1 | SUBROUTINE dfi_accumulate( grid ) |
---|
2 | |
---|
3 | USE module_domain, ONLY : domain |
---|
4 | ! USE module_configure |
---|
5 | USE module_driver_constants |
---|
6 | USE module_machine |
---|
7 | ! USE module_dm |
---|
8 | USE module_model_constants |
---|
9 | USE module_state_description |
---|
10 | |
---|
11 | IMPLICIT NONE |
---|
12 | |
---|
13 | REAL hn |
---|
14 | CHARACTER*80 mess |
---|
15 | |
---|
16 | ! Input data. |
---|
17 | |
---|
18 | TYPE(domain) , POINTER :: grid |
---|
19 | |
---|
20 | IF ( grid%dfi_opt .EQ. DFI_NODFI .OR. grid%dfi_stage .EQ. DFI_FST ) RETURN |
---|
21 | |
---|
22 | #if (EM_CORE == 1) |
---|
23 | |
---|
24 | |
---|
25 | hn = grid%hcoeff(grid%itimestep+1) |
---|
26 | |
---|
27 | ! accumulate dynamic variables |
---|
28 | grid%dfi_mu(:,:) = grid%dfi_mu(:,:) + grid%mu_2(:,:) * hn |
---|
29 | grid%dfi_u(:,:,:) = grid%dfi_u(:,:,:) + grid%u_2(:,:,:) * hn |
---|
30 | grid%dfi_v(:,:,:) = grid%dfi_v(:,:,:) + grid%v_2(:,:,:) * hn |
---|
31 | grid%dfi_w(:,:,:) = grid%dfi_w(:,:,:) + grid%w_2(:,:,:) * hn |
---|
32 | grid%dfi_ww(:,:,:) = grid%dfi_ww(:,:,:) + grid%ww(:,:,:) * hn |
---|
33 | grid%dfi_t(:,:,:) = grid%dfi_t(:,:,:) + grid%t_2(:,:,:) * hn |
---|
34 | grid%dfi_phb(:,:,:) = grid%dfi_phb(:,:,:) + grid%phb(:,:,:) * hn |
---|
35 | grid%dfi_ph0(:,:,:) = grid%dfi_ph0(:,:,:) + grid%ph0(:,:,:) * hn |
---|
36 | grid%dfi_php(:,:,:) = grid%dfi_php(:,:,:) + grid%php(:,:,:) * hn |
---|
37 | grid%dfi_p(:,:,:) = grid%dfi_p(:,:,:) + grid%p(:,:,:) * hn |
---|
38 | grid%dfi_ph(:,:,:) = grid%dfi_ph(:,:,:) + grid%ph_2(:,:,:) * hn |
---|
39 | grid%dfi_tke(:,:,:) = grid%dfi_tke(:,:,:) + grid%tke_2(:,:,:) * hn |
---|
40 | grid%dfi_al(:,:,:) = grid%dfi_al(:,:,:) + grid%al(:,:,:) * hn |
---|
41 | grid%dfi_alt(:,:,:) = grid%dfi_alt(:,:,:) + grid%alt(:,:,:) * hn |
---|
42 | grid%dfi_pb(:,:,:) = grid%dfi_pb(:,:,:) + grid%pb(:,:,:) * hn |
---|
43 | ! neg. check on hydrometeor and scalar variables |
---|
44 | grid%moist(:,:,:,:) = max(0.,grid%moist(:,:,:,:)) |
---|
45 | grid%dfi_scalar(:,:,:,:) = max(0.,grid%dfi_scalar(:,:,:,:)) |
---|
46 | #if ( WRF_DFI_RADAR == 1 ) |
---|
47 | IF ( grid%dfi_radar .EQ. 0 ) then |
---|
48 | grid%dfi_moist(:,:,:,:) = grid%dfi_moist(:,:,:,:) + grid%moist(:,:,:,:) * hn |
---|
49 | ELSE |
---|
50 | grid%dfi_moist(:,:,:,P_QV) = grid%dfi_moist(:,:,:,P_QV) + grid%moist(:,:,:,P_QV) * hn |
---|
51 | ENDIF |
---|
52 | #else |
---|
53 | grid%dfi_moist(:,:,:,:) = grid%dfi_moist(:,:,:,:) + grid%moist(:,:,:,:) * hn |
---|
54 | #endif |
---|
55 | grid%dfi_scalar(:,:,:,:) = grid%dfi_scalar(:,:,:,:) + grid%scalar(:,:,:,:) * hn |
---|
56 | |
---|
57 | ! accumulate DFI coefficient |
---|
58 | grid%hcoeff_tot = grid%hcoeff_tot + hn |
---|
59 | #endif |
---|
60 | |
---|
61 | #if (NMM_CORE == 1) |
---|
62 | hn = grid%hcoeff(grid%ntsd+1) |
---|
63 | grid%dfi_pd(:,:) = grid%dfi_pd(:,:) + grid%pd(:,:) * hn |
---|
64 | grid%dfi_pint(:,:,:) = grid%dfi_pint(:,:,:) + grid%pint(:,:,:) * hn |
---|
65 | grid%dfi_dwdt(:,:,:) = grid%dfi_dwdt(:,:,:) + grid%dwdt(:,:,:) * hn |
---|
66 | grid%dfi_t(:,:,:) = grid%dfi_t(:,:,:) + grid%t(:,:,:) * hn |
---|
67 | grid%dfi_q(:,:,:) = grid%dfi_q(:,:,:) + grid%q(:,:,:) * hn |
---|
68 | grid%dfi_q2(:,:,:) = grid%dfi_q2(:,:,:) + grid%q2(:,:,:) * hn |
---|
69 | grid%dfi_cwm(:,:,:) = grid%dfi_cwm(:,:,:) + grid%cwm(:,:,:) * hn |
---|
70 | grid%dfi_u(:,:,:) = grid%dfi_u(:,:,:) + grid%u(:,:,:) * hn |
---|
71 | grid%dfi_v(:,:,:) = grid%dfi_v(:,:,:) + grid%v(:,:,:) * hn |
---|
72 | grid%dfi_moist(:,:,:,:) = grid%dfi_moist(:,:,:,:) + grid%moist(:,:,:,:) * hn |
---|
73 | grid%dfi_scalar(:,:,:,:) = grid%dfi_scalar(:,:,:,:) + grid%scalar(:,:,:,:) * hn |
---|
74 | ! accumulate DFI coefficient |
---|
75 | grid%hcoeff_tot = grid%hcoeff_tot + hn |
---|
76 | write(mess,*) 'grid%hcoeff_tot: ', grid%hcoeff_tot |
---|
77 | call wrf_message(mess) |
---|
78 | #endif |
---|
79 | |
---|
80 | END SUBROUTINE dfi_accumulate |
---|
81 | |
---|
82 | SUBROUTINE dfi_bck_init ( grid ) |
---|
83 | |
---|
84 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time |
---|
85 | USE module_utility |
---|
86 | USE module_state_description |
---|
87 | |
---|
88 | IMPLICIT NONE |
---|
89 | |
---|
90 | TYPE (domain) , POINTER :: grid |
---|
91 | INTEGER rc |
---|
92 | CHARACTER*80 mess |
---|
93 | |
---|
94 | INTERFACE |
---|
95 | SUBROUTINE Setup_Timekeeping(grid) |
---|
96 | USE module_domain, ONLY : domain |
---|
97 | TYPE (domain), POINTER :: grid |
---|
98 | END SUBROUTINE Setup_Timekeeping |
---|
99 | |
---|
100 | SUBROUTINE dfi_save_arrays(grid) |
---|
101 | USE module_domain, ONLY : domain |
---|
102 | TYPE (domain), POINTER :: grid |
---|
103 | END SUBROUTINE dfi_save_arrays |
---|
104 | |
---|
105 | SUBROUTINE dfi_clear_accumulation(grid) |
---|
106 | USE module_domain, ONLY : domain |
---|
107 | TYPE (domain), POINTER :: grid |
---|
108 | END SUBROUTINE dfi_clear_accumulation |
---|
109 | |
---|
110 | SUBROUTINE optfil_driver(grid) |
---|
111 | USE module_domain, ONLY : domain |
---|
112 | TYPE (domain), POINTER :: grid |
---|
113 | END SUBROUTINE optfil_driver |
---|
114 | |
---|
115 | SUBROUTINE start_domain(grid, allowed_to_read) |
---|
116 | USE module_domain, ONLY : domain |
---|
117 | TYPE (domain) :: grid |
---|
118 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
119 | END SUBROUTINE start_domain |
---|
120 | END INTERFACE |
---|
121 | |
---|
122 | grid%dfi_stage = DFI_BCK |
---|
123 | |
---|
124 | ! Negate time step |
---|
125 | IF ( grid%time_step_dfi .gt. 0 ) THEN |
---|
126 | CALL nl_set_time_step ( 1, -grid%time_step_dfi ) |
---|
127 | ELSE |
---|
128 | CALL nl_set_time_step ( 1, -grid%time_step ) |
---|
129 | CALL nl_set_time_step_fract_num ( 1, -grid%time_step_fract_num ) |
---|
130 | ENDIF |
---|
131 | |
---|
132 | CALL Setup_Timekeeping (grid) |
---|
133 | |
---|
134 | ! set physics options to zero |
---|
135 | CALL nl_set_mp_physics( grid%id, 0 ) |
---|
136 | CALL nl_set_ra_lw_physics( grid%id, 0 ) |
---|
137 | CALL nl_set_ra_sw_physics( grid%id, 0 ) |
---|
138 | CALL nl_set_sf_surface_physics( grid%id, 0 ) |
---|
139 | CALL nl_set_sf_sfclay_physics( grid%id, 0 ) |
---|
140 | CALL nl_set_sf_urban_physics( grid%id, 0 ) |
---|
141 | CALL nl_set_bl_pbl_physics( grid%id, 0 ) |
---|
142 | CALL nl_set_cu_physics( grid%id, 0 ) |
---|
143 | CALL nl_set_damp_opt( grid%id, 0 ) |
---|
144 | CALL nl_set_sst_update( grid%id, 0 ) |
---|
145 | CALL nl_set_fractional_seaice( grid%id, 0 ) |
---|
146 | CALL nl_set_gwd_opt( grid%id, 0 ) |
---|
147 | CALL nl_set_feedback( grid%id, 0 ) |
---|
148 | ! set bc |
---|
149 | #if (EM_CORE == 1) |
---|
150 | CALL nl_set_diff_6th_opt( grid%id, 0 ) |
---|
151 | CALL nl_set_constant_bc(1, grid%constant_bc) |
---|
152 | CALL nl_set_use_adaptive_time_step( grid%id, .false. ) |
---|
153 | #endif |
---|
154 | |
---|
155 | #ifdef WRF_CHEM |
---|
156 | ! set chemistry option to zero |
---|
157 | CALL nl_set_chem_opt (grid%id, 0) |
---|
158 | CALL nl_set_aer_ra_feedback (grid%id, 0) |
---|
159 | CALL nl_set_io_form_auxinput5 (grid%id, 0) |
---|
160 | CALL nl_set_io_form_auxinput7 (grid%id, 0) |
---|
161 | CALL nl_set_io_form_auxinput8 (grid%id, 0) |
---|
162 | #endif |
---|
163 | |
---|
164 | ! set diffusion to zero for backward integration |
---|
165 | |
---|
166 | #if (EM_CORE == 1) |
---|
167 | CALL nl_set_km_opt( grid%id, grid%km_opt_dfi) |
---|
168 | CALL nl_set_moist_adv_dfi_opt( grid%id, grid%moist_adv_dfi_opt) |
---|
169 | IF ( grid%moist_adv_opt == 2 ) THEN |
---|
170 | CALL nl_set_moist_adv_opt( grid%id, 0) |
---|
171 | ENDIF |
---|
172 | #endif |
---|
173 | |
---|
174 | #if (NMM_CORE == 1) |
---|
175 | |
---|
176 | ! |
---|
177 | ! CHANGE (SIGN ONLY OF) IMPORTANT TIME CONSTANTS |
---|
178 | ! |
---|
179 | CALL nl_get_time_step( grid%id, grid%time_step ) |
---|
180 | if (grid%time_step .lt. 0) then |
---|
181 | ! DT =-DT |
---|
182 | |
---|
183 | write(mess,*) 'changing signs for backward integration' |
---|
184 | call wrf_message(mess) |
---|
185 | grid%CPGFV = -grid%CPGFV |
---|
186 | grid%EN = -grid%EN |
---|
187 | grid%ENT = -grid%ENT |
---|
188 | grid%F4D = -grid%F4D |
---|
189 | grid%F4Q = -grid%F4Q |
---|
190 | grid%EF4T = -grid%EF4T |
---|
191 | |
---|
192 | grid%EM(:) = -grid%EM(:) |
---|
193 | grid%EMT(:) = -grid%EMT(:) |
---|
194 | grid%F4Q2(:) = -grid%F4Q2(:) |
---|
195 | |
---|
196 | grid%WPDAR(:,:)= -grid%WPDAR(:,:) |
---|
197 | grid%CPGFU(:,:)= -grid%CPGFU(:,:) |
---|
198 | grid%CURV(:,:)= -grid%CURV(:,:) |
---|
199 | grid%FCP(:,:)= -grid%FCP(:,:) |
---|
200 | grid%FAD(:,:)= -grid%FAD(:,:) |
---|
201 | grid%F(:,:)= -grid%F(:,:) |
---|
202 | endif |
---|
203 | #endif |
---|
204 | |
---|
205 | grid%start_subtime = domain_get_start_time ( grid ) |
---|
206 | grid%stop_subtime = domain_get_stop_time ( grid ) |
---|
207 | |
---|
208 | CALL WRFU_ClockSet(grid%domain_clock, currTime=grid%start_subtime, rc=rc) |
---|
209 | |
---|
210 | CALL dfi_save_arrays ( grid ) |
---|
211 | CALL dfi_clear_accumulation( grid ) |
---|
212 | CALL optfil_driver(grid) |
---|
213 | |
---|
214 | !tgs need to call start_domain here to reset bc initialization for negative dt |
---|
215 | CALL start_domain ( grid , .TRUE. ) |
---|
216 | |
---|
217 | END SUBROUTINE dfi_bck_init |
---|
218 | |
---|
219 | |
---|
220 | SUBROUTINE dfi_fwd_init ( grid ) |
---|
221 | |
---|
222 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time |
---|
223 | USE module_utility |
---|
224 | USE module_state_description |
---|
225 | |
---|
226 | IMPLICIT NONE |
---|
227 | |
---|
228 | TYPE (domain) , POINTER :: grid |
---|
229 | INTEGER rc |
---|
230 | CHARACTER*80 mess |
---|
231 | |
---|
232 | INTERFACE |
---|
233 | SUBROUTINE Setup_Timekeeping(grid) |
---|
234 | USE module_domain, ONLY : domain |
---|
235 | TYPE (domain), POINTER :: grid |
---|
236 | END SUBROUTINE Setup_Timekeeping |
---|
237 | |
---|
238 | SUBROUTINE dfi_save_arrays(grid) |
---|
239 | USE module_domain, ONLY : domain |
---|
240 | TYPE (domain), POINTER :: grid |
---|
241 | END SUBROUTINE dfi_save_arrays |
---|
242 | |
---|
243 | SUBROUTINE dfi_clear_accumulation(grid) |
---|
244 | USE module_domain, ONLY : domain |
---|
245 | TYPE (domain), POINTER :: grid |
---|
246 | END SUBROUTINE dfi_clear_accumulation |
---|
247 | |
---|
248 | SUBROUTINE optfil_driver(grid) |
---|
249 | USE module_domain, ONLY : domain |
---|
250 | TYPE (domain), POINTER :: grid |
---|
251 | END SUBROUTINE optfil_driver |
---|
252 | |
---|
253 | SUBROUTINE start_domain(grid, allowed_to_read) |
---|
254 | USE module_domain, ONLY : domain |
---|
255 | TYPE (domain) :: grid |
---|
256 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
257 | END SUBROUTINE start_domain |
---|
258 | END INTERFACE |
---|
259 | |
---|
260 | grid%dfi_stage = DFI_FWD |
---|
261 | |
---|
262 | ! for Setup_Timekeeping to use when setting the clock |
---|
263 | |
---|
264 | IF ( grid%time_step_dfi .gt. 0 ) THEN |
---|
265 | CALL nl_set_time_step ( grid%id, grid%time_step_dfi ) |
---|
266 | ELSE |
---|
267 | |
---|
268 | CALL nl_get_time_step( grid%id, grid%time_step ) |
---|
269 | CALL nl_get_time_step_fract_num( grid%id, grid%time_step_fract_num ) |
---|
270 | |
---|
271 | grid%time_step = abs(grid%time_step) |
---|
272 | CALL nl_set_time_step( grid%id, grid%time_step ) |
---|
273 | |
---|
274 | grid%time_step_fract_num = abs(grid%time_step_fract_num) |
---|
275 | CALL nl_set_time_step_fract_num( grid%id, grid%time_step_fract_num ) |
---|
276 | |
---|
277 | ENDIF |
---|
278 | |
---|
279 | grid%itimestep=0 |
---|
280 | grid%xtime=0. |
---|
281 | |
---|
282 | ! reset physics options to normal |
---|
283 | CALL nl_set_mp_physics( grid%id, grid%mp_physics) |
---|
284 | CALL nl_set_ra_lw_physics( grid%id, grid%ra_lw_physics) |
---|
285 | CALL nl_set_ra_sw_physics( grid%id, grid%ra_sw_physics) |
---|
286 | CALL nl_set_sf_surface_physics( grid%id, grid%sf_surface_physics) |
---|
287 | CALL nl_set_sf_sfclay_physics( grid%id, grid%sf_sfclay_physics) |
---|
288 | CALL nl_set_sf_urban_physics( grid%id, grid%sf_urban_physics) |
---|
289 | CALL nl_set_bl_pbl_physics( grid%id, grid%bl_pbl_physics) |
---|
290 | CALL nl_set_cu_physics( grid%id, grid%cu_physics) |
---|
291 | CALL nl_set_damp_opt( grid%id, grid%damp_opt) |
---|
292 | CALL nl_set_sst_update( grid%id, 0) |
---|
293 | CALL nl_set_fractional_seaice( grid%id, grid%fractional_seaice) |
---|
294 | CALL nl_set_gwd_opt( grid%id, grid%gwd_opt) |
---|
295 | CALL nl_set_feedback( grid%id, 0 ) |
---|
296 | #if (EM_CORE == 1) |
---|
297 | CALL nl_set_diff_6th_opt( grid%id, grid%diff_6th_opt) |
---|
298 | CALL nl_set_use_adaptive_time_step( grid%id, .false. ) |
---|
299 | ! set bc |
---|
300 | CALL nl_set_constant_bc(grid%id, grid%constant_bc) |
---|
301 | #endif |
---|
302 | |
---|
303 | #if (NMM_CORE == 1) |
---|
304 | ! |
---|
305 | ! CHANGE (SIGN ONLY OF) IMPORTANT TIME CONSTANTS |
---|
306 | ! |
---|
307 | !mptest CALL nl_get_time_step( grid%id, grid%time_step ) |
---|
308 | |
---|
309 | |
---|
310 | !!! here need to key off something else being the "wrong" sign |
---|
311 | if (grid%cpgfv .gt. 0) then |
---|
312 | |
---|
313 | write(mess,*) 'changing signs for forward integration' |
---|
314 | call wrf_message(mess) |
---|
315 | grid%CPGFV = -grid%CPGFV |
---|
