--------------------------------------------------------------------- |
|---|
| 5234 | |
|---|
| 5235 | SUBROUTINE sfcprs (t, q, height, pslv, ter, avgsfct, p, & |
|---|
| 5236 | psfc, ez_method, & |
|---|
| 5237 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5238 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5239 | its , ite , jts , jte , kts , kte ) |
|---|
| 5240 | |
|---|
| 5241 | |
|---|
| 5242 | ! Computes the surface pressure using the input height, |
|---|
| 5243 | ! temperature and q (already computed from relative |
|---|
| 5244 | ! humidity) on p surfaces. Sea level pressure is used |
|---|
| 5245 | ! to extrapolate a first guess. |
|---|
| 5246 | |
|---|
| 5247 | IMPLICIT NONE |
|---|
| 5248 | |
|---|
| 5249 | REAL, PARAMETER :: gamma = 6.5E-3 |
|---|
| 5250 | REAL, PARAMETER :: pconst = 10000.0 |
|---|
| 5251 | REAL, PARAMETER :: Rd = r_d |
|---|
| 5252 | REAL, PARAMETER :: TC = svpt0 + 17.5 |
|---|
| 5253 | |
|---|
| 5254 | REAL, PARAMETER :: gammarg = gamma * Rd / g |
|---|
| 5255 | REAL, PARAMETER :: rov2 = Rd / 2. |
|---|
| 5256 | |
|---|
| 5257 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5258 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5259 | its , ite , jts , jte , kts , kte |
|---|
| 5260 | LOGICAL , INTENT ( IN ) :: ez_method |
|---|
| 5261 | |
|---|
| 5262 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
|---|
| 5263 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: pslv , ter, avgsfct |
|---|
| 5264 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
|---|
| 5265 | |
|---|
| 5266 | INTEGER :: i |
|---|
| 5267 | INTEGER :: j |
|---|
| 5268 | INTEGER :: k |
|---|
| 5269 | INTEGER , DIMENSION (its:ite,jts:jte) :: k500 , k700 , k850 |
|---|
| 5270 | |
|---|
| 5271 | LOGICAL :: l1 |
|---|
| 5272 | LOGICAL :: l2 |
|---|
| 5273 | LOGICAL :: l3 |
|---|
| 5274 | LOGICAL :: OK |
|---|
| 5275 | |
|---|
| 5276 | REAL :: gamma78 ( its:ite,jts:jte ) |
|---|
| 5277 | REAL :: gamma57 ( its:ite,jts:jte ) |
|---|
| 5278 | REAL :: ht ( its:ite,jts:jte ) |
|---|
| 5279 | REAL :: p1 ( its:ite,jts:jte ) |
|---|
| 5280 | REAL :: t1 ( its:ite,jts:jte ) |
|---|
| 5281 | REAL :: t500 ( its:ite,jts:jte ) |
|---|
| 5282 | REAL :: t700 ( its:ite,jts:jte ) |
|---|
| 5283 | REAL :: t850 ( its:ite,jts:jte ) |
|---|
| 5284 | REAL :: tfixed ( its:ite,jts:jte ) |
|---|
| 5285 | REAL :: tsfc ( its:ite,jts:jte ) |
|---|
| 5286 | REAL :: tslv ( its:ite,jts:jte ) |
|---|
| 5287 | |
|---|
| 5288 | ! We either compute the surface pressure from a time averaged surface temperature |
|---|
| 5289 | ! (what we will call the "easy way"), or we try to remove the diurnal impact on the |
|---|
| 5290 | ! surface temperature (what we will call the "other way"). Both are essentially |
|---|
| 5291 | ! corrections to a sea level pressure with a high-resolution topography field. |
|---|
| 5292 | |
|---|
| 5293 | IF ( ez_method ) THEN |
|---|
| 5294 | |
|---|
| 5295 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5296 | DO i = its , MIN(ide-1,ite) |
|---|
| 5297 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5298 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / avgsfct(i,j) ) ** ( - g / ( Rd * gamma ) ) |
|---|
| 5299 | END DO |
|---|
| 5300 | END DO |
|---|
| 5301 | |
|---|
| 5302 | ELSE |
|---|
| 5303 | |
|---|
| 5304 | ! Find the locations of the 850, 700 and 500 mb levels. |
|---|
| 5305 | |
|---|
| 5306 | k850 = 0 ! find k at: P=850 |
|---|
| 5307 | k700 = 0 ! P=700 |
|---|
| 5308 | k500 = 0 ! P=500 |
|---|
| 5309 | |
|---|
| 5310 | i = its |
|---|
| 5311 | j = jts |
|---|
| 5312 | DO k = kts+1 , kte |
