1 | MODULE module_sf_urban |
---|
2 | |
---|
3 | !=============================================================================== |
---|
4 | ! Single-Layer Urban Canopy Model for WRF Noah-LSM |
---|
5 | ! Original Version: 2002/11/06 by Hiroyuki Kusaka |
---|
6 | ! Last Update: 2006/08/24 by Fei Chen and Mukul Tewari (NCAR/RAL) |
---|
7 | !=============================================================================== |
---|
8 | |
---|
9 | CHARACTER(LEN=4) :: LU_DATA_TYPE |
---|
10 | |
---|
11 | INTEGER :: ICATE |
---|
12 | |
---|
13 | REAL, ALLOCATABLE, DIMENSION(:) :: ZR_TBL |
---|
14 | REAL, ALLOCATABLE, DIMENSION(:) :: Z0C_TBL |
---|
15 | REAL, ALLOCATABLE, DIMENSION(:) :: Z0HC_TBL |
---|
16 | REAL, ALLOCATABLE, DIMENSION(:) :: ZDC_TBL |
---|
17 | REAL, ALLOCATABLE, DIMENSION(:) :: SVF_TBL |
---|
18 | REAL, ALLOCATABLE, DIMENSION(:) :: R_TBL |
---|
19 | REAL, ALLOCATABLE, DIMENSION(:) :: RW_TBL |
---|
20 | REAL, ALLOCATABLE, DIMENSION(:) :: HGT_TBL |
---|
21 | REAL, ALLOCATABLE, DIMENSION(:) :: AH_TBL |
---|
22 | REAL, ALLOCATABLE, DIMENSION(:) :: BETR_TBL |
---|
23 | REAL, ALLOCATABLE, DIMENSION(:) :: BETB_TBL |
---|
24 | REAL, ALLOCATABLE, DIMENSION(:) :: BETG_TBL |
---|
25 | REAL, ALLOCATABLE, DIMENSION(:) :: FRC_URB_TBL |
---|
26 | |
---|
27 | REAL, ALLOCATABLE, DIMENSION(:) :: COP_TBL |
---|
28 | REAL, ALLOCATABLE, DIMENSION(:) :: PWIN_TBL |
---|
29 | REAL, ALLOCATABLE, DIMENSION(:) :: BETA_TBL |
---|
30 | INTEGER, ALLOCATABLE, DIMENSION(:) :: SW_COND_TBL |
---|
31 | REAL, ALLOCATABLE, DIMENSION(:) :: TIME_ON_TBL |
---|
32 | REAL, ALLOCATABLE, DIMENSION(:) :: TIME_OFF_TBL |
---|
33 | REAL, ALLOCATABLE, DIMENSION(:) :: TARGTEMP_TBL |
---|
34 | REAL, ALLOCATABLE, DIMENSION(:) :: GAPTEMP_TBL |
---|
35 | REAL, ALLOCATABLE, DIMENSION(:) :: TARGHUM_TBL |
---|
36 | REAL, ALLOCATABLE, DIMENSION(:) :: GAPHUM_TBL |
---|
37 | REAL, ALLOCATABLE, DIMENSION(:) :: PERFLO_TBL |
---|
38 | REAL, ALLOCATABLE, DIMENSION(:) :: HSESF_TBL |
---|
39 | |
---|
40 | REAL, ALLOCATABLE, DIMENSION(:) :: CAPR_TBL, CAPB_TBL, CAPG_TBL |
---|
41 | REAL, ALLOCATABLE, DIMENSION(:) :: AKSR_TBL, AKSB_TBL, AKSG_TBL |
---|
42 | REAL, ALLOCATABLE, DIMENSION(:) :: ALBR_TBL, ALBB_TBL, ALBG_TBL |
---|
43 | REAL, ALLOCATABLE, DIMENSION(:) :: EPSR_TBL, EPSB_TBL, EPSG_TBL |
---|
44 | REAL, ALLOCATABLE, DIMENSION(:) :: Z0R_TBL, Z0B_TBL, Z0G_TBL |
---|
45 | REAL, ALLOCATABLE, DIMENSION(:) :: SIGMA_ZED_TBL |
---|
46 | REAL, ALLOCATABLE, DIMENSION(:) :: Z0HB_TBL, Z0HG_TBL |
---|
47 | REAL, ALLOCATABLE, DIMENSION(:) :: TRLEND_TBL, TBLEND_TBL, TGLEND_TBL |
---|
48 | REAL, ALLOCATABLE, DIMENSION(:) :: AKANDA_URBAN_TBL |
---|
49 | !for BEP |
---|
50 | |
---|
51 | ! MAXDIRS :: The maximum number of street directions we're allowed to define |
---|
52 | INTEGER, PARAMETER :: MAXDIRS = 3 |
---|
53 | ! MAXHGTS :: The maximum number of building height bins we're allowed to define |
---|
54 | INTEGER, PARAMETER :: MAXHGTS = 50 |
---|
55 | |
---|
56 | INTEGER, ALLOCATABLE, DIMENSION(:) :: NUMDIR_TBL |
---|
57 | REAL, ALLOCATABLE, DIMENSION(:,:) :: STREET_DIRECTION_TBL |
---|
58 | REAL, ALLOCATABLE, DIMENSION(:,:) :: STREET_WIDTH_TBL |
---|
59 | REAL, ALLOCATABLE, DIMENSION(:,:) :: BUILDING_WIDTH_TBL |
---|
60 | INTEGER, ALLOCATABLE, DIMENSION(:) :: NUMHGT_TBL |
---|
61 | REAL, ALLOCATABLE, DIMENSION(:,:) :: HEIGHT_BIN_TBL |
---|
62 | REAL, ALLOCATABLE, DIMENSION(:,:) :: HPERCENT_BIN_TBL |
---|
63 | !end BEP |
---|
64 | INTEGER :: BOUNDR_DATA,BOUNDB_DATA,BOUNDG_DATA |
---|
65 | INTEGER :: CH_SCHEME_DATA, TS_SCHEME_DATA |
---|
66 | INTEGER :: ahoption ! Miao, 2007/01/17, cal. ah |
---|
67 | REAL, DIMENSION(1:24) :: ahdiuprf ! ah diurnal profile, tloc: 1-24 |
---|
68 | REAL, DIMENSION(1:24) :: hsequip_tbl |
---|
69 | |
---|
70 | INTEGER :: allocate_status |
---|
71 | |
---|
72 | ! INTEGER :: num_roof_layers |
---|
73 | ! INTEGER :: num_wall_layers |
---|
74 | ! INTEGER :: num_road_layers |
---|
75 | |
---|
76 | CONTAINS |
---|
77 | |
---|
78 | !=============================================================================== |
---|
79 | ! |
---|
80 | ! Author: |
---|
81 | ! Hiroyuki KUSAKA, PhD |
---|
82 | ! University of Tsukuba, JAPAN |
---|
83 | ! (CRIEPI, NCAR/MMM visiting scientist, 2002-2004) |
---|
84 | ! kusaka@ccs.tsukuba.ac.jp |
---|
85 | ! |
---|
86 | ! Co-Researchers: |
---|
87 | ! Fei CHEN, PhD |
---|
88 | ! NCAR/RAP feichen@ucar.edu |
---|
89 | ! Mukul TEWARI, PhD |
---|
90 | ! NCAR/RAP mukul@ucar.edu |
---|
91 | ! |
---|
92 | ! Purpose: |
---|
93 | ! Calculate surface temeprature, fluxes, canopy air temperature, and canopy wind |
---|
94 | ! |
---|
95 | ! Subroutines: |
---|
96 | ! module_sf_urban |
---|
97 | ! |- urban |
---|
98 | ! |- read_param |
---|
99 | ! |- mos or jurges |
---|
100 | ! |- multi_layer or force_restore |
---|
101 | ! |- urban_param_init <-- URBPARM.TBL |
---|
102 | ! |- urban_var_init |
---|
103 | ! |
---|
104 | ! Input Data from WRF [MKS unit]: |
---|
105 | ! |
---|
106 | ! UTYPE [-] : Urban type. 1=Commercial/Industrial; 2=High-intensity residential; |
---|
107 | ! : 3=low-intensity residential |
---|
108 | ! TA [K] : Potential temperature at 1st wrf level (absolute temp) |
---|
109 | ! QA [kg/kg] : Mixing ratio at 1st atmospheric level |
---|
110 | ! UA [m/s] : Wind speed at 1st atmospheric level |
---|
111 | ! SSG [W/m/m] : Short wave downward radiation at a flat surface |
---|
112 | ! Note this is the total of direct and diffusive solar |
---|
113 | ! downward radiation. If without two components, the |
---|
114 | ! single solar downward can be used instead. |
---|
115 | ! SSG = SSGD + SSGQ |
---|
116 | ! LSOLAR [-] : Indicating the input type of solar downward radiation |
---|
117 | ! True: both direct and diffusive solar radiation |
---|
118 | ! are available |
---|
119 | ! False: only total downward ridiation is available. |
---|
120 | ! SSGD [W/m/m] : Direct solar radiation at a flat surface |
---|
121 | ! if SSGD is not available, one can assume a ratio SRATIO |
---|
122 | ! (e.g., 0.7), so that SSGD = SRATIO*SSG |
---|
123 | ! SSGQ [W/m/m] : Diffuse solar radiation at a flat surface |
---|
124 | ! If SSGQ is not available, SSGQ = SSG - SSGD |
---|
125 | ! LLG [W/m/m] : Long wave downward radiation at a flat surface |
---|
126 | ! RAIN [mm/h] : Precipitation |
---|
127 | ! RHOO [kg/m/m/m] : Air density |
---|
128 | ! ZA [m] : First atmospheric level |
---|
129 | ! as a lowest boundary condition |
---|
130 | ! DECLIN [rad] : solar declination |
---|
131 | ! COSZ : = sin(fai)*sin(del)+cos(fai)*cos(del)*cos(omg) |
---|
132 | ! OMG [rad] : solar hour angle |
---|
133 | ! XLAT [deg] : latitude |
---|
134 | ! DELT [sec] : Time step |
---|
135 | ! ZNT [m] : Roughnes length |
---|
136 | ! |
---|
137 | ! Output Data to WRF [MKS unit]: |
---|
138 | ! |
---|
139 | ! TS [K] : Surface potential temperature (absolute temp) |
---|
140 | ! QS [-] : Surface humidity |
---|
141 | ! |
---|
142 | ! SH [W/m/m/] : Sensible heat flux, = FLXTH*RHOO*CPP |
---|
143 | ! LH [W/m/m] : Latent heat flux, = FLXHUM*RHOO*ELL |
---|
144 | ! LH_INEMATIC [kg/m/m/sec]: Moisture Kinematic flux, = FLXHUM*RHOO |
---|
145 | ! SW [W/m/m] : Upward shortwave radiation flux, |
---|
146 | ! = SSG-SNET*697.7*60. (697.7*60.=100.*100.*4.186) |
---|
147 | ! ALB [-] : Time-varying albedo |
---|
148 | ! LW [W/m/m] : Upward longwave radiation flux, |
---|
149 | ! = LNET*697.7*60.-LLG |
---|
150 | ! G [W/m/m] : Heat Flux into the Ground |
---|
151 | ! RN [W/m/m] : Net radiation |
---|
152 | ! |
---|
153 | ! PSIM [-] : Diagnostic similarity stability function for momentum |
---|
154 | ! PSIH [-] : Diagnostic similarity stability function for heat |
---|
155 | ! |
---|
156 | ! TC [K] : Diagnostic canopy air temperature |
---|
157 | ! QC [-] : Diagnostic canopy humidity |
---|
158 | ! |
---|
159 | ! TH2 [K] : Diagnostic potential temperature at 2 m |
---|
160 | ! Q2 [-] : Diagnostic humidity at 2 m |
---|
161 | ! U10 [m/s] : Diagnostic u wind component at 10 m |
---|
162 | ! V10 [m/s] : Diagnostic v wind component at 10 m |
---|
163 | ! |
---|
164 | ! CHS, CHS2 [m/s] : CH*U at ZA, CH*U at 2 m (not used) |
---|
165 | ! |
---|
166 | ! Important parameters: |
---|
167 | ! |
---|
168 | ! Morphology of the urban canyon: |
---|
169 | ! These parameters assigned in the URBPARM.TBL |
---|
170 | ! |
---|
171 | ! ZR [m] : roof level (building height) |
---|
172 | ! SIGMA_ZED [m] : Standard Deviation of roof height |
---|
173 | ! ROOF_WIDTH [m] : roof (i.e., building) width |
---|
174 | ! ROAD_WIDTH [m] : road width |
---|
175 | ! |
---|
176 | ! Parameters derived from the morphological terms above. |
---|
177 | ! These parameters are computed in the code. |
---|
178 | ! |
---|
179 | ! HGT [-] : normalized building height |
---|
180 | ! SVF [-] : sky view factor |
---|
181 | ! R [-] : Normalized roof width (a.k.a. "building coverage ratio") |
---|
182 | ! RW [-] : = 1 - R |
---|
183 | ! Z0C [m] : Roughness length above canyon for momentum (1/10 of ZR) |
---|
184 | ! Z0HC [m] : Roughness length above canyon for heat (1/10 of Z0C) |
---|
185 | ! ZDC [m] : Zero plane displacement height (1/5 of ZR) |
---|
186 | ! |
---|
187 | ! Following parameter are assigned in run/URBPARM.TBL |
---|
188 | ! |
---|
189 | ! AH [ W m{-2} ] : anthropogenic heat ( W m{-2} in the table, converted internally to cal cm{-2} ) |
---|
190 | ! CAPR[ J m{-3} K{-1} ] : heat capacity of roof ( units converted in code to [ cal cm{-3} deg{-1} ] ) |
---|
191 | ! CAPB[ J m{-3} K{-1} ] : heat capacity of building wall ( units converted in code to [ cal cm{-3} deg{-1} ] ) |
---|
192 | ! CAPG[ J m{-3} K{-1} ] : heat capacity of road ( units converted in code to [ cal cm{-3} deg{-1} ] ) |
---|
193 | ! AKSR [ J m{-1} s{-1} K{-1} ] : thermal conductivity of roof ( units converted in code to [ cal cm{-1} s{-1} deg{-1} ] ) |
---|
194 | ! AKSB [ J m{-1} s{-1} K{-1} ] : thermal conductivity of building wall ( units converted in code to [ cal cm{-1} s{-1} deg{-1} ] ) |
---|
195 | ! AKSG [ J m{-1} s{-1} K{-1} ] : thermal conductivity of road ( units converted in code to [ cal cm{-1} s{-1} deg{-1} ] ) |
---|
196 | ! ALBR [-] : surface albedo of roof |
---|
197 | ! ALBB [-] : surface albedo of building wall |
---|
198 | ! ALBG [-] : surface albedo of road |
---|