316 | grid%EN = -grid%EN |
---|
317 | grid%ENT = -grid%ENT |
---|
318 | grid%F4D = -grid%F4D |
---|
319 | grid%F4Q = -grid%F4Q |
---|
320 | grid%EF4T = -grid%EF4T |
---|
321 | |
---|
322 | grid%EM(:) = -grid%EM(:) |
---|
323 | grid%EMT(:) = -grid%EMT(:) |
---|
324 | grid%F4Q2(:) = -grid%F4Q2(:) |
---|
325 | |
---|
326 | grid%WPDAR(:,:)= -grid%WPDAR(:,:) |
---|
327 | grid%CPGFU(:,:)= -grid%CPGFU(:,:) |
---|
328 | grid%CURV(:,:)= -grid%CURV(:,:) |
---|
329 | grid%FCP(:,:)= -grid%FCP(:,:) |
---|
330 | grid%FAD(:,:)= -grid%FAD(:,:) |
---|
331 | grid%F(:,:)= -grid%F(:,:) |
---|
332 | endif |
---|
333 | #endif |
---|
334 | |
---|
335 | |
---|
336 | !#ifdef WRF_CHEM |
---|
337 | ! ! reset chem option to normal |
---|
338 | ! CALL nl_set_chem_opt( grid%id, grid%chem_opt) |
---|
339 | ! CALL nl_set_aer_ra_feedback (grid%id, grid%aer_ra_feedback) |
---|
340 | !#endif |
---|
341 | |
---|
342 | #if (EM_CORE == 1) |
---|
343 | ! reset km_opt to norlmal |
---|
344 | CALL nl_set_km_opt( grid%id, grid%km_opt) |
---|
345 | CALL nl_set_moist_adv_opt( grid%id, grid%moist_adv_opt) |
---|
346 | #endif |
---|
347 | |
---|
348 | |
---|
349 | CALL Setup_Timekeeping (grid) |
---|
350 | grid%start_subtime = domain_get_start_time ( head_grid ) |
---|
351 | grid%stop_subtime = domain_get_stop_time ( head_grid ) |
---|
352 | |
---|
353 | CALL WRFU_ClockSet(grid%domain_clock, currTime=grid%start_subtime, rc=rc) |
---|
354 | |
---|
355 | IF ( grid%dfi_opt .EQ. DFI_DFL ) THEN |
---|
356 | CALL dfi_save_arrays ( grid ) |
---|
357 | END IF |
---|
358 | CALL dfi_clear_accumulation( grid ) |
---|
359 | CALL optfil_driver(grid) |
---|
360 | |
---|
361 | !tgs need to call it here to reset bc initialization for positive time_step |
---|
362 | CALL start_domain ( grid , .TRUE. ) |
---|
363 | |
---|
364 | END SUBROUTINE dfi_fwd_init |
---|
365 | |
---|
366 | SUBROUTINE dfi_fst_init ( grid ) |
---|
367 | |
---|
368 | USE module_domain, ONLY : domain, domain_get_stop_time, domain_get_start_time |
---|
369 | USE module_state_description |
---|
370 | |
---|
371 | IMPLICIT NONE |
---|
372 | |
---|
373 | TYPE (domain) , POINTER :: grid |
---|
374 | CHARACTER (LEN=80) :: wrf_error_message |
---|
375 | |
---|
376 | INTERFACE |
---|
377 | SUBROUTINE Setup_Timekeeping(grid) |
---|
378 | USE module_domain, ONLY : domain |
---|
379 | TYPE (domain), POINTER :: grid |
---|
380 | END SUBROUTINE Setup_Timekeeping |
---|
381 | |
---|
382 | SUBROUTINE dfi_save_arrays(grid) |
---|
383 | USE module_domain, ONLY : domain |
---|
384 | TYPE (domain), POINTER :: grid |
---|
385 | END SUBROUTINE dfi_save_arrays |
---|
386 | |
---|
387 | SUBROUTINE dfi_clear_accumulation(grid) |
---|
388 | USE module_domain, ONLY : domain |
---|
389 | TYPE (domain), POINTER :: grid |
---|
390 | END SUBROUTINE dfi_clear_accumulation |
---|
391 | |
---|
392 | SUBROUTINE optfil_driver(grid) |
---|
393 | USE module_domain, ONLY : domain |
---|
394 | TYPE (domain), POINTER :: grid |
---|
395 | END SUBROUTINE optfil_driver |
---|
396 | |
---|
397 | SUBROUTINE start_domain(grid, allowed_to_read) |
---|
398 | USE module_domain, ONLY : domain |
---|
399 | TYPE (domain) :: grid |
---|
400 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
401 | END SUBROUTINE start_domain |
---|
402 | END INTERFACE |
---|
403 | |
---|
404 | grid%dfi_stage = DFI_FST |
---|
405 | |
---|
406 | ! reset time_step to normal and adaptive_time_step |
---|
407 | CALL nl_set_time_step( grid%id, grid%time_step ) |
---|
408 | |
---|
409 | grid%itimestep=0 |
---|
410 | grid%xtime=0. ! BUG: This will probably not work for all DFI options |
---|
411 | ! only use adaptive time stepping for forecast |
---|
412 | #if (EM_CORE == 1) |
---|
413 | if (grid%id == 1) then |
---|
414 | CALL nl_set_use_adaptive_time_step( 1, grid%use_adaptive_time_step ) |
---|
415 | endif |
---|
416 | CALL nl_set_sst_update( grid%id, grid%sst_update) |
---|
417 | ! reset to normal bc |
---|
418 | CALL nl_set_constant_bc(grid%id, .false.) |
---|
419 | #endif |
---|
420 | CALL nl_set_feedback( grid%id, grid%feedback ) |
---|
421 | |
---|
422 | #ifdef WRF_CHEM |
---|
423 | ! reset chem option to normal |
---|
424 | CALL nl_set_chem_opt( grid%id, grid%chem_opt) |
---|
425 | CALL nl_set_aer_ra_feedback (grid%id, grid%aer_ra_feedback) |
---|
426 | CALL nl_set_io_form_auxinput5 (grid%id, grid%io_form_auxinput5) |
---|
427 | CALL nl_set_io_form_auxinput7 (grid%id, grid%io_form_auxinput7) |
---|
428 | CALL nl_set_io_form_auxinput8 (grid%id, grid%io_form_auxinput8) |
---|
429 | #endif |
---|
430 | |
---|
431 | |
---|
432 | CALL Setup_Timekeeping (grid) |
---|
433 | grid%start_subtime = domain_get_start_time ( grid ) |
---|
434 | grid%stop_subtime = domain_get_stop_time ( grid ) |
---|
435 | |
---|
436 | CALL start_domain ( grid , .TRUE. ) |
---|
437 | |
---|
438 | END SUBROUTINE dfi_fst_init |
---|
439 | |
---|
440 | |
---|
441 | SUBROUTINE dfi_write_initialized_state( grid ) |
---|
442 | |
---|
443 | ! Driver layer |
---|
444 | USE module_domain, ONLY : domain, head_grid |
---|
445 | USE module_io_domain |
---|
446 | USE module_configure, ONLY : grid_config_rec_type, model_config_rec |
---|
447 | |
---|
448 | IMPLICIT NONE |
---|
449 | |
---|
450 | TYPE (domain) , POINTER :: grid |
---|
451 | INTEGER :: fid, ierr |
---|
452 | CHARACTER (LEN=80) :: wrf_error_message |
---|
453 | CHARACTER (LEN=80) :: rstname |
---|
454 | CHARACTER (LEN=132) :: message |
---|
455 | |
---|
456 | TYPE (grid_config_rec_type) :: config_flags |
---|
457 | |
---|
458 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
---|
459 | |
---|
460 | WRITE (wrf_err_message,'(A,I4)') 'Writing out initialized model state' |
---|
461 | CALL wrf_message(TRIM(wrf_err_message)) |
---|
462 | |
---|
463 | WRITE (rstname,'(A,I2.2)')'wrfinput_initialized_d',grid%id |
---|
464 | CALL open_w_dataset ( fid, TRIM(rstname), grid, config_flags, output_input, "DATASET=INPUT", ierr ) |
---|
465 | IF ( ierr .NE. 0 ) THEN |
---|
466 | WRITE( message , '("program wrf: error opening ",A," for writing")') TRIM(rstname) |
---|
467 | CALL WRF_ERROR_FATAL ( message ) |
---|
468 | END IF |
---|
469 | CALL output_input ( fid, grid, config_flags, ierr ) |
---|
470 | CALL close_dataset ( fid, config_flags, "DATASET=INPUT" ) |
---|
471 | |
---|
472 | END SUBROUTINE dfi_write_initialized_state |
---|
473 | |
---|
474 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
475 | ! DFI array reset group of functions |
---|
476 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
477 | |
---|
478 | SUBROUTINE wrf_dfi_array_reset ( ) |
---|
479 | |
---|
480 | USE module_domain, ONLY : domain, head_grid, set_current_grid_ptr |
---|
481 | |
---|
482 | IMPLICIT NONE |
---|
483 | |
---|
484 | INTERFACE |
---|
485 | RECURSIVE SUBROUTINE dfi_array_reset_recurse(grid) |
---|
486 | USE module_domain, ONLY : domain |
---|
487 | TYPE (domain), POINTER :: grid |
---|
488 | END SUBROUTINE dfi_array_reset_recurse |
---|
489 | END INTERFACE |
---|
490 | |
---|
491 | ! Copy filtered arrays back into state arrays in grid structure, and |
---|
492 | ! restore original land surface fields |
---|
493 | |
---|
494 | CALL dfi_array_reset_recurse(head_grid) |
---|
495 | |
---|
496 | CALL set_current_grid_ptr( head_grid ) |
---|
497 | |
---|
498 | END SUBROUTINE wrf_dfi_array_reset |
---|
499 | |
---|
500 | SUBROUTINE dfi_array_reset( grid ) |
---|
501 | |
---|
502 | USE module_domain, ONLY : domain |
---|
503 | ! USE module_configure |
---|
504 | ! USE module_driver_constants |
---|
505 | ! USE module_machine |
---|
506 | ! USE module_dm |
---|
507 | USE module_model_constants |
---|
508 | USE module_state_description |
---|
509 | |
---|
510 | IMPLICIT NONE |
---|
511 | |
---|
512 | INTEGER :: its, ite, jts, jte, kts, kte, & |
---|
513 | i, j, k |
---|
514 | |
---|
515 | ! Input data. |
---|
516 | TYPE(domain) , POINTER :: grid |
---|
517 | |
---|
518 | ! local |
---|
519 | ! real p1000mb,eps,svp1,svp2,svp3,svpt0 |
---|
520 | real eps |
---|
521 | ! parameter (p1000mb = 1.e+05, eps=0.622,svp1=0.6112,svp3=29.65,svpt0=273.15) |
---|
522 | parameter (eps=0.622) |
---|
523 | REAL es,qs,pol,tx,temp,pres,rslf |
---|
524 | CHARACTER*80 mess |
---|
525 | |
---|
526 | IF ( grid%dfi_opt .EQ. DFI_NODFI ) RETURN |
---|
527 | |
---|
528 | |
---|
529 | ! Set dynamic variables |
---|
530 | ! divide by total DFI coefficient |
---|
531 | |
---|
532 | #if (EM_CORE == 1) |
---|
533 | grid%mu_2(:,:) = grid%dfi_mu(:,:) / grid%hcoeff_tot |
---|
534 | grid%u_2(:,:,:) = grid%dfi_u(:,:,:) / grid%hcoeff_tot |
---|
535 | grid%v_2(:,:,:) = grid%dfi_v(:,:,:) / grid%hcoeff_tot |
---|
536 | grid%w_2(:,:,:) = grid%dfi_w(:,:,:) / grid%hcoeff_tot |
---|
537 | grid%ww(:,:,:) = grid%dfi_ww(:,:,:) / grid%hcoeff_tot |
---|
538 | grid%t_2(:,:,:) = grid%dfi_t(:,:,:) / grid%hcoeff_tot |
---|
539 | grid%phb(:,:,:) = grid%dfi_phb(:,:,:) / grid%hcoeff_tot |
---|
540 | grid%ph0(:,:,:) = grid%dfi_ph0(:,:,:) / grid%hcoeff_tot |
---|
541 | grid%php(:,:,:) = grid%dfi_php(:,:,:) / grid%hcoeff_tot |
---|
542 | grid%p(:,:,:) = grid%dfi_p(:,:,:) / grid%hcoeff_tot |
---|
543 | grid%ph_2(:,:,:) = grid%dfi_ph(:,:,:) / grid%hcoeff_tot |
---|
544 | grid%tke_2(:,:,:) = grid%dfi_tke(:,:,:) / grid%hcoeff_tot |
---|
545 | grid%al(:,:,:) = grid%dfi_al(:,:,:) / grid%hcoeff_tot |
---|
546 | grid%alt(:,:,:) = grid%dfi_alt(:,:,:) / grid%hcoeff_tot |
---|
547 | grid%pb(:,:,:) = grid%dfi_pb(:,:,:) / grid%hcoeff_tot |
---|
548 | #if ( WRF_DFI_RADAR == 1 ) |
---|
549 | IF ( grid%dfi_radar .EQ. 0 ) then ! tgs no radar assimilation |
---|
550 | grid%moist(:,:,:,:) = max(0.,grid%dfi_moist(:,:,:,:) / grid%hcoeff_tot) |
---|
551 | ELSE |
---|
552 | grid%moist(:,:,:,P_QV) = max(0.,grid%dfi_moist(:,:,:,P_QV) / grid%hcoeff_tot) |
---|
553 | ENDIF |
---|
554 | #else |
---|
555 | grid%moist(:,:,:,:) = max(0.,grid%dfi_moist(:,:,:,:) / grid%hcoeff_tot) |
---|
556 | #endif |
---|
557 | grid%scalar(:,:,:,:) = max(0.,grid%dfi_scalar(:,:,:,:) / grid%hcoeff_tot) |
---|
558 | |
---|
559 | ! restore initial fields |
---|
560 | grid%SNOW (:,:) = grid%dfi_SNOW (:,:) |
---|
561 | grid%SNOWH (:,:) = grid%dfi_SNOWH (:,:) |
---|
562 | grid%SNOWC (:,:) = grid%dfi_SNOWC (:,:) |
---|
563 | grid%CANWAT(:,:) = grid%dfi_CANWAT(:,:) |
---|
564 | grid%TSK (:,:) = grid%dfi_TSK (:,:) |
---|
565 | |
---|
566 | grid%TSLB (:,:,:) = grid%dfi_TSLB (:,:,:) |
---|
567 | grid%SMOIS (:,:,:) = grid%dfi_SMOIS (:,:,:) |
---|
568 | IF ( grid%sf_surface_physics .EQ. 3 ) then |
---|
569 | grid%QVG (:,:) = grid%dfi_QVG (:,:) |
---|
570 | grid%TSNAV (:,:) = grid%dfi_TSNAV (:,:) |
---|
571 | grid%SOILT1(:,:) = grid%dfi_SOILT1(:,:) |
---|
572 | grid%SMFR3D(:,:,:) = grid%dfi_SMFR3D (:,:,:) |
---|
573 | grid%KEEPFR3DFLAG(:,:,:) = grid%dfi_KEEPFR3DFLAG(:,:,:) |
---|
574 | ENDIF |
---|
575 | |
---|
576 | ! restore analized hydrometeor fileds |
---|
577 | #if ( WRF_DFI_RADAR == 1 ) |
---|
578 | IF ( grid%dfi_radar .EQ. 1 ) then |
---|
579 | ! grid%moist(:,:,:,:) = grid%dfi_moist(:,:,:,:) !tgs |
---|
580 | grid%moist(:,:,:,P_QC) = grid%dfi_moist(:,:,:,P_QC) !tgs |
---|
581 | grid%moist(:,:,:,P_QR) = grid%dfi_moist(:,:,:,P_QR) !tgs |
---|
582 | grid%moist(:,:,:,P_QI) = grid%dfi_moist(:,:,:,P_QI) !tgs |
---|
583 | grid%moist(:,:,:,P_QS) = grid%dfi_moist(:,:,:,P_QS) !tgs |
---|
584 | grid%moist(:,:,:,P_QG) = grid%dfi_moist(:,:,:,P_QG) !tgs |
---|
585 | |
---|
586 | if(grid%dfi_stage .EQ. DFI_FWD) then |
---|
587 | !tgs change QV to restore initial RH field after the diabatic DFI |
---|
588 | its = grid%sp31 ; ite = grid%ep31 ; |
---|
589 | kts = grid%sp32 ; kte = grid%ep32 ; |
---|
590 | jts = grid%sp33 ; jte = grid%ep33 ; |
---|
591 | DO j=jts,jte |
---|
592 | DO i=its,ite |
---|
593 | do k = kts , kte |
---|
594 | temp = (grid%t_2(i,k,j)+t0)*( (grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb )& |
---|
595 | ** (r_d / Cp) |
---|
596 | pres = grid%p(i,k,j)+grid%pb(i,k,j) |
---|
597 | !tgs rslf - function to compute qs from Thompson microphysics |
---|
598 | qs = rslf(pres, temp) |
---|
599 | |
---|
600 | ! if(i.eq. 178 .and. j.eq. 148 .and. k.eq.11) then |
---|
601 | ! print *,'temp,pres,qs-thomp',temp,pres,qs |
---|
602 | ! endif |
---|
603 | |
---|
604 | IF(grid%moist(i,k,j,P_QC) .GT. 1.e-6 .or. & |
---|
605 | grid%moist(i,k,j,P_QI) .GT. 1.e-6) THEN |
---|
606 | grid%moist (i,k,j,P_QV) = MAX(0.,grid%dfi_rh(i,k,j)*QS) |
---|
607 | ENDIF |
---|
608 | |
---|
609 | ! if(i.eq. 178 .and. j.eq. 148 .and. k.eq.11) then |
---|
610 | ! print *,'temp,pres,qs,grid%moist (i,k,j,P_QV)',temp,pres,qs, & |
---|
611 | ! grid%moist(i,k,j,P_QV) |
---|
612 | ! endif |
---|
613 | enddo |
---|
614 | ENDDO |
---|
615 | ENDDO |
---|
616 | endif |
---|
617 | |
---|
618 | ENDIF |
---|
619 | #endif |
---|
620 | #endif |
---|
621 | |
---|
622 | #if (NMM_CORE == 1) |
---|
623 | write(mess,*) ' divide by grid%hcoeff_tot: ', grid%hcoeff_tot |
---|
624 | call wrf_message(mess) |
---|
625 | if (grid%hcoeff_tot .lt. 0.0001) then |
---|
626 | call wrf_error_fatal("bad grid%hcoeff_tot") |
---|
627 | endif |
---|
628 | grid%pd(:,:) = grid%dfi_pd(:,:) / grid%hcoeff_tot |
---|
629 | grid%pint(:,:,:) = grid%dfi_pint(:,:,:) / grid%hcoeff_tot |
---|
630 | ! grid%dwdt(:,:,:) = grid%dfi_dwdt(:,:,:) / grid%hcoeff_tot |
---|
631 | grid%t(:,:,:) = grid%dfi_t(:,:,:) / grid%hcoeff_tot |