|---|
| 5313 | IF (NINT(p(i,k,j)) .EQ. 85000) THEN |
|---|
| 5314 | k850(i,j) = k |
|---|
| 5315 | ELSE IF (NINT(p(i,k,j)) .EQ. 70000) THEN |
|---|
| 5316 | k700(i,j) = k |
|---|
| 5317 | ELSE IF (NINT(p(i,k,j)) .EQ. 50000) THEN |
|---|
| 5318 | k500(i,j) = k |
|---|
| 5319 | END IF |
|---|
| 5320 | END DO |
|---|
| 5321 | |
|---|
| 5322 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
|---|
| 5323 | |
|---|
| 5324 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5325 | DO i = its , MIN(ide-1,ite) |
|---|
| 5326 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5327 | psfc(i,j) = pslv(i,j) * ( 1.0 + gamma * ter(i,j) / t(i,1,j) ) ** ( - g / ( Rd * gamma ) ) |
|---|
| 5328 | END DO |
|---|
| 5329 | END DO |
|---|
| 5330 | |
|---|
| 5331 | RETURN |
|---|
| 5332 | #if 0 |
|---|
| 5333 | |
|---|
| 5334 | ! Possibly it is just that we have a generalized vertical coord, so we do not |
|---|
| 5335 | ! have the values exactly. Do a simple assignment to a close vertical level. |
|---|
| 5336 | |
|---|
| 5337 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5338 | DO i = its , MIN(ide-1,ite) |
|---|
| 5339 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5340 | DO k = kts+1 , kte-1 |
|---|
| 5341 | IF ( ( p(i,k,j) - 85000. ) * ( p(i,k+1,j) - 85000. ) .LE. 0.0 ) THEN |
|---|
| 5342 | k850(i,j) = k |
|---|
| 5343 | END IF |
|---|
| 5344 | IF ( ( p(i,k,j) - 70000. ) * ( p(i,k+1,j) - 70000. ) .LE. 0.0 ) THEN |
|---|
| 5345 | k700(i,j) = k |
|---|
| 5346 | END IF |
|---|
| 5347 | IF ( ( p(i,k,j) - 50000. ) * ( p(i,k+1,j) - 50000. ) .LE. 0.0 ) THEN |
|---|
| 5348 | k500(i,j) = k |
|---|
| 5349 | END IF |
|---|
| 5350 | END DO |
|---|
| 5351 | END DO |
|---|
| 5352 | END DO |
|---|
| 5353 | |
|---|
| 5354 | ! If we *still* do not have the k levels, punt. I mean, we did try. |
|---|
| 5355 | |
|---|
| 5356 | OK = .TRUE. |
|---|
| 5357 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5358 | DO i = its , MIN(ide-1,ite) |
|---|
| 5359 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5360 | IF ( ( k850(i,j) .EQ. 0 ) .OR. ( k700(i,j) .EQ. 0 ) .OR. ( k500(i,j) .EQ. 0 ) ) THEN |
|---|
| 5361 | OK = .FALSE. |
|---|
| 5362 | PRINT '(A)','(i,j) = ',i,j,' Error in finding p level for 850, 700 or 500 hPa.' |
|---|
| 5363 | DO K = kts+1 , kte |
|---|
| 5364 | PRINT '(A,I3,A,F10.2,A)','K = ',k,' PRESSURE = ',p(i,k,j),' Pa' |
|---|
| 5365 | END DO |
|---|
| 5366 | PRINT '(A)','Expected 850, 700, and 500 mb values, at least.' |
|---|
| 5367 | END IF |
|---|
| 5368 | END DO |
|---|
| 5369 | END DO |
|---|
| 5370 | IF ( .NOT. OK ) THEN |
|---|
| 5371 | CALL wrf_error_fatal ( 'wrong pressure levels' ) |
|---|
| 5372 | END IF |
|---|
| 5373 | #endif |
|---|
| 5374 | |
|---|
| 5375 | ! We are here if the data is isobaric and we found the levels for 850, 700, |
|---|
| 5376 | ! and 500 mb right off the bat. |
|---|
| 5377 | |
|---|
| 5378 | ELSE |
|---|
| 5379 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5380 | DO i = its , MIN(ide-1,ite) |
|---|
| 5381 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5382 | k850(i,j) = k850(its,jts) |
|---|
| 5383 | k700(i,j) = k700(its,jts) |
|---|
| 5384 | k500(i,j) = k500(its,jts) |
|---|
| 5385 | END DO |
|---|
| 5386 | END DO |
|---|
| 5387 | END IF |
|---|
| 5388 | |
|---|
| 5389 | ! The 850 hPa level of geopotential height is called something special. |
|---|
| 5390 | |
|---|
| 5391 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5392 | DO i = its , MIN(ide-1,ite) |
|---|
| 5393 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5394 | ht(i,j) = height(i,k850(i,j),j) |