199 | ! EPSR [-] : surface emissivity of roof |
---|
200 | ! EPSB [-] : surface emissivity of building wall |
---|
201 | ! EPSG [-] : surface emissivity of road |
---|
202 | ! Z0B [m] : roughness length for momentum of building wall (only for CH_SCHEME = 1) |
---|
203 | ! Z0G [m] : roughness length for momentum of road (only for CH_SCHEME = 1) |
---|
204 | ! Z0HB [m] : roughness length for heat of building wall (only for CH_SCHEME = 1) |
---|
205 | ! Z0HG [m] : roughness length for heat of road |
---|
206 | ! num_roof_layers : number of layers within roof |
---|
207 | ! num_wall_layers : number of layers within building walls |
---|
208 | ! num_road_layers : number of layers within below road surface |
---|
209 | ! NOTE: for now, these layers are defined as same as the number of soil layers in namelist.input |
---|
210 | ! DZR [cm] : thickness of each roof layer |
---|
211 | ! DZB [cm] : thickness of each building wall layer |
---|
212 | ! DZG [cm] : thickness of each ground layer |
---|
213 | ! BOUNDR [integer 1 or 2] : Boundary Condition for Roof Layer Temp [1: Zero-Flux, 2: T = Constant] |
---|
214 | ! BOUNDB [integer 1 or 2] : Boundary Condition for Building Wall Layer Temp [1: Zero-Flux, 2: T = Constant] |
---|
215 | ! BOUNDG [integer 1 or 2] : Boundary Condition for Road Layer Temp [1: Zero-Flux, 2: T = Constant] |
---|
216 | ! TRLEND [K] : lower boundary condition of roof temperature |
---|
217 | ! TBLEND [K] : lower boundary condition of building temperature |
---|
218 | ! TGLEND [K] : lower boundary condition of ground temperature |
---|
219 | ! CH_SCHEME [integer 1 or 2] : Sfc exchange scheme used for building wall and road |
---|
220 | ! [1: M-O Similarity Theory, 2: Empirical Form (recommend)] |
---|
221 | ! TS_SCHEME [integer 1 or 2] : Scheme for computing surface temperature (for roof, wall, and road) |
---|
222 | ! [1: 4-layer model, 2: Force-Restore method] |
---|
223 | ! |
---|
224 | !for BEP |
---|
225 | ! numdir [ - ] : Number of street directions defined for a particular urban category |
---|
226 | ! street_direction [ deg ] : Direction of streets for a particular urban category and a particular street direction |
---|
227 | ! street_width [ m ] : Width of street for a particular urban category and a particular street direction |
---|
228 | ! building_width [ m ] : Width of buildings for a particular urban category and a particular street direction |
---|
229 | ! numhgt [ - ] : Number of building height levels defined for a particular urban category |
---|
230 | ! height_bin [ m ] : Building height bins defined for a particular urban category. |
---|
231 | ! hpercent_bin [ % ] : Percentage of a particular urban category populated by buildings of particular height bins |
---|
232 | !end BEP |
---|
233 | ! Moved from URBPARM.TBL |
---|
234 | ! |
---|
235 | ! BETR [-] : minimum moisture availability of roof |
---|
236 | ! BETB [-] : minimum moisture availability of building wall |
---|
237 | ! BETG [-] : minimum moisture availability of road |
---|
238 | ! Z0R [m] : roughness length for momentum of roof |
---|
239 | ! Z0HB [m] : roughness length for heat of building wall (only for CH_SCHEME = 1) |
---|
240 | ! Z0HG [m] : roughness length for heat of road |
---|
241 | ! num_roof_layers : number of layers within roof |
---|
242 | ! num_wall_layers : number of layers within building walls |
---|
243 | ! num_road_layers : number of layers within below road surface |
---|
244 | ! NOTE: for now, these layers are defined as same as the number of soil layers in namelist.input |
---|
245 | ! |
---|
246 | ! References: |
---|
247 | ! Kusaka and Kimura (2004) J.Appl.Meteor., vol.43, p1899-1910 |
---|
248 | ! Kusaka and Kimura (2004) J.Meteor.Soc.Japan, vol.82, p45-65 |
---|
249 | ! Kusaka et al. (2001) Bound.-Layer Meteor., vol.101, p329-358 |
---|
250 | ! |
---|
251 | ! History: |
---|
252 | ! 2006/06 modified by H. Kusaka (Univ. Tsukuba), M. Tewari |
---|
253 | ! 2005/10/26, modified by Fei Chen, Mukul Tewari |
---|
254 | ! 2003/07/21 WRF , modified by H. Kusaka of CRIEPI (NCAR/MMM) |
---|
255 | ! 2001/08/26 PhD , modified by H. Kusaka of CRIEPI (Univ.Tsukuba) |
---|
256 | ! 1999/08/25 LCM , developed by H. Kusaka of CRIEPI (Univ.Tsukuba) |
---|
257 | ! |
---|
258 | !=============================================================================== |
---|
259 | ! |
---|
260 | ! subroutine urban: |
---|
261 | ! |
---|
262 | !=============================================================================== |
---|
263 | |
---|
264 | SUBROUTINE urban(LSOLAR, & ! L |
---|
265 | num_roof_layers,num_wall_layers,num_road_layers, & ! I |
---|
266 | DZR,DZB,DZG, & ! I |
---|
267 | UTYPE,TA,QA,UA,U1,V1,SSG,SSGD,SSGQ,LLG,RAIN,RHOO, & ! I |
---|
268 | ZA,DECLIN,COSZ,OMG,XLAT,DELT,ZNT, & ! I |
---|
269 | CHS, CHS2, & ! I |
---|
270 | TR, TB, TG, TC, QC, UC, & ! H |
---|
271 | TRL,TBL,TGL, & ! H |
---|
272 | XXXR, XXXB, XXXG, XXXC, & ! H |
---|
273 | TS,QS,SH,LH,LH_KINEMATIC, & ! O |
---|
274 | SW,ALB,LW,G,RN,PSIM,PSIH, & ! O |
---|
275 | GZ1OZ0, & ! O |
---|
276 | CMR_URB,CHR_URB,CMC_URB,CHC_URB, & ! I/O |
---|
277 | U10,V10,TH2,Q2,UST & ! O |
---|
278 | ) |
---|
279 | |
---|
280 | IMPLICIT NONE |
---|
281 | |
---|
282 | REAL, PARAMETER :: CP=0.24 ! heat capacity of dry air [cgs unit] |
---|
283 | REAL, PARAMETER :: EL=583. ! latent heat of vaporation [cgs unit] |
---|
284 | REAL, PARAMETER :: SIG=8.17E-11 ! stefun bolzman constant [cgs unit] |
---|
285 | REAL, PARAMETER :: SIG_SI=5.67E-8 ! [MKS unit] |
---|
286 | REAL, PARAMETER :: AK=0.4 ! kalman const. [-] |
---|
287 | REAL, PARAMETER :: PI=3.14159 ! pi [-] |
---|
288 | REAL, PARAMETER :: TETENA=7.5 ! const. of Tetens Equation [-] |
---|
289 | REAL, PARAMETER :: TETENB=237.3 ! const. of Tetens Equation [-] |
---|
290 | REAL, PARAMETER :: SRATIO=0.75 ! ratio between direct/total solar [-] |
---|
291 | |
---|
292 | REAL, PARAMETER :: CPP=1004.5 ! heat capacity of dry air [J/K/kg] |
---|
293 | REAL, PARAMETER :: ELL=2.442E+06 ! latent heat of vaporization [J/kg] |
---|
294 | REAL, PARAMETER :: XKA=2.4E-5 |
---|
295 | |
---|
296 | !------------------------------------------------------------------------------- |
---|
297 | ! C: configuration variables |
---|
298 | !------------------------------------------------------------------------------- |
---|
299 | |
---|
300 | LOGICAL, INTENT(IN) :: LSOLAR ! logical [true=both, false=SSG only] |
---|
301 | |
---|
302 | ! The following variables are also model configuration variables, but are |
---|
303 | ! defined in the URBAN.TBL and in the contains statement in the top of |
---|
304 | ! the module_urban_init, so we should not declare them here. |
---|
305 | |
---|
306 | INTEGER, INTENT(IN) :: num_roof_layers |
---|
307 | INTEGER, INTENT(IN) :: num_wall_layers |
---|
308 | INTEGER, INTENT(IN) :: num_road_layers |
---|
309 | |
---|
310 | |
---|
311 | REAL, INTENT(IN), DIMENSION(1:num_roof_layers) :: DZR ! grid interval of roof layers [cm] |
---|
312 | REAL, INTENT(IN), DIMENSION(1:num_wall_layers) :: DZB ! grid interval of wall layers [cm] |
---|
313 | REAL, INTENT(IN), DIMENSION(1:num_road_layers) :: DZG ! grid interval of road layers [cm] |
---|
314 | |
---|
315 | !------------------------------------------------------------------------------- |
---|
316 | ! I: input variables from LSM to Urban |
---|
317 | !------------------------------------------------------------------------------- |
---|
318 | |
---|
319 | INTEGER, INTENT(IN) :: UTYPE ! urban type [1=Commercial/Industrial, 2=High-intensity residential, |
---|
320 | ! 3=low-intensity residential] |
---|
321 | |
---|
322 | REAL, INTENT(IN) :: TA ! potential temp at 1st atmospheric level [K] |
---|
323 | REAL, INTENT(IN) :: QA ! mixing ratio at 1st atmospheric level [kg/kg] |
---|
324 | REAL, INTENT(IN) :: UA ! wind speed at 1st atmospheric level [m/s] |
---|
325 | REAL, INTENT(IN) :: U1 ! u at 1st atmospheric level [m/s] |
---|
326 | REAL, INTENT(IN) :: V1 ! v at 1st atmospheric level [m/s] |
---|
327 | REAL, INTENT(IN) :: SSG ! downward total short wave radiation [W/m/m] |
---|
328 | REAL, INTENT(IN) :: LLG ! downward long wave radiation [W/m/m] |
---|
329 | REAL, INTENT(IN) :: RAIN ! precipitation [mm/h] |
---|
330 | REAL, INTENT(IN) :: RHOO ! air density [kg/m^3] |
---|
331 | REAL, INTENT(IN) :: ZA ! first atmospheric level [m] |
---|
332 | REAL, INTENT(IN) :: DECLIN ! solar declination [rad] |
---|
333 | REAL, INTENT(IN) :: COSZ ! sin(fai)*sin(del)+cos(fai)*cos(del)*cos(omg) |
---|
334 | REAL, INTENT(IN) :: OMG ! solar hour angle [rad] |
---|
335 | |
---|
336 | REAL, INTENT(IN) :: XLAT ! latitude [deg] |
---|
337 | REAL, INTENT(IN) :: DELT ! time step [s] |
---|
338 | REAL, INTENT(IN) :: ZNT ! roughness length [m] |
---|
339 | REAL, INTENT(IN) :: CHS,CHS2 ! CH*U at za and 2 m [m/s] |
---|
340 | |
---|
341 | REAL, INTENT(INOUT) :: SSGD ! downward direct short wave radiation [W/m/m] |
---|
342 | REAL, INTENT(INOUT) :: SSGQ ! downward diffuse short wave radiation [W/m/m] |
---|
343 | REAL, INTENT(INOUT) :: CMR_URB |
---|
344 | REAL, INTENT(INOUT) :: CHR_URB |
---|
345 | REAL, INTENT(INOUT) :: CMC_URB |
---|
346 | REAL, INTENT(INOUT) :: CHC_URB |
---|
347 | |
---|
348 | !------------------------------------------------------------------------------- |
---|
349 | ! O: output variables from Urban to LSM |
---|
350 | !------------------------------------------------------------------------------- |
---|
351 | |
---|
352 | REAL, INTENT(OUT) :: TS ! surface potential temperature [K] |
---|
353 | REAL, INTENT(OUT) :: QS ! surface humidity [K] |
---|
354 | REAL, INTENT(OUT) :: SH ! sensible heat flux [W/m/m] |
---|
355 | REAL, INTENT(OUT) :: LH ! latent heat flux [W/m/m] |
---|
356 | REAL, INTENT(OUT) :: LH_KINEMATIC ! latent heat, kinetic [kg/m/m/s] |
---|
357 | REAL, INTENT(OUT) :: SW ! upward short wave radiation flux [W/m/m] |
---|
358 | REAL, INTENT(OUT) :: ALB ! time-varying albedo [fraction] |
---|
359 | REAL, INTENT(OUT) :: LW ! upward long wave radiation flux [W/m/m] |
---|
360 | REAL, INTENT(OUT) :: G ! heat flux into the ground [W/m/m] |
---|
361 | REAL, INTENT(OUT) :: RN ! net radition [W/m/m] |
---|
362 | REAL, INTENT(OUT) :: PSIM ! similality stability shear function for momentum |
---|