---|
632 | grid%q(:,:,:) = grid%dfi_q(:,:,:) / grid%hcoeff_tot |
---|
633 | grid%q2(:,:,:) = grid%dfi_q2(:,:,:) / grid%hcoeff_tot |
---|
634 | grid%cwm(:,:,:) = grid%dfi_cwm(:,:,:) / grid%hcoeff_tot |
---|
635 | grid%u(:,:,:) = grid%dfi_u(:,:,:) / grid%hcoeff_tot |
---|
636 | grid%v(:,:,:) = grid%dfi_v(:,:,:) / grid%hcoeff_tot |
---|
637 | grid%moist(:,:,:,:) = grid%dfi_moist(:,:,:,:) / grid%hcoeff_tot |
---|
638 | grid%scalar(:,:,:,:) = grid%dfi_scalar(:,:,:,:) / grid%hcoeff_tot |
---|
639 | |
---|
640 | ! restore initial fields |
---|
641 | grid%SNOW(:,:) = grid%dfi_SNOW(:,:) |
---|
642 | grid%SNOWH(:,:) = grid%dfi_SNOWH(:,:) |
---|
643 | ! grid%SNOWC(:,:) = grid%dfi_SNOWC(:,:) |
---|
644 | grid%CANWAT(:,:) = grid%dfi_CANWAT(:,:) |
---|
645 | grid%NMM_TSK(:,:) = grid%dfi_NMM_TSK(:,:) |
---|
646 | ! save soil fields |
---|
647 | grid%STC(:,:,:) = grid%dfi_STC(:,:,:) |
---|
648 | grid%SMC(:,:,:) = grid%dfi_SMC(:,:,:) |
---|
649 | grid%SH2O(:,:,:) = grid%dfi_SH2O(:,:,:) |
---|
650 | #endif |
---|
651 | |
---|
652 | |
---|
653 | END SUBROUTINE dfi_array_reset |
---|
654 | |
---|
655 | SUBROUTINE optfil_driver( grid ) |
---|
656 | |
---|
657 | USE module_domain, ONLY : domain |
---|
658 | USE module_utility |
---|
659 | ! USE module_wrf_error |
---|
660 | ! USE module_timing |
---|
661 | ! USE module_date_time |
---|
662 | ! USE module_configure |
---|
663 | USE module_state_description |
---|
664 | USE module_model_constants |
---|
665 | |
---|
666 | IMPLICIT NONE |
---|
667 | |
---|
668 | TYPE (domain) , POINTER :: grid |
---|
669 | |
---|
670 | ! Local variables |
---|
671 | integer :: nstep2, nstepmax, rundfi, i, rc,hr,min,sec |
---|
672 | integer :: yr,jday |
---|
673 | real :: timestep, tauc |
---|
674 | TYPE(WRFU_TimeInterval) :: run_interval |
---|
675 | CHARACTER*80 mess |
---|
676 | |
---|
677 | timestep=abs(grid%dt) |
---|
678 | run_interval = grid%stop_subtime - grid%start_subtime |
---|
679 | CALL WRFU_TimeGet(grid%start_subtime, YY=yr, dayofYear=jday, H=hr, M=min, S=sec, rc=rc) |
---|
680 | CALL WRFU_TimeGet(grid%stop_subtime, YY=yr, dayofYear=jday, H=hr, M=min, S=sec, rc=rc) |
---|
681 | |
---|
682 | CALL WRFU_TimeIntervalGet( run_interval, S=rundfi, rc=rc ) |
---|
683 | rundfi = abs(rundfi) |
---|
684 | |
---|
685 | nstep2= ceiling((1.0 + real(rundfi)/timestep) / 2.0) |
---|
686 | |
---|
687 | ! nstep2 is equal to a half of timesteps per initialization period, |
---|
688 | ! should not exceed nstepmax |
---|
689 | |
---|
690 | tauc = real(grid%dfi_cutoff_seconds) |
---|
691 | |
---|
692 | ! Get DFI coefficient |
---|
693 | grid%hcoeff(:) = 0.0 |
---|
694 | IF ( grid%dfi_nfilter < 0 .OR. grid%dfi_nfilter > 8 ) THEN |
---|
695 | write(mess,*) 'Invalid filter specified in namelist.' |
---|
696 | call wrf_message(mess) |
---|
697 | ELSE |
---|
698 | call dfcoef(nstep2-1, grid%dt, tauc, grid%dfi_nfilter, grid%hcoeff) |
---|
699 | END IF |
---|
700 | |
---|
701 | IF ( MOD(int(1.0 + real(rundfi)/timestep),2) /= 0 ) THEN |
---|
702 | DO i=1,nstep2-1 |
---|
703 | grid%hcoeff(2*nstep2-i) = grid%hcoeff(i) |
---|
704 | END DO |
---|
705 | ELSE |
---|
706 | DO i=1,nstep2 |
---|
707 | grid%hcoeff(2*nstep2-i+1) = grid%hcoeff(i) |
---|
708 | END DO |
---|
709 | END IF |
---|
710 | |
---|
711 | END SUBROUTINE optfil_driver |
---|
712 | |
---|
713 | |
---|
714 | SUBROUTINE dfi_clear_accumulation( grid ) |
---|
715 | |
---|
716 | USE module_domain, ONLY : domain |
---|
717 | ! USE module_configure |
---|
718 | ! USE module_driver_constants |
---|
719 | ! USE module_machine |
---|
720 | ! USE module_dm |
---|
721 | ! USE module_model_constants |
---|
722 | USE module_state_description |
---|
723 | |
---|
724 | IMPLICIT NONE |
---|
725 | |
---|
726 | ! Input data. |
---|
727 | TYPE(domain) , POINTER :: grid |
---|
728 | |
---|
729 | #if (EM_CORE == 1) |
---|
730 | grid%dfi_mu(:,:) = 0. |
---|
731 | grid%dfi_u(:,:,:) = 0. |
---|
732 | grid%dfi_v(:,:,:) = 0. |
---|
733 | grid%dfi_w(:,:,:) = 0. |
---|
734 | grid%dfi_ww(:,:,:) = 0. |
---|
735 | grid%dfi_t(:,:,:) = 0. |
---|
736 | grid%dfi_phb(:,:,:) = 0. |
---|
737 | grid%dfi_ph0(:,:,:) = 0. |
---|
738 | grid%dfi_php(:,:,:) = 0. |
---|
739 | grid%dfi_p(:,:,:) = 0. |
---|
740 | grid%dfi_ph(:,:,:) = 0. |
---|
741 | grid%dfi_tke(:,:,:) = 0. |
---|
742 | grid%dfi_al(:,:,:) = 0. |
---|
743 | grid%dfi_alt(:,:,:) = 0. |
---|
744 | grid%dfi_pb(:,:,:) = 0. |
---|
745 | #if ( WRF_DFI_RADAR == 1 ) |
---|
746 | IF ( grid%dfi_radar .EQ. 0 ) then |
---|
747 | grid%dfi_moist(:,:,:,:) = 0. |
---|
748 | ELSE |
---|
749 | grid%dfi_moist(:,:,:,P_QV) = 0. |
---|
750 | ENDIF |
---|
751 | #else |
---|
752 | grid%dfi_moist(:,:,:,:) = 0. |
---|
753 | #endif |
---|
754 | grid%dfi_scalar(:,:,:,:) = 0. |
---|
755 | #endif |
---|
756 | |
---|
757 | #if (NMM_CORE == 1) |
---|
758 | grid%dfi_pd(:,:) = 0. |
---|
759 | grid%dfi_pint(:,:,:) = 0. |
---|
760 | grid%dfi_dwdt(:,:,:) = 0. |
---|
761 | grid%dfi_t(:,:,:) = 0. |
---|
762 | grid%dfi_q(:,:,:) = 0. |
---|
763 | grid%dfi_q2(:,:,:) = 0. |
---|
764 | grid%dfi_cwm(:,:,:) = 0. |
---|
765 | grid%dfi_u(:,:,:) = 0. |
---|
766 | grid%dfi_v(:,:,:) = 0. |
---|
767 | grid%dfi_moist(:,:,:,:) = 0. |
---|
768 | grid%dfi_scalar(:,:,:,:) = 0. |
---|
769 | #endif |
---|
770 | |
---|
771 | grid%hcoeff_tot = 0.0 |
---|
772 | |
---|
773 | END SUBROUTINE dfi_clear_accumulation |
---|
774 | |
---|
775 | |
---|
776 | SUBROUTINE dfi_save_arrays( grid ) |
---|
777 | |
---|
778 | USE module_domain, ONLY : domain |
---|
779 | ! USE module_configure |
---|
780 | ! USE module_driver_constants |
---|
781 | ! USE module_machine |
---|
782 | ! USE module_dm |
---|
783 | USE module_model_constants |
---|
784 | USE module_state_description |
---|
785 | |
---|
786 | IMPLICIT NONE |
---|
787 | |
---|
788 | INTEGER :: its, ite, jts, jte, kts, kte, & |
---|
789 | i, j, k |
---|
790 | |
---|
791 | ! Input data. |
---|
792 | TYPE(domain) , POINTER :: grid |
---|
793 | ! local |
---|
794 | |
---|
795 | REAL es,qs,pol,tx,temp,pres,rslf |
---|
796 | |
---|
797 | #if (EM_CORE == 1) |
---|
798 | ! save surface 2-D fields |
---|
799 | grid%dfi_SNOW(:,:) = grid%SNOW(:,:) |
---|
800 | grid%dfi_SNOWH(:,:) = grid%SNOWH(:,:) |
---|
801 | grid%dfi_SNOWC(:,:) = grid%SNOWC(:,:) |
---|
802 | grid%dfi_CANWAT(:,:) = grid%CANWAT(:,:) |
---|
803 | grid%dfi_TSK(:,:) = grid%TSK(:,:) |
---|
804 | |
---|
805 | ! save soil fields |
---|
806 | grid%dfi_TSLB(:,:,:) = grid%TSLB(:,:,:) |
---|
807 | grid%dfi_SMOIS(:,:,:) = grid%SMOIS(:,:,:) |
---|
808 | ! RUC LSM only, need conditional |
---|
809 | IF ( grid%sf_surface_physics .EQ. 3 ) then |
---|
810 | grid%dfi_QVG(:,:) = grid%QVG(:,:) |
---|
811 | grid%dfi_SOILT1(:,:) = grid%SOILT1(:,:) |
---|
812 | grid%dfi_TSNAV(:,:) = grid%TSNAV(:,:) |
---|
813 | grid%dfi_SMFR3D(:,:,:) = grid%SMFR3D(:,:,:) |
---|
814 | grid%dfi_KEEPFR3DFLAG(:,:,:) = grid%KEEPFR3DFLAG(:,:,:) |
---|
815 | ENDIF |
---|
816 | #endif |
---|
817 | |
---|
818 | #if (NMM_CORE == 1) |
---|
819 | ! save surface 2-D fields |
---|
820 | grid%dfi_SNOW(:,:) = grid%SNOW(:,:) |
---|
821 | grid%dfi_SNOWH(:,:) = grid%SNOWH(:,:) |
---|
822 | ! grid%dfi_SNOWC(:,:) = grid%SNOWC(:,:) |
---|
823 | grid%dfi_CANWAT(:,:) = grid%CANWAT(:,:) |
---|
824 | grid%dfi_NMM_TSK(:,:) = grid%NMM_TSK(:,:) |
---|
825 | ! save soil fields |
---|
826 | grid%dfi_STC(:,:,:) = grid%STC(:,:,:) |
---|
827 | grid%dfi_SMC(:,:,:) = grid%SMC(:,:,:) |
---|
828 | grid%dfi_SH2O(:,:,:) = grid%SH2O(:,:,:) |
---|
829 | #endif |
---|
830 | |
---|
831 | |
---|
832 | ! save hydrometeor fields |
---|
833 | #if (EM_CORE == 1) |
---|
834 | #if ( WRF_DFI_RADAR == 1 ) |
---|
835 | IF ( grid%dfi_radar .EQ. 1 ) then !tgs |
---|
836 | ! grid%dfi_moist(:,:,:,:) = grid%moist(:,:,:,:) |
---|
837 | grid%dfi_moist(:,:,:,P_QC) = grid%moist(:,:,:,P_QC) |
---|
838 | grid%dfi_moist(:,:,:,P_QR) = grid%moist(:,:,:,P_QR) |
---|
839 | grid%dfi_moist(:,:,:,P_QI) = grid%moist(:,:,:,P_QI) |
---|
840 | grid%dfi_moist(:,:,:,P_QS) = grid%moist(:,:,:,P_QS) |
---|
841 | grid%dfi_moist(:,:,:,P_QG) = grid%moist(:,:,:,P_QG) |
---|
842 | |
---|
843 | if(grid%dfi_stage .EQ. DFI_BCK) then |
---|
844 | ! compute initial RH field to be reintroduced after the diabatic DFI |
---|
845 | its = grid%sp31 ; ite = grid%ep31 ; |
---|
846 | kts = grid%sp32 ; kte = grid%ep32 ; |
---|
847 | jts = grid%sp33 ; jte = grid%ep33 ; |
---|
848 | DO j=jts,jte |
---|
849 | DO i=its,ite |
---|
850 | do k = kts , kte |
---|
851 | temp = (grid%t_2(i,k,j)+t0)*( (grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb )& |
---|
852 | ** (r_d / Cp) |
---|
853 | pres = grid%p(i,k,j)+grid%pb(i,k,j) |
---|
854 | !tgs rslf - function to compute qs from Thompson microphysics |
---|
855 | qs = rslf(pres, temp) |
---|
856 | grid%dfi_rh (i,k,j) = MIN(1.,MAX(0.,grid%moist(i,k,j,P_QV)/qs)) |
---|
857 | |
---|
858 | !tgs saturation check for points with water or ice clouds |
---|
859 | IF ((grid%moist (i,k,j,P_QC) .GT. 1.e-6 .or. & |
---|
860 | grid%moist (i,k,j,P_QI) .GT. 1.e-6) .and. & |
---|
861 | grid%dfi_rh (i,k,j) .lt. 1.) THEN |
---|
862 | grid%dfi_rh (i,k,j)=1. |
---|
863 | ENDIF |
---|
864 | |
---|
865 | end do |
---|
866 | END DO |
---|
867 | ENDDO |
---|
868 | endif |
---|
869 | |
---|
870 | ENDIF |
---|
871 | #endif |
---|
872 | #endif |
---|
873 | |
---|
874 | END SUBROUTINE dfi_save_arrays |
---|
875 | |
---|
876 | |
---|
877 | SUBROUTINE dfcoef (NSTEPS,DT,TAUC,NFILT,H) |
---|
878 | ! |
---|
879 | ! calculate filter weights with selected window. |
---|
880 | ! |
---|
881 | ! peter lynch and xiang-yu huang |
---|
882 | ! |
---|
883 | ! ref: see hamming, r.w., 1989: digital filters, |
---|
884 | ! prentice-hall international. 3rd edition. |
---|
885 | ! |
---|
886 | ! input: nsteps - number of timesteps |
---|
887 | ! forward or backward. |
---|
888 | ! dt - time step in seconds. |
---|
889 | ! tauc - cut-off period in seconds. |
---|
890 | ! nfilt - indicator for selected filter. |
---|
891 | ! |
---|
892 | ! output: h - array(0:nsteps) with the |
---|
893 | ! required filter weights |
---|
894 | ! |
---|
895 | !------------------------------------------------------------ |
---|
896 | |
---|
897 | implicit none |
---|
898 | |
---|
899 | integer, intent(in) :: nsteps, nfilt |
---|
900 | real , intent(in) :: dt, tauc |
---|
901 | real, intent(out) :: h(1:nsteps+1) |
---|
902 | |
---|
903 | ! Local data |
---|
904 | |
---|
905 | integer :: n |
---|
906 | real :: pi, omegac, x, window, deltat |
---|
907 | real :: hh(0:nsteps) |
---|
908 | |
---|
909 | pi=4*ATAN(1.) |
---|
910 | deltat=ABS(dt) |
---|
911 | |
---|
912 | ! windows are defined by a call and held in hh. |
---|
913 | |
---|
914 | if ( nfilt .eq. -1) call debug (nsteps,h) |
---|
915 | |
---|
916 | IF ( NFILT .EQ. 0 ) CALL UNIFORM (NSTEPS,HH) |
---|
917 | IF ( NFILT .EQ. 1 ) CALL LANCZOS (NSTEPS,HH) |
---|
918 | IF ( NFILT .EQ. 2 ) CALL HAMMING (NSTEPS,HH) |
---|
919 | IF ( NFILT .EQ. 3 ) CALL BLACKMAN (NSTEPS,HH) |
---|
920 | IF ( NFILT .EQ. 4 ) CALL KAISER (NSTEPS,HH) |
---|
921 | IF ( NFILT .EQ. 5 ) CALL POTTER2 (NSTEPS,HH) |
---|
922 | IF ( NFILT .EQ. 6 ) CALL DOLPHWIN (NSTEPS,HH) |
---|
923 | |
---|
924 | IF ( NFILT .LE. 6 ) THEN ! sinc-windowed filters |
---|
925 | |
---|
926 | ! calculate the cutoff frequency |
---|
927 | OMEGAC = 2.*PI/TAUC |
---|
928 | |
---|
929 | DO N=0,NSTEPS |
---|
930 | WINDOW = HH(N) |
---|
931 | IF ( N .EQ. 0 ) THEN |
---|
932 | X = (OMEGAC*DELTAT/PI) |
---|
933 | ELSE |
---|
934 | X = SIN(N*OMEGAC*DELTAT)/(N*PI) |
---|
935 | END IF |
---|
936 | HH(N) = X*WINDOW |
---|
937 | END DO |
---|
938 | |
---|
939 | ! normalize the sums to be unity |
---|
940 | CALL NORMLZ(HH,NSTEPS) |
---|
941 | |
---|
942 | DO N=0,NSTEPS |
---|
943 | H(N+1) = HH(NSTEPS-N) |
---|
944 | END DO |
---|
945 | |
---|
946 | ELSE IF ( NFILT .EQ. 7 ) THEN ! dolph filter |
---|
947 | |
---|
948 | CALL DOLPH(DT,TAUC,NSTEPS,H) |
---|
949 | |
---|
950 | ELSE IF ( NFILT .EQ. 8 ) THEN ! 2nd order, 2nd type quick start filter (RHO) |
---|
951 | |
---|
952 | CALL RHOFIL(DT,TAUC,2,NSTEPS*2,2,H,NSTEPS) |
---|
953 | |
---|
954 | END IF |
---|
955 | |
---|
956 | RETURN |
---|
957 | |
---|
958 | END SUBROUTINE dfcoef |
---|
959 | |
---|
960 | |
---|
961 | SUBROUTINE NORMLZ(HH,NMAX) |
---|
962 | |
---|
963 | ! normalize the sum of hh to be unity |
---|
964 | |
---|
965 | implicit none |
---|
966 | |
---|
967 | integer, intent(in) :: nmax |
---|
968 | real , dimension(0:nmax), intent(out) :: hh |
---|
969 | |
---|
970 | ! local data |
---|
971 | real :: sumhh |
---|
972 | integer :: n |
---|
973 | |
---|
974 | SUMHH = HH(0) |
---|
975 | DO N=1,NMAX |
---|
976 | SUMHH = SUMHH + 2*HH(N) |
---|
977 | ENDDO |
---|
978 | DO N=0,NMAX |
---|
979 | HH(N) = HH(N)/SUMHH |
---|
980 | ENDDO |
---|
981 | |
---|
982 | RETURN |
---|
983 | |
---|
984 | END subroutine normlz |
---|
985 | |
---|
986 | |
---|
987 | subroutine debug(nsteps, ww) |
---|
988 | |
---|
989 | implicit none |
---|
990 | |
---|
991 | integer, intent(in) :: nsteps |
---|
992 | real , dimension(0:nsteps), intent(out) :: ww |
---|
993 | integer :: n |
---|
994 | |
---|
995 | do n=0,nsteps |
---|
996 | ww(n)=0 |
---|
997 | end do |
---|
998 | |
---|
999 | ww(int(nsteps/2))=1 |
---|
1000 | |
---|
1001 | return |
---|
1002 | |
---|
1003 | end subroutine debug |