|---|
| 5395 | END DO |
|---|
| 5396 | END DO |
|---|
| 5397 | |
|---|
| 5398 | ! The variable ht is now -ter/ht(850 hPa). The plot thickens. |
|---|
| 5399 | |
|---|
| 5400 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5401 | DO i = its , MIN(ide-1,ite) |
|---|
| 5402 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5403 | ht(i,j) = -ter(i,j) / ht(i,j) |
|---|
| 5404 | END DO |
|---|
| 5405 | END DO |
|---|
| 5406 | |
|---|
| 5407 | ! Make an isothermal assumption to get a first guess at the surface |
|---|
| 5408 | ! pressure. This is to tell us which levels to use for the lapse |
|---|
| 5409 | ! rates in a bit. |
|---|
| 5410 | |
|---|
| 5411 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5412 | DO i = its , MIN(ide-1,ite) |
|---|
| 5413 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5414 | psfc(i,j) = pslv(i,j) * (pslv(i,j) / p(i,k850(i,j),j)) ** ht(i,j) |
|---|
| 5415 | END DO |
|---|
| 5416 | END DO |
|---|
| 5417 | |
|---|
| 5418 | ! Get a pressure more than pconst Pa above the surface - p1. The |
|---|
| 5419 | ! p1 is the top of the level that we will use for our lapse rate |
|---|
| 5420 | ! computations. |
|---|
| 5421 | |
|---|
| 5422 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5423 | DO i = its , MIN(ide-1,ite) |
|---|
| 5424 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5425 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
|---|
| 5426 | p1(i,j) = 85000. |
|---|
| 5427 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0. ) THEN |
|---|
| 5428 | p1(i,j) = psfc(i,j) - pconst |
|---|
| 5429 | ELSE |
|---|
| 5430 | p1(i,j) = 50000. |
|---|
| 5431 | END IF |
|---|
| 5432 | END DO |
|---|
| 5433 | END DO |
|---|
| 5434 | |
|---|
| 5435 | ! Compute virtual temperatures for k850, k700, and k500 layers. Now |
|---|
| 5436 | ! you see why we wanted Q on pressure levels, it all is beginning |
|---|
| 5437 | ! to make sense. |
|---|
| 5438 | |
|---|
| 5439 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5440 | DO i = its , MIN(ide-1,ite) |
|---|
| 5441 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5442 | t850(i,j) = t(i,k850(i,j),j) * (1. + 0.608 * q(i,k850(i,j),j)) |
|---|
| 5443 | t700(i,j) = t(i,k700(i,j),j) * (1. + 0.608 * q(i,k700(i,j),j)) |
|---|
| 5444 | t500(i,j) = t(i,k500(i,j),j) * (1. + 0.608 * q(i,k500(i,j),j)) |
|---|
| 5445 | END DO |
|---|
| 5446 | END DO |
|---|
| 5447 | |
|---|
| 5448 | ! Compute lapse rates between these three levels. These are |
|---|
| 5449 | ! environmental values for each (i,j). |
|---|
| 5450 | |
|---|
| 5451 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5452 | DO i = its , MIN(ide-1,ite) |
|---|
| 5453 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5454 | gamma78(i,j) = ALOG(t850(i,j) / t700(i,j)) / ALOG (p(i,k850(i,j),j) / p(i,k700(i,j),j) ) |
|---|
| 5455 | gamma57(i,j) = ALOG(t700(i,j) / t500(i,j)) / ALOG (p(i,k700(i,j),j) / p(i,k500(i,j),j) ) |
|---|
| 5456 | END DO |
|---|
| 5457 | END DO |
|---|
| 5458 | |
|---|
| 5459 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5460 | DO i = its , MIN(ide-1,ite) |
|---|
| 5461 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5462 | IF ( ( psfc(i,j) - 95000. ) .GE. 0. ) THEN |
|---|
| 5463 | t1(i,j) = t850(i,j) |
|---|
| 5464 | ELSE IF ( ( psfc(i,j) - 85000. ) .GE. 0. ) THEN |
|---|
| 5465 | t1(i,j) = t700(i,j) * (p1(i,j) / (p(i,k700(i,j),j))) ** gamma78(i,j) |
|---|
| 5466 | ELSE IF ( ( psfc(i,j) - 70000. ) .GE. 0.) THEN |
|---|
| 5467 | t1(i,j) = t500(i,j) * (p1(i,j) / (p(i,k500(i,j),j))) ** gamma57(i,j) |
|---|
| 5468 | ELSE |
|---|