363 | REAL, INTENT(OUT) :: PSIH ! similality stability shear function for heat |
---|
364 | REAL, INTENT(OUT) :: GZ1OZ0 |
---|
365 | REAL, INTENT(OUT) :: U10 ! u at 10m [m/s] |
---|
366 | REAL, INTENT(OUT) :: V10 ! u at 10m [m/s] |
---|
367 | REAL, INTENT(OUT) :: TH2 ! potential temperature at 2 m [K] |
---|
368 | REAL, INTENT(OUT) :: Q2 ! humidity at 2 m [-] |
---|
369 | !m REAL, INTENT(OUT) :: CHS,CHS2 ! CH*U at za and 2 m [m/s] |
---|
370 | REAL, INTENT(OUT) :: UST ! friction velocity [m/s] |
---|
371 | |
---|
372 | |
---|
373 | !------------------------------------------------------------------------------- |
---|
374 | ! H: Historical (state) variables of Urban : LSM <--> Urban |
---|
375 | !------------------------------------------------------------------------------- |
---|
376 | |
---|
377 | ! TR: roof temperature [K]; TRP: at previous time step [K] |
---|
378 | ! TB: building wall temperature [K]; TBP: at previous time step [K] |
---|
379 | ! TG: road temperature [K]; TGP: at previous time step [K] |
---|
380 | ! TC: urban-canopy air temperature [K]; TCP: at previous time step [K] |
---|
381 | ! (absolute temperature) |
---|
382 | ! QC: urban-canopy air mixing ratio [kg/kg]; QCP: at previous time step [kg/kg] |
---|
383 | ! |
---|
384 | ! XXXR: Monin-Obkhov length for roof [dimensionless] |
---|
385 | ! XXXB: Monin-Obkhov length for building wall [dimensionless] |
---|
386 | ! XXXG: Monin-Obkhov length for road [dimensionless] |
---|
387 | ! XXXC: Monin-Obkhov length for urban-canopy [dimensionless] |
---|
388 | ! |
---|
389 | ! TRL, TBL, TGL: layer temperature [K] (absolute temperature) |
---|
390 | |
---|
391 | REAL, INTENT(INOUT):: TR, TB, TG, TC, QC, UC |
---|
392 | REAL, INTENT(INOUT):: XXXR, XXXB, XXXG, XXXC |
---|
393 | |
---|
394 | REAL, DIMENSION(1:num_roof_layers), INTENT(INOUT) :: TRL |
---|
395 | REAL, DIMENSION(1:num_wall_layers), INTENT(INOUT) :: TBL |
---|
396 | REAL, DIMENSION(1:num_road_layers), INTENT(INOUT) :: TGL |
---|
397 | |
---|
398 | !------------------------------------------------------------------------------- |
---|
399 | ! L: Local variables from read_param |
---|
400 | !------------------------------------------------------------------------------- |
---|
401 | |
---|
402 | REAL :: ZR, Z0C, Z0HC, ZDC, SVF, R, RW, HGT, AH |
---|
403 | REAL :: SIGMA_ZED |
---|
404 | REAL :: CAPR, CAPB, CAPG, AKSR, AKSB, AKSG, ALBR, ALBB, ALBG |
---|
405 | REAL :: EPSR, EPSB, EPSG, Z0R, Z0B, Z0G, Z0HB, Z0HG |
---|
406 | REAL :: TRLEND,TBLEND,TGLEND |
---|
407 | REAL :: T1VR, T1VC,TH2V |
---|
408 | REAL :: RLMO_URB |
---|
409 | REAL :: AKANDA_URBAN |
---|
410 | |
---|
411 | REAL :: TH2X !m |
---|
412 | |
---|
413 | INTEGER :: BOUNDR, BOUNDB, BOUNDG |
---|
414 | INTEGER :: CH_SCHEME, TS_SCHEME |
---|
415 | |
---|
416 | LOGICAL :: SHADOW ! [true=consider svf and shadow effects, false=consider svf effect only] |
---|
417 | |
---|
418 | !for BEP |
---|
419 | INTEGER :: NUMDIR |
---|
420 | REAL, DIMENSION ( MAXDIRS ) :: STREET_DIRECTION |
---|
421 | REAL, DIMENSION ( MAXDIRS ) :: STREET_WIDTH |
---|
422 | REAL, DIMENSION ( MAXDIRS ) :: BUILDING_WIDTH |
---|
423 | INTEGER :: NUMHGT |
---|
424 | REAL, DIMENSION ( MAXHGTS ) :: HEIGHT_BIN |
---|
425 | REAL, DIMENSION ( MAXHGTS ) :: HPERCENT_BIN |
---|
426 | !end BEP |
---|
427 | !------------------------------------------------------------------------------- |
---|
428 | ! L: Local variables |
---|
429 | !------------------------------------------------------------------------------- |
---|
430 | |
---|
431 | REAL :: BETR, BETB, BETG |
---|
432 | REAL :: SX, SD, SQ, RX |
---|
433 | REAL :: UR, ZC, XLB, BB |
---|
434 | REAL :: Z, RIBB, RIBG, RIBC, BHR, BHB, BHG, BHC |
---|
435 | REAL :: TSC, LNET, SNET, FLXUV, THG, FLXTH, FLXHUM, FLXG |
---|
436 | REAL :: W, VFGS, VFGW, VFWG, VFWS, VFWW |
---|
437 | REAL :: HOUI1, HOUI2, HOUI3, HOUI4, HOUI5, HOUI6, HOUI7, HOUI8 |
---|
438 | REAL :: SLX, SLX1, SLX2, SLX3, SLX4, SLX5, SLX6, SLX7, SLX8 |
---|
439 | REAL :: FLXTHR, FLXTHB, FLXTHG, FLXHUMR, FLXHUMB, FLXHUMG |
---|
440 | REAL :: SR, SB, SG, RR, RB, RG |
---|
441 | REAL :: SR1, SR2, SB1, SB2, SG1, SG2, RR1, RR2, RB1, RB2, RG1, RG2 |
---|
442 | REAL :: HR, HB, HG, ELER, ELEB, ELEG, G0R, G0B, G0G |
---|
443 | REAL :: ALPHAC, ALPHAR, ALPHAB, ALPHAG |
---|
444 | REAL :: CHC, CHR, CHB, CHG, CDC, CDR, CDB, CDG |
---|
445 | REAL :: C1R, C1B, C1G, TE, TC1, TC2, QC1, QC2, QS0R, QS0B, QS0G,RHO,ES |
---|
446 | |
---|
447 | REAL :: DESDT |
---|
448 | REAL :: F |
---|
449 | REAL :: DQS0RDTR |
---|
450 | REAL :: DRRDTR, DHRDTR, DELERDTR, DG0RDTR |
---|
451 | REAL :: DTR, DFDT |
---|
452 | REAL :: FX, FY, GF, GX, GY |
---|
453 | REAL :: DTCDTB, DTCDTG |
---|
454 | REAL :: DQCDTB, DQCDTG |
---|
455 | REAL :: DRBDTB1, DRBDTG1, DRBDTB2, DRBDTG2 |
---|
456 | REAL :: DRGDTB1, DRGDTG1, DRGDTB2, DRGDTG2 |
---|
457 | REAL :: DRBDTB, DRBDTG, DRGDTB, DRGDTG |
---|
458 | REAL :: DHBDTB, DHBDTG, DHGDTB, DHGDTG |
---|
459 | REAL :: DELEBDTB, DELEBDTG, DELEGDTG, DELEGDTB |
---|
460 | REAL :: DG0BDTB, DG0BDTG, DG0GDTG, DG0GDTB |
---|
461 | REAL :: DQS0BDTB, DQS0GDTG |
---|
462 | REAL :: DTB, DTG, DTC |
---|
463 | |
---|
464 | REAL :: THEATAZ ! Solar Zenith Angle [rad] |
---|
465 | REAL :: THEATAS ! = PI/2. - THETAZ |
---|
466 | REAL :: FAI ! Latitude [rad] |
---|
467 | REAL :: CNT,SNT |
---|
468 | REAL :: PS ! Surface Pressure [hPa] |
---|
469 | REAL :: TAV ! Vertial Temperature [K] |
---|
470 | |
---|
471 | REAL :: XXX, X, Z0, Z0H, CD, CH |
---|
472 | REAL :: XXX2, PSIM2, PSIH2, XXX10, PSIM10, PSIH10 |
---|
473 | REAL :: PSIX, PSIT, PSIX2, PSIT2, PSIX10, PSIT10 |
---|
474 | |
---|
475 | REAL :: TRP, TBP, TGP, TCP, QCP, TST, QST |
---|
476 | |
---|
477 | INTEGER :: iteration, K |
---|
478 | INTEGER :: tloc |
---|
479 | |
---|
480 | !------------------------------------------------------------------------------- |
---|
481 | ! Set parameters |
---|
482 | !------------------------------------------------------------------------------- |
---|
483 | |
---|
484 | ! Miao, 2007/01/17, cal. ah |
---|
485 | if(ahoption==1) then |
---|
486 | tloc=mod(int(OMG/PI*180./15.+12.+0.5 ),24) |
---|
487 | if(tloc==0) tloc=24 |
---|
488 | endif |
---|
489 | |
---|
490 | CALL read_param(UTYPE,ZR,SIGMA_ZED,Z0C,Z0HC,ZDC,SVF,R,RW,HGT, & |
---|
491 | AH,CAPR,CAPB,CAPG,AKSR,AKSB,AKSG,ALBR,ALBB, & |
---|
492 | ALBG,EPSR,EPSB,EPSG,Z0R,Z0B,Z0G,Z0HB,Z0HG, & |
---|
493 | BETR,BETB,BETG,TRLEND,TBLEND,TGLEND, & |
---|
494 | !for BEP |
---|
495 | NUMDIR, STREET_DIRECTION, STREET_WIDTH, & |
---|
496 | BUILDING_WIDTH, NUMHGT, HEIGHT_BIN, & |
---|
497 | HPERCENT_BIN, & |
---|
498 | !end BEP |
---|
499 | BOUNDR,BOUNDB,BOUNDG,CH_SCHEME,TS_SCHEME, & |
---|
500 | AKANDA_URBAN) |
---|
501 | |
---|
502 | ! Miao, 2007/01/17, cal. ah |
---|
503 | if(ahoption==1) AH=AH*ahdiuprf(tloc) |
---|
504 | |
---|
505 | IF( ZDC+Z0C+2. >= ZA) THEN |
---|
506 | CALL wrf_error_fatal ("ZDC + Z0C + 2m is larger than the 1st WRF level "// & |
---|
507 | "Stop in subroutine urban - change ZDC and Z0C" ) |
---|
508 | END IF |
---|
509 | |
---|
510 | IF(.NOT.LSOLAR) THEN |
---|
511 | SSGD = SRATIO*SSG |
---|
512 | SSGQ = SSG - SSGD |
---|
513 | ENDIF |
---|
514 | SSGD = SRATIO*SSG ! No radiation scheme has SSGD and SSGQ. |
---|
515 | SSGQ = SSG - SSGD |
---|
516 | |
---|
517 | W=2.*1.*HGT |
---|
518 | VFGS=SVF |
---|
519 | VFGW=1.-SVF |
---|
520 | VFWG=(1.-SVF)*(1.-R)/W |
---|
521 | VFWS=VFWG |
---|
522 | VFWW=1.-2.*VFWG |
---|
523 | |
---|
524 | !------------------------------------------------------------------------------- |
---|
525 | ! Convert unit from MKS to cgs |
---|
526 | ! Renew surface and layer temperatures |
---|
527 | !------------------------------------------------------------------------------- |
---|
528 | |
---|
529 | SX=(SSGD+SSGQ)/697.7/60. ! downward short wave radition [ly/min] |
---|
530 | SD=SSGD/697.7/60. ! downward direct short wave radiation |
---|
531 | SQ=SSGQ/697.7/60. ! downward diffuse short wave radiation |
---|
532 | RX=LLG/697.7/60. ! downward long wave radiation |
---|
533 | RHO=RHOO*0.001 ! air density at first atmospheric level |
---|
534 | |
---|
535 | TRP=TR |
---|
536 | TBP=TB |
---|
537 | TGP=TG |
---|
538 | TCP=TC |
---|
539 | QCP=QC |
---|
540 | |
---|
541 | TAV=TA*(1.+0.61*QA) |
---|
542 | PS=RHOO*287.*TAV/100. ![hPa] |
---|
543 | |
---|
544 | !------------------------------------------------------------------------------- |
---|
545 | ! Canopy wind |
---|
546 | !------------------------------------------------------------------------------- |
---|
547 | |
---|
548 | IF ( ZR + 2. < ZA ) THEN |
---|
549 | UR=UA*LOG((ZR-ZDC)/Z0C)/LOG((ZA-ZDC)/Z0C) |
---|
550 | ZC=0.7*ZR |
---|
551 | XLB=0.4*(ZR-ZDC) |
---|
552 | ! BB formulation from Inoue (1963) |
---|
553 | BB = 0.4 * ZR / ( XLB * alog( ( ZR - ZDC ) / Z0C ) ) |
---|
554 | UC=UR*EXP(-BB*(1.-ZC/ZR)) |
---|
555 | ELSE |
---|
556 | ! PRINT *, 'Warning ZR + 2m is larger than the 1st WRF level' |
---|
557 | ZC=ZA/2. |
---|
558 | UC=UA/2. |
---|
559 | END IF |
---|
560 | |
---|
561 | !------------------------------------------------------------------------------- |
---|
562 | ! Net Short Wave Radiation at roof, wall, and road |
---|
563 | !------------------------------------------------------------------------------- |
---|
564 | |
---|
565 | SHADOW = .false. |
---|
566 | ! SHADOW = .true. |
---|
567 | |
---|
568 | IF (SSG > 0.0) THEN |
---|
569 | |
---|
570 | IF(.NOT.SHADOW) THEN ! no shadow effects model |
---|
571 | |
---|
572 | SR1=SX*(1.-ALBR) |
---|
573 | SG1=SX*VFGS*(1.-ALBG) |
---|
574 | SB1=SX*VFWS*(1.-ALBB) |
---|
575 | SG2=SB1*ALBB/(1.-ALBB)*VFGW*(1.-ALBG) |
---|
576 | SB2=SG1*ALBG/(1.-ALBG)*VFWG*(1.-ALBB) |
---|
577 | |
---|
578 | ELSE ! shadow effects model |
---|
579 | |
---|
580 | FAI=XLAT*PI/180. |
---|
581 | |
---|
582 | THEATAS=ABS(ASIN(COSZ)) |
---|
583 | THEATAZ=ABS(ACOS(COSZ)) |
---|
584 | |
---|
585 | SNT=COS(DECLIN)*SIN(OMG)/COS(THEATAS) |
---|
586 | CNT=(COSZ*SIN(FAI)-SIN(DECLIN))/COS(THEATAS)/COS(FAI) |
---|
587 | |
---|
588 | HOUI1=(SNT*COS(PI/8.) -CNT*SIN(PI/8.)) |
---|
589 | HOUI2=(SNT*COS(2.*PI/8.) -CNT*SIN(2.*PI/8.)) |
---|
590 | HOUI3=(SNT*COS(3.*PI/8.) -CNT*SIN(3.*PI/8.)) |
---|
591 | HOUI4=(SNT*COS(4.*PI/8.) -CNT*SIN(4.*PI/8.)) |
---|
592 | HOUI5=(SNT*COS(5.*PI/8.) -CNT*SIN(5.*PI/8.)) |