---|
1004 | |
---|
1005 | |
---|
1006 | SUBROUTINE UNIFORM(NSTEPS,WW) |
---|
1007 | |
---|
1008 | ! define uniform or rectangular window function. |
---|
1009 | |
---|
1010 | implicit none |
---|
1011 | |
---|
1012 | integer, intent(in) :: nsteps |
---|
1013 | real , dimension(0:nsteps), intent(out) :: ww |
---|
1014 | |
---|
1015 | integer :: n |
---|
1016 | |
---|
1017 | DO N=0,NSTEPS |
---|
1018 | WW(N) = 1. |
---|
1019 | ENDDO |
---|
1020 | |
---|
1021 | RETURN |
---|
1022 | |
---|
1023 | END subroutine uniform |
---|
1024 | |
---|
1025 | |
---|
1026 | SUBROUTINE LANCZOS(NSTEPS,WW) |
---|
1027 | |
---|
1028 | ! define (genaralised) lanczos window function. |
---|
1029 | |
---|
1030 | implicit none |
---|
1031 | |
---|
1032 | integer, parameter :: nmax = 1000 |
---|
1033 | integer, intent(in) :: nsteps |
---|
1034 | real , dimension(0:nmax), intent(out) :: ww |
---|
1035 | integer :: n |
---|
1036 | real :: power, pi, w |
---|
1037 | |
---|
1038 | ! (for the usual lanczos window, power = 1 ) |
---|
1039 | POWER = 1 |
---|
1040 | |
---|
1041 | PI=4*ATAN(1.) |
---|
1042 | DO N=0,NSTEPS |
---|
1043 | IF ( N .EQ. 0 ) THEN |
---|
1044 | W = 1.0 |
---|
1045 | ELSE |
---|
1046 | W = SIN(N*PI/(NSTEPS+1)) / ( N*PI/(NSTEPS+1)) |
---|
1047 | ENDIF |
---|
1048 | WW(N) = W**POWER |
---|
1049 | ENDDO |
---|
1050 | |
---|
1051 | RETURN |
---|
1052 | |
---|
1053 | END SUBROUTINE lanczos |
---|
1054 | |
---|
1055 | |
---|
1056 | SUBROUTINE HAMMING(NSTEPS,WW) |
---|
1057 | |
---|
1058 | ! define (genaralised) hamming window function. |
---|
1059 | |
---|
1060 | implicit none |
---|
1061 | |
---|
1062 | integer, intent(in) :: nsteps |
---|
1063 | real, dimension(0:nsteps) :: ww |
---|
1064 | integer :: n |
---|
1065 | real :: alpha, pi, w |
---|
1066 | |
---|
1067 | ! (for the usual hamming window, alpha=0.54, |
---|
1068 | ! for the hann window, alpha=0.50). |
---|
1069 | ALPHA=0.54 |
---|
1070 | |
---|
1071 | PI=4*ATAN(1.) |
---|
1072 | DO N=0,NSTEPS |
---|
1073 | IF ( N .EQ. 0 ) THEN |
---|
1074 | W = 1.0 |
---|
1075 | ELSE |
---|
1076 | W = ALPHA + (1-ALPHA)*COS(N*PI/(NSTEPS)) |
---|
1077 | ENDIF |
---|
1078 | WW(N) = W |
---|
1079 | ENDDO |
---|
1080 | |
---|
1081 | RETURN |
---|
1082 | |
---|
1083 | END SUBROUTINE hamming |
---|
1084 | |
---|
1085 | |
---|
1086 | SUBROUTINE BLACKMAN(NSTEPS,WW) |
---|
1087 | |
---|
1088 | ! define blackman window function. |
---|
1089 | |
---|
1090 | implicit none |
---|
1091 | |
---|
1092 | integer, intent(in) :: nsteps |
---|
1093 | real, dimension(0:nsteps) :: ww |
---|
1094 | integer :: n |
---|
1095 | |
---|
1096 | real :: pi, w |
---|
1097 | |
---|
1098 | PI=4*ATAN(1.) |
---|
1099 | DO N=0,NSTEPS |
---|
1100 | IF ( N .EQ. 0 ) THEN |
---|
1101 | W = 1.0 |
---|
1102 | ELSE |
---|
1103 | W = 0.42 + 0.50*COS( N*PI/(NSTEPS)) & |
---|
1104 | + 0.08*COS(2*N*PI/(NSTEPS)) |
---|
1105 | ENDIF |
---|
1106 | WW(N) = W |
---|
1107 | ENDDO |
---|
1108 | |
---|
1109 | RETURN |
---|
1110 | |
---|
1111 | END SUBROUTINE blackman |
---|
1112 | |
---|
1113 | |
---|
1114 | SUBROUTINE KAISER(NSTEPS,WW) |
---|
1115 | |
---|
1116 | ! define kaiser window function. |
---|
1117 | |
---|
1118 | implicit none |
---|
1119 | |
---|
1120 | real, external :: bessi0 |
---|
1121 | |
---|
1122 | integer, intent(in) :: nsteps |
---|
1123 | real, dimension(0:nsteps) :: ww |
---|
1124 | integer :: n |
---|
1125 | real :: alpha, xi0a, xn, as |
---|
1126 | |
---|
1127 | ALPHA = 1 |
---|
1128 | |
---|
1129 | XI0A = BESSI0(ALPHA) |
---|
1130 | DO N=0,NSTEPS |
---|
1131 | XN = N |
---|
1132 | AS = ALPHA*SQRT(1.-(XN/NSTEPS)**2) |
---|
1133 | WW(N) = BESSI0(AS) / XI0A |
---|
1134 | ENDDO |
---|
1135 | |
---|
1136 | RETURN |
---|
1137 | |
---|
1138 | END SUBROUTINE kaiser |
---|
1139 | |
---|
1140 | |
---|
1141 | REAL FUNCTION BESSI0(X) |
---|
1142 | |
---|
1143 | ! from numerical recipes (press, et al.) |
---|
1144 | |
---|
1145 | implicit none |
---|
1146 | |
---|
1147 | real(8) :: Y |
---|
1148 | real(8) :: P1 = 1.0d0 |
---|
1149 | real(8) :: P2 = 3.5156230D0 |
---|
1150 | real(8) :: P3 = 3.0899424D0 |
---|
1151 | real(8) :: P4 = 1.2067492D0 |
---|
1152 | real(8) :: P5 = 0.2659732D0 |
---|
1153 | real(8) :: P6 = 0.360768D-1 |
---|
1154 | real(8) :: P7 = 0.45813D-2 |
---|
1155 | |
---|
1156 | real*8 :: Q1 = 0.39894228D0 |
---|
1157 | real*8 :: Q2 = 0.1328592D-1 |
---|
1158 | real*8 :: Q3 = 0.225319D-2 |
---|
1159 | real*8 :: Q4 = -0.157565D-2 |
---|
1160 | real*8 :: Q5 = 0.916281D-2 |
---|
1161 | real*8 :: Q6 = -0.2057706D-1 |
---|
1162 | real*8 :: Q7 = 0.2635537D-1 |
---|
1163 | real*8 :: Q8 = -0.1647633D-1 |
---|
1164 | real*8 :: Q9 = 0.392377D-2 |
---|
1165 | |
---|
1166 | real :: x, ax |
---|
1167 | |
---|
1168 | |
---|
1169 | IF (ABS(X).LT.3.75) THEN |
---|
1170 | Y=(X/3.75)**2 |
---|
1171 | BESSI0=P1+Y*(P2+Y*(P3+Y*(P4+Y*(P5+Y*(P6+Y*P7))))) |
---|
1172 | ELSE |
---|
1173 | AX=ABS(X) |
---|
1174 | Y=3.75/AX |
---|
1175 | BESSI0=(EXP(AX)/SQRT(AX))*(Q1+Y*(Q2+Y*(Q3+Y*(Q4 & |
---|
1176 | +Y*(Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9)))))))) |
---|
1177 | ENDIF |
---|
1178 | RETURN |
---|
1179 | |
---|
1180 | END FUNCTION bessi0 |
---|
1181 | |
---|
1182 | |
---|
1183 | SUBROUTINE POTTER2(NSTEPS,WW) |
---|
1184 | |
---|
1185 | ! define potter window function. |
---|
1186 | ! modified to fall off over twice the range. |
---|
1187 | |
---|
1188 | implicit none |
---|
1189 | |
---|
1190 | integer, intent(in) :: nsteps |
---|
1191 | real, dimension(0:nsteps),intent(out) :: ww |
---|
1192 | integer :: n |
---|
1193 | real :: ck, sum, arg |
---|
1194 | |
---|
1195 | ! local data |
---|
1196 | real, dimension(0:3) :: d |
---|
1197 | real :: pi |
---|
1198 | integer :: ip |
---|
1199 | |
---|
1200 | d(0) = 0.35577019 |
---|
1201 | d(1) = 0.2436983 |
---|
1202 | d(2) = 0.07211497 |
---|
1203 | d(3) = 0.00630165 |
---|
1204 | |
---|
1205 | PI=4*ATAN(1.) |
---|
1206 | |
---|
1207 | CK = 1.0 |
---|
1208 | DO N=0,NSTEPS |
---|
1209 | IF (N.EQ.NSTEPS) CK = 0.5 |
---|
1210 | ARG = PI*FLOAT(N)/FLOAT(NSTEPS) |
---|
1211 | !min--- modification in next statement |
---|
1212 | ARG = ARG/2. |
---|
1213 | !min--- end of modification |
---|
1214 | SUM = D(0) |
---|
1215 | DO IP=1,3 |
---|
1216 | SUM = SUM + 2.*D(IP)*COS(ARG*FLOAT(IP)) |
---|
1217 | END DO |
---|
1218 | WW(N) = CK*SUM |
---|
1219 | END DO |
---|
1220 | |
---|
1221 | RETURN |
---|
1222 | |
---|
1223 | END SUBROUTINE potter2 |
---|
1224 | |
---|
1225 | |
---|
1226 | SUBROUTINE dolphwin(m, window) |
---|
1227 | |
---|
1228 | ! calculation of dolph-chebyshev window or, for short, |
---|
1229 | ! dolph window, using the expression in the reference: |
---|
1230 | ! |
---|
1231 | ! antoniou, andreas, 1993: digital filters: analysis, |
---|
1232 | ! design and applications. mcgraw-hill, inc., 689pp. |
---|
1233 | ! |
---|
1234 | ! the dolph window is optimal in the following sense: |
---|
1235 | ! for a given main-lobe width, the stop-band attenuation |
---|
1236 | ! is minimal; for a given stop-band level, the main-lobe |
---|
1237 | ! width is minimal. |
---|
1238 | ! |
---|
1239 | ! it is possible to specify either the ripple-ratio r |
---|
1240 | ! or the stop-band edge thetas. |
---|
1241 | |
---|
1242 | IMPLICIT NONE |
---|
1243 | |
---|
1244 | ! Arguments |
---|
1245 | INTEGER, INTENT(IN) :: m |
---|
1246 | REAL, DIMENSION(0:M), INTENT(OUT) :: window |
---|
1247 | |
---|
1248 | ! local data |
---|
1249 | REAL, DIMENSION(0:2*M) :: t |
---|
1250 | REAL, DIMENSION(0:M) :: w, time |
---|
1251 | REAL :: pi, thetas, x0, term1, term2, rr, r, db, sum, arg |
---|
1252 | INTEGER :: n, nm1, nt, i |
---|
1253 | |
---|
1254 | PI = 4*ATAN(1.D0) |
---|
1255 | THETAS = 2*PI/M |
---|
1256 | |
---|
1257 | N = 2*M+1 |
---|
1258 | NM1 = N-1 |
---|
1259 | X0 = 1/COS(THETAS/2) |
---|
1260 | |
---|
1261 | TERM1 = (X0 + SQRT(X0**2-1))**(FLOAT(N-1)) |
---|
1262 | TERM2 = (X0 - SQRT(X0**2-1))**(FLOAT(N-1)) |
---|
1263 | RR = 0.5*(TERM1+TERM2) |
---|
1264 | R = 1/RR |
---|
1265 | DB = 20*LOG10(R) |
---|
1266 | WRITE(*,'(1X,''DOLPH: M,N='',2I8)')M,N |
---|
1267 | WRITE(*,'(1X,''DOLPH: THETAS (STOP-BAND EDGE)='',F10.3)')THETAS |
---|
1268 | WRITE(*,'(1X,''DOLPH: R,DB='',2F10.3)')R, DB |
---|
1269 | |
---|
1270 | DO NT=0,M |
---|
1271 | SUM = RR |
---|
1272 | DO I=1,M |
---|
1273 | ARG = X0*COS(I*PI/N) |
---|
1274 | CALL CHEBY(T,NM1,ARG) |
---|
1275 | TERM1 = T(NM1) |
---|
1276 | TERM2 = COS(2*NT*PI*I/N) |
---|
1277 | SUM = SUM + 2*TERM1*TERM2 |
---|
1278 | ENDDO |
---|
1279 | W(NT) = SUM/N |
---|
1280 | TIME(NT) = NT |
---|
1281 | ENDDO |
---|
1282 | |
---|
1283 | ! fill up the array for return |
---|
1284 | DO NT=0,M |
---|
1285 | WINDOW(NT) = W(NT) |
---|
1286 | ENDDO |
---|
1287 | |
---|
1288 | RETURN |
---|
1289 | |
---|
1290 | END SUBROUTINE dolphwin |
---|
1291 | |
---|
1292 | |
---|
1293 | SUBROUTINE dolph(deltat, taus, m, window) |
---|
1294 | |
---|
1295 | ! calculation of dolph-chebyshev window or, for short, |
---|
1296 | ! dolph window, using the expression in the reference: |
---|
1297 | ! |
---|
1298 | ! antoniou, andreas, 1993: digital filters: analysis, |
---|
1299 | ! design and applications. mcgraw-hill, inc., 689pp. |
---|
1300 | ! |
---|
1301 | ! the dolph window is optimal in the following sense: |
---|
1302 | ! for a given main-lobe width, the stop-band attenuation |
---|
1303 | ! is minimal; for a given stop-band level, the main-lobe |
---|
1304 | ! width is minimal. |
---|
1305 | |
---|
1306 | IMPLICIT NONE |
---|
1307 | |
---|
1308 | ! Arguments |
---|
1309 | INTEGER, INTENT(IN) :: m |
---|
1310 | REAL, DIMENSION(0:M), INTENT(OUT) :: window |
---|
1311 | REAL, INTENT(IN) :: deltat, taus |
---|
1312 | |
---|
1313 | ! local data |
---|
1314 | integer, PARAMETER :: NMAX = 5000 |
---|
1315 | REAL, dimension(0:NMAX) :: t, w, time |
---|
1316 | real, dimension(0:2*nmax) :: w2 |
---|
1317 | INTEGER :: NPRPE=0 ! no of pe |
---|
1318 | CHARACTER*80 :: MES |
---|
1319 | |
---|
1320 | real :: pi, thetas, x0, term1, term2, rr, r,db, sum, arg, sumw |
---|
1321 | integer :: n, nm1, i, nt |
---|
1322 | |
---|
1323 | PI = 4*ATAN(1.D0) |
---|
1324 | |
---|
1325 | WRITE (mes,'(A,F8.2,A,F10.2)') 'In dolph, deltat = ',deltat,' taus = ',taus |
---|
1326 | CALL wrf_message(TRIM(mes)) |
---|
1327 | |
---|
1328 | N = 2*M+1 |
---|
1329 | NM1 = N-1 |
---|
1330 | |
---|
1331 | THETAS = 2*PI*ABS(DELTAT/TAUS) |
---|
1332 | X0 = 1/COS(THETAS/2) |
---|
1333 | TERM1 = (X0 + SQRT(X0**2-1))**(FLOAT(N-1)) |
---|
1334 | TERM2 = (X0 - SQRT(X0**2-1))**(FLOAT(N-1)) |
---|
1335 | RR = 0.5*(TERM1+TERM2) |
---|
1336 | R = 1/RR |
---|
1337 | DB = 20*LOG10(R) |
---|
1338 | |
---|
1339 | WRITE (mes,'(A,2I8)') 'In dolph: M,N = ', M,N |
---|
1340 | CALL wrf_message(TRIM(mes)) |
---|
1341 | WRITE (mes,'(A,F10.3)') 'In dolph: THETAS (STOP-BAND EDGE) = ', thetas |
---|
1342 | CALL wrf_message(TRIM(mes)) |
---|
1343 | WRITE (mes,'(A,2F10.3)') 'In dolph: R,DB = ', R,DB |
---|
1344 | CALL wrf_message(TRIM(mes)) |
---|
1345 | |
---|
1346 | DO NT=0,M |
---|
1347 | SUM = 1 |
---|
1348 | DO I=1,M |
---|
1349 | ARG = X0*COS(I*PI/N) |
---|
1350 | CALL CHEBY(T,NM1,ARG) |
---|
1351 | TERM1 = T(NM1) |
---|
1352 | TERM2 = COS(2*NT*PI*I/N) |
---|
1353 | SUM = SUM + R*2*TERM1*TERM2 |
---|
1354 | ENDDO |
---|
1355 | W(NT) = SUM/N |
---|
1356 | TIME(NT) = NT |
---|
1357 | WRITE (mes,'(A,F10.6,2x,E17.7)') 'In dolph: TIME, W = ', TIME(NT), W(NT) |
---|
1358 | CALL wrf_message(TRIM(mes)) |
---|
1359 | ENDDO |
---|
1360 | ! fill in the negative-time values by symmetry. |
---|
1361 | DO NT=0,M |
---|
1362 | W2(M+NT) = W(NT) |
---|
1363 | W2(M-NT) = W(NT) |
---|
1364 | ENDDO |
---|
1365 | |
---|
1366 | ! fill up the array for return |
---|
1367 | SUMW = 0. |
---|
1368 | DO NT=0,2*M |
---|
1369 | SUMW = SUMW + W2(NT) |
---|
1370 | ENDDO |
---|
1371 | WRITE (mes,'(A,F10.4)') 'In dolph: SUM OF WEIGHTS W2 = ', sumw |
---|
1372 | CALL wrf_message(TRIM(mes)) |
---|
1373 | |
---|
1374 | DO NT=0,M |
---|
1375 | WINDOW(NT) = W2(NT) |
---|
1376 | ENDDO |
---|
1377 | |
---|
1378 | RETURN |
---|
1379 | |
---|
1380 | END SUBROUTINE dolph |
---|
1381 | |
---|
1382 | |
---|
1383 | SUBROUTINE cheby(t, n, x) |
---|
1384 | |
---|
1385 | ! calculate all chebyshev polynomials up to order n |
---|
1386 | ! for the argument value x. |
---|
1387 | |
---|
1388 | ! reference: numerical recipes, page 184, recurrence |
---|
1389 | ! t_n(x) = 2xt_{n-1}(x) - t_{n-2}(x) , n>=2. |
---|
1390 | |
---|
1391 | IMPLICIT NONE |
---|
1392 | |
---|
1393 | ! Arguments |
---|
1394 | INTEGER, INTENT(IN) :: n |
---|
1395 | REAL, INTENT(IN) :: x |
---|
1396 | REAL, DIMENSION(0:N) :: t |
---|
1397 | |
---|
1398 | integer :: nn |
---|
1399 | |
---|
1400 | T(0) = 1 |
---|
1401 | T(1) = X |
---|
1402 | IF(N.LT.2) RETURN |
---|
1403 | DO NN=2,N |
---|
1404 | T(NN) = 2*X*T(NN-1) - T(NN-2) |
---|
1405 | ENDDO |
---|
1406 | |
---|
1407 | RETURN |
---|
1408 | |
---|
1409 | END SUBROUTINE cheby |
---|
1410 | |
---|
1411 | |
---|
1412 | SUBROUTINE rhofil(dt, tauc, norder, nstep, ictype, frow, nosize) |
---|
1413 | |
---|
1414 | ! RHO = recurssive high order. |
---|
1415 | ! |
---|
1416 | ! This routine calculates and returns the |
---|
1417 | ! Last Row, FROW, of the FILTER matrix. |
---|
1418 | ! |
---|
1419 | ! Input Parameters: |