| 5469 | t1(i,j) = t500(i,j) |
|---|
| 5470 | ENDIF |
|---|
| 5471 | END DO |
|---|
| 5472 | END DO |
|---|
| 5473 | |
|---|
| 5474 | ! From our temperature way up in the air, we extrapolate down to |
|---|
| 5475 | ! the sea level to get a guess at the sea level temperature. |
|---|
| 5476 | |
|---|
| 5477 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5478 | DO i = its , MIN(ide-1,ite) |
|---|
| 5479 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5480 | tslv(i,j) = t1(i,j) * (pslv(i,j) / p1(i,j)) ** gammarg |
|---|
| 5481 | END DO |
|---|
| 5482 | END DO |
|---|
| 5483 | |
|---|
| 5484 | ! The new surface temperature is computed from the with new sea level |
|---|
| 5485 | ! temperature, just using the elevation and a lapse rate. This lapse |
|---|
| 5486 | ! rate is -6.5 K/km. |
|---|
| 5487 | |
|---|
| 5488 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5489 | DO i = its , MIN(ide-1,ite) |
|---|
| 5490 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5491 | tsfc(i,j) = tslv(i,j) - gamma * ter(i,j) |
|---|
| 5492 | END DO |
|---|
| 5493 | END DO |
|---|
| 5494 | |
|---|
| 5495 | ! A small correction to the sea-level temperature, in case it is too warm. |
|---|
| 5496 | |
|---|
| 5497 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5498 | DO i = its , MIN(ide-1,ite) |
|---|
| 5499 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5500 | tfixed(i,j) = tc - 0.005 * (tsfc(i,j) - tc) ** 2 |
|---|
| 5501 | END DO |
|---|
| 5502 | END DO |
|---|
| 5503 | |
|---|
| 5504 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5505 | DO i = its , MIN(ide-1,ite) |
|---|
| 5506 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5507 | l1 = tslv(i,j) .LT. tc |
|---|
| 5508 | l2 = tsfc(i,j) .LE. tc |
|---|
| 5509 | l3 = .NOT. l1 |
|---|
| 5510 | IF ( l2 .AND. l3 ) THEN |
|---|
| 5511 | tslv(i,j) = tc |
|---|
| 5512 | ELSE IF ( ( .NOT. l2 ) .AND. l3 ) THEN |
|---|
| 5513 | tslv(i,j) = tfixed(i,j) |
|---|
| 5514 | END IF |
|---|
| 5515 | END DO |
|---|
| 5516 | END DO |
|---|
| 5517 | |
|---|
| 5518 | ! Finally, we can get to the surface pressure. |
|---|
| 5519 | |
|---|
| 5520 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5521 | DO i = its , MIN(ide-1,ite) |
|---|
| 5522 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5523 | p1(i,j) = - ter(i,j) * g / ( rov2 * ( tsfc(i,j) + tslv(i,j) ) ) |
|---|
| 5524 | psfc(i,j) = pslv(i,j) * EXP ( p1(i,j) ) |
|---|
| 5525 | END DO |
|---|
| 5526 | END DO |
|---|
| 5527 | |
|---|
| 5528 | END IF |
|---|
| 5529 | |
|---|
| 5530 | ! Surface pressure and sea-level pressure are the same at sea level. |
|---|
| 5531 | |
|---|
| 5532 | ! DO j = jts , MIN(jde-1,jte) |
|---|
| 5533 | ! DO i = its , MIN(ide-1,ite) |
|---|
| 5534 | ! IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5535 | ! IF ( ABS ( ter(i,j) ) .LT. 0.1 ) THEN |
|---|
| 5536 | ! psfc(i,j) = pslv(i,j) |
|---|
| 5537 | ! END IF |
|---|
| 5538 | ! END DO |
|---|
| 5539 | ! END DO |
|---|
| 5540 | |
|---|
| 5541 | END SUBROUTINE sfcprs |
|---|
| 5542 | |
|---|
| 5543 | !--------------------------------------------------------------------- |
|---|
| 5544 | |
|---|
| 5545 | SUBROUTINE sfcprs2(t, q, height, psfc_in, ter, avgsfct, p, & |
|---|
| 5546 | psfc, ez_method, & |
|---|
| 5547 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5548 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5549 | its , ite , jts , jte , kts , kte ) |
|---|
| 5550 | |
|---|
| 5551 | |
|---|
| 5552 | ! Computes the surface pressure using the input height, |
|---|
| 5553 | ! temperature and q (already computed from relative |