---|
593 | HOUI6=(SNT*COS(6.*PI/8.) -CNT*SIN(6.*PI/8.)) |
---|
594 | HOUI7=(SNT*COS(7.*PI/8.) -CNT*SIN(7.*PI/8.)) |
---|
595 | HOUI8=(SNT*COS(8.*PI/8.) -CNT*SIN(8.*PI/8.)) |
---|
596 | |
---|
597 | SLX1=HGT*ABS(TAN(THEATAZ))*ABS(HOUI1) |
---|
598 | SLX2=HGT*ABS(TAN(THEATAZ))*ABS(HOUI2) |
---|
599 | SLX3=HGT*ABS(TAN(THEATAZ))*ABS(HOUI3) |
---|
600 | SLX4=HGT*ABS(TAN(THEATAZ))*ABS(HOUI4) |
---|
601 | SLX5=HGT*ABS(TAN(THEATAZ))*ABS(HOUI5) |
---|
602 | SLX6=HGT*ABS(TAN(THEATAZ))*ABS(HOUI6) |
---|
603 | SLX7=HGT*ABS(TAN(THEATAZ))*ABS(HOUI7) |
---|
604 | SLX8=HGT*ABS(TAN(THEATAZ))*ABS(HOUI8) |
---|
605 | |
---|
606 | IF(SLX1 > RW) SLX1=RW |
---|
607 | IF(SLX2 > RW) SLX2=RW |
---|
608 | IF(SLX3 > RW) SLX3=RW |
---|
609 | IF(SLX4 > RW) SLX4=RW |
---|
610 | IF(SLX5 > RW) SLX5=RW |
---|
611 | IF(SLX6 > RW) SLX6=RW |
---|
612 | IF(SLX7 > RW) SLX7=RW |
---|
613 | IF(SLX8 > RW) SLX8=RW |
---|
614 | |
---|
615 | SLX=(SLX1+SLX2+SLX3+SLX4+SLX5+SLX6+SLX7+SLX8)/8. |
---|
616 | |
---|
617 | SR1=SD*(1.-ALBR)+SQ*(1.-ALBR) |
---|
618 | SG1=SD*(RW-SLX)/RW*(1.-ALBG)+SQ*VFGS*(1.-ALBG) |
---|
619 | SB1=SD*SLX/W*(1.-ALBB)+SQ*VFWS*(1.-ALBB) |
---|
620 | SG2=SB1*ALBB/(1.-ALBB)*VFGW*(1.-ALBG) |
---|
621 | SB2=SG1*ALBG/(1.-ALBG)*VFWG*(1.-ALBB) |
---|
622 | |
---|
623 | END IF |
---|
624 | |
---|
625 | SR=SR1 |
---|
626 | SG=SG1+SG2 |
---|
627 | SB=SB1+SB2 |
---|
628 | |
---|
629 | SNET=R*SR+W*SB+RW*SG |
---|
630 | |
---|
631 | ELSE |
---|
632 | |
---|
633 | SR=0. |
---|
634 | SG=0. |
---|
635 | SB=0. |
---|
636 | SNET=0. |
---|
637 | |
---|
638 | END IF |
---|
639 | |
---|
640 | !------------------------------------------------------------------------------- |
---|
641 | ! Roof |
---|
642 | !------------------------------------------------------------------------------- |
---|
643 | |
---|
644 | !------------------------------------------------------------------------------- |
---|
645 | ! CHR, CDR, BETR |
---|
646 | !------------------------------------------------------------------------------- |
---|
647 | |
---|
648 | ! Z=ZA-ZDC |
---|
649 | ! BHR=LOG(Z0R/Z0HR)/0.4 |
---|
650 | ! RIBR=(9.8*2./(TA+TRP))*(TA-TRP)*(Z+Z0R)/(UA*UA) |
---|
651 | ! CALL mos(XXXR,ALPHAR,CDR,BHR,RIBR,Z,Z0R,UA,TA,TRP,RHO) |
---|
652 | |
---|
653 | ! Alternative option for MOST using SFCDIF routine from Noah |
---|
654 | ! Virtual temperatures needed by SFCDIF |
---|
655 | T1VR = TRP* (1.0+ 0.61 * QA) |
---|
656 | TH2V = (TA + ( 0.0098 * ZA)) * (1.0+ 0.61 * QA) |
---|
657 | |
---|
658 | ! note that CHR_URB contains UA (=CHR_MOS*UA) |
---|
659 | RLMO_URB=0.0 |
---|
660 | CALL SFCDIF_URB (ZA,Z0R,T1VR,TH2V,UA,AKANDA_URBAN,CMR_URB,CHR_URB,RLMO_URB,CDR) |
---|
661 | ALPHAR = RHO*CP*CHR_URB |
---|
662 | CHR=ALPHAR/RHO/CP/UA |
---|
663 | |
---|
664 | IF(RAIN > 1.) BETR=0.7 |
---|
665 | |
---|
666 | IF (TS_SCHEME == 1) THEN |
---|
667 | |
---|
668 | !------------------------------------------------------------------------------- |
---|
669 | ! TR Solving Non-Linear Equation by Newton-Rapson |
---|
670 | ! TRL Solving Heat Equation by Tri Diagonal Matrix Algorithm |
---|
671 | !------------------------------------------------------------------------------- |
---|
672 | ! TSC=TRP-273.15 |
---|
673 | ! ES=EXP(19.482-4303.4/(TSC+243.5)) ! WMO |
---|
674 | ! ES=6.11*10.**(TETENA*TSC/(TETENB+TSC)) ! Tetens |
---|
675 | ! DESDT=( 6.1078*(2500.-2.4*TSC)/ & ! Tetens |
---|
676 | ! (0.46151*(TSC+273.15)**2.) )*10.**(7.5*TSC/(237.3+TSC)) |
---|
677 | ! ES=6.11*EXP((2.5*10.**6./461.51)*(TRP-273.15)/(273.15*TRP) ) ! Clausius-Clapeyron |
---|
678 | ! DESDT=(2.5*10.**6./461.51)*ES/(TRP**2.) ! Clausius-Clapeyron |
---|
679 | ! QS0R=0.622*ES/(PS-0.378*ES) |
---|
680 | ! DQS0RDTR = DESDT*0.622*PS/((PS-0.378*ES)**2.) |
---|
681 | ! DQS0RDTR = 17.269*(273.15-35.86)/((TRP-35.86)**2.)*QS0R |
---|
682 | |
---|
683 | ! TRP=350. |
---|
684 | |
---|
685 | DO ITERATION=1,20 |
---|
686 | |
---|
687 | ES=6.11*EXP( (2.5*10.**6./461.51)*(TRP-273.15)/(273.15*TRP) ) |
---|
688 | DESDT=(2.5*10.**6./461.51)*ES/(TRP**2.) |
---|
689 | QS0R=0.622*ES/(PS-0.378*ES) |
---|
690 | DQS0RDTR = DESDT*0.622*PS/((PS-0.378*ES)**2.) |
---|
691 | |
---|
692 | RR=EPSR*(RX-SIG*(TRP**4.)/60.) |
---|
693 | HR=RHO*CP*CHR*UA*(TRP-TA)*100. |
---|
694 | ELER=RHO*EL*CHR*UA*BETR*(QS0R-QA)*100. |
---|
695 | G0R=AKSR*(TRP-TRL(1))/(DZR(1)/2.) |
---|
696 | |
---|
697 | F = SR + RR - HR - ELER - G0R |
---|
698 | |
---|
699 | DRRDTR = (-4.*EPSR*SIG*TRP**3.)/60. |
---|
700 | DHRDTR = RHO*CP*CHR*UA*100. |
---|
701 | DELERDTR = RHO*EL*CHR*UA*BETR*DQS0RDTR*100. |
---|
702 | DG0RDTR = 2.*AKSR/DZR(1) |
---|
703 | |
---|
704 | DFDT = DRRDTR - DHRDTR - DELERDTR - DG0RDTR |
---|
705 | DTR = F/DFDT |
---|
706 | |
---|
707 | TR = TRP - DTR |
---|
708 | TRP = TR |
---|
709 | |
---|
710 | IF( ABS(F) < 0.000001 .AND. ABS(DTR) < 0.000001 ) EXIT |
---|
711 | |
---|
712 | END DO |
---|
713 | |
---|
714 | ! multi-layer heat equation model |
---|
715 | |
---|
716 | CALL multi_layer(num_roof_layers,BOUNDR,G0R,CAPR,AKSR,TRL,DZR,DELT,TRLEND) |
---|
717 | |
---|
718 | ELSE |
---|
719 | |
---|
720 | ES=6.11*EXP( (2.5*10.**6./461.51)*(TRP-273.15)/(273.15*TRP) ) |
---|
721 | QS0R=0.622*ES/(PS-0.378*ES) |
---|
722 | |
---|
723 | RR=EPSR*(RX-SIG*(TRP**4.)/60.) |
---|
724 | HR=RHO*CP*CHR*UA*(TRP-TA)*100. |
---|
725 | ELER=RHO*EL*CHR*UA*BETR*(QS0R-QA)*100. |
---|
726 | G0R=SR+RR-HR-ELER |
---|
727 | |
---|
728 | CALL force_restore(CAPR,AKSR,DELT,SR,RR,HR,ELER,TRLEND,TRP,TR) |
---|
729 | |
---|
730 | TRP=TR |
---|
731 | |
---|
732 | END IF |
---|
733 | |
---|
734 | FLXTHR=HR/RHO/CP/100. |
---|
735 | FLXHUMR=ELER/RHO/EL/100. |
---|
736 | |
---|
737 | !------------------------------------------------------------------------------- |
---|
738 | ! Wall and Road |
---|
739 | !------------------------------------------------------------------------------- |
---|
740 | |
---|
741 | !------------------------------------------------------------------------------- |
---|
742 | ! CHC, CHB, CDB, BETB, CHG, CDG, BETG |
---|
743 | !------------------------------------------------------------------------------- |
---|
744 | |
---|
745 | ! Z=ZA-ZDC |
---|
746 | ! BHC=LOG(Z0C/Z0HC)/0.4 |
---|
747 | ! RIBC=(9.8*2./(TA+TCP))*(TA-TCP)*(Z+Z0C)/(UA*UA) |
---|
748 | ! |
---|
749 | ! CALL mos(XXXC,ALPHAC,CDC,BHC,RIBC,Z,Z0C,UA,TA,TCP,RHO) |
---|
750 | ! Virtual temperatures needed by SFCDIF routine from Noah |
---|
751 | |
---|
752 | T1VC = TCP* (1.0+ 0.61 * QA) |
---|
753 | RLMO_URB=0.0 |
---|
754 | CALL SFCDIF_URB(ZA,Z0C,T1VC,TH2V,UA,AKANDA_URBAN,CMC_URB,CHC_URB,RLMO_URB,CDC) |
---|
755 | ALPHAC = RHO*CP*CHC_URB |
---|
756 | |
---|
757 | IF (CH_SCHEME == 1) THEN |
---|
758 | |
---|
759 | Z=ZDC |
---|
760 | BHB=LOG(Z0B/Z0HB)/0.4 |
---|
761 | BHG=LOG(Z0G/Z0HG)/0.4 |
---|
762 | RIBB=(9.8*2./(TCP+TBP))*(TCP-TBP)*(Z+Z0B)/(UC*UC) |
---|
763 | RIBG=(9.8*2./(TCP+TGP))*(TCP-TGP)*(Z+Z0G)/(UC*UC) |
---|
764 | |
---|
765 | CALL mos(XXXB,ALPHAB,CDB,BHB,RIBB,Z,Z0B,UC,TCP,TBP,RHO) |
---|
766 | CALL mos(XXXG,ALPHAG,CDG,BHG,RIBG,Z,Z0G,UC,TCP,TGP,RHO) |
---|
767 | |
---|
768 | ELSE |
---|
769 | |
---|
770 | ALPHAB=RHO*CP*(6.15+4.18*UC)/1200. |
---|
771 | IF(UC > 5.) ALPHAB=RHO*CP*(7.51*UC**0.78)/1200. |
---|
772 | ALPHAG=RHO*CP*(6.15+4.18*UC)/1200. |
---|
773 | IF(UC > 5.) ALPHAG=RHO*CP*(7.51*UC**0.78)/1200. |
---|
774 | |
---|
775 | END IF |
---|
776 | |
---|
777 | CHC=ALPHAC/RHO/CP/UA |
---|
778 | CHB=ALPHAB/RHO/CP/UC |
---|
779 | CHG=ALPHAG/RHO/CP/UC |
---|
780 | |
---|
781 | BETB=0.0 |
---|
782 | IF(RAIN > 1.) BETG=0.7 |
---|
783 | |
---|
784 | IF (TS_SCHEME == 1) THEN |
---|
785 | |
---|
786 | !------------------------------------------------------------------------------- |
---|
787 | ! TB, TG Solving Non-Linear Simultaneous Equation by Newton-Rapson |
---|
788 | ! TBL,TGL Solving Heat Equation by Tri Diagonal Matrix Algorithm |
---|
789 | !------------------------------------------------------------------------------- |
---|
790 | |
---|
791 | ! TBP=350. |
---|
792 | ! TGP=350. |
---|
793 | |
---|
794 | DO ITERATION=1,20 |
---|
795 | |
---|
796 | ES=6.11*EXP( (2.5*10.**6./461.51)*(TBP-273.15)/(273.15*TBP) ) |
---|
797 | DESDT=(2.5*10.**6./461.51)*ES/(TBP**2.) |
---|
798 | QS0B=0.622*ES/(PS-0.378*ES) |
---|
799 | DQS0BDTB=DESDT*0.622*PS/((PS-0.378*ES)**2.) |
---|
800 | |
---|
801 | ES=6.11*EXP( (2.5*10.**6./461.51)*(TGP-273.15)/(273.15*TGP) ) |
---|
802 | DESDT=(2.5*10.**6./461.51)*ES/(TGP**2.) |
---|
803 | QS0G=0.622*ES/(PS-0.378*ES) |
---|
804 | DQS0GDTG=DESDT*0.22*PS/((PS-0.378*ES)**2.) |
---|
805 | |
---|
806 | RG1=EPSG*( RX*VFGS & |
---|
807 | +EPSB*VFGW*SIG*TBP**4./60. & |
---|
808 | -SIG*TGP**4./60. ) |
---|
809 | |
---|
810 | RB1=EPSB*( RX*VFWS & |
---|
811 | +EPSG*VFWG*SIG*TGP**4./60. & |
---|
812 | +EPSB*VFWW*SIG*TBP**4./60. & |
---|
813 | -SIG*TBP**4./60. ) |
---|
814 | |
---|
815 | RG2=EPSG*( (1.-EPSB)*(1.-SVF)*VFWS*RX & |
---|
816 | +(1.-EPSB)*(1.-SVF)*VFWG*EPSG*SIG*TGP**4./60. & |
---|
817 | +EPSB*(1.-EPSB)*(1.-SVF)*(1.-2.*VFWS)*SIG*TBP**4./60. ) |
---|
818 | |
---|
819 | RB2=EPSB*( (1.-EPSG)*VFWG*VFGS*RX & |
---|
820 | +(1.-EPSG)*EPSB*VFGW*VFWG*SIG*(TBP**4.)/60. & |
---|
821 | +(1.-EPSB)*VFWS*(1.-2.*VFWS)*RX & |
---|
822 | +(1.-EPSB)*VFWG*(1.-2.*VFWS)*EPSG*SIG*EPSG*TGP**4./60. & |
---|
823 | +EPSB*(1.-EPSB)*(1.-2.*VFWS)*(1.-2.*VFWS)*SIG*TBP**4./60. ) |
---|
824 | |
---|
825 | RG=RG1+RG2 |
---|
826 | RB=RB1+RB2 |
---|
827 | |
---|
828 | DRBDTB1=EPSB*(4.*EPSB*SIG*TB**3.*VFWW-4.*SIG*TB**3.)/60. |
---|
829 | DRBDTG1=EPSB*(4.*EPSG*SIG*TG**3.*VFWG)/60. |
---|
830 | DRBDTB2=EPSB*(4.*(1.-EPSG)*EPSB*SIG*TB**3.*VFGW*VFWG & |
---|
831 | +4.*EPSB*(1.-EPSB)*SIG*TB**3.*VFWW*VFWW)/60. |
---|
832 | DRBDTG2=EPSB*(4.*(1.-EPSB)*EPSG*SIG*TG**3.*VFWG*VFWW)/60. |
---|
833 | |
---|
834 | DRGDTB1=EPSG*(4.*EPSB*SIG*TB**3.*VFGW)/60. |
---|
835 | DRGDTG1=EPSG*(-4.*SIG*TG**3.)/60. |
---|
836 | DRGDTB2=EPSG*(4.*EPSB*(1.-EPSB)*SIG*TB**3.*VFWW*VFGW)/60. |
---|
837 | DRGDTG2=EPSG*(4.*(1.-EPSB)*EPSG*SIG*TG**3.*VFWG*VFGW)/60. |
---|
838 | |
---|
839 | DRBDTB=DRBDTB1+DRBDTB2 |
---|
840 | DRBDTG=DRBDTG1+DRBDTG2 |
---|
841 | DRGDTB=DRGDTB1+DRGDTB2 |
---|
842 | DRGDTG=DRGDTG1+DRGDTG2 |
---|
843 | |
---|
844 | HB=RHO*CP*CHB*UC*(TBP-TCP)*100. |
---|
845 | HG=RHO*CP*CHG*UC*(TGP-TCP)*100. |
---|
846 | |
---|
847 | DTCDTB=W*ALPHAB/(RW*ALPHAC+RW*ALPHAG+W*ALPHAB) |