---|
1420 | ! DT : Time Step in seconds |
---|
1421 | ! TAUC : Cut-off period (hours) |
---|
1422 | ! NORDER : Order of QS Filter |
---|
1423 | ! NSTEP : Number of step/Size of row. |
---|
1424 | ! ICTYPE : Initial Conditions |
---|
1425 | ! NOSIZE : Max. side of FROW. |
---|
1426 | ! |
---|
1427 | ! Working Fields: |
---|
1428 | ! ACOEF : X-coefficients of filter |
---|
1429 | ! BCOEF : Y-coefficients of filter |
---|
1430 | ! FILTER : Filter Matrix. |
---|
1431 | ! |
---|
1432 | ! Output Parameters: |
---|
1433 | ! FROW : Last Row of Filter Matrix. |
---|
1434 | ! |
---|
1435 | ! Note: Two types of initial conditions are permitted. |
---|
1436 | ! ICTYPE = 1 : Order increasing each row to NORDER. |
---|
1437 | ! ICTYPE = 2 : Order fixed at NORDER throughout. |
---|
1438 | ! |
---|
1439 | ! DOUBLE PRECISION USED THROUGHOUT. |
---|
1440 | |
---|
1441 | IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
---|
1442 | |
---|
1443 | DOUBLE PRECISION MUC |
---|
1444 | |
---|
1445 | ! N.B. Single Precision for List Parameters. |
---|
1446 | REAL, intent(in) :: DT,TAUC |
---|
1447 | |
---|
1448 | ! Space for the last row of FILTER. |
---|
1449 | integer, intent(in) :: norder, nstep, ictype, nosize |
---|
1450 | REAL , dimension(0:nosize), intent(out):: FROW |
---|
1451 | |
---|
1452 | ! Arrays for rho filter. |
---|
1453 | integer, PARAMETER :: NOMAX=100 |
---|
1454 | real , dimension(0:NOMAX) :: acoef, bcoef |
---|
1455 | real , dimension(0:NOMAX,0:NOMAX) :: filter |
---|
1456 | ! Working space. |
---|
1457 | real , dimension(0:NOMAX) :: alpha, beta |
---|
1458 | |
---|
1459 | real :: DTT |
---|
1460 | |
---|
1461 | DTT = ABS(DT) |
---|
1462 | PI = 2*DASIN(1.D0) |
---|
1463 | IOTA = CMPLX(0.,1.) |
---|
1464 | |
---|
1465 | ! Filtering Parameters (derived). |
---|
1466 | THETAC = 2*PI*DTT/(TAUC) |
---|
1467 | MUC = tan(THETAC/2) |
---|
1468 | FC = THETAC/(2*PI) |
---|
1469 | |
---|
1470 | ! Clear the arrays. |
---|
1471 | DO NC=0,NOMAX |
---|
1472 | ACOEF(NC) = 0. |
---|
1473 | BCOEF(NC) = 0. |
---|
1474 | ALPHA(NC) = 0. |
---|
1475 | BETA (NC) = 0. |
---|
1476 | FROW (NC) = 0. |
---|
1477 | DO NR=0,NOMAX |
---|
1478 | FILTER(NR,NC) = 0. |
---|
1479 | ENDDO |
---|
1480 | ENDDO |
---|
1481 | |
---|
1482 | ! Fill up the Filter Matrix. |
---|
1483 | FILTER(0,0) = 1. |
---|
1484 | |
---|
1485 | ! Get the coefficients of the Filter. |
---|
1486 | IF ( ICTYPE.eq.2 ) THEN |
---|
1487 | CALL RHOCOF(NORDER,NOMAX,MUC, ACOEF,BCOEF) |
---|
1488 | ENDIF |
---|
1489 | |
---|
1490 | DO 100 NROW=1,NSTEP |
---|
1491 | |
---|
1492 | IF ( ICTYPE.eq.1 ) THEN |
---|
1493 | NORD = MIN(NROW,NORDER) |
---|
1494 | IF ( NORD.le.NORDER) THEN |
---|
1495 | CALL RHOCOF(NORD,NOMAX,MUC, ACOEF,BCOEF) |
---|
1496 | ENDIF |
---|
1497 | ENDIF |
---|
1498 | |
---|
1499 | DO K=0,NROW |
---|
1500 | ALPHA(K) = ACOEF(NROW-K) |
---|
1501 | IF(K.lt.NROW) BETA(K) = BCOEF(NROW-K) |
---|
1502 | ENDDO |
---|
1503 | |
---|
1504 | ! Correction for terms of negative index. |
---|
1505 | IF ( ICTYPE.eq.2 ) THEN |
---|
1506 | IF ( NROW.lt.NORDER ) THEN |
---|
1507 | CN = 0. |
---|
1508 | DO NN=NROW+1,NORDER |
---|
1509 | CN = CN + (ACOEF(NN)+BCOEF(NN)) |
---|
1510 | ENDDO |
---|
1511 | ALPHA(0) = ALPHA(0) + CN |
---|
1512 | ENDIF |
---|
1513 | ENDIF |
---|
1514 | |
---|
1515 | ! Check sum of ALPHAs and BETAs = 1 |
---|
1516 | SUMAB = 0. |
---|
1517 | DO NN=0,NROW |
---|
1518 | SUMAB = SUMAB + ALPHA(NN) |
---|
1519 | IF(NN.lt.NROW) SUMAB = SUMAB + BETA(NN) |
---|
1520 | ENDDO |
---|
1521 | |
---|
1522 | DO KK=0,NROW-1 |
---|
1523 | SUMBF = 0. |
---|
1524 | DO LL=0,NROW-1 |
---|
1525 | SUMBF = SUMBF + BETA(LL)*FILTER(LL,KK) |
---|
1526 | ENDDO |
---|
1527 | FILTER(NROW,KK) = ALPHA(KK)+SUMBF |
---|
1528 | ENDDO |
---|
1529 | FILTER(NROW,NROW) = ALPHA(NROW) |
---|
1530 | |
---|
1531 | ! Check sum of row elements = 1 |
---|
1532 | SUMROW = 0. |
---|
1533 | DO NN=0,NROW |
---|
1534 | SUMROW = SUMROW + FILTER(NROW,NN) |
---|
1535 | ENDDO |
---|
1536 | |
---|
1537 | 100 CONTINUE |
---|
1538 | |
---|
1539 | DO NC=0,NSTEP |
---|
1540 | FROW(NC) = FILTER(NSTEP,NC) |
---|
1541 | ENDDO |
---|
1542 | |
---|
1543 | RETURN |
---|
1544 | |
---|
1545 | END SUBROUTINE rhofil |
---|
1546 | |
---|
1547 | |
---|
1548 | SUBROUTINE rhocof(nord, nomax, muc, ca, cb) |
---|
1549 | |
---|
1550 | ! Get the coefficients of the RHO Filter |
---|
1551 | |
---|
1552 | ! IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
---|
1553 | IMPLICIT NONE |
---|
1554 | |
---|
1555 | ! Arguments |
---|
1556 | integer, intent(in) :: nord, nomax |
---|
1557 | real, dimension(0:nomax) :: ca, cb |
---|
1558 | |
---|
1559 | ! Functions |
---|
1560 | double precision, external :: cnr |
---|
1561 | |
---|
1562 | ! Local variables |
---|
1563 | INTEGER :: nn |
---|
1564 | COMPLEX :: IOTA |
---|
1565 | DOUBLE PRECISION :: MUC, ZN |
---|
1566 | DOUBLE PRECISION :: pi, root2, rn, sigma, gain, sumcof |
---|
1567 | |
---|
1568 | PI = 2*ASIN(1.) |
---|
1569 | ROOT2 = SQRT(2.) |
---|
1570 | IOTA = (0.,1.) |
---|
1571 | |
---|
1572 | RN = 1./FLOAT(NORD) |
---|
1573 | SIGMA = 1./( SQRT(2.**RN-1.) ) |
---|
1574 | |
---|
1575 | GAIN = (MUC*SIGMA/(1+MUC*SIGMA))**NORD |
---|
1576 | ZN = (1-MUC*SIGMA)/(1+MUC*SIGMA) |
---|
1577 | |
---|
1578 | DO NN=0,NORD |
---|
1579 | CA(NN) = CNR(NORD,NN)*GAIN |
---|
1580 | IF(NN.gt.0) CB(NN) = -CNR(NORD,NN)*(-ZN)**NN |
---|
1581 | ENDDO |
---|
1582 | |
---|
1583 | ! Check sum of coefficients = 1 |
---|
1584 | SUMCOF = 0. |
---|
1585 | DO NN=0,NORD |
---|
1586 | SUMCOF = SUMCOF + CA(NN) |
---|
1587 | IF(NN.gt.0) SUMCOF = SUMCOF + CB(NN) |
---|
1588 | ENDDO |
---|
1589 | |
---|
1590 | RETURN |
---|
1591 | |
---|
1592 | END SUBROUTINE RHOCOF |
---|
1593 | |
---|
1594 | |
---|
1595 | DOUBLE PRECISION FUNCTION cnr(n,r) |
---|
1596 | |
---|
1597 | ! Binomial Coefficient (n,r). |
---|
1598 | |
---|
1599 | ! IMPLICIT DOUBLE PRECISION(C,X) |
---|
1600 | IMPLICIT NONE |
---|
1601 | |
---|
1602 | ! Arguments |
---|
1603 | INTEGER , intent(in) :: n, R |
---|
1604 | |
---|
1605 | ! Local variables |
---|
1606 | INTEGER :: k |
---|
1607 | DOUBLE PRECISION :: coeff, xn, xr, xk |
---|
1608 | |
---|
1609 | IF ( R.eq.0 ) THEN |
---|
1610 | CNR = 1.0 |
---|
1611 | RETURN |
---|
1612 | ENDIF |
---|
1613 | Coeff = 1.0 |
---|
1614 | XN = DFLOAT(N) |
---|
1615 | XR = DFLOAT(R) |
---|
1616 | DO K=1,R |
---|
1617 | XK = DFLOAT(K) |
---|
1618 | COEFF = COEFF * ( (XN-XR+XK)/XK ) |
---|
1619 | ENDDO |
---|
1620 | CNR = COEFF |
---|
1621 | |
---|
1622 | RETURN |
---|
1623 | |
---|
1624 | END FUNCTION cnr |
---|
1625 | |
---|
1626 | |
---|
1627 | SUBROUTINE optfil (grid,NH,DELTAT,NHMAX) |
---|
1628 | !---------------------------------------------------------------------- |
---|
1629 | |
---|
1630 | ! SUBROUTINE optfil (NH,DELTAT,TAUP,TAUS,LPRINT, & |
---|
1631 | ! H,NHMAX) |
---|
1632 | ! |
---|
1633 | ! - Huang and Lynch optimal filter |
---|
1634 | ! Monthly Weather Review, Feb 1993 |
---|
1635 | !---------------------------------------------------------- |
---|
1636 | ! Input Parameters in List: |
---|
1637 | ! NH : Half-length of the Filter |
---|
1638 | ! DELTAT : Time-step (in seconds). |
---|
1639 | ! TAUP : Period of pass-band edge (hours). |
---|
1640 | ! TAUS : Period of stop-band edge (hours). |
---|
1641 | ! LPRINT : Logical switch for messages. |
---|
1642 | ! NHMAX : Maximum permitted Half-length. |
---|
1643 | ! |
---|
1644 | ! Output Parameters in List: |
---|
1645 | ! H : Impulse Response. |
---|
1646 | ! DP : Deviation in pass-band (db) |
---|
1647 | ! DS : Deviation in stop-band (db) |
---|
1648 | !---------------------------------------------------------- |
---|
1649 | ! |
---|
1650 | USE module_domain, ONLY : domain |
---|
1651 | |
---|
1652 | TYPE(domain) , POINTER :: grid |
---|
1653 | |
---|
1654 | REAL,DIMENSION( 20) :: EDGE |
---|
1655 | REAL,DIMENSION( 10) :: FX, WTX, DEVIAT |
---|
1656 | REAL,DIMENSION(2*NHMAX+1) :: H |
---|
1657 | logical LPRINT |
---|
1658 | REAL, INTENT (IN) :: DELTAT |
---|
1659 | INTEGER, INTENT (IN) :: NH, NHMAX |
---|
1660 | ! |
---|
1661 | TAUP = 3. |
---|
1662 | TAUS = 1.5 |
---|
1663 | LPRINT = .true. |
---|
1664 | !initialize H array |
---|
1665 | |
---|
1666 | NL=2*NHMAX+1 |
---|
1667 | do 101 n=1,NL |
---|
1668 | H(n)=0. |
---|
1669 | 101 continue |
---|
1670 | |
---|
1671 | NFILT = 2*NH+1 |
---|
1672 | print *,' start optfil, NFILT=', nfilt |
---|
1673 | |
---|
1674 | ! |
---|
1675 | ! 930325 PL & XYH : the upper limit is changed from 64 to 128. |
---|
1676 | IF(NFILT.LE.0 .OR. NFILT.GT.128 ) THEN |
---|
1677 | WRITE(6,*) 'NH=',NH |
---|
1678 | CALL wrf_error_fatal (' Sorry, error 1 in call to OPTFIL ') |
---|
1679 | ENDIF |
---|
1680 | ! |
---|
1681 | ! The following four should always be the same. |
---|
1682 | JTYPE = 1 |
---|
1683 | NBANDS = 2 |
---|
1684 | !CC JPRINT = 0 |
---|
1685 | LGRID = 16 |
---|
1686 | ! |
---|
1687 | ! calculate transition frequencies. |
---|
1688 | DT = ABS(DELTAT) |
---|
1689 | FS = DT/(TAUS*3600.) |
---|
1690 | FP = DT/(TAUP*3600.) |
---|
1691 | IF(FS.GT.0.5) then |
---|
1692 | ! print *,' FS too large in OPTFIL ' |
---|
1693 | CALL wrf_error_fatal (' FS too large in OPTFIL ') |
---|
1694 | ! return |
---|
1695 | end if |
---|
1696 | IF(FP.LT.0.0) then |
---|
1697 | ! print *, ' FP too small in OPTFIL ' |
---|
1698 | CALL wrf_error_fatal (' FP too small in OPTFIL ') |
---|
1699 | ! return |
---|
1700 | end if |
---|
1701 | ! |
---|
1702 | ! Relative Weights in pass- and stop-bands. |
---|
1703 | WTP = 1.0 |
---|
1704 | WTS = 1.0 |
---|
1705 | ! |
---|
1706 | !CC NOTE: (FP,FC,FS) is an arithmetic progression, so |
---|
1707 | !CC (1/FS,1/FC,1/FP) is a harmonic one. |
---|
1708 | !CC TAUP = 1/( (1/TAUC)-(1/DTAU) ) |
---|
1709 | !CC TAUS = 1/( (1/TAUC)+(1/DTAU) ) |
---|
1710 | !CC TAUC : Cut-off Period (hours). |
---|
1711 | !CC DTAU : Transition half-width (hours). |
---|
1712 | !CC FC = 1/TAUC ; DF = 1/DTAU |
---|
1713 | !CC FP = FC - DF : FS = FC + DF |
---|
1714 | ! |
---|
1715 | IF ( LPRINT ) THEN |
---|
1716 | TAUC = 2./((1/TAUS)+(1/TAUP)) |
---|
1717 | DTAU = 2./((1/TAUS)-(1/TAUP)) |
---|
1718 | FC = DT/(TAUC*3600.) |
---|
1719 | DF = DT/(DTAU*3600.) |
---|
1720 | WRITE(6,*) ' DT ' , dt |
---|
1721 | WRITE(6,*) ' TAUS, TAUP ' , TAUS,TAUP |
---|
1722 | WRITE(6,*) ' TAUC, DTAU ' , TAUC,DTAU |
---|
1723 | WRITE(6,*) ' FP, FS ' , FP, FS |
---|
1724 | WRITE(6,*) ' FC, DF ' , FC, DF |
---|
1725 | WRITE(6,*) ' WTS, WTP ' , WTS, WTP |
---|
1726 | ENDIF |
---|
1727 | ! |
---|
1728 | ! Fill the control vectors for MCCPAR |
---|
1729 | EDGE(1) = 0.0 |
---|
1730 | EDGE(2) = FP |
---|
1731 | EDGE(3) = FS |
---|
1732 | EDGE(4) = 0.5 |
---|
1733 | FX(1) = 1.0 |
---|
1734 | FX(2) = 0.0 |
---|
1735 | WTX(1) = WTP |
---|
1736 | WTX(2) = WTS |
---|
1737 | |
---|
1738 | CALL MCCPAR(NFILT,JTYPE,NBANDS,LPRINT,LGRID, & |
---|
1739 | EDGE,FX,WTX,DEVIAT, h ) |
---|
1740 | ! |
---|
1741 | ! Save the deviations in the pass- and stop-bands. |
---|
1742 | DP = DEVIAT(1) |
---|
1743 | DS = DEVIAT(2) |
---|
1744 | ! |
---|
1745 | ! Fill out the array H (only first half filled in MCCPAR). |
---|
1746 | IF(MOD(NFILT,2).EQ.0) THEN |
---|
1747 | NHALF = ( NFILT )/2 |
---|
1748 | ELSE |
---|
1749 | NHALF = (NFILT+1)/2 |
---|
1750 | ENDIF |
---|
1751 | DO 100 nn=1,NHALF |
---|
1752 | H(NFILT+1-nn) = h(nn) |
---|
1753 | 100 CONTINUE |
---|
1754 | |
---|
1755 | ! normalize the sums to be unity |
---|
1756 | sumh = 0 |
---|
1757 | do 150 n=1,NFILT |
---|
1758 | sumh = sumh + H(n) |
---|
1759 | 150 continue |
---|
1760 | print *,'SUMH =', sumh |
---|
1761 | |
---|
1762 | do 200 n=1,NFILT |
---|
1763 | H(n) = H(n)/sumh |
---|
1764 | 200 continue |
---|
1765 | do 201 n=1,NFILT |
---|
1766 | grid%hcoeff(n)=H(n) |
---|
1767 | 201 continue |
---|
1768 | ! print *,'HCOEFF(n) ', grid%hcoeff |
---|
1769 | ! |
---|
1770 | END SUBROUTINE optfil |
---|
1771 | |
---|
1772 | |
---|
1773 | SUBROUTINE MCCPAR (NFILT,JTYPE,NBANDS,LPRINT,LGRID, & |
---|
1774 | EDGE,FX,WTX,DEVIAT,h ) |
---|
1775 | |
---|
1776 | ! PROGRAM FOR THE DESIGN OF LINEAR PHASE FINITE IMPULSE |
---|
1777 | ! REPONSE (FIR) FILTERS USING THE REMEZ EXCHANGE ALGORITHM |
---|
1778 | ! |
---|
1779 | !************************************************************ |
---|
1780 | !* Reference: McClellan, J.H., T.W. Parks and L.R.Rabiner, * |
---|
1781 | !* 1973: A computer program for designing * |
---|
1782 | !* optimum FIR linear phase digital filters. * |
---|
1783 | !* IEEE Trans. on Audio and Electroacoustics, * |
---|
1784 | !* Vol AU-21, No. 6, 506-526. * |
---|
1785 | !************************************************************ |
---|
1786 | ! |
---|
1787 | ! THREE TYPES OF FILTERS ARE INCLUDED -- BANDPASS FILTERS |
---|
1788 | ! DIFFERENTIATORS, AND HILBERT TRANSFORM FILTERS |
---|
1789 | ! |
---|
1790 | !--------------------------------------------------------------- |
---|
1791 | ! |
---|
1792 | ! COMMON /x3x/ PI2,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID |
---|
1793 | DIMENSION IEXT(66),AD(66),ALPHA(66),X(66),Y(66) |
---|
1794 | DIMENSION H(66) |
---|
1795 | DIMENSION DES(1045),GRID(1045),WT(1045) |
---|
1796 | DIMENSION EDGE(20),FX(10),WTX(10),DEVIAT(10) |
---|
1797 | DOUBLE PRECISION PI2,PI |
---|
1798 | DOUBLE PRECISION AD,DEV,X,Y |