|---|
| 5554 | ! humidity) on p surfaces. Sea level pressure is used |
|---|
| 5555 | ! to extrapolate a first guess. |
|---|
| 5556 | |
|---|
| 5557 | IMPLICIT NONE |
|---|
| 5558 | |
|---|
| 5559 | REAL, PARAMETER :: Rd = r_d |
|---|
| 5560 | |
|---|
| 5561 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5562 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5563 | its , ite , jts , jte , kts , kte |
|---|
| 5564 | LOGICAL , INTENT ( IN ) :: ez_method |
|---|
| 5565 | |
|---|
| 5566 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: t, q, height, p |
|---|
| 5567 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: psfc_in , ter, avgsfct |
|---|
| 5568 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
|---|
| 5569 | |
|---|
| 5570 | INTEGER :: i |
|---|
| 5571 | INTEGER :: j |
|---|
| 5572 | INTEGER :: k |
|---|
| 5573 | |
|---|
| 5574 | REAL :: tv_sfc_avg , tv_sfc , del_z |
|---|
| 5575 | |
|---|
| 5576 | ! Compute the new surface pressure from the old surface pressure, and a |
|---|
| 5577 | ! known change in elevation at the surface. |
|---|
| 5578 | |
|---|
| 5579 | ! del_z = diff in surface topo, lo-res vs hi-res |
|---|
| 5580 | ! psfc = psfc_in * exp ( g del_z / (Rd Tv_sfc ) ) |
|---|
| 5581 | |
|---|
| 5582 | |
|---|
| 5583 | IF ( ez_method ) THEN |
|---|
| 5584 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5585 | DO i = its , MIN(ide-1,ite) |
|---|
| 5586 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5587 | tv_sfc_avg = avgsfct(i,j) * (1. + 0.608 * q(i,1,j)) |
|---|
| 5588 | del_z = height(i,1,j) - ter(i,j) |
|---|
| 5589 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc_avg ) ) |
|---|
| 5590 | END DO |
|---|
| 5591 | END DO |
|---|
| 5592 | ELSE |
|---|
| 5593 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5594 | DO i = its , MIN(ide-1,ite) |
|---|
| 5595 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5596 | tv_sfc = t(i,1,j) * (1. + 0.608 * q(i,1,j)) |
|---|
| 5597 | del_z = height(i,1,j) - ter(i,j) |
|---|
| 5598 | psfc(i,j) = psfc_in(i,j) * EXP ( g * del_z / ( Rd * tv_sfc ) ) |
|---|
| 5599 | END DO |
|---|
| 5600 | END DO |
|---|
| 5601 | END IF |
|---|
| 5602 | |
|---|
| 5603 | END SUBROUTINE sfcprs2 |
|---|
| 5604 | |
|---|
| 5605 | !--------------------------------------------------------------------- |
|---|
| 5606 | |
|---|
| 5607 | SUBROUTINE sfcprs3( height , p , ter , slp , psfc , & |
|---|
| 5608 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5609 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5610 | its , ite , jts , jte , kts , kte ) |
|---|
| 5611 | |
|---|
| 5612 | ! Computes the surface pressure by vertically interpolating |
|---|
| 5613 | ! linearly (or log) in z the pressure, to the targeted topography. |
|---|
| 5614 | |
|---|
| 5615 | IMPLICIT NONE |
|---|
| 5616 | |
|---|
| 5617 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5618 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5619 | its , ite , jts , jte , kts , kte |
|---|
| 5620 | |
|---|
| 5621 | REAL , DIMENSION (ims:ime,kms:kme,jms:jme) , INTENT(IN ):: height, p |
|---|
| 5622 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(IN ):: ter , slp |
|---|
| 5623 | REAL , DIMENSION (ims:ime, jms:jme) , INTENT(OUT):: psfc |
|---|
| 5624 | |
|---|
| 5625 | INTEGER :: i |
|---|
| 5626 | INTEGER :: j |
|---|
| 5627 | INTEGER :: k |
|---|
| 5628 | |
|---|
| 5629 | LOGICAL :: found_loc |
|---|
| 5630 | |
|---|
| 5631 | REAL :: zl , zu , pl , pu , zm |
|---|
| 5632 | |
|---|
| 5633 | ! Loop over each grid point |
|---|
| 5634 | |
|---|