---|
848 | DTCDTG=RW*ALPHAG/(RW*ALPHAC+RW*ALPHAG+W*ALPHAB) |
---|
849 | |
---|
850 | DHBDTB=RHO*CP*CHB*UC*(1.-DTCDTB)*100. |
---|
851 | DHBDTG=RHO*CP*CHB*UC*(0.-DTCDTG)*100. |
---|
852 | DHGDTG=RHO*CP*CHG*UC*(1.-DTCDTG)*100. |
---|
853 | DHGDTB=RHO*CP*CHG*UC*(0.-DTCDTB)*100. |
---|
854 | |
---|
855 | ELEB=RHO*EL*CHB*UC*BETB*(QS0B-QCP)*100. |
---|
856 | ELEG=RHO*EL*CHG*UC*BETG*(QS0G-QCP)*100. |
---|
857 | |
---|
858 | DQCDTB=W*ALPHAB*BETB*DQS0BDTB/(RW*ALPHAC+RW*ALPHAG*BETG+W*ALPHAB*BETB) |
---|
859 | DQCDTG=RW*ALPHAG*BETG*DQS0GDTG/(RW*ALPHAC+RW*ALPHAG*BETG+W*ALPHAB*BETB) |
---|
860 | |
---|
861 | DELEBDTB=RHO*EL*CHB*UC*BETB*(DQS0BDTB-DQCDTB)*100. |
---|
862 | DELEBDTG=RHO*EL*CHB*UC*BETB*(0.-DQCDTG)*100. |
---|
863 | DELEGDTG=RHO*EL*CHG*UC*BETG*(DQS0GDTG-DQCDTG)*100. |
---|
864 | DELEGDTB=RHO*EL*CHG*UC*BETG*(0.-DQCDTB)*100. |
---|
865 | |
---|
866 | G0B=AKSB*(TBP-TBL(1))/(DZB(1)/2.) |
---|
867 | G0G=AKSG*(TGP-TGL(1))/(DZG(1)/2.) |
---|
868 | |
---|
869 | DG0BDTB=2.*AKSB/DZB(1) |
---|
870 | DG0BDTG=0. |
---|
871 | DG0GDTG=2.*AKSG/DZG(1) |
---|
872 | DG0GDTB=0. |
---|
873 | |
---|
874 | F = SB + RB - HB - ELEB - G0B |
---|
875 | FX = DRBDTB - DHBDTB - DELEBDTB - DG0BDTB |
---|
876 | FY = DRBDTG - DHBDTG - DELEBDTG - DG0BDTG |
---|
877 | |
---|
878 | GF = SG + RG - HG - ELEG - G0G |
---|
879 | GX = DRGDTB - DHGDTB - DELEGDTB - DG0GDTB |
---|
880 | GY = DRGDTG - DHGDTG - DELEGDTG - DG0GDTG |
---|
881 | |
---|
882 | DTB = (GF*FY-F*GY)/(FX*GY-GX*FY) |
---|
883 | DTG = -(GF+GX*DTB)/GY |
---|
884 | |
---|
885 | TB = TBP + DTB |
---|
886 | TG = TGP + DTG |
---|
887 | |
---|
888 | TBP = TB |
---|
889 | TGP = TG |
---|
890 | |
---|
891 | TC1=RW*ALPHAC+RW*ALPHAG+W*ALPHAB |
---|
892 | TC2=RW*ALPHAC*TA+RW*ALPHAG*TGP+W*ALPHAB*TBP |
---|
893 | TC=TC2/TC1 |
---|
894 | |
---|
895 | QC1=RW*ALPHAC+RW*ALPHAG*BETG+W*ALPHAB*BETB |
---|
896 | QC2=RW*ALPHAC*QA+RW*ALPHAG*BETG*QS0G+W*ALPHAB*BETB*QS0B |
---|
897 | QC=QC2/QC1 |
---|
898 | |
---|
899 | DTC=TCP - TC |
---|
900 | TCP=TC |
---|
901 | QCP=QC |
---|
902 | |
---|
903 | IF( ABS(F) < 0.000001 .AND. ABS(DTB) < 0.000001 & |
---|
904 | .AND. ABS(GF) < 0.000001 .AND. ABS(DTG) < 0.000001 & |
---|
905 | .AND. ABS(DTC) < 0.000001) EXIT |
---|
906 | |
---|
907 | END DO |
---|
908 | |
---|
909 | CALL multi_layer(num_wall_layers,BOUNDB,G0B,CAPB,AKSB,TBL,DZB,DELT,TBLEND) |
---|
910 | |
---|
911 | CALL multi_layer(num_road_layers,BOUNDG,G0G,CAPG,AKSG,TGL,DZG,DELT,TGLEND) |
---|
912 | |
---|
913 | ELSE |
---|
914 | |
---|
915 | !------------------------------------------------------------------------------- |
---|
916 | ! TB, TG by Force-Restore Method |
---|
917 | !------------------------------------------------------------------------------- |
---|
918 | |
---|
919 | ES=6.11*EXP((2.5*10.**6./461.51)*(TBP-273.15)/(273.15*TBP) ) |
---|
920 | QS0B=0.622*ES/(PS-0.378*ES) |
---|
921 | |
---|
922 | ES=6.11*EXP((2.5*10.**6./461.51)*(TGP-273.15)/(273.15*TGP) ) |
---|
923 | QS0G=0.622*ES/(PS-0.378*ES) |
---|
924 | |
---|
925 | RG1=EPSG*( RX*VFGS & |
---|
926 | +EPSB*VFGW*SIG*TBP**4./60. & |
---|
927 | -SIG*TGP**4./60. ) |
---|
928 | |
---|
929 | RB1=EPSB*( RX*VFWS & |
---|
930 | +EPSG*VFWG*SIG*TGP**4./60. & |
---|
931 | +EPSB*VFWW*SIG*TBP**4./60. & |
---|
932 | -SIG*TBP**4./60. ) |
---|
933 | |
---|
934 | RG2=EPSG*( (1.-EPSB)*(1.-SVF)*VFWS*RX & |
---|
935 | +(1.-EPSB)*(1.-SVF)*VFWG*EPSG*SIG*TGP**4./60. & |
---|
936 | +EPSB*(1.-EPSB)*(1.-SVF)*(1.-2.*VFWS)*SIG*TBP**4./60. ) |
---|
937 | |
---|
938 | RB2=EPSB*( (1.-EPSG)*VFWG*VFGS*RX & |
---|
939 | +(1.-EPSG)*EPSB*VFGW*VFWG*SIG*(TBP**4.)/60. & |
---|
940 | +(1.-EPSB)*VFWS*(1.-2.*VFWS)*RX & |
---|
941 | +(1.-EPSB)*VFWG*(1.-2.*VFWS)*EPSG*SIG*EPSG*TGP**4./60. & |
---|
942 | +EPSB*(1.-EPSB)*(1.-2.*VFWS)*(1.-2.*VFWS)*SIG*TBP**4./60. ) |
---|
943 | |
---|
944 | RG=RG1+RG2 |
---|
945 | RB=RB1+RB2 |
---|
946 | |
---|
947 | HB=RHO*CP*CHB*UC*(TBP-TCP)*100. |
---|
948 | ELEB=RHO*EL*CHB*UC*BETB*(QS0B-QCP)*100. |
---|
949 | G0B=SB+RB-HB-ELEB |
---|
950 | |
---|
951 | HG=RHO*CP*CHG*UC*(TGP-TCP)*100. |
---|
952 | ELEG=RHO*EL*CHG*UC*BETG*(QS0G-QCP)*100. |
---|
953 | G0G=SG+RG-HG-ELEG |
---|
954 | |
---|
955 | CALL force_restore(CAPB,AKSB,DELT,SB,RB,HB,ELEB,TBLEND,TBP,TB) |
---|
956 | CALL force_restore(CAPG,AKSG,DELT,SG,RG,HG,ELEG,TGLEND,TGP,TG) |
---|
957 | |
---|
958 | TBP=TB |
---|
959 | TGP=TG |
---|
960 | |
---|
961 | TC1=RW*ALPHAC+RW*ALPHAG+W*ALPHAB |
---|
962 | TC2=RW*ALPHAC*TA+RW*ALPHAG*TGP+W*ALPHAB*TBP |
---|
963 | TC=TC2/TC1 |
---|
964 | |
---|
965 | QC1=RW*ALPHAC+RW*ALPHAG*BETG+W*ALPHAB*BETB |
---|
966 | QC2=RW*ALPHAC*QA+RW*ALPHAG*BETG*QS0G+W*ALPHAB*BETB*QS0B |
---|
967 | QC=QC2/QC1 |
---|
968 | |
---|
969 | TCP=TC |
---|
970 | QCP=QC |
---|
971 | |
---|
972 | END IF |
---|
973 | |
---|
974 | |
---|
975 | FLXTHB=HB/RHO/CP/100. |
---|
976 | FLXHUMB=ELEB/RHO/EL/100. |
---|
977 | FLXTHG=HG/RHO/CP/100. |
---|
978 | FLXHUMG=ELEG/RHO/EL/100. |
---|
979 | |
---|
980 | !------------------------------------------------------------------------------- |
---|
981 | ! Total Fluxes from Urban Canopy |
---|
982 | !------------------------------------------------------------------------------- |
---|
983 | |
---|
984 | FLXUV = ( R*CDR + RW*CDC )*UA*UA |
---|
985 | ! Miao, 2007/01/17, cal. ah |
---|
986 | if(ahoption==1) then |
---|
987 | FLXTH = ( R*FLXTHR + W*FLXTHB + RW*FLXTHG ) + AH/RHOO/CPP |
---|
988 | else |
---|
989 | FLXTH = ( R*FLXTHR + W*FLXTHB + RW*FLXTHG ) |
---|
990 | endif |
---|
991 | FLXHUM = ( R*FLXHUMR + W*FLXHUMB + RW*FLXHUMG ) |
---|
992 | FLXG = ( R*G0R + W*G0B + RW*G0G ) |
---|
993 | LNET = R*RR + W*RB + RW*RG |
---|
994 | |
---|
995 | !---------------------------------------------------------------------------- |
---|
996 | ! Convert Unit: FLUXES and u* T* q* --> WRF |
---|
997 | !---------------------------------------------------------------------------- |
---|
998 | |
---|
999 | SH = FLXTH * RHOO * CPP ! Sensible heat flux [W/m/m] |
---|
1000 | LH = FLXHUM * RHOO * ELL ! Latent heat flux [W/m/m] |
---|
1001 | LH_KINEMATIC = FLXHUM * RHOO ! Latent heat, Kinematic [kg/m/m/s] |
---|
1002 | LW = LLG - (LNET*697.7*60.) ! Upward longwave radiation [W/m/m] |
---|
1003 | SW = SSG - (SNET*697.7*60.) ! Upward shortwave radiation [W/m/m] |
---|
1004 | ALB = 0. |
---|
1005 | IF( ABS(SSG) > 0.0001) ALB = SW/SSG ! Effective albedo [-] |
---|
1006 | G = -FLXG*697.7*60. ! [W/m/m] |
---|
1007 | RN = (SNET+LNET)*697.7*60. ! Net radiation [W/m/m] |
---|
1008 | |
---|
1009 | UST = SQRT(FLXUV) ! u* [m/s] |
---|
1010 | TST = -FLXTH/UST ! T* [K] |
---|
1011 | QST = -FLXHUM/UST ! q* [-] |
---|
1012 | |
---|
1013 | !------------------------------------------------------ |
---|
1014 | ! diagnostic GRID AVERAGED PSIM PSIH TS QS --> WRF |
---|
1015 | !------------------------------------------------------ |
---|
1016 | |
---|
1017 | Z0 = Z0C |
---|
1018 | Z0H = Z0HC |
---|
1019 | Z = ZA - ZDC |
---|
1020 | |
---|
1021 | XXX = 0.4*9.81*Z*TST/TA/UST/UST |
---|
1022 | |
---|
1023 | IF ( XXX >= 1. ) XXX = 1. |
---|
1024 | IF ( XXX <= -5. ) XXX = -5. |
---|
1025 | |
---|
1026 | IF ( XXX > 0 ) THEN |
---|
1027 | PSIM = -5. * XXX |
---|
1028 | PSIH = -5. * XXX |
---|
1029 | ELSE |
---|
1030 | X = (1.-16.*XXX)**0.25 |
---|
1031 | PSIM = 2.*ALOG((1.+X)/2.) + ALOG((1.+X*X)/2.) - 2.*ATAN(X) + PI/2. |
---|
1032 | PSIH = 2.*ALOG((1.+X*X)/2.) |
---|
1033 | END IF |
---|
1034 | |
---|
1035 | GZ1OZ0 = ALOG(Z/Z0) |
---|
1036 | CD = 0.4**2./(ALOG(Z/Z0)-PSIM)**2. |
---|
1037 | ! |
---|
1038 | !m CH = 0.4**2./(ALOG(Z/Z0)-PSIM)/(ALOG(Z/Z0H)-PSIH) |
---|
1039 | !m CHS = 0.4*UST/(ALOG(Z/Z0H)-PSIH) |
---|
1040 | !m TS = TA + FLXTH/CH/UA ! surface potential temp (flux temp) |
---|
1041 | !m QS = QA + FLXHUM/CH/UA ! surface humidity |
---|
1042 | ! |
---|
1043 | TS = TA + FLXTH/CHS ! surface potential temp (flux temp) |
---|
1044 | QS = QA + FLXHUM/CHS ! surface humidity |
---|
1045 | |
---|
1046 | !------------------------------------------------------- |
---|
1047 | ! diagnostic GRID AVERAGED U10 V10 TH2 Q2 --> WRF |
---|
1048 | !------------------------------------------------------- |
---|
1049 | |
---|
1050 | XXX2 = (2./Z)*XXX |
---|
1051 | IF ( XXX2 >= 1. ) XXX2 = 1. |
---|
1052 | IF ( XXX2 <= -5. ) XXX2 = -5. |
---|
1053 | |
---|
1054 | IF ( XXX2 > 0 ) THEN |
---|
1055 | PSIM2 = -5. * XXX2 |
---|
1056 | PSIH2 = -5. * XXX2 |
---|
1057 | ELSE |
---|
1058 | X = (1.-16.*XXX2)**0.25 |
---|
1059 | PSIM2 = 2.*ALOG((1.+X)/2.) + ALOG((1.+X*X)/2.) - 2.*ATAN(X) + 2.*ATAN(1.) |
---|
1060 | PSIH2 = 2.*ALOG((1.+X*X)/2.) |
---|
1061 | END IF |
---|
1062 | ! |
---|
1063 | !m CHS2 = 0.4*UST/(ALOG(2./Z0H)-PSIH2) |
---|
1064 | ! |
---|
1065 | |
---|
1066 | XXX10 = (10./Z)*XXX |
---|
1067 | IF ( XXX10 >= 1. ) XXX10 = 1. |
---|
1068 | IF ( XXX10 <= -5. ) XXX10 = -5. |
---|
1069 | |
---|
1070 | IF ( XXX10 > 0 ) THEN |
---|
1071 | PSIM10 = -5. * XXX10 |
---|
1072 | PSIH10 = -5. * XXX10 |
---|
1073 | ELSE |
---|
1074 | X = (1.-16.*XXX10)**0.25 |
---|
1075 | PSIM10 = 2.*ALOG((1.+X)/2.) + ALOG((1.+X*X)/2.) - 2.*ATAN(X) + 2.*ATAN(1.) |
---|
1076 | PSIH10 = 2.*ALOG((1.+X*X)/2.) |
---|
1077 | END IF |
---|
1078 | |
---|
1079 | PSIX = ALOG(Z/Z0) - PSIM |
---|
1080 | PSIT = ALOG(Z/Z0H) - PSIH |
---|
1081 | |
---|
1082 | PSIX2 = ALOG(2./Z0) - PSIM2 |
---|
1083 | PSIT2 = ALOG(2./Z0H) - PSIH2 |
---|
1084 | |
---|
1085 | PSIX10 = ALOG(10./Z0) - PSIM10 |
---|
1086 | PSIT10 = ALOG(10./Z0H) - PSIH10 |
---|
1087 | |
---|
1088 | U10 = U1 * (PSIX10/PSIX) ! u at 10 m [m/s] |
---|
1089 | V10 = V1 * (PSIX10/PSIX) ! v at 10 m [m/s] |
---|
1090 | |
---|
1091 | ! TH2 = TS + (TA-TS)*(PSIT2/PSIT) ! potential temp at 2 m [K] |
---|
1092 | ! TH2 = TS + (TA-TS)*(PSIT2/PSIT) ! Fei: this seems to be temp (not potential) at 2 m [K] |
---|
1093 | !Fei: consistant with M-O theory |
---|
1094 | TH2 = TS + (TA-TS) *(CHS/CHS2) |
---|
1095 | |
---|
1096 | Q2 = QS + (QA-QS)*(PSIT2/PSIT) ! humidity at 2 m [-] |
---|
1097 | |
---|
1098 | ! TS = (LW/SIG_SI/0.88)**0.25 ! Radiative temperature [K] |
---|
1099 | |
---|
1100 | END SUBROUTINE urban |
---|
1101 | !=============================================================================== |
---|
1102 | ! |
---|
1103 | ! mos |
---|
1104 | ! |
---|
1105 | !=============================================================================== |
---|