---|
1799 | LOGICAL LPRINT |
---|
1800 | |
---|
1801 | PI = 3.141592653589793 |
---|
1802 | PI2 = 6.283185307179586 |
---|
1803 | |
---|
1804 | ! ...... |
---|
1805 | |
---|
1806 | NFMAX = 128 |
---|
1807 | 100 CONTINUE |
---|
1808 | |
---|
1809 | ! PROGRAM INPUT SECTION |
---|
1810 | |
---|
1811 | !CC READ(5,*) NFILT,JTYPE,NBANDS,JPRINT,LGRID |
---|
1812 | |
---|
1813 | IF(NFILT.GT.NFMAX.OR.NFILT.LT.3) THEN |
---|
1814 | CALL wrf_error_fatal (' **** ERROR IN INPUT DATA ****' ) |
---|
1815 | END IF |
---|
1816 | IF(NBANDS.LE.0) NBANDS = 1 |
---|
1817 | |
---|
1818 | ! .... |
---|
1819 | |
---|
1820 | IF(LGRID.LE.0) LGRID = 16 |
---|
1821 | JB = 2*NBANDS |
---|
1822 | !cc READ(5,*) (EDGE(J),J=1,JB) |
---|
1823 | !cc READ(5,*) (FX(J),J=1,NBANDS) |
---|
1824 | !cc READ(5,*) (WTX(J),J=1,NBANDS) |
---|
1825 | IF(JTYPE.EQ.0) THEN |
---|
1826 | CALL wrf_error_fatal (' **** ERROR IN INPUT DATA ****' ) |
---|
1827 | END IF |
---|
1828 | NEG = 1 |
---|
1829 | IF(JTYPE.EQ.1) NEG = 0 |
---|
1830 | NODD = NFILT/2 |
---|
1831 | NODD = NFILT-2*NODD |
---|
1832 | NFCNS = NFILT/2 |
---|
1833 | IF(NODD.EQ.1.AND.NEG.EQ.0) NFCNS = NFCNS+1 |
---|
1834 | |
---|
1835 | ! ... |
---|
1836 | |
---|
1837 | GRID(1) = EDGE(1) |
---|
1838 | DELF = LGRID*NFCNS |
---|
1839 | DELF = 0.5/DELF |
---|
1840 | IF(NEG.EQ.0) GOTO 135 |
---|
1841 | IF(EDGE(1).LT.DELF) GRID(1) = DELF |
---|
1842 | 135 CONTINUE |
---|
1843 | J = 1 |
---|
1844 | L = 1 |
---|
1845 | LBAND = 1 |
---|
1846 | 140 FUP = EDGE(L+1) |
---|
1847 | 145 TEMP = GRID(J) |
---|
1848 | |
---|
1849 | ! .... |
---|
1850 | |
---|
1851 | DES(J) = EFF(TEMP,FX,WTX,LBAND,JTYPE) |
---|
1852 | WT(J) = WATE(TEMP,FX,WTX,LBAND,JTYPE) |
---|
1853 | J = J+1 |
---|
1854 | GRID(J) = TEMP+DELF |
---|
1855 | IF(GRID(J).GT.FUP) GOTO 150 |
---|
1856 | GOTO 145 |
---|
1857 | 150 GRID(J-1) = FUP |
---|
1858 | DES(J-1) = EFF(FUP,FX,WTX,LBAND,JTYPE) |
---|
1859 | WT(J-1) = WATE(FUP,FX,WTX,LBAND,JTYPE) |
---|
1860 | LBAND = LBAND+1 |
---|
1861 | L = L+2 |
---|
1862 | IF(LBAND.GT.NBANDS) GOTO 160 |
---|
1863 | GRID(J) = EDGE(L) |
---|
1864 | GOTO 140 |
---|
1865 | 160 NGRID = J-1 |
---|
1866 | IF(NEG.NE.NODD) GOTO 165 |
---|
1867 | IF(GRID(NGRID).GT.(0.5-DELF)) NGRID = NGRID-1 |
---|
1868 | 165 CONTINUE |
---|
1869 | |
---|
1870 | ! ...... |
---|
1871 | |
---|
1872 | IF(NEG) 170,170,180 |
---|
1873 | 170 IF(NODD.EQ.1) GOTO 200 |
---|
1874 | DO 175 J=1,NGRID |
---|
1875 | CHANGE = DCOS(PI*GRID(J)) |
---|
1876 | DES(J) = DES(J)/CHANGE |
---|
1877 | WT(J) = WT(J)*CHANGE |
---|
1878 | 175 CONTINUE |
---|
1879 | GOTO 200 |
---|
1880 | 180 IF(NODD.EQ.1) GOTO 190 |
---|
1881 | DO 185 J = 1,NGRID |
---|
1882 | CHANGE = DSIN(PI*GRID(J)) |
---|
1883 | DES(J) = DES(J)/CHANGE |
---|
1884 | WT(J) = WT(J)*CHANGE |
---|
1885 | 185 CONTINUE |
---|
1886 | GOTO 200 |
---|
1887 | 190 DO 195 J =1,NGRID |
---|
1888 | CHANGE = DSIN(PI2*GRID(J)) |
---|
1889 | DES(J) = DES(J)/CHANGE |
---|
1890 | WT(J) = WT(J)*CHANGE |
---|
1891 | 195 CONTINUE |
---|
1892 | |
---|
1893 | ! ...... |
---|
1894 | |
---|
1895 | 200 TEMP = FLOAT(NGRID-1)/FLOAT(NFCNS) |
---|
1896 | DO 210 J = 1,NFCNS |
---|
1897 | IEXT(J) = (J-1)*TEMP+1 |
---|
1898 | 210 CONTINUE |
---|
1899 | IEXT(NFCNS+1) = NGRID |
---|
1900 | NM1 = NFCNS-1 |
---|
1901 | NZ = NFCNS+1 |
---|
1902 | |
---|
1903 | ! CALL THE REMEZ EXCHANGE ALGORITHM TO DO THE APPROXIMATION PROBLEM |
---|
1904 | |
---|
1905 | CALL REMEZ(EDGE,NBANDS,PI2,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID) |
---|
1906 | |
---|
1907 | ! CALCULATE THE IMPULSE RESPONSE |
---|
1908 | |
---|
1909 | IF(NEG) 300,300,320 |
---|
1910 | 300 IF(NODD.EQ.0) GOTO 310 |
---|
1911 | DO 305 J=1,NM1 |
---|
1912 | H(J) = 0.5*ALPHA(NZ-J) |
---|
1913 | 305 CONTINUE |
---|
1914 | H(NFCNS)=ALPHA(1) |
---|
1915 | GOTO 350 |
---|
1916 | 310 H(1) = 0.25*ALPHA(NFCNS) |
---|
1917 | DO 315 J = 2,NM1 |
---|
1918 | H(J) = 0.25*(ALPHA(NZ-J)+ALPHA(NFCNS+2-J)) |
---|
1919 | 315 CONTINUE |
---|
1920 | H(NFCNS) = 0.5*ALPHA(1)+0.25*ALPHA(2) |
---|
1921 | GOTO 350 |
---|
1922 | 320 IF(NODD.EQ.0) GOTO 330 |
---|
1923 | H(1) = 0.25*ALPHA(NFCNS) |
---|
1924 | H(2) = 0.25*ALPHA(NM1) |
---|
1925 | DO 325 J = 3,NM1 |
---|
1926 | H(J) = 0.25*(ALPHA(NZ-J)-ALPHA(NFCNS+3-J)) |
---|
1927 | 325 CONTINUE |
---|
1928 | H(NFCNS) = 0.5*ALPHA(1)-0.25*ALPHA(3) |
---|
1929 | H(NZ) = 0.0 |
---|
1930 | GOTO 350 |
---|
1931 | 330 H(1) = 0.25*ALPHA(NFCNS) |
---|
1932 | DO 335 J =2,NM1 |
---|
1933 | H(J) = 0.25*(ALPHA(NZ-J)-ALPHA(NFCNS+2-J)) |
---|
1934 | 335 CONTINUE |
---|
1935 | H(NFCNS) = 0.5*ALPHA(1)-0.25*ALPHA(2) |
---|
1936 | |
---|
1937 | ! PROGRAM OUTPUT SECTION |
---|
1938 | |
---|
1939 | 350 CONTINUE |
---|
1940 | ! |
---|
1941 | IF(LPRINT) THEN |
---|
1942 | |
---|
1943 | print *, '****************************************************' |
---|
1944 | print *, 'FINITE IMPULSE RESPONSE (FIR)' |
---|
1945 | print *, 'LINEAR PHASE DIGITAL FILTER DESIGN' |
---|
1946 | print *, 'REMEZ EXCHANGE ALGORITHM' |
---|
1947 | |
---|
1948 | IF(JTYPE.EQ.1) WRITE(6,365) |
---|
1949 | 365 FORMAT(25X,'BANDPASS FILTER'/) |
---|
1950 | |
---|
1951 | IF(JTYPE.EQ.2) WRITE(6,370) |
---|
1952 | 370 FORMAT(25X,'DIFFERENTIATOR '/) |
---|
1953 | |
---|
1954 | IF(JTYPE.EQ.3) WRITE(6,375) |
---|
1955 | 375 FORMAT(25X,'HILBERT TRANSFORMER '/) |
---|
1956 | |
---|
1957 | WRITE(6,378) NFILT |
---|
1958 | 378 FORMAT(15X,'FILTER LENGTH =',I3/) |
---|
1959 | |
---|
1960 | WRITE(6,380) |
---|
1961 | 380 FORMAT(15X,'***** IMPULSE RESPONSE *****') |
---|
1962 | |
---|
1963 | DO 381 J = 1,NFCNS |
---|
1964 | K = NFILT+1-J |
---|
1965 | IF(NEG.EQ.0) WRITE(6,382) J,H(J),K |
---|
1966 | IF(NEG.EQ.1) WRITE(6,383) J,H(J),K |
---|
1967 | 381 CONTINUE |
---|
1968 | 382 FORMAT(20X,'H(',I3,') = ',E15.8,' = H(',I4,')') |
---|
1969 | 383 FORMAT(20X,'H(',I3,') = ',E15.8,' = -H(',I4,')') |
---|
1970 | |
---|
1971 | IF(NEG.EQ.1.AND.NODD.EQ.1) WRITE(6,384) NZ |
---|
1972 | 384 FORMAT(20X,'H(',I3,') = 0.0') |
---|
1973 | |
---|
1974 | DO 450 K=1,NBANDS,4 |
---|
1975 | KUP = K+3 |
---|
1976 | IF(KUP.GT.NBANDS) KUP = NBANDS |
---|
1977 | print * |
---|
1978 | WRITE(6,385) (J,J=K,KUP) |
---|
1979 | 385 FORMAT(24X,4('BAND',I3,8X)) |
---|
1980 | WRITE(6,390) (EDGE(2*J-1),J=K,KUP) |
---|
1981 | 390 FORMAT(2X,'LOWER BAND EDGE',5F15.8) |
---|
1982 | WRITE(6,395) (EDGE(2*J),J=K,KUP) |
---|
1983 | 395 FORMAT(2X,'UPPER BAND EDGE',5F15.8) |
---|
1984 | IF(JTYPE.NE.2) WRITE(6,400) (FX(J),J=K,KUP) |
---|
1985 | 400 FORMAT(2X,'DESIRED VALUE',2X,5F15.8) |
---|
1986 | IF(JTYPE.EQ.2) WRITE(6,405) (FX(J),J=K,KUP) |
---|
1987 | 405 FORMAT(2X,'DESIRED SLOPE',2X,5F15.8) |
---|
1988 | WRITE(6,410) (WTX(J),J=K,KUP) |
---|
1989 | 410 FORMAT(2X,'WEIGHTING',6X,5F15.8) |
---|
1990 | DO 420 J = K,KUP |
---|
1991 | DEVIAT(J) = DEV/WTX(J) |
---|
1992 | 420 CONTINUE |
---|
1993 | WRITE(6,425) (DEVIAT(J),J=K,KUP) |
---|
1994 | 425 FORMAT(2X,'DEVIATION',6X,5F15.8) |
---|
1995 | IF(JTYPE.NE.1) GOTO 450 |
---|
1996 | DO 430 J = K,KUP |
---|
1997 | DEVIAT(J) = 20.0*ALOG10(DEVIAT(J)) |
---|
1998 | 430 CONTINUE |
---|
1999 | WRITE(6,435) (DEVIAT(J),J=K,KUP) |
---|
2000 | 435 FORMAT(2X,'DEVIATION IN DB',5F15.8) |
---|
2001 | 450 CONTINUE |
---|
2002 | print *, 'EXTREMAL FREQUENCIES' |
---|
2003 | WRITE(6,455) (GRID(IEXT(J)),J=1,NZ) |
---|
2004 | 455 FORMAT((2X,5F15.7)) |
---|
2005 | WRITE(6,460) |
---|
2006 | 460 FORMAT(1X,70(1H*)) |
---|
2007 | ! |
---|
2008 | ENDIF |
---|
2009 | ! |
---|
2010 | !CC IF(NFILT.NE.0) GOTO 100 ! removal of re-run loop. |
---|
2011 | ! |
---|
2012 | END SUBROUTINE mccpar |
---|
2013 | |
---|
2014 | |
---|
2015 | FUNCTION EFF(TEMP,FX,WTX,LBAND,JTYPE) |
---|
2016 | DIMENSION FX(5),WTX(5) |
---|
2017 | IF(JTYPE.EQ.2) GOTO 1 |
---|
2018 | EFF = FX(LBAND) |
---|
2019 | RETURN |
---|
2020 | 1 EFF = FX(LBAND)*TEMP |
---|
2021 | END FUNCTION eff |
---|
2022 | |
---|
2023 | |
---|
2024 | FUNCTION WATE(TEMP,FX,WTX,LBAND,JTYPE) |
---|
2025 | DIMENSION FX(5),WTX(5) |
---|
2026 | IF(JTYPE.EQ.2) GOTO 1 |
---|
2027 | WATE = WTX(LBAND) |
---|
2028 | RETURN |
---|
2029 | 1 IF(FX(LBAND).LT.0.0001) GOTO 2 |
---|
2030 | WATE = WTX(LBAND)/TEMP |
---|
2031 | RETURN |
---|
2032 | 2 WATE = WTX(LBAND) |
---|
2033 | END FUNCTION wate |
---|
2034 | |
---|
2035 | |
---|
2036 | ! SUBROUTINE ERROR |
---|
2037 | !! WRITE(6,*)' **** ERROR IN INPUT DATA ****' |
---|
2038 | ! CALL wrf_error_fatal (' **** ERROR IN INPUT DATA ****' ) |
---|
2039 | ! END SUBROUTINE error |
---|
2040 | |
---|
2041 | |
---|
2042 | SUBROUTINE REMEZ(EDGE,NBANDS,PI2,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID) |
---|
2043 | ! THIS SUBROUTINE IMPLEMENTS THE REMEZ EXCHANGE ALGORITHM |
---|
2044 | ! FOR THE WEIGHTED CHEBCHEV APPROXIMATION OF A CONTINUOUS |
---|
2045 | ! FUNCTION WITH A SUM OF COSINES. INPUTS TO THE SUBROUTINE |
---|
2046 | ! ARE A DENSE GRID WHICH REPLACES THE FREQUENCY AXIS, THE |
---|
2047 | ! DESIRED FUNCTION ON THIS GRID, THE WEIGHT FUNCTION ON THE |
---|
2048 | ! GRID, THE NUMBER OF COSINES, AND THE INITIAL GUESS OF THE |
---|
2049 | ! EXTREMAL FREQUENCIES. THE PROGRAM MINIMIZES THE CHEBYSHEV |
---|
2050 | ! ERROR BY DETERMINING THE BEST LOCATION OF THE EXTREMAL |
---|
2051 | ! FREQUENCIES (POINTS OF MAXIMUM ERROR) AND THEN CALCULATES |
---|
2052 | ! THE COEFFICIENTS OF THE BEST APPROXIMATION. |
---|
2053 | ! |
---|
2054 | ! COMMON /x3x/ PI2,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID |
---|
2055 | DIMENSION EDGE(20) |
---|
2056 | DIMENSION IEXT(66),AD(66),ALPHA(66),X(66),Y(66) |
---|
2057 | DIMENSION DES(1045),GRID(1045),WT(1045) |
---|
2058 | DIMENSION A(66),P(65),Q(65) |
---|
2059 | DOUBLE PRECISION PI2,DNUM,DDEN,DTEMP,A,P,Q |
---|
2060 | DOUBLE PRECISION AD,DEV,X,Y |
---|
2061 | DOUBLE PRECISION, EXTERNAL :: D, GEE |
---|
2062 | ! |
---|
2063 | ! THE PROGRAM ALLOWS A MAXIMUM NUMBER OF ITERATIONS OF 25 |
---|
2064 | ! |
---|
2065 | ITRMAX=25 |
---|
2066 | DEVL=-1.0 |
---|
2067 | NZ=NFCNS+1 |
---|
2068 | NZZ=NFCNS+2 |
---|
2069 | NITER=0 |
---|
2070 | 100 CONTINUE |
---|
2071 | IEXT(NZZ)=NGRID+1 |
---|
2072 | NITER=NITER+1 |
---|
2073 | IF(NITER.GT.ITRMAX) GO TO 400 |
---|
2074 | DO 110 J=1,NZ |
---|
2075 | DTEMP=GRID(IEXT(J)) |
---|
2076 | DTEMP=DCOS(DTEMP*PI2) |
---|
2077 | 110 X(J)=DTEMP |
---|
2078 | JET=(NFCNS-1)/15+1 |
---|
2079 | DO 120 J=1,NZ |
---|
2080 | 120 AD(J)=D(J,NZ,JET,X) |
---|
2081 | DNUM=0.0 |
---|
2082 | DDEN=0.0 |
---|
2083 | K=1 |
---|
2084 | DO 130 J=1,NZ |
---|
2085 | L=IEXT(J) |
---|
2086 | DTEMP=AD(J)*DES(L) |
---|
2087 | DNUM=DNUM+DTEMP |
---|
2088 | DTEMP=K*AD(J)/WT(L) |
---|
2089 | DDEN=DDEN+DTEMP |
---|
2090 | 130 K=-K |
---|
2091 | DEV=DNUM/DDEN |
---|
2092 | NU=1 |
---|
2093 | IF(DEV.GT.0.0) NU=-1 |
---|
2094 | DEV=-NU*DEV |
---|
2095 | K=NU |
---|
2096 | DO 140 J=1,NZ |
---|
2097 | L=IEXT(J) |
---|
2098 | DTEMP=K*DEV/WT(L) |
---|
2099 | Y(J)=DES(L)+DTEMP |
---|
2100 | 140 K=-K |
---|
2101 | IF(DEV.GE.DEVL) GO TO 150 |
---|
2102 | WRITE(6,*) ' ******** FAILURE TO CONVERGE *********** ' |
---|
2103 | WRITE(6,*) ' PROBABLE CAUSE IS MACHINE ROUNDING ERROR ' |
---|
2104 | WRITE(6,*) ' THE IMPULSE RESPONSE MAY BE CORRECT ' |
---|
2105 | WRITE(6,*) ' CHECK WITH A FREQUENCY RESPONSE ' |
---|
2106 | WRITE(6,*) ' **************************************** ' |
---|
2107 | GO TO 400 |
---|
2108 | 150 DEVL=DEV |
---|
2109 | JCHNGE=0 |
---|
2110 | K1=IEXT(1) |
---|
2111 | KNZ=IEXT(NZ) |
---|
2112 | KLOW=0 |
---|
2113 | NUT=-NU |
---|
2114 | J=1 |
---|
2115 | ! |
---|
2116 | ! SEARCH FOR THE EXTERMAL FREQUENCIES OF THE BEST |
---|
2117 | ! APPROXIMATION. |
---|
2118 | |
---|
2119 | 200 IF(J.EQ.NZZ) YNZ=COMP |
---|
2120 | IF(J.GE.NZZ) GO TO 300 |
---|
2121 | KUP=IEXT(J+1) |
---|
2122 | L=IEXT(J)+1 |
---|
2123 | NUT=-NUT |
---|
2124 | IF(J.EQ.2) Y1=COMP |
---|
2125 | COMP=DEV |
---|
2126 | IF(L.GE.KUP) GO TO 220 |
---|
2127 | ERR=GEE(L,NZ,GRID,PI2,X,Y,AD) |
---|
2128 | ERR=(ERR-DES(L))*WT(L) |
---|
2129 | DTEMP=NUT*ERR-COMP |
---|
2130 | IF(DTEMP.LE.0.0) GO TO 220 |
---|
2131 | COMP=NUT*ERR |
---|
2132 | 210 L=L+1 |
---|
2133 | IF(L.GE.KUP) GO TO 215 |
---|
2134 | ERR=GEE(L,NZ,GRID,PI2,X,Y,AD) |
---|
2135 | ERR=(ERR-DES(L))*WT(L) |
---|
2136 | DTEMP=NUT*ERR-COMP |
---|
2137 | IF(DTEMP.LE.0.0) GO TO 215 |
---|
2138 | COMP=NUT*ERR |
---|
2139 | GO TO 210 |
---|
2140 | 215 IEXT(J)=L-1 |
---|
2141 | J=J+1 |
---|
2142 | KLOW=L-1 |
---|
2143 | JCHNGE=JCHNGE+1 |
---|
2144 | GO TO 200 |
---|
2145 | 220 L=L-1 |
---|
2146 | 225 L=L-1 |
---|
2147 | IF(L.LE.KLOW) GO TO 250 |
---|
2148 | ERR=GEE(L,NZ,GRID,PI2,X,Y,AD) |
---|
2149 | ERR=(ERR-DES(L))*WT(L) |
---|
2150 | DTEMP=NUT*ERR-COMP |
---|
2151 | IF(DTEMP.GT.0.0) GO TO 230 |
---|
2152 | IF(JCHNGE.LE.0) GO TO 225 |
---|
2153 | GO TO 260 |
---|
2154 | 230 COMP=NUT*ERR |
---|
2155 | 235 L=L-1 |
---|
2156 | IF(L.LE.KLOW) GO TO 240 |
---|
2157 | ERR=GEE(L,NZ,GRID,PI2,X,Y,AD) |
---|
2158 | ERR=(ERR-DES(L))*WT(L) |
---|
2159 | DTEMP=NUT*ERR-COMP |
---|
2160 | IF(DTEMP.LE.0.0) GO TO 240 |
---|
2161 | COMP=NUT*ERR |
---|
2162 | GO TO 235 |
---|
2163 | 240 KLOW=IEXT(J) |
---|
2164 | IEXT(J)=L+1 |
---|
2165 | J=J+1 |
---|
2166 | JCHNGE=JCHNGE+1 |
---|
2167 | GO TO 200 |
---|
2168 | 250 L=IEXT(J)+1 |
---|
2169 | IF(JCHNGE.GT.0) GO TO 215 |
---|
2170 | 255 L=L+1 |
---|
2171 | IF(L.GE.KUP) GO TO 260 |
---|
2172 | ERR=GEE(L,NZ,GRID,PI2,X,Y,AD) |