| 5635 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5636 | DO i = its , MIN(ide-1,ite) |
|---|
| 5637 | IF ( skip_middle_points_t ( ids , ide , jds , jde , i , j , em_width , hold_ups ) ) CYCLE |
|---|
| 5638 | |
|---|
| 5639 | ! Special case where near the ocean level. Assume that the SLP is a good value. |
|---|
| 5640 | |
|---|
| 5641 | IF ( ter(i,j) .LT. 50 ) THEN |
|---|
| 5642 | psfc(i,j) = slp(i,j) + ( p(i,2,j)-p(i,3,j) ) / ( height(i,2,j)-height(i,3,j) ) * ter(i,j) |
|---|
| 5643 | CYCLE |
|---|
| 5644 | END IF |
|---|
| 5645 | |
|---|
| 5646 | ! Find the trapping levels |
|---|
| 5647 | |
|---|
| 5648 | found_loc = .FALSE. |
|---|
| 5649 | |
|---|
| 5650 | ! Normal sort of scenario - the model topography is somewhere between |
|---|
| 5651 | ! the height values of 1000 mb and the top of the model. |
|---|
| 5652 | |
|---|
| 5653 | found_k_loc : DO k = kts+1 , kte-2 |
|---|
| 5654 | IF ( ( height(i,k ,j) .LE. ter(i,j) ) .AND. & |
|---|
| 5655 | ( height(i,k+1,j) .GT. ter(i,j) ) ) THEN |
|---|
| 5656 | zl = height(i,k ,j) |
|---|
| 5657 | zu = height(i,k+1,j) |
|---|
| 5658 | zm = ter(i,j) |
|---|
| 5659 | pl = p(i,k ,j) |
|---|
| 5660 | pu = p(i,k+1,j) |
|---|
| 5661 | psfc(i,j) = EXP ( ( LOG(pl) * ( zm - zu ) + LOG(pu) * ( zl - zm ) ) / ( zl - zu ) ) |
|---|
| 5662 | found_loc = .TRUE. |
|---|
| 5663 | EXIT found_k_loc |
|---|
| 5664 | END IF |
|---|
| 5665 | END DO found_k_loc |
|---|
| 5666 | |
|---|
| 5667 | ! Interpolate betwixt slp and the first isobaric level above - this is probably the |
|---|
| 5668 | ! usual thing over the ocean. |
|---|
| 5669 | |
|---|
| 5670 | IF ( .NOT. found_loc ) THEN |
|---|
| 5671 | IF ( slp(i,j) .GE. p(i,2,j) ) THEN |
|---|
| 5672 | zl = 0. |
|---|
| 5673 | zu = height(i,3,j) |
|---|
| 5674 | zm = ter(i,j) |
|---|
| 5675 | pl = slp(i,j) |
|---|
| 5676 | pu = p(i,3,j) |
|---|
| 5677 | psfc(i,j) = EXP ( ( LOG(pl) * ( zm - zu ) + LOG(pu) * ( zl - zm ) ) / ( zl - zu ) ) |
|---|
| 5678 | found_loc = .TRUE. |
|---|
| 5679 | ELSE |
|---|
| 5680 | found_slp_loc : DO k = kts+1 , kte-3 |
|---|
| 5681 | IF ( ( slp(i,j) .GE. p(i,k+1,j) ) .AND. & |
|---|
| 5682 | ( slp(i,j) .LT. p(i,k ,j) ) ) THEN |
|---|
| 5683 | zl = 0. |
|---|
| 5684 | zu = height(i,k+1,j) |
|---|
| 5685 | zm = ter(i,j) |
|---|
| 5686 | pl = slp(i,j) |
|---|
| 5687 | pu = p(i,k+1,j) |
|---|
| 5688 | psfc(i,j) = EXP ( ( LOG(pl) * ( zm - zu ) + LOG(pu) * ( zl - zm ) ) / ( zl - zu ) ) |
|---|
| 5689 | found_loc = .TRUE. |
|---|
| 5690 | EXIT found_slp_loc |
|---|
| 5691 | END IF |
|---|
| 5692 | END DO found_slp_loc |
|---|
| 5693 | END IF |
|---|
| 5694 | END IF |
|---|
| 5695 | |
|---|
| 5696 | ! Did we do what we wanted done. |
|---|
| 5697 | |
|---|
| 5698 | IF ( .NOT. found_loc ) THEN |
|---|
| 5699 | print *,'i,j = ',i,j |
|---|
| 5700 | print *,'p column = ',p(i,2:,j) |
|---|
| 5701 | print *,'z column = ',height(i,2:,j) |
|---|
| 5702 | print *,'model topo = ',ter(i,j) |
|---|
| 5703 | CALL wrf_error_fatal ( ' probs with sfc p computation ' ) |
|---|
| 5704 | END IF |
|---|
| 5705 | |
|---|
| 5706 | END DO |
|---|
| 5707 | END DO |
|---|
| 5708 | |
|---|
| 5709 | END SUBROUTINE sfcprs3 |
|---|
| 5710 | !--------------------------------------------------------------------- |
|---|
| 5711 | |
|---|
| 5712 | SUBROUTINE filter_topo ( ht_in , xlat , msftx , fft_filter_lat , & |
|---|
| 5713 | ids , ide , jds , jde , kds , kde , & |
|---|
| 5714 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5715 | its , ite , jts , jte , kts , kte ) |
|---|
| 5716 | |
|---|
| 5717 | IMPLICIT NONE |
|---|
| 5718 | |
|---|