1106 | SUBROUTINE mos(XXX,ALPHA,CD,B1,RIB,Z,Z0,UA,TA,TSF,RHO) |
---|
1107 | |
---|
1108 | ! XXX: z/L (requires iteration by Newton-Rapson method) |
---|
1109 | ! B1: Stanton number |
---|
1110 | ! PSIM: = PSIX of LSM |
---|
1111 | ! PSIH: = PSIT of LSM |
---|
1112 | |
---|
1113 | IMPLICIT NONE |
---|
1114 | |
---|
1115 | REAL, PARAMETER :: CP=0.24 |
---|
1116 | REAL, INTENT(IN) :: B1, Z, Z0, UA, TA, TSF, RHO |
---|
1117 | REAL, INTENT(OUT) :: ALPHA, CD |
---|
1118 | REAL, INTENT(INOUT) :: XXX, RIB |
---|
1119 | REAL :: XXX0, X, X0, FAIH, DPSIM, DPSIH |
---|
1120 | REAL :: F, DF, XXXP, US, TS, AL, XKB, DD, PSIM, PSIH |
---|
1121 | INTEGER :: NEWT |
---|
1122 | INTEGER, PARAMETER :: NEWT_END=10 |
---|
1123 | |
---|
1124 | IF(RIB <= -15.) RIB=-15. |
---|
1125 | |
---|
1126 | IF(RIB < 0.) THEN |
---|
1127 | |
---|
1128 | DO NEWT=1,NEWT_END |
---|
1129 | |
---|
1130 | IF(XXX >= 0.) XXX=-1.E-3 |
---|
1131 | |
---|
1132 | XXX0=XXX*Z0/(Z+Z0) |
---|
1133 | |
---|
1134 | X=(1.-16.*XXX)**0.25 |
---|
1135 | X0=(1.-16.*XXX0)**0.25 |
---|
1136 | |
---|
1137 | PSIM=ALOG((Z+Z0)/Z0) & |
---|
1138 | -ALOG((X+1.)**2.*(X**2.+1.)) & |
---|
1139 | +2.*ATAN(X) & |
---|
1140 | +ALOG((X+1.)**2.*(X0**2.+1.)) & |
---|
1141 | -2.*ATAN(X0) |
---|
1142 | FAIH=1./SQRT(1.-16.*XXX) |
---|
1143 | PSIH=ALOG((Z+Z0)/Z0)+0.4*B1 & |
---|
1144 | -2.*ALOG(SQRT(1.-16.*XXX)+1.) & |
---|
1145 | +2.*ALOG(SQRT(1.-16.*XXX0)+1.) |
---|
1146 | |
---|
1147 | DPSIM=(1.-16.*XXX)**(-0.25)/XXX & |
---|
1148 | -(1.-16.*XXX0)**(-0.25)/XXX |
---|
1149 | DPSIH=1./SQRT(1.-16.*XXX)/XXX & |
---|
1150 | -1./SQRT(1.-16.*XXX0)/XXX |
---|
1151 | |
---|
1152 | F=RIB*PSIM**2./PSIH-XXX |
---|
1153 | |
---|
1154 | DF=RIB*(2.*DPSIM*PSIM*PSIH-DPSIH*PSIM**2.) & |
---|
1155 | /PSIH**2.-1. |
---|
1156 | |
---|
1157 | XXXP=XXX |
---|
1158 | XXX=XXXP-F/DF |
---|
1159 | IF(XXX <= -10.) XXX=-10. |
---|
1160 | |
---|
1161 | END DO |
---|
1162 | |
---|
1163 | ELSE IF(RIB >= 0.142857) THEN |
---|
1164 | |
---|
1165 | XXX=0.714 |
---|
1166 | PSIM=ALOG((Z+Z0)/Z0)+7.*XXX |
---|
1167 | PSIH=PSIM+0.4*B1 |
---|
1168 | |
---|
1169 | ELSE |
---|
1170 | |
---|
1171 | AL=ALOG((Z+Z0)/Z0) |
---|
1172 | XKB=0.4*B1 |
---|
1173 | DD=-4.*RIB*7.*XKB*AL+(AL+XKB)**2. |
---|
1174 | IF(DD <= 0.) DD=0. |
---|
1175 | XXX=(AL+XKB-2.*RIB*7.*AL-SQRT(DD))/(2.*(RIB*7.**2-7.)) |
---|
1176 | PSIM=ALOG((Z+Z0)/Z0)+7.*MIN(XXX,0.714) |
---|
1177 | PSIH=PSIM+0.4*B1 |
---|
1178 | |
---|
1179 | END IF |
---|
1180 | |
---|
1181 | US=0.4*UA/PSIM ! u* |
---|
1182 | IF(US <= 0.01) US=0.01 |
---|
1183 | TS=0.4*(TA-TSF)/PSIH ! T* |
---|
1184 | |
---|
1185 | CD=US*US/UA**2. ! CD |
---|
1186 | ALPHA=RHO*CP*0.4*US/PSIH ! RHO*CP*CH*U |
---|
1187 | |
---|
1188 | RETURN |
---|
1189 | END SUBROUTINE mos |
---|
1190 | !=============================================================================== |
---|
1191 | ! |
---|
1192 | ! louis79 |
---|
1193 | ! |
---|
1194 | !=============================================================================== |
---|
1195 | SUBROUTINE louis79(ALPHA,CD,RIB,Z,Z0,UA,RHO) |
---|
1196 | |
---|
1197 | IMPLICIT NONE |
---|
1198 | |
---|
1199 | REAL, PARAMETER :: CP=0.24 |
---|
1200 | REAL, INTENT(IN) :: Z, Z0, UA, RHO |
---|
1201 | REAL, INTENT(OUT) :: ALPHA, CD |
---|
1202 | REAL, INTENT(INOUT) :: RIB |
---|
1203 | REAL :: A2, XX, CH, CMB, CHB |
---|
1204 | |
---|
1205 | A2=(0.4/ALOG(Z/Z0))**2. |
---|
1206 | |
---|
1207 | IF(RIB <= -15.) RIB=-15. |
---|
1208 | |
---|
1209 | IF(RIB >= 0.0) THEN |
---|
1210 | IF(RIB >= 0.142857) THEN |
---|
1211 | XX=0.714 |
---|
1212 | ELSE |
---|
1213 | XX=RIB*LOG(Z/Z0)/(1.-7.*RIB) |
---|
1214 | END IF |
---|
1215 | CH=0.16/0.74/(LOG(Z/Z0)+7.*MIN(XX,0.714))**2. |
---|
1216 | CD=0.16/(LOG(Z/Z0)+7.*MIN(XX,0.714))**2. |
---|
1217 | ELSE |
---|
1218 | CMB=7.4*A2*9.4*SQRT(Z/Z0) |
---|
1219 | CHB=5.3*A2*9.4*SQRT(Z/Z0) |
---|
1220 | CH=A2/0.74*(1.-9.4*RIB/(1.+CHB*SQRT(-RIB))) |
---|
1221 | CD=A2*(1.-9.4*RIB/(1.+CHB*SQRT(-RIB))) |
---|
1222 | END IF |
---|
1223 | |
---|
1224 | ALPHA=RHO*CP*CH*UA |
---|
1225 | |
---|
1226 | RETURN |
---|
1227 | END SUBROUTINE louis79 |
---|
1228 | !=============================================================================== |
---|
1229 | ! |
---|
1230 | ! louis82 |
---|
1231 | ! |
---|
1232 | !=============================================================================== |
---|
1233 | SUBROUTINE louis82(ALPHA,CD,RIB,Z,Z0,UA,RHO) |
---|
1234 | |
---|
1235 | IMPLICIT NONE |
---|
1236 | |
---|
1237 | REAL, PARAMETER :: CP=0.24 |
---|
1238 | REAL, INTENT(IN) :: Z, Z0, UA, RHO |
---|
1239 | REAL, INTENT(OUT) :: ALPHA, CD |
---|
1240 | REAL, INTENT(INOUT) :: RIB |
---|
1241 | REAL :: A2, FM, FH, CH, CHH |
---|
1242 | |
---|
1243 | A2=(0.4/ALOG(Z/Z0))**2. |
---|
1244 | |
---|
1245 | IF(RIB <= -15.) RIB=-15. |
---|
1246 | |
---|
1247 | IF(RIB >= 0.0) THEN |
---|
1248 | FM=1./((1.+(2.*5.*RIB)/SQRT(1.+5.*RIB))) |
---|
1249 | FH=1./(1.+(3.*5.*RIB)*SQRT(1.+5.*RIB)) |
---|
1250 | CH=A2*FH |
---|
1251 | CD=A2*FM |
---|
1252 | ELSE |
---|
1253 | CHH=5.*3.*5.*A2*SQRT(Z/Z0) |
---|
1254 | FM=1.-(2.*5.*RIB)/(1.+3.*5.*5.*A2*SQRT(Z/Z0+1.)*(-RIB)) |
---|
1255 | FH=1.-(3.*5.*RIB)/(1.+CHH*SQRT(-RIB)) |
---|
1256 | CH=A2*FH |
---|
1257 | CD=A2*FM |
---|
1258 | END IF |
---|
1259 | |
---|
1260 | ALPHA=RHO*CP*CH*UA |
---|
1261 | |
---|
1262 | RETURN |
---|
1263 | END SUBROUTINE louis82 |
---|
1264 | !=============================================================================== |
---|
1265 | ! |
---|
1266 | ! multi_layer |
---|
1267 | ! |
---|
1268 | !=============================================================================== |
---|
1269 | SUBROUTINE multi_layer(KM,BOUND,G0,CAP,AKS,TSL,DZ,DELT,TSLEND) |
---|
1270 | |
---|
1271 | IMPLICIT NONE |
---|
1272 | |
---|
1273 | REAL, INTENT(IN) :: G0 |
---|
1274 | |
---|
1275 | REAL, INTENT(IN) :: CAP |
---|
1276 | |
---|
1277 | REAL, INTENT(IN) :: AKS |
---|
1278 | |
---|
1279 | REAL, INTENT(IN) :: DELT ! Time step [ s ] |
---|
1280 | |
---|
1281 | REAL, INTENT(IN) :: TSLEND |
---|
1282 | |
---|
1283 | INTEGER, INTENT(IN) :: KM |
---|
1284 | |
---|
1285 | INTEGER, INTENT(IN) :: BOUND |
---|
1286 | |
---|
1287 | REAL, DIMENSION(KM), INTENT(IN) :: DZ |
---|
1288 | |
---|
1289 | REAL, DIMENSION(KM), INTENT(INOUT) :: TSL |
---|
1290 | |
---|
1291 | REAL, DIMENSION(KM) :: A, B, C, D, X, P, Q |
---|
1292 | |
---|
1293 | REAL :: DZEND |
---|
1294 | |
---|
1295 | INTEGER :: K |
---|
1296 | |
---|
1297 | DZEND=DZ(KM) |
---|
1298 | |
---|
1299 | A(1) = 0.0 |
---|
1300 | |
---|
1301 | B(1) = CAP*DZ(1)/DELT & |
---|
1302 | +2.*AKS/(DZ(1)+DZ(2)) |
---|
1303 | C(1) = -2.*AKS/(DZ(1)+DZ(2)) |
---|
1304 | D(1) = CAP*DZ(1)/DELT*TSL(1) + G0 |
---|
1305 | |
---|
1306 | DO K=2,KM-1 |
---|
1307 | A(K) = -2.*AKS/(DZ(K-1)+DZ(K)) |
---|
1308 | B(K) = CAP*DZ(K)/DELT + 2.*AKS/(DZ(K-1)+DZ(K)) + 2.*AKS/(DZ(K)+DZ(K+1)) |
---|
1309 | C(K) = -2.*AKS/(DZ(K)+DZ(K+1)) |
---|
1310 | D(K) = CAP*DZ(K)/DELT*TSL(K) |
---|
1311 | END DO |
---|
1312 | |
---|
1313 | IF(BOUND == 1) THEN ! Flux=0 |
---|
1314 | A(KM) = -2.*AKS/(DZ(KM-1)+DZ(KM)) |
---|
1315 | B(KM) = CAP*DZ(KM)/DELT + 2.*AKS/(DZ(KM-1)+DZ(KM)) |
---|
1316 | C(KM) = 0.0 |
---|
1317 | D(KM) = CAP*DZ(KM)/DELT*TSL(KM) |
---|
1318 | ELSE ! T=constant |
---|
1319 | A(KM) = -2.*AKS/(DZ(KM-1)+DZ(KM)) |
---|
1320 | B(KM) = CAP*DZ(KM)/DELT + 2.*AKS/(DZ(KM-1)+DZ(KM)) + 2.*AKS/(DZ(KM)+DZEND) |
---|
1321 | C(KM) = 0.0 |
---|
1322 | D(KM) = CAP*DZ(KM)/DELT*TSL(KM) + 2.*AKS*TSLEND/(DZ(KM)+DZEND) |
---|
1323 | END IF |
---|
1324 | |
---|
1325 | P(1) = -C(1)/B(1) |
---|
1326 | Q(1) = D(1)/B(1) |
---|
1327 | |
---|
1328 | DO K=2,KM |
---|
1329 | P(K) = -C(K)/(A(K)*P(K-1)+B(K)) |
---|
1330 | Q(K) = (-A(K)*Q(K-1)+D(K))/(A(K)*P(K-1)+B(K)) |
---|
1331 | END DO |
---|
1332 | |
---|
1333 | X(KM) = Q(KM) |
---|
1334 | |
---|
1335 | DO K=KM-1,1,-1 |
---|
1336 | X(K) = P(K)*X(K+1)+Q(K) |
---|
1337 | END DO |
---|
1338 | |
---|
1339 | DO K=1,KM |
---|
1340 | TSL(K) = X(K) |
---|
1341 | END DO |
---|
1342 | |
---|
1343 | RETURN |
---|
1344 | END SUBROUTINE multi_layer |
---|
1345 | !=============================================================================== |
---|
1346 | ! |
---|
1347 | ! subroutine read_param |
---|
1348 | ! |
---|
1349 | !=============================================================================== |
---|
1350 | SUBROUTINE read_param(UTYPE, & ! in |
---|
1351 | ZR,SIGMA_ZED,Z0C,Z0HC,ZDC,SVF,R,RW,HGT,AH, & ! out |
---|
1352 | CAPR,CAPB,CAPG,AKSR,AKSB,AKSG,ALBR,ALBB,ALBG, & ! out |
---|
1353 | EPSR,EPSB,EPSG,Z0R,Z0B,Z0G,Z0HB,Z0HG, & ! out |
---|
1354 | BETR,BETB,BETG,TRLEND,TBLEND,TGLEND, & ! out |
---|
1355 | !for BEP |
---|
1356 | NUMDIR, STREET_DIRECTION, STREET_WIDTH, & ! out |
---|
1357 | BUILDING_WIDTH, NUMHGT, HEIGHT_BIN, & ! out |
---|
1358 | HPERCENT_BIN, & ! out |
---|
1359 | !end BEP |
---|
1360 | BOUNDR,BOUNDB,BOUNDG,CH_SCHEME,TS_SCHEME, & ! out |
---|
1361 | AKANDA_URBAN) ! out |
---|
1362 | |
---|
1363 | INTEGER, INTENT(IN) :: UTYPE |
---|
1364 | |
---|
1365 | REAL, INTENT(OUT) :: ZR,Z0C,Z0HC,ZDC,SVF,R,RW,HGT,AH, & |
---|
1366 | CAPR,CAPB,CAPG,AKSR,AKSB,AKSG,ALBR,ALBB,ALBG, & |
---|
1367 | SIGMA_ZED, & |
---|
1368 | EPSR,EPSB,EPSG,Z0R,Z0B,Z0G,Z0HB,Z0HG, & |
---|
1369 | BETR,BETB,BETG,TRLEND,TBLEND,TGLEND |
---|
1370 | REAL, INTENT(OUT) :: AKANDA_URBAN |
---|
1371 | !for BEP |
---|
1372 | INTEGER, INTENT(OUT) :: NUMDIR |
---|
1373 | REAL, DIMENSION(MAXDIRS), INTENT(OUT) :: STREET_DIRECTION |
---|
1374 | REAL, DIMENSION(MAXDIRS), INTENT(OUT) :: STREET_WIDTH |
---|
1375 | REAL, DIMENSION(MAXDIRS), INTENT(OUT) :: BUILDING_WIDTH |
---|
1376 | INTEGER, INTENT(OUT) :: NUMHGT |
---|
1377 | REAL, DIMENSION(MAXHGTS), INTENT(OUT) :: HEIGHT_BIN |
---|
1378 | REAL, DIMENSION(MAXHGTS), INTENT(OUT) :: HPERCENT_BIN |
---|
1379 | |
---|
1380 | !end BEP |
---|
1381 | |
---|
1382 | INTEGER, INTENT(OUT) :: BOUNDR,BOUNDB,BOUNDG,CH_SCHEME,TS_SCHEME |
---|
1383 | |
---|
1384 | ZR = ZR_TBL(UTYPE) |
---|
1385 | SIGMA_ZED = SIGMA_ZED_TBL(UTYPE) |
---|
1386 | Z0C= Z0C_TBL(UTYPE) |
---|
1387 | Z0HC= Z0HC_TBL(UTYPE) |
---|
1388 | ZDC= ZDC_TBL(UTYPE) |
---|
1389 | SVF= SVF_TBL(UTYPE) |
---|
1390 | R= R_TBL(UTYPE) |
---|
1391 | RW= RW_TBL(UTYPE) |
---|
1392 | HGT= HGT_TBL(UTYPE) |
---|
1393 | AH= AH_TBL(UTYPE) |
---|
1394 | BETR= BETR_TBL(UTYPE) |
---|