---|
2173 | ERR=(ERR-DES(L))*WT(L) |
---|
2174 | DTEMP=NUT*ERR-COMP |
---|
2175 | IF(DTEMP.LE.0.0) GO TO 255 |
---|
2176 | COMP=NUT*ERR |
---|
2177 | GO TO 210 |
---|
2178 | 260 KLOW=IEXT(J) |
---|
2179 | J=J+1 |
---|
2180 | GO TO 200 |
---|
2181 | 300 IF(J.GT.NZZ) GO TO 320 |
---|
2182 | IF(K1.GT.IEXT(1)) K1=IEXT(1) |
---|
2183 | IF(KNZ.LT.IEXT(NZ)) KNZ=IEXT(NZ) |
---|
2184 | NUT1=NUT |
---|
2185 | NUT=-NU |
---|
2186 | L=0 |
---|
2187 | KUP=K1 |
---|
2188 | COMP=YNZ*(1.00001) |
---|
2189 | LUCK=1 |
---|
2190 | 310 L=L+1 |
---|
2191 | IF(L.GE.KUP) GO TO 315 |
---|
2192 | ERR=GEE(L,NZ,GRID,PI2,X,Y,AD) |
---|
2193 | ERR=(ERR-DES(L))*WT(L) |
---|
2194 | DTEMP=NUT*ERR-COMP |
---|
2195 | IF(DTEMP.LE.0.0) GO TO 310 |
---|
2196 | COMP=NUT*ERR |
---|
2197 | J=NZZ |
---|
2198 | GO TO 210 |
---|
2199 | 315 LUCK=6 |
---|
2200 | GO TO 325 |
---|
2201 | 320 IF(LUCK.GT.9) GO TO 350 |
---|
2202 | IF(COMP.GT.Y1) Y1=COMP |
---|
2203 | K1=IEXT(NZZ) |
---|
2204 | 325 L=NGRID+1 |
---|
2205 | KLOW=KNZ |
---|
2206 | NUT=-NUT1 |
---|
2207 | COMP=Y1*(1.00001) |
---|
2208 | 330 L=L-1 |
---|
2209 | IF(L.LE.KLOW) GO TO 340 |
---|
2210 | ERR=GEE(L,NZ,GRID,PI2,X,Y,AD) |
---|
2211 | ERR=(ERR-DES(L))*WT(L) |
---|
2212 | DTEMP=NUT*ERR-COMP |
---|
2213 | IF(DTEMP.LE.0.0) GO TO 330 |
---|
2214 | J=NZZ |
---|
2215 | COMP=NUT*ERR |
---|
2216 | LUCK=LUCK+10 |
---|
2217 | GO TO 235 |
---|
2218 | 340 IF(LUCK.EQ.6) GO TO 370 |
---|
2219 | DO 345 J=1,NFCNS |
---|
2220 | 345 IEXT(NZZ-J)=IEXT(NZ-J) |
---|
2221 | IEXT(1)=K1 |
---|
2222 | GO TO 100 |
---|
2223 | 350 KN=IEXT(NZZ) |
---|
2224 | DO 360 J=1,NFCNS |
---|
2225 | 360 IEXT(J)=IEXT(J+1) |
---|
2226 | IEXT(NZ)=KN |
---|
2227 | GO TO 100 |
---|
2228 | 370 IF(JCHNGE.GT.0) GO TO 100 |
---|
2229 | ! |
---|
2230 | ! CALCULATION OF THE COEFFICIENTS OF THE BEST APPROXIMATION |
---|
2231 | ! USING THE INVERSE DISCRETE FOURIER TRANSFORM. |
---|
2232 | ! |
---|
2233 | 400 CONTINUE |
---|
2234 | NM1=NFCNS-1 |
---|
2235 | FSH=1.0E-06 |
---|
2236 | GTEMP=GRID(1) |
---|
2237 | X(NZZ)=-2.0 |
---|
2238 | CN=2*NFCNS-1 |
---|
2239 | DELF=1.0/CN |
---|
2240 | L=1 |
---|
2241 | KKK=0 |
---|
2242 | IF(EDGE(1).EQ.0.0.AND.EDGE(2*NBANDS).EQ.0.5) KKK=1 |
---|
2243 | IF(NFCNS.LE.3) KKK=1 |
---|
2244 | IF(KKK.EQ.1) GO TO 405 |
---|
2245 | DTEMP=DCOS(PI2*GRID(1)) |
---|
2246 | DNUM=DCOS(PI2*GRID(NGRID)) |
---|
2247 | AA=2.0/(DTEMP-DNUM) |
---|
2248 | BB=-(DTEMP+DNUM)/(DTEMP-DNUM) |
---|
2249 | 405 CONTINUE |
---|
2250 | DO 430 J=1,NFCNS |
---|
2251 | FT=(J-1)*DELF |
---|
2252 | XT=DCOS(PI2*FT) |
---|
2253 | IF(KKK.EQ.1) GO TO 410 |
---|
2254 | XT=(XT-BB)/AA |
---|
2255 | ! original : FT=ARCOS(XT)/PI2 |
---|
2256 | FT=ACOS(XT)/PI2 |
---|
2257 | 410 XE=X(L) |
---|
2258 | IF(XT.GT.XE) GO TO 420 |
---|
2259 | IF((XE-XT).LT.FSH) GO TO 415 |
---|
2260 | L=L+1 |
---|
2261 | GO TO 410 |
---|
2262 | 415 A(J)=Y(L) |
---|
2263 | GO TO 425 |
---|
2264 | 420 IF((XT-XE).LT.FSH) GO TO 415 |
---|
2265 | GRID(1)=FT |
---|
2266 | A(J)=GEE(1,NZ,GRID,PI2,X,Y,AD) |
---|
2267 | 425 CONTINUE |
---|
2268 | IF(L.GT.1) L=L-1 |
---|
2269 | 430 CONTINUE |
---|
2270 | GRID(1)=GTEMP |
---|
2271 | DDEN=PI2/CN |
---|
2272 | DO 510 J=1,NFCNS |
---|
2273 | DTEMP=0.0 |
---|
2274 | DNUM=(J-1)*DDEN |
---|
2275 | IF(NM1.LT.1) GO TO 505 |
---|
2276 | DO 500 K=1,NM1 |
---|
2277 | 500 DTEMP=DTEMP+A(K+1)*DCOS(DNUM*K) |
---|
2278 | 505 DTEMP=2.0*DTEMP+A(1) |
---|
2279 | 510 ALPHA(J)=DTEMP |
---|
2280 | DO 550 J=2,NFCNS |
---|
2281 | 550 ALPHA(J)=2*ALPHA(J)/CN |
---|
2282 | ALPHA(1)=ALPHA(1)/CN |
---|
2283 | IF(KKK.EQ.1) GO TO 545 |
---|
2284 | P(1)=2.0*ALPHA(NFCNS)*BB+ALPHA(NM1) |
---|
2285 | P(2)=2.0*AA*ALPHA(NFCNS) |
---|
2286 | Q(1)=ALPHA(NFCNS-2)-ALPHA(NFCNS) |
---|
2287 | DO 540 J=2,NM1 |
---|
2288 | IF(J.LT.NM1) GO TO 515 |
---|
2289 | AA=0.5*AA |
---|
2290 | BB=0.5*BB |
---|
2291 | 515 CONTINUE |
---|
2292 | P(J+1)=0.0 |
---|
2293 | DO 520 K=1,J |
---|
2294 | A(K)=P(K) |
---|
2295 | 520 P(K)=2.0*BB*A(K) |
---|
2296 | P(2)=P(2)+A(1)*2.0*AA |
---|
2297 | JM1=J-1 |
---|
2298 | DO 525 K=1,JM1 |
---|
2299 | 525 P(K)=P(K)+Q(K)+AA*A(K+1) |
---|
2300 | JP1=J+1 |
---|
2301 | DO 530 K=3,JP1 |
---|
2302 | 530 P(K)=P(K)+AA*A(K-1) |
---|
2303 | IF(J.EQ.NM1) GO TO 540 |
---|
2304 | DO 535 K=1,J |
---|
2305 | 535 Q(K)=-A(K) |
---|
2306 | Q(1)=Q(1)+ALPHA(NFCNS-1-J) |
---|
2307 | 540 CONTINUE |
---|
2308 | DO 543 J=1,NFCNS |
---|
2309 | 543 ALPHA(J)=P(J) |
---|
2310 | 545 CONTINUE |
---|
2311 | IF(NFCNS.GT.3) RETURN |
---|
2312 | ALPHA(NFCNS+1)=0.0 |
---|
2313 | ALPHA(NFCNS+2)=0.0 |
---|
2314 | END SUBROUTINE remez |
---|
2315 | |
---|
2316 | DOUBLE PRECISION FUNCTION D(K,N,M,X) |
---|
2317 | ! COMMON /x3x/ PI2,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID |
---|
2318 | DIMENSION IEXT(66),AD(66),ALPHA(66),X(66),Y(66) |
---|
2319 | DIMENSION DES(1045),GRID(1045),WT(1045) |
---|
2320 | DOUBLE PRECISION AD,DEV,X,Y |
---|
2321 | DOUBLE PRECISION Q |
---|
2322 | DOUBLE PRECISION PI2 |
---|
2323 | D = 1.0 |
---|
2324 | Q = X(K) |
---|
2325 | DO 3 L = 1,M |
---|
2326 | DO 2 J = L,N,M |
---|
2327 | IF(J-K) 1,2,1 |
---|
2328 | 1 D = 2.0*D*(Q-X(J)) |
---|
2329 | 2 CONTINUE |
---|
2330 | 3 CONTINUE |
---|
2331 | D = 1.0/D |
---|
2332 | END FUNCTION D |
---|
2333 | |
---|
2334 | |
---|
2335 | DOUBLE PRECISION FUNCTION GEE(K,N,GRID,PI2,X,Y,AD) |
---|
2336 | ! COMMON /x3x/ PI2,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID |
---|
2337 | DIMENSION IEXT(66),AD(66),ALPHA(66),X(66),Y(66) |
---|
2338 | DIMENSION DES(1045),GRID(1045),WT(1045) |
---|
2339 | DOUBLE PRECISION AD,DEV,X,Y |
---|
2340 | DOUBLE PRECISION P,C,D,XF |
---|
2341 | DOUBLE PRECISION PI2 |
---|
2342 | P = 0.0 |
---|
2343 | XF = GRID(K) |
---|
2344 | XF = DCOS(PI2*XF) |
---|
2345 | D = 0.0 |
---|
2346 | DO 1 J =1,N |
---|
2347 | C = XF-X(J) |
---|
2348 | C = AD(J)/C |
---|
2349 | D = D+C |
---|
2350 | P = P+C*Y(J) |
---|
2351 | 1 CONTINUE |
---|
2352 | GEE = P/D |
---|
2353 | END FUNCTION GEE |
---|
2354 | |
---|
2355 | REAL FUNCTION RSLF(P,T) |
---|
2356 | |
---|
2357 | IMPLICIT NONE |
---|
2358 | REAL, INTENT(IN):: P, T |
---|
2359 | REAL:: ESL,X |
---|
2360 | REAL, PARAMETER:: C0= .611583699E03 |
---|
2361 | REAL, PARAMETER:: C1= .444606896E02 |
---|
2362 | REAL, PARAMETER:: C2= .143177157E01 |
---|
2363 | REAL, PARAMETER:: C3= .264224321E-1 |
---|
2364 | REAL, PARAMETER:: C4= .299291081E-3 |
---|
2365 | REAL, PARAMETER:: C5= .203154182E-5 |
---|
2366 | REAL, PARAMETER:: C6= .702620698E-8 |
---|
2367 | REAL, PARAMETER:: C7= .379534310E-11 |
---|
2368 | REAL, PARAMETER:: C8=-.321582393E-13 |
---|
2369 | |
---|
2370 | X=MAX(-80.,T-273.16) |
---|
2371 | |
---|
2372 | ! ESL=612.2*EXP(17.67*X/(T-29.65)) |
---|
2373 | ESL=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) |
---|
2374 | RSLF=.622*ESL/(P-ESL) |
---|
2375 | |
---|
2376 | END FUNCTION RSLF |
---|
2377 | |
---|
2378 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2379 | ! DFI startfwd group of functions |
---|
2380 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2381 | |
---|
2382 | SUBROUTINE wrf_dfi_startfwd_init ( ) |
---|
2383 | |
---|
2384 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time, set_current_grid_ptr |
---|
2385 | USE module_utility |
---|
2386 | |
---|
2387 | IMPLICIT NONE |
---|
2388 | |
---|
2389 | INTERFACE |
---|
2390 | SUBROUTINE dfi_startfwd_init_recurse(grid) |
---|
2391 | USE module_domain, ONLY : domain |
---|
2392 | TYPE (domain), POINTER :: grid |
---|
2393 | END SUBROUTINE dfi_startfwd_init_recurse |
---|
2394 | END INTERFACE |
---|
2395 | |
---|
2396 | ! Now, setup all nests |
---|
2397 | |
---|
2398 | CALL dfi_startfwd_init_recurse(head_grid) |
---|
2399 | |
---|
2400 | CALL set_current_grid_ptr( head_grid ) |
---|
2401 | |
---|
2402 | END SUBROUTINE wrf_dfi_startfwd_init |
---|
2403 | |
---|
2404 | |
---|
2405 | RECURSIVE SUBROUTINE dfi_startfwd_init_recurse(grid) |
---|
2406 | |
---|
2407 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time, max_nests, set_current_grid_ptr |
---|
2408 | |
---|
2409 | IMPLICIT NONE |
---|
2410 | |
---|
2411 | INTERFACE |
---|
2412 | SUBROUTINE dfi_startfwd_init(grid) |
---|
2413 | USE module_domain, ONLY : domain |
---|
2414 | TYPE (domain), POINTER :: grid |
---|
2415 | END SUBROUTINE dfi_startfwd_init |
---|
2416 | END INTERFACE |
---|
2417 | |
---|
2418 | INTEGER :: kid |
---|
2419 | TYPE (domain), POINTER :: grid |
---|
2420 | TYPE (domain), POINTER :: grid_ptr |
---|
2421 | |
---|
2422 | grid_ptr => grid |
---|
2423 | |
---|
2424 | DO WHILE ( ASSOCIATED( grid_ptr ) ) |
---|
2425 | ! |
---|
2426 | ! Assure that time-step is set back to positive |
---|
2427 | ! for this forward step. |
---|
2428 | ! |
---|
2429 | grid_ptr%dt = abs(grid_ptr%dt) |
---|
2430 | grid_ptr%time_step = abs(grid_ptr%time_step) |
---|
2431 | CALL set_current_grid_ptr( grid_ptr ) |
---|
2432 | CALL dfi_startfwd_init( grid_ptr ) |
---|
2433 | DO kid = 1, max_nests |
---|
2434 | IF ( ASSOCIATED( grid_ptr%nests(kid)%ptr ) ) THEN |
---|
2435 | CALL dfi_startfwd_init_recurse(grid_ptr%nests(kid)%ptr) |
---|
2436 | ENDIF |
---|
2437 | END DO |
---|
2438 | grid_ptr => grid_ptr%sibling |
---|
2439 | END DO |
---|
2440 | |
---|
2441 | END SUBROUTINE dfi_startfwd_init_recurse |
---|
2442 | |
---|
2443 | |
---|
2444 | SUBROUTINE dfi_startfwd_init ( grid ) |
---|
2445 | |
---|
2446 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time |
---|
2447 | USE module_utility |
---|
2448 | USE module_state_description |
---|
2449 | |
---|
2450 | IMPLICIT NONE |
---|
2451 | |
---|
2452 | TYPE (domain) , POINTER :: grid |
---|
2453 | INTEGER rc |
---|
2454 | |
---|
2455 | INTERFACE |
---|
2456 | SUBROUTINE Setup_Timekeeping(grid) |
---|
2457 | USE module_domain, ONLY : domain |
---|
2458 | TYPE (domain), POINTER :: grid |
---|
2459 | END SUBROUTINE Setup_Timekeeping |
---|
2460 | |
---|
2461 | END INTERFACE |
---|
2462 | |
---|
2463 | grid%dfi_stage = DFI_STARTFWD |
---|
2464 | |
---|
2465 | #if (EM_CORE == 1) |
---|
2466 | ! No need for adaptive time-step |
---|
2467 | CALL nl_set_use_adaptive_time_step( grid%id, .false. ) |
---|
2468 | #endif |
---|
2469 | |
---|
2470 | CALL Setup_Timekeeping (grid) |
---|
2471 | grid%start_subtime = domain_get_start_time ( head_grid ) |
---|
2472 | grid%stop_subtime = domain_get_stop_time ( head_grid ) |
---|
2473 | |
---|
2474 | CALL WRFU_ClockSet(grid%domain_clock, currTime=grid%start_subtime, rc=rc) |
---|
2475 | |
---|
2476 | END SUBROUTINE dfi_startfwd_init |
---|
2477 | |
---|
2478 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2479 | ! DFI startbck group of functions |
---|
2480 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2481 | |
---|
2482 | SUBROUTINE wrf_dfi_startbck_init ( ) |
---|
2483 | |
---|
2484 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time, set_current_grid_ptr |
---|
2485 | USE module_utility |
---|
2486 | |
---|
2487 | IMPLICIT NONE |
---|
2488 | |
---|
2489 | INTERFACE |
---|
2490 | SUBROUTINE dfi_startbck_init_recurse(grid) |
---|
2491 | USE module_domain, ONLY : domain |
---|
2492 | TYPE (domain), POINTER :: grid |
---|
2493 | END SUBROUTINE dfi_startbck_init_recurse |
---|
2494 | END INTERFACE |
---|
2495 | |
---|
2496 | ! Now, setup all nests |
---|
2497 | |
---|
2498 | CALL dfi_startbck_init_recurse(head_grid) |
---|
2499 | |
---|
2500 | CALL set_current_grid_ptr( head_grid ) |
---|
2501 | |
---|
2502 | END SUBROUTINE wrf_dfi_startbck_init |
---|
2503 | |
---|
2504 | |
---|
2505 | RECURSIVE SUBROUTINE dfi_startbck_init_recurse(grid) |
---|
2506 | |
---|
2507 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time, max_nests, set_current_grid_ptr |
---|
2508 | |
---|
2509 | IMPLICIT NONE |
---|
2510 | |
---|
2511 | INTERFACE |
---|
2512 | SUBROUTINE dfi_startbck_init(grid) |
---|
2513 | USE module_domain, ONLY : domain |
---|
2514 | TYPE (domain), POINTER :: grid |
---|
2515 | END SUBROUTINE dfi_startbck_init |
---|
2516 | END INTERFACE |
---|
2517 | |
---|
2518 | INTEGER :: kid |
---|
2519 | TYPE (domain), POINTER :: grid |
---|
2520 | TYPE (domain), POINTER :: grid_ptr |
---|
2521 | |
---|
2522 | grid_ptr => grid |
---|
2523 | |
---|
2524 | DO WHILE ( ASSOCIATED( grid_ptr ) ) |
---|
2525 | ! |
---|
2526 | ! Assure that time-step is set back to positive |
---|
2527 | ! for this forward step. |
---|
2528 | ! |
---|
2529 | grid_ptr%dt = abs(grid_ptr%dt) |
---|
2530 | grid_ptr%time_step = abs(grid_ptr%time_step) |
---|
2531 | CALL set_current_grid_ptr( grid_ptr ) |
---|
2532 | CALL dfi_startbck_init( grid_ptr ) |
---|
2533 | DO kid = 1, max_nests |
---|
2534 | IF ( ASSOCIATED( grid_ptr%nests(kid)%ptr ) ) THEN |
---|
2535 | CALL dfi_startbck_init_recurse(grid_ptr%nests(kid)%ptr) |
---|
2536 | ENDIF |
---|
2537 | END DO |
---|
2538 | grid_ptr => grid_ptr%sibling |
---|
2539 | END DO |
---|
2540 | |
---|
2541 | END SUBROUTINE dfi_startbck_init_recurse |
---|
2542 | |
---|
2543 | |
---|
2544 | SUBROUTINE dfi_startbck_init ( grid ) |
---|
2545 | |
---|
2546 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time |
---|
2547 | USE module_utility |
---|
2548 | USE module_state_description |
---|
2549 | |
---|
2550 | IMPLICIT NONE |
---|
2551 | |
---|
2552 | TYPE (domain) , POINTER :: grid |
---|
2553 | INTEGER rc |
---|
2554 | |
---|
2555 | INTERFACE |
---|