| 5719 | INTEGER , INTENT(IN) :: ids , ide , jds , jde , kds , kde , & |
|---|
| 5720 | ims , ime , jms , jme , kms , kme , & |
|---|
| 5721 | its , ite , jts , jte , kts , kte |
|---|
| 5722 | |
|---|
| 5723 | REAL , INTENT(IN) :: fft_filter_lat |
|---|
| 5724 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(INOUT) :: ht_in |
|---|
| 5725 | REAL , DIMENSION(ims:ime,jms:jme) , INTENT(IN) :: xlat , msftx |
|---|
| 5726 | |
|---|
| 5727 | |
|---|
| 5728 | ! Local vars |
|---|
| 5729 | |
|---|
| 5730 | INTEGER :: i , j , j_lat_pos , j_lat_neg |
|---|
| 5731 | INTEGER :: i_kicker , ik , i1, i2, i3, i4 |
|---|
| 5732 | REAL :: length_scale , sum |
|---|
| 5733 | REAL , DIMENSION(its:ite,jts:jte) :: ht_out |
|---|
| 5734 | |
|---|
| 5735 | ! The filtering is a simple average on a latitude loop. Possibly a LONG list of |
|---|
| 5736 | ! numbers. We assume that ALL of the 2d arrays have been transposed so that |
|---|
| 5737 | ! each patch has the entire domain size of the i-dim local. |
|---|
| 5738 | |
|---|
| 5739 | IF ( ( its .NE. ids ) .OR. ( ite .NE. ide ) ) THEN |
|---|
| 5740 | CALL wrf_error_fatal ( 'filtering assumes all values on X' ) |
|---|
| 5741 | END IF |
|---|
| 5742 | |
|---|
| 5743 | ! Starting at the south pole, we find where the |
|---|
| 5744 | ! grid distance is big enough, then go back a point. Continuing to the |
|---|
| 5745 | ! north pole, we find the first small grid distance. These are the |
|---|
| 5746 | ! computational latitude loops and the associated computational poles. |
|---|
| 5747 | |
|---|
| 5748 | j_lat_neg = 0 |
|---|
| 5749 | j_lat_pos = jde + 1 |
|---|
| 5750 | loop_neg : DO j = jts , MIN(jde-1,jte) |
|---|
| 5751 | IF ( xlat(its,j) .LT. 0.0 ) THEN |
|---|
| 5752 | IF ( ABS(xlat(its,j)) .LT. fft_filter_lat ) THEN |
|---|
| 5753 | j_lat_neg = j - 1 |
|---|
| 5754 | EXIT loop_neg |
|---|
| 5755 | END IF |
|---|
| 5756 | END IF |
|---|
| 5757 | END DO loop_neg |
|---|
| 5758 | |
|---|
| 5759 | loop_pos : DO j = jts , MIN(jde-1,jte) |
|---|
| 5760 | IF ( xlat(its,j) .GT. 0.0 ) THEN |
|---|
| 5761 | IF ( xlat(its,j) .GE. fft_filter_lat ) THEN |
|---|
| 5762 | j_lat_pos = j |
|---|
| 5763 | EXIT loop_pos |
|---|
| 5764 | END IF |
|---|
| 5765 | END IF |
|---|
| 5766 | END DO loop_pos |
|---|
| 5767 | |
|---|
| 5768 | ! Set output values to initial input topo values for whole patch. |
|---|
| 5769 | |
|---|
| 5770 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5771 | DO i = its , MIN(ide-1,ite) |
|---|
| 5772 | ht_out(i,j) = ht_in(i,j) |
|---|
| 5773 | END DO |
|---|
| 5774 | END DO |
|---|
| 5775 | |
|---|
| 5776 | ! Filter the topo at the negative lats. |
|---|
| 5777 | |
|---|
| 5778 | DO j = j_lat_neg , jts , -1 |
|---|
| 5779 | i_kicker = MIN( MAX ( NINT(msftx(its,j)) , 1 ) , (ide - ids) / 2 ) |
|---|
| 5780 | print *,'j = ' , j, ', kicker = ',i_kicker |
|---|
| 5781 | DO i = its , MIN(ide-1,ite) |
|---|
| 5782 | IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
|---|
| 5783 | sum = 0.0 |
|---|
| 5784 | DO ik = 1 , i_kicker |
|---|
| 5785 | sum = sum + ht_in(i+ik,j) + ht_in(i-ik,j) |
|---|
| 5786 | END DO |
|---|
| 5787 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
|---|
| 5788 | ELSE IF ( ( i - i_kicker .LT. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
|---|
| 5789 | sum = 0.0 |
|---|
| 5790 | DO ik = 1 , i_kicker |
|---|
| 5791 | sum = sum + ht_in(i+ik,j) |
|---|
| 5792 | END DO |
|---|
| 5793 | i1 = i - i_kicker + ide -1 |
|---|
| 5794 | i2 = ide-1 |
|---|
| 5795 | i3 = ids |
|---|
| 5796 | i4 = i-1 |
|---|
| 5797 | DO ik = i1 , i2 |
|---|
| 5798 | sum = sum + ht_in(ik,j) |
|---|