1395 | BETB= BETB_TBL(UTYPE) |
---|
1396 | BETG= BETG_TBL(UTYPE) |
---|
1397 | |
---|
1398 | !m FRC_URB= FRC_URB_TBL(UTYPE) |
---|
1399 | |
---|
1400 | CAPR= CAPR_TBL(UTYPE) |
---|
1401 | CAPB= CAPB_TBL(UTYPE) |
---|
1402 | CAPG= CAPG_TBL(UTYPE) |
---|
1403 | AKSR= AKSR_TBL(UTYPE) |
---|
1404 | AKSB= AKSB_TBL(UTYPE) |
---|
1405 | AKSG= AKSG_TBL(UTYPE) |
---|
1406 | ALBR= ALBR_TBL(UTYPE) |
---|
1407 | ALBB= ALBB_TBL(UTYPE) |
---|
1408 | ALBG= ALBG_TBL(UTYPE) |
---|
1409 | EPSR= EPSR_TBL(UTYPE) |
---|
1410 | EPSB= EPSB_TBL(UTYPE) |
---|
1411 | EPSG= EPSG_TBL(UTYPE) |
---|
1412 | Z0R= Z0R_TBL(UTYPE) |
---|
1413 | Z0B= Z0B_TBL(UTYPE) |
---|
1414 | Z0G= Z0G_TBL(UTYPE) |
---|
1415 | Z0HB= Z0HB_TBL(UTYPE) |
---|
1416 | Z0HG= Z0HG_TBL(UTYPE) |
---|
1417 | TRLEND= TRLEND_TBL(UTYPE) |
---|
1418 | TBLEND= TBLEND_TBL(UTYPE) |
---|
1419 | TGLEND= TGLEND_TBL(UTYPE) |
---|
1420 | BOUNDR= BOUNDR_DATA |
---|
1421 | BOUNDB= BOUNDB_DATA |
---|
1422 | BOUNDG= BOUNDG_DATA |
---|
1423 | CH_SCHEME = CH_SCHEME_DATA |
---|
1424 | TS_SCHEME = TS_SCHEME_DATA |
---|
1425 | AKANDA_URBAN = AKANDA_URBAN_TBL(UTYPE) |
---|
1426 | |
---|
1427 | !for BEP |
---|
1428 | |
---|
1429 | STREET_DIRECTION = -1.E36 |
---|
1430 | STREET_WIDTH = -1.E36 |
---|
1431 | BUILDING_WIDTH = -1.E36 |
---|
1432 | HEIGHT_BIN = -1.E36 |
---|
1433 | HPERCENT_BIN = -1.E36 |
---|
1434 | |
---|
1435 | NUMDIR = NUMDIR_TBL ( UTYPE ) |
---|
1436 | STREET_DIRECTION(1:NUMDIR) = STREET_DIRECTION_TBL( 1:NUMDIR, UTYPE ) |
---|
1437 | STREET_WIDTH (1:NUMDIR) = STREET_WIDTH_TBL ( 1:NUMDIR, UTYPE ) |
---|
1438 | BUILDING_WIDTH (1:NUMDIR) = BUILDING_WIDTH_TBL ( 1:NUMDIR, UTYPE ) |
---|
1439 | NUMHGT = NUMHGT_TBL ( UTYPE ) |
---|
1440 | HEIGHT_BIN (1:NUMHGT) = HEIGHT_BIN_TBL ( 1:NUMHGT , UTYPE ) |
---|
1441 | HPERCENT_BIN (1:NUMHGT) = HPERCENT_BIN_TBL ( 1:NUMHGT , UTYPE ) |
---|
1442 | |
---|
1443 | !end BEP |
---|
1444 | END SUBROUTINE read_param |
---|
1445 | !=============================================================================== |
---|
1446 | ! |
---|
1447 | ! subroutine urban_param_init: Read parameters from URBPARM.TBL |
---|
1448 | ! |
---|
1449 | !=============================================================================== |
---|
1450 | SUBROUTINE urban_param_init(DZR,DZB,DZG,num_soil_layers, & |
---|
1451 | sf_urban_physics) |
---|
1452 | ! num_roof_layers,num_wall_layers,num_road_layers) |
---|
1453 | |
---|
1454 | IMPLICIT NONE |
---|
1455 | |
---|
1456 | INTEGER, INTENT(IN) :: num_soil_layers |
---|
1457 | |
---|
1458 | ! REAL, DIMENSION(1:num_roof_layers), INTENT(INOUT) :: DZR |
---|
1459 | ! REAL, DIMENSION(1:num_wall_layers), INTENT(INOUT) :: DZB |
---|
1460 | ! REAL, DIMENSION(1:num_road_layers), INTENT(INOUT) :: DZG |
---|
1461 | REAL, DIMENSION(1:num_soil_layers), INTENT(INOUT) :: DZR |
---|
1462 | REAL, DIMENSION(1:num_soil_layers), INTENT(INOUT) :: DZB |
---|
1463 | REAL, DIMENSION(1:num_soil_layers), INTENT(INOUT) :: DZG |
---|
1464 | INTEGER, INTENT(IN) :: SF_URBAN_PHYSICS |
---|
1465 | |
---|
1466 | INTEGER :: LC, K |
---|
1467 | INTEGER :: IOSTATUS, ALLOCATE_STATUS |
---|
1468 | INTEGER :: num_roof_layers |
---|
1469 | INTEGER :: num_wall_layers |
---|
1470 | INTEGER :: num_road_layers |
---|
1471 | INTEGER :: dummy |
---|
1472 | REAL :: DHGT, HGT, VFWS, VFGS |
---|
1473 | |
---|
1474 | REAL, allocatable, dimension(:) :: ROOF_WIDTH |
---|
1475 | REAL, allocatable, dimension(:) :: ROAD_WIDTH |
---|
1476 | |
---|
1477 | character(len=512) :: string |
---|
1478 | character(len=128) :: name |
---|
1479 | integer :: indx |
---|
1480 | |
---|
1481 | real, parameter :: VonK = 0.4 |
---|
1482 | real :: lambda_p |
---|
1483 | real :: lambda_f |
---|
1484 | real :: Cd |
---|
1485 | real :: alpha_macd |
---|
1486 | real :: beta_macd |
---|
1487 | real :: lambda_fr |
---|
1488 | |
---|
1489 | |
---|
1490 | !for BEP |
---|
1491 | real :: dummy_hgt |
---|
1492 | real :: dummy_pct |
---|
1493 | real :: pctsum |
---|
1494 | !end BEP |
---|
1495 | num_roof_layers = num_soil_layers |
---|
1496 | num_wall_layers = num_soil_layers |
---|
1497 | num_road_layers = num_soil_layers |
---|
1498 | |
---|
1499 | |
---|
1500 | ICATE=0 |
---|
1501 | |
---|
1502 | OPEN (UNIT=11, & |
---|
1503 | FILE='URBPARM.TBL', & |
---|
1504 | ACCESS='SEQUENTIAL', & |
---|
1505 | STATUS='OLD', & |
---|
1506 | ACTION='READ', & |
---|
1507 | POSITION='REWIND', & |
---|
1508 | IOSTAT=IOSTATUS) |
---|
1509 | |
---|
1510 | IF (IOSTATUS > 0) THEN |
---|
1511 | CALL wrf_error_fatal('ERROR OPEN URBPARM.TBL') |
---|
1512 | ENDIF |
---|
1513 | |
---|
1514 | READLOOP : do |
---|
1515 | read(11,'(A512)', iostat=iostatus) string |
---|
1516 | if (iostatus /= 0) exit READLOOP |
---|
1517 | if (string(1:1) == "#") cycle READLOOP |
---|
1518 | if (trim(string) == "") cycle READLOOP |
---|
1519 | indx = index(string,":") |
---|
1520 | if (indx <= 0) cycle READLOOP |
---|
1521 | name = trim(adjustl(string(1:indx-1))) |
---|
1522 | |
---|
1523 | ! Here are the variables we expect to be defined in the URBPARM.TBL: |
---|
1524 | if (name == "Number of urban categories") then |
---|
1525 | read(string(indx+1:),*) icate |
---|
1526 | IF (.not. ALLOCATED(ZR_TBL)) then |
---|
1527 | ALLOCATE( ZR_TBL(ICATE), stat=allocate_status ) |
---|
1528 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ZR_TBL in urban_param_init') |
---|
1529 | ALLOCATE( SIGMA_ZED_TBL(ICATE), stat=allocate_status ) |
---|
1530 | if(allocate_status /= 0)CALL wrf_error_fatal('Error allocating SIGMA_ZED_TBL in urban_param_init') |
---|
1531 | ALLOCATE( Z0C_TBL(ICATE), stat=allocate_status ) |
---|
1532 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating Z0C_TBL in urban_param_init') |
---|
1533 | ALLOCATE( Z0HC_TBL(ICATE), stat=allocate_status ) |
---|
1534 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating Z0HC_TBL in urban_param_init') |
---|
1535 | ALLOCATE( ZDC_TBL(ICATE), stat=allocate_status ) |
---|
1536 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ZDC_TBL in urban_param_init') |
---|
1537 | ALLOCATE( SVF_TBL(ICATE), stat=allocate_status ) |
---|
1538 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating SVF_TBL in urban_param_init') |
---|
1539 | ALLOCATE( R_TBL(ICATE), stat=allocate_status ) |
---|
1540 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating R_TBL in urban_param_init') |
---|
1541 | ALLOCATE( RW_TBL(ICATE), stat=allocate_status ) |
---|
1542 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating RW_TBL in urban_param_init') |
---|
1543 | ALLOCATE( HGT_TBL(ICATE), stat=allocate_status ) |
---|
1544 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating HGT_TBL in urban_param_init') |
---|
1545 | ALLOCATE( AH_TBL(ICATE), stat=allocate_status ) |
---|
1546 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating AH_TBL in urban_param_init') |
---|
1547 | ALLOCATE( BETR_TBL(ICATE), stat=allocate_status ) |
---|
1548 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating BETR_TBL in urban_param_init') |
---|
1549 | ALLOCATE( BETB_TBL(ICATE), stat=allocate_status ) |
---|
1550 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating BETB_TBL in urban_param_init') |
---|
1551 | ALLOCATE( BETG_TBL(ICATE), stat=allocate_status ) |
---|
1552 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating BETG_TBL in urban_param_init') |
---|
1553 | ALLOCATE( CAPR_TBL(ICATE), stat=allocate_status ) |
---|
1554 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating CAPR_TBL in urban_param_init') |
---|
1555 | ALLOCATE( CAPB_TBL(ICATE), stat=allocate_status ) |
---|
1556 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating CAPB_TBL in urban_param_init') |
---|
1557 | ALLOCATE( CAPG_TBL(ICATE), stat=allocate_status ) |
---|
1558 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating CAPG_TBL in urban_param_init') |
---|
1559 | ALLOCATE( AKSR_TBL(ICATE), stat=allocate_status ) |
---|
1560 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating AKSR_TBL in urban_param_init') |
---|
1561 | ALLOCATE( AKSB_TBL(ICATE), stat=allocate_status ) |
---|
1562 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating AKSB_TBL in urban_param_init') |
---|
1563 | ALLOCATE( AKSG_TBL(ICATE), stat=allocate_status ) |
---|
1564 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating AKSG_TBL in urban_param_init') |
---|
1565 | ALLOCATE( ALBR_TBL(ICATE), stat=allocate_status ) |
---|
1566 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ALBR_TBL in urban_param_init') |
---|
1567 | ALLOCATE( ALBB_TBL(ICATE), stat=allocate_status ) |
---|
1568 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ALBB_TBL in urban_param_init') |
---|
1569 | ALLOCATE( ALBG_TBL(ICATE), stat=allocate_status ) |
---|
1570 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ALBG_TBL in urban_param_init') |
---|
1571 | ALLOCATE( EPSR_TBL(ICATE), stat=allocate_status ) |
---|
1572 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating EPSR_TBL in urban_param_init') |
---|
1573 | ALLOCATE( EPSB_TBL(ICATE), stat=allocate_status ) |
---|
1574 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating EPSB_TBL in urban_param_init') |
---|
1575 | ALLOCATE( EPSG_TBL(ICATE), stat=allocate_status ) |
---|
1576 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating EPSG_TBL in urban_param_init') |
---|
1577 | ALLOCATE( Z0R_TBL(ICATE), stat=allocate_status ) |
---|
1578 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating Z0R_TBL in urban_param_init') |
---|
1579 | ALLOCATE( Z0B_TBL(ICATE), stat=allocate_status ) |
---|
1580 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating Z0B_TBL in urban_param_init') |
---|
1581 | ALLOCATE( Z0G_TBL(ICATE), stat=allocate_status ) |
---|
1582 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating Z0G_TBL in urban_param_init') |
---|
1583 | ALLOCATE( AKANDA_URBAN_TBL(ICATE), stat=allocate_status ) |
---|
1584 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating AKANDA_URBAN_TBL in urban_param_init') |
---|
1585 | ALLOCATE( Z0HB_TBL(ICATE), stat=allocate_status ) |
---|
1586 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating Z0HB_TBL in urban_param_init') |
---|
1587 | ALLOCATE( Z0HG_TBL(ICATE), stat=allocate_status ) |
---|
1588 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating Z0HG_TBL in urban_param_init') |