2556 | SUBROUTINE Setup_Timekeeping(grid) |
---|
2557 | USE module_domain, ONLY : domain |
---|
2558 | TYPE (domain), POINTER :: grid |
---|
2559 | END SUBROUTINE Setup_Timekeeping |
---|
2560 | |
---|
2561 | END INTERFACE |
---|
2562 | |
---|
2563 | grid%dfi_stage = DFI_STARTBCK |
---|
2564 | |
---|
2565 | ! set physics options to zero |
---|
2566 | CALL nl_set_mp_physics( grid%id, 0 ) |
---|
2567 | CALL nl_set_ra_lw_physics( grid%id, 0 ) |
---|
2568 | CALL nl_set_ra_sw_physics( grid%id, 0 ) |
---|
2569 | CALL nl_set_sf_surface_physics( grid%id, 0 ) |
---|
2570 | CALL nl_set_sf_sfclay_physics( grid%id, 0 ) |
---|
2571 | CALL nl_set_sf_urban_physics( grid%id, 0 ) |
---|
2572 | CALL nl_set_bl_pbl_physics( grid%id, 0 ) |
---|
2573 | CALL nl_set_cu_physics( grid%id, 0 ) |
---|
2574 | CALL nl_set_damp_opt( grid%id, 0 ) |
---|
2575 | CALL nl_set_sst_update( grid%id, 0 ) |
---|
2576 | CALL nl_set_gwd_opt( grid%id, 0 ) |
---|
2577 | #if (EM_CORE == 1) |
---|
2578 | CALL nl_set_diff_6th_opt( grid%id, 0 ) |
---|
2579 | CALL nl_set_use_adaptive_time_step( grid%id, .false. ) |
---|
2580 | #endif |
---|
2581 | CALL nl_set_feedback( grid%id, 0 ) |
---|
2582 | #if (EM_CORE == 1) |
---|
2583 | ! set bc |
---|
2584 | CALL nl_set_constant_bc( grid%id, head_grid%constant_bc) |
---|
2585 | #endif |
---|
2586 | |
---|
2587 | #ifdef WRF_CHEM |
---|
2588 | ! set chemistry option to zero |
---|
2589 | CALL nl_set_chem_opt (grid%id, 0) |
---|
2590 | CALL nl_set_aer_ra_feedback (grid%id, 0) |
---|
2591 | CALL nl_set_io_form_auxinput5 (grid%id, 0) |
---|
2592 | CALL nl_set_io_form_auxinput7 (grid%id, 0) |
---|
2593 | CALL nl_set_io_form_auxinput8 (grid%id, 0) |
---|
2594 | #endif |
---|
2595 | |
---|
2596 | #if (EM_CORE == 1) |
---|
2597 | ! set diffusion to zero for backward integration |
---|
2598 | CALL nl_set_km_opt( grid%id, grid%km_opt_dfi) |
---|
2599 | CALL nl_set_moist_adv_dfi_opt( grid%id, grid%moist_adv_dfi_opt) |
---|
2600 | IF ( grid%moist_adv_opt == 2 ) THEN |
---|
2601 | CALL nl_set_moist_adv_opt( grid%id, 0) |
---|
2602 | ENDIF |
---|
2603 | #endif |
---|
2604 | |
---|
2605 | !tgs need to call start_domain here to reset bc initialization for |
---|
2606 | ! negative dt, but only for outer domain. |
---|
2607 | if (grid%id == 1) then |
---|
2608 | CALL start_domain ( grid , .TRUE. ) |
---|
2609 | endif |
---|
2610 | |
---|
2611 | ! Call wrf_run to advance forward 1 step |
---|
2612 | |
---|
2613 | ! Negate time step |
---|
2614 | CALL nl_set_time_step ( grid%id, -grid%time_step ) |
---|
2615 | |
---|
2616 | CALL Setup_Timekeeping (grid) |
---|
2617 | |
---|
2618 | grid%start_subtime = domain_get_start_time ( grid ) |
---|
2619 | grid%stop_subtime = domain_get_stop_time ( grid ) |
---|
2620 | |
---|
2621 | CALL WRFU_ClockSet(grid%domain_clock, currTime=grid%start_subtime, rc=rc) |
---|
2622 | |
---|
2623 | END SUBROUTINE dfi_startbck_init |
---|
2624 | |
---|
2625 | |
---|
2626 | SUBROUTINE wrf_dfi_bck_init ( ) |
---|
2627 | |
---|
2628 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time |
---|
2629 | USE module_utility |
---|
2630 | USE module_state_description |
---|
2631 | |
---|
2632 | IMPLICIT NONE |
---|
2633 | |
---|
2634 | INTERFACE |
---|
2635 | SUBROUTINE dfi_bck_init_recurse(grid) |
---|
2636 | USE module_domain, ONLY : domain |
---|
2637 | TYPE (domain), POINTER :: grid |
---|
2638 | END SUBROUTINE dfi_bck_init_recurse |
---|
2639 | END INTERFACE |
---|
2640 | |
---|
2641 | ! We can only call dfi_bck_init for the head_grid |
---|
2642 | ! since nests have not been instantiated at this point, |
---|
2643 | ! so, dfi_bck_init will need to be called for each |
---|
2644 | ! nest from integrate. |
---|
2645 | CALL dfi_bck_init_recurse(head_grid) |
---|
2646 | |
---|
2647 | END SUBROUTINE wrf_dfi_bck_init |
---|
2648 | |
---|
2649 | RECURSIVE SUBROUTINE dfi_bck_init_recurse(grid) |
---|
2650 | |
---|
2651 | USE module_domain, ONLY : domain, domain_get_stop_time, domain_get_start_time, max_nests, set_current_grid_ptr |
---|
2652 | |
---|
2653 | IMPLICIT NONE |
---|
2654 | |
---|
2655 | INTERFACE |
---|
2656 | SUBROUTINE dfi_bck_init(grid) |
---|
2657 | USE module_domain, ONLY : domain |
---|
2658 | TYPE (domain), POINTER :: grid |
---|
2659 | END SUBROUTINE dfi_bck_init |
---|
2660 | END INTERFACE |
---|
2661 | |
---|
2662 | INTEGER :: kid |
---|
2663 | TYPE (domain), POINTER :: grid |
---|
2664 | TYPE (domain), POINTER :: grid_ptr |
---|
2665 | |
---|
2666 | grid_ptr => grid |
---|
2667 | |
---|
2668 | DO WHILE ( ASSOCIATED( grid_ptr ) ) |
---|
2669 | ! |
---|
2670 | ! Assure that time-step is set back to positive |
---|
2671 | ! for this forward step. |
---|
2672 | ! |
---|
2673 | grid_ptr%dt = abs(grid_ptr%dt) |
---|
2674 | grid_ptr%time_step = abs(grid_ptr%time_step) |
---|
2675 | CALL set_current_grid_ptr( grid_ptr ) |
---|
2676 | CALL dfi_bck_init( grid_ptr ) |
---|
2677 | DO kid = 1, max_nests |
---|
2678 | IF ( ASSOCIATED( grid_ptr%nests(kid)%ptr ) ) THEN |
---|
2679 | CALL dfi_bck_init_recurse(grid_ptr%nests(kid)%ptr) |
---|
2680 | ENDIF |
---|
2681 | END DO |
---|
2682 | grid_ptr => grid_ptr%sibling |
---|
2683 | END DO |
---|
2684 | |
---|
2685 | END SUBROUTINE dfi_bck_init_recurse |
---|
2686 | |
---|
2687 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2688 | ! DFI forward initialization group of functions |
---|
2689 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2690 | |
---|
2691 | SUBROUTINE wrf_dfi_fwd_init ( ) |
---|
2692 | |
---|
2693 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time, set_current_grid_ptr |
---|
2694 | USE module_utility |
---|
2695 | |
---|
2696 | IMPLICIT NONE |
---|
2697 | |
---|
2698 | INTERFACE |
---|
2699 | SUBROUTINE dfi_fwd_init_recurse(grid) |
---|
2700 | USE module_domain, ONLY : domain |
---|
2701 | TYPE (domain), POINTER :: grid |
---|
2702 | END SUBROUTINE dfi_fwd_init_recurse |
---|
2703 | END INTERFACE |
---|
2704 | |
---|
2705 | ! Now, setup all nests |
---|
2706 | |
---|
2707 | CALL dfi_fwd_init_recurse(head_grid) |
---|
2708 | |
---|
2709 | CALL set_current_grid_ptr( head_grid ) |
---|
2710 | |
---|
2711 | END SUBROUTINE wrf_dfi_fwd_init |
---|
2712 | |
---|
2713 | RECURSIVE SUBROUTINE dfi_fwd_init_recurse(grid) |
---|
2714 | |
---|
2715 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time, max_nests, set_current_grid_ptr |
---|
2716 | |
---|
2717 | IMPLICIT NONE |
---|
2718 | |
---|
2719 | INTERFACE |
---|
2720 | SUBROUTINE dfi_fwd_init(grid) |
---|
2721 | USE module_domain, ONLY : domain |
---|
2722 | TYPE (domain), POINTER :: grid |
---|
2723 | END SUBROUTINE dfi_fwd_init |
---|
2724 | END INTERFACE |
---|
2725 | |
---|
2726 | INTEGER :: kid |
---|
2727 | TYPE (domain), POINTER :: grid |
---|
2728 | TYPE (domain), POINTER :: grid_ptr |
---|
2729 | |
---|
2730 | grid_ptr => grid |
---|
2731 | |
---|
2732 | DO WHILE ( ASSOCIATED( grid_ptr ) ) |
---|
2733 | ! |
---|
2734 | ! Assure that time-step is set back to positive |
---|
2735 | ! for this forward step. |
---|
2736 | ! |
---|
2737 | grid_ptr%dt = abs(grid_ptr%dt) |
---|
2738 | grid_ptr%time_step = abs(grid_ptr%time_step) |
---|
2739 | CALL set_current_grid_ptr( grid_ptr ) |
---|
2740 | CALL dfi_fwd_init( grid_ptr ) |
---|
2741 | DO kid = 1, max_nests |
---|
2742 | IF ( ASSOCIATED( grid_ptr%nests(kid)%ptr ) ) THEN |
---|
2743 | CALL dfi_fwd_init_recurse(grid_ptr%nests(kid)%ptr) |
---|
2744 | ENDIF |
---|
2745 | END DO |
---|
2746 | grid_ptr => grid_ptr%sibling |
---|
2747 | END DO |
---|
2748 | |
---|
2749 | END SUBROUTINE dfi_fwd_init_recurse |
---|
2750 | |
---|
2751 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2752 | ! DFI forecast initialization group of functions |
---|
2753 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2754 | |
---|
2755 | SUBROUTINE wrf_dfi_fst_init ( ) |
---|
2756 | |
---|
2757 | USE module_domain, ONLY : domain, head_grid, domain_get_stop_time, domain_get_start_time, set_current_grid_ptr |
---|
2758 | USE module_utility |
---|
2759 | |
---|
2760 | IMPLICIT NONE |
---|
2761 | |
---|
2762 | INTERFACE |
---|
2763 | SUBROUTINE dfi_fst_init_recurse(grid) |
---|
2764 | USE module_domain, ONLY : domain |
---|
2765 | TYPE (domain), POINTER :: grid |
---|
2766 | END SUBROUTINE dfi_fst_init_recurse |
---|
2767 | END INTERFACE |
---|
2768 | |
---|
2769 | ! Now, setup all nests |
---|
2770 | |
---|
2771 | CALL dfi_fst_init_recurse(head_grid) |
---|
2772 | |
---|
2773 | CALL set_current_grid_ptr( head_grid ) |
---|
2774 | |
---|
2775 | END SUBROUTINE wrf_dfi_fst_init |
---|
2776 | |
---|
2777 | RECURSIVE SUBROUTINE dfi_fst_init_recurse ( grid ) |
---|
2778 | |
---|
2779 | USE module_domain, ONLY : domain, domain_get_stop_time, domain_get_start_time, max_nests, set_current_grid_ptr |
---|
2780 | |
---|
2781 | IMPLICIT NONE |
---|
2782 | |
---|
2783 | INTERFACE |
---|
2784 | SUBROUTINE dfi_fst_init(grid) |
---|
2785 | USE module_domain, ONLY : domain |
---|
2786 | TYPE (domain), POINTER :: grid |
---|
2787 | END SUBROUTINE dfi_fst_init |
---|
2788 | END INTERFACE |
---|
2789 | |
---|
2790 | INTEGER :: kid |
---|
2791 | TYPE (domain), POINTER :: grid |
---|
2792 | TYPE (domain), POINTER :: grid_ptr |
---|
2793 | |
---|
2794 | grid_ptr => grid |
---|
2795 | |
---|
2796 | DO WHILE ( ASSOCIATED( grid_ptr ) ) |
---|
2797 | ! |
---|
2798 | ! Assure that time-step is set back to positive |
---|
2799 | ! for this forward step. |
---|
2800 | ! |
---|
2801 | grid_ptr%dt = abs(grid_ptr%dt) |
---|
2802 | grid_ptr%time_step = abs(grid_ptr%time_step) |
---|
2803 | CALL set_current_grid_ptr( grid_ptr ) |
---|
2804 | CALL dfi_fst_init( grid_ptr ) |
---|
2805 | DO kid = 1, max_nests |
---|
2806 | IF ( ASSOCIATED( grid_ptr%nests(kid)%ptr ) ) THEN |
---|
2807 | CALL dfi_fst_init_recurse(grid_ptr%nests(kid)%ptr) |
---|
2808 | ENDIF |
---|
2809 | END DO |
---|
2810 | grid_ptr => grid_ptr%sibling |
---|
2811 | END DO |
---|
2812 | |
---|
2813 | END SUBROUTINE dfi_fst_init_recurse |
---|
2814 | |
---|
2815 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2816 | ! DFI write initialization group of functions |
---|
2817 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2818 | |
---|
2819 | SUBROUTINE wrf_dfi_write_initialized_state( ) |
---|
2820 | |
---|
2821 | USE module_domain, ONLY : domain, head_grid |
---|
2822 | |
---|
2823 | INTERFACE |
---|
2824 | SUBROUTINE dfi_write_initialized_state_recurse(grid) |
---|
2825 | USE module_domain, ONLY : domain |
---|
2826 | TYPE (domain), POINTER :: grid |
---|
2827 | END SUBROUTINE dfi_write_initialized_state_recurse |
---|
2828 | END INTERFACE |
---|
2829 | |
---|
2830 | ! Now, setup all nests |
---|
2831 | |
---|
2832 | CALL dfi_write_initialized_state_recurse(head_grid) |
---|
2833 | |
---|
2834 | END SUBROUTINE wrf_dfi_write_initialized_state |
---|
2835 | |
---|
2836 | RECURSIVE SUBROUTINE dfi_write_initialized_state_recurse( grid ) |
---|
2837 | |
---|
2838 | USE module_domain, ONLY : domain, max_nests |
---|
2839 | |
---|
2840 | IMPLICIT NONE |
---|
2841 | |
---|
2842 | INTERFACE |
---|
2843 | SUBROUTINE dfi_write_initialized_state( grid ) |
---|
2844 | USE module_domain, ONLY : domain |
---|
2845 | TYPE (domain), POINTER :: grid |
---|
2846 | END SUBROUTINE dfi_write_initialized_state |
---|
2847 | END INTERFACE |
---|
2848 | |
---|
2849 | INTEGER :: kid |
---|
2850 | TYPE (domain), POINTER :: grid |
---|
2851 | TYPE (domain), POINTER :: grid_ptr |
---|
2852 | |
---|
2853 | grid_ptr => grid |
---|
2854 | |
---|
2855 | DO WHILE ( ASSOCIATED( grid_ptr ) ) |
---|
2856 | ! |
---|
2857 | ! Assure that time-step is set back to positive |
---|
2858 | ! for this forward step. |
---|
2859 | ! |
---|
2860 | CALL dfi_write_initialized_state( grid_ptr ) |
---|
2861 | DO kid = 1, max_nests |
---|
2862 | IF ( ASSOCIATED( grid_ptr%nests(kid)%ptr ) ) THEN |
---|
2863 | CALL dfi_write_initialized_state_recurse(grid_ptr%nests(kid)%ptr) |
---|
2864 | ENDIF |
---|
2865 | END DO |
---|
2866 | grid_ptr => grid_ptr%sibling |
---|
2867 | END DO |
---|
2868 | |
---|
2869 | END SUBROUTINE dfi_write_initialized_state_recurse |
---|
2870 | |
---|
2871 | |
---|
2872 | RECURSIVE SUBROUTINE dfi_array_reset_recurse(grid) |
---|
2873 | |
---|
2874 | USE module_domain, ONLY : domain, max_nests, set_current_grid_ptr |
---|
2875 | |
---|
2876 | IMPLICIT NONE |
---|
2877 | |
---|
2878 | INTERFACE |
---|
2879 | SUBROUTINE dfi_array_reset(grid) |
---|
2880 | USE module_domain, ONLY : domain |
---|
2881 | TYPE (domain), POINTER :: grid |
---|
2882 | END SUBROUTINE dfi_array_reset |
---|
2883 | END INTERFACE |
---|
2884 | |
---|
2885 | INTEGER :: kid |
---|
2886 | TYPE (domain), POINTER :: grid |
---|
2887 | TYPE (domain), POINTER :: grid_ptr |
---|
2888 | |
---|
2889 | grid_ptr => grid |
---|
2890 | |
---|
2891 | DO WHILE ( ASSOCIATED( grid_ptr ) ) |
---|
2892 | CALL set_current_grid_ptr( grid_ptr ) |
---|
2893 | CALL dfi_array_reset( grid_ptr ) |
---|
2894 | DO kid = 1, max_nests |
---|
2895 | IF ( ASSOCIATED( grid_ptr%nests(kid)%ptr ) ) THEN |
---|
2896 | CALL dfi_array_reset_recurse(grid_ptr%nests(kid)%ptr) |
---|
2897 | ENDIF |
---|
2898 | END DO |
---|
2899 | grid_ptr => grid_ptr%sibling |
---|
2900 | END DO |
---|
2901 | |
---|
2902 | END SUBROUTINE dfi_array_reset_recurse |
---|
2903 | |
---|