| 5799 | END DO |
|---|
| 5800 | DO ik = i3 , i4 |
|---|
| 5801 | sum = sum + ht_in(ik,j) |
|---|
| 5802 | END DO |
|---|
| 5803 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
|---|
| 5804 | ELSE IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .GT. ide-1 ) ) THEN |
|---|
| 5805 | sum = 0.0 |
|---|
| 5806 | DO ik = 1 , i_kicker |
|---|
| 5807 | sum = sum + ht_in(i-ik,j) |
|---|
| 5808 | END DO |
|---|
| 5809 | i1 = i+1 |
|---|
| 5810 | i2 = ide-1 |
|---|
| 5811 | i3 = ids |
|---|
| 5812 | i4 = ids + ( i_kicker+i ) - ide |
|---|
| 5813 | DO ik = i1 , i2 |
|---|
| 5814 | sum = sum + ht_in(ik,j) |
|---|
| 5815 | END DO |
|---|
| 5816 | DO ik = i3 , i4 |
|---|
| 5817 | sum = sum + ht_in(ik,j) |
|---|
| 5818 | END DO |
|---|
| 5819 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
|---|
| 5820 | END IF |
|---|
| 5821 | END DO |
|---|
| 5822 | END DO |
|---|
| 5823 | |
|---|
| 5824 | ! Filter the topo at the positive lats. |
|---|
| 5825 | |
|---|
| 5826 | DO j = j_lat_pos , MIN(jde-1,jte) |
|---|
| 5827 | i_kicker = MIN( MAX ( NINT(msftx(its,j)) , 1 ) , (ide - ids) / 2 ) |
|---|
| 5828 | print *,'j = ' , j, ', kicker = ',i_kicker |
|---|
| 5829 | DO i = its , MIN(ide-1,ite) |
|---|
| 5830 | IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
|---|
| 5831 | sum = 0.0 |
|---|
| 5832 | DO ik = 1 , i_kicker |
|---|
| 5833 | sum = sum + ht_in(i+ik,j) + ht_in(i-ik,j) |
|---|
| 5834 | END DO |
|---|
| 5835 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
|---|
| 5836 | ELSE IF ( ( i - i_kicker .LT. its ) .AND. ( i + i_kicker .LE. ide-1 ) ) THEN |
|---|
| 5837 | sum = 0.0 |
|---|
| 5838 | DO ik = 1 , i_kicker |
|---|
| 5839 | sum = sum + ht_in(i+ik,j) |
|---|
| 5840 | END DO |
|---|
| 5841 | i1 = i - i_kicker + ide -1 |
|---|
| 5842 | i2 = ide-1 |
|---|
| 5843 | i3 = ids |
|---|
| 5844 | i4 = i-1 |
|---|
| 5845 | DO ik = i1 , i2 |
|---|
| 5846 | sum = sum + ht_in(ik,j) |
|---|
| 5847 | END DO |
|---|
| 5848 | DO ik = i3 , i4 |
|---|
| 5849 | sum = sum + ht_in(ik,j) |
|---|
| 5850 | END DO |
|---|
| 5851 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
|---|
| 5852 | ELSE IF ( ( i - i_kicker .GE. its ) .AND. ( i + i_kicker .GT. ide-1 ) ) THEN |
|---|
| 5853 | sum = 0.0 |
|---|
| 5854 | DO ik = 1 , i_kicker |
|---|
| 5855 | sum = sum + ht_in(i-ik,j) |
|---|
| 5856 | END DO |
|---|
| 5857 | i1 = i+1 |
|---|
| 5858 | i2 = ide-1 |
|---|
| 5859 | i3 = ids |
|---|
| 5860 | i4 = ids + ( i_kicker+i ) - ide |
|---|
| 5861 | DO ik = i1 , i2 |
|---|
| 5862 | sum = sum + ht_in(ik,j) |
|---|
| 5863 | END DO |
|---|
| 5864 | DO ik = i3 , i4 |
|---|
| 5865 | sum = sum + ht_in(ik,j) |
|---|
| 5866 | END DO |
|---|
| 5867 | ht_out(i,j) = ( ht_in(i,j) + sum ) / REAL ( 2 * i_kicker + 1 ) |
|---|
| 5868 | END IF |
|---|
| 5869 | END DO |
|---|
| 5870 | END DO |
|---|
| 5871 | |
|---|
| 5872 | ! Set output values to initial input topo values for whole patch. |
|---|
| 5873 | |
|---|
| 5874 | DO j = jts , MIN(jde-1,jte) |
|---|
| 5875 | DO i = its , MIN(ide-1,ite) |
|---|
| 5876 | ht_in(i,j) = ht_out(i,j) |
|---|
| 5877 | END DO |
|---|
| 5878 | END DO |
|---|
| 5879 | |
|---|
| 5880 | END SUBROUTINE filter_topo |
|---|
| 5881 | |
|---|
| 5882 | !--------------------------------------------------------------------- |
|---|
| 5883 | |
|---|
| 5884 | SUBROUTINE init_module_initialize |
|---|
| 5885 | END SUBROUTINE init_module_initialize |
|---|
| 5886 | |
|---|
| 5887 | !--------------------------------------------------------------------- |
|---|
| 5888 | |
|---|
| 5889 | END MODULE module_initialize_real |
|---|
| 5890 | #endif |
|---|