---|
1589 | ALLOCATE( TRLEND_TBL(ICATE), stat=allocate_status ) |
---|
1590 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating TRLEND_TBL in urban_param_init') |
---|
1591 | ALLOCATE( TBLEND_TBL(ICATE), stat=allocate_status ) |
---|
1592 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating TBLEND_TBL in urban_param_init') |
---|
1593 | ALLOCATE( TGLEND_TBL(ICATE), stat=allocate_status ) |
---|
1594 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating TGLEND_TBL in urban_param_init') |
---|
1595 | ALLOCATE( FRC_URB_TBL(ICATE), stat=allocate_status ) |
---|
1596 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating FRC_URB_TBL in urban_param_init') |
---|
1597 | ! ALLOCATE( ROOF_WIDTH(ICATE), stat=allocate_status ) |
---|
1598 | ! if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ROOF_WIDTH in urban_param_init') |
---|
1599 | ! ALLOCATE( ROAD_WIDTH(ICATE), stat=allocate_status ) |
---|
1600 | ! if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ROAD_WIDTH in urban_param_init') |
---|
1601 | !for BEP |
---|
1602 | ALLOCATE( NUMDIR_TBL(ICATE), stat=allocate_status ) |
---|
1603 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating NUMDIR_TBL in urban_param_init') |
---|
1604 | ALLOCATE( STREET_DIRECTION_TBL(MAXDIRS , ICATE), stat=allocate_status ) |
---|
1605 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating STREET_DIRECTION_TBL in urban_param_init') |
---|
1606 | ALLOCATE( STREET_WIDTH_TBL(MAXDIRS , ICATE), stat=allocate_status ) |
---|
1607 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating STREET_WIDTH_TBL in urban_param_init') |
---|
1608 | ALLOCATE( BUILDING_WIDTH_TBL(MAXDIRS , ICATE), stat=allocate_status ) |
---|
1609 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating BUILDING_WIDTH_TBL in urban_param_init') |
---|
1610 | ALLOCATE( NUMHGT_TBL(ICATE), stat=allocate_status ) |
---|
1611 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating NUMHGT_TBL in urban_param_init') |
---|
1612 | ALLOCATE( HEIGHT_BIN_TBL(MAXHGTS , ICATE), stat=allocate_status ) |
---|
1613 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating HEIGHT_BIN_TBL in urban_param_init') |
---|
1614 | ALLOCATE( HPERCENT_BIN_TBL(MAXHGTS , ICATE), stat=allocate_status ) |
---|
1615 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating HPERCENT_BIN_TBL in urban_param_init') |
---|
1616 | ALLOCATE( COP_TBL(ICATE), stat=allocate_status ) |
---|
1617 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating COP_TBL in urban_param_init') |
---|
1618 | ALLOCATE( PWIN_TBL(ICATE), stat=allocate_status ) |
---|
1619 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating PWIN_TBL in urban_param_init') |
---|
1620 | ALLOCATE( BETA_TBL(ICATE), stat=allocate_status ) |
---|
1621 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating BETA_TBL in urban_param_init') |
---|
1622 | ALLOCATE( SW_COND_TBL(ICATE), stat=allocate_status ) |
---|
1623 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating SW_COND_TBL in urban_param_init') |
---|
1624 | ALLOCATE( TIME_ON_TBL(ICATE), stat=allocate_status ) |
---|
1625 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating TIME_ON_TBL in urban_param_init') |
---|
1626 | ALLOCATE( TIME_OFF_TBL(ICATE), stat=allocate_status ) |
---|
1627 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating TIME_OFF_TBL in urban_param_init') |
---|
1628 | ALLOCATE( TARGTEMP_TBL(ICATE), stat=allocate_status ) |
---|
1629 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating TARGTEMP_TBL in urban_param_init') |
---|
1630 | ALLOCATE( GAPTEMP_TBL(ICATE), stat=allocate_status ) |
---|
1631 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating GAPTEMP_TBL in urban_param_init') |
---|
1632 | ALLOCATE( TARGHUM_TBL(ICATE), stat=allocate_status ) |
---|
1633 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating TARGHUM_TBL in urban_param_init') |
---|
1634 | ALLOCATE( GAPHUM_TBL(ICATE), stat=allocate_status ) |
---|
1635 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating GAPHUM_TBL in urban_param_init') |
---|
1636 | ALLOCATE( PERFLO_TBL(ICATE), stat=allocate_status ) |
---|
1637 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating PERFLO_TBL in urban_param_init') |
---|
1638 | ALLOCATE( HSESF_TBL(ICATE), stat=allocate_status ) |
---|
1639 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating HSESF_TBL in urban_param_init') |
---|
1640 | endif |
---|
1641 | numdir_tbl = 0 |
---|
1642 | street_direction_tbl = -1.E36 |
---|
1643 | street_width_tbl = 0 |
---|
1644 | building_width_tbl = 0 |
---|
1645 | numhgt_tbl = 0 |
---|
1646 | height_bin_tbl = -1.E36 |
---|
1647 | hpercent_bin_tbl = -1.E36 |
---|
1648 | !end BEP |
---|
1649 | |
---|
1650 | else if (name == "ZR") then |
---|
1651 | read(string(indx+1:),*) zr_tbl(1:icate) |
---|
1652 | else if (name == "SIGMA_ZED") then |
---|
1653 | read(string(indx+1:),*) sigma_zed_tbl(1:icate) |
---|
1654 | else if (name == "ROOF_WIDTH") then |
---|
1655 | ALLOCATE( ROOF_WIDTH(ICATE), stat=allocate_status ) |
---|
1656 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ROOF_WIDTH in urban_param_init') |
---|
1657 | |
---|
1658 | read(string(indx+1:),*) roof_width(1:icate) |
---|
1659 | else if (name == "ROAD_WIDTH") then |
---|
1660 | ALLOCATE( ROAD_WIDTH(ICATE), stat=allocate_status ) |
---|
1661 | if(allocate_status /= 0) CALL wrf_error_fatal('Error allocating ROAD_WIDTH in urban_param_init') |
---|
1662 | read(string(indx+1:),*) road_width(1:icate) |
---|
1663 | else if (name == "AH") then |
---|
1664 | read(string(indx+1:),*) ah_tbl(1:icate) |
---|
1665 | else if (name == "FRC_URB") then |
---|
1666 | read(string(indx+1:),*) frc_urb_tbl(1:icate) |
---|
1667 | else if (name == "CAPR") then |
---|
1668 | read(string(indx+1:),*) capr_tbl(1:icate) |
---|
1669 | ! Convert CAPR_TBL from J m{-3} K{-1} to cal cm{-3} deg{-1} |
---|
1670 | capr_tbl = capr_tbl * ( 1.0 / 4.1868 ) * 1.E-6 |
---|
1671 | else if (name == "CAPB") then |
---|
1672 | read(string(indx+1:),*) capb_tbl(1:icate) |
---|
1673 | ! Convert CABR_TBL from J m{-3} K{-1} to cal cm{-3} deg{-1} |
---|
1674 | capb_tbl = capb_tbl * ( 1.0 / 4.1868 ) * 1.E-6 |
---|
1675 | else if (name == "CAPG") then |
---|
1676 | read(string(indx+1:),*) capg_tbl(1:icate) |
---|
1677 | ! Convert CABG_TBL from J m{-3} K{-1} to cal cm{-3} deg{-1} |
---|
1678 | capg_tbl = capg_tbl * ( 1.0 / 4.1868 ) * 1.E-6 |
---|
1679 | else if (name == "AKSR") then |
---|
1680 | read(string(indx+1:),*) aksr_tbl(1:icate) |
---|
1681 | ! Convert AKSR_TBL from J m{-1} s{-1} K{-1} to cal cm{-1} s{-1} deg{-1} |
---|
1682 | AKSR_TBL = AKSR_TBL * ( 1.0 / 4.1868 ) * 1.E-2 |
---|
1683 | else if (name == "AKSB") then |
---|
1684 | read(string(indx+1:),*) aksb_tbl(1:icate) |
---|
1685 | ! Convert AKSB_TBL from J m{-1} s{-1} K{-1} to cal cm{-1} s{-1} deg{-1} |
---|
1686 | AKSB_TBL = AKSB_TBL * ( 1.0 / 4.1868 ) * 1.E-2 |
---|
1687 | else if (name == "AKSG") then |
---|
1688 | read(string(indx+1:),*) aksg_tbl(1:icate) |
---|
1689 | ! Convert AKSG_TBL from J m{-1} s{-1} K{-1} to cal cm{-1} s{-1} deg{-1} |
---|
1690 | AKSG_TBL = AKSG_TBL * ( 1.0 / 4.1868 ) * 1.E-2 |
---|
1691 | else if (name == "ALBR") then |
---|
1692 | read(string(indx+1:),*) albr_tbl(1:icate) |
---|
1693 | else if (name == "ALBB") then |
---|
1694 | read(string(indx+1:),*) albb_tbl(1:icate) |
---|
1695 | else if (name == "ALBG") then |
---|
1696 | read(string(indx+1:),*) albg_tbl(1:icate) |
---|
1697 | else if (name == "EPSR") then |
---|
1698 | read(string(indx+1:),*) epsr_tbl(1:icate) |
---|
1699 | else if (name == "EPSB") then |
---|
1700 | read(string(indx+1:),*) epsb_tbl(1:icate) |
---|
1701 | else if (name == "EPSG") then |
---|
1702 | read(string(indx+1:),*) epsg_tbl(1:icate) |
---|
1703 | else if (name == "AKANDA_URBAN") then |
---|
1704 | read(string(indx+1:),*) akanda_urban_tbl(1:icate) |
---|
1705 | else if (name == "Z0B") then |
---|
1706 | read(string(indx+1:),*) z0b_tbl(1:icate) |
---|
1707 | else if (name == "Z0G") then |
---|
1708 | read(string(indx+1:),*) z0g_tbl(1:icate) |
---|
1709 | else if (name == "DDZR") then |
---|
1710 | read(string(indx+1:),*) dzr(1:num_roof_layers) |
---|
1711 | ! Convert thicknesses from m to cm |
---|
1712 | dzr = dzr * 100.0 |
---|
1713 | else if (name == "DDZB") then |
---|
1714 | read(string(indx+1:),*) dzb(1:num_wall_layers) |
---|
1715 | ! Convert thicknesses from m to cm |
---|
1716 | dzb = dzb * 100.0 |
---|
1717 | else if (name == "DDZG") then |
---|
1718 | read(string(indx+1:),*) dzg(1:num_road_layers) |
---|
1719 | ! Convert thicknesses from m to cm |
---|
1720 | dzg = dzg * 100.0 |
---|
1721 | else if (name == "BOUNDR") then |
---|
1722 | read(string(indx+1:),*) boundr_data |
---|
1723 | else if (name == "BOUNDB") then |
---|
1724 | read(string(indx+1:),*) boundb_data |
---|
1725 | else if (name == "BOUNDG") then |
---|
1726 | read(string(indx+1:),*) boundg_data |
---|
1727 | else if (name == "TRLEND") then |
---|
1728 | read(string(indx+1:),*) trlend_tbl(1:icate) |
---|
1729 | else if (name == "TBLEND") then |
---|
1730 | read(string(indx+1:),*) tblend_tbl(1:icate) |
---|
1731 | else if (name == "TGLEND") then |
---|
1732 | read(string(indx+1:),*) tglend_tbl(1:icate) |
---|
1733 | else if (name == "CH_SCHEME") then |
---|
1734 | read(string(indx+1:),*) ch_scheme_data |
---|
1735 | else if (name == "TS_SCHEME") then |
---|
1736 | read(string(indx+1:),*) ts_scheme_data |
---|
1737 | else if (name == "AHOPTION") then |
---|
1738 | read(string(indx+1:),*) ahoption |
---|
1739 | else if (name == "AHDIUPRF") then |
---|
1740 | read(string(indx+1:),*) ahdiuprf(1:24) |
---|
1741 | !for BEP |
---|
1742 | else if (name == "STREET PARAMETERS") then |
---|
1743 | |
---|
1744 | STREETLOOP : do |
---|
1745 | read(11,'(A512)', iostat=iostatus) string |
---|
1746 | if (string(1:1) == "#") cycle STREETLOOP |
---|
1747 | if (trim(string) == "") cycle STREETLOOP |
---|
1748 | if (string == "END STREET PARAMETERS") exit STREETLOOP |
---|
1749 | read(string, *) k ! , dirst, ws, bs |
---|
1750 | numdir_tbl(k) = numdir_tbl(k) + 1 |
---|
1751 | read(string, *) k, street_direction_tbl(numdir_tbl(k),k), & |
---|
1752 | street_width_tbl(numdir_tbl(k),k), & |
---|
1753 | building_width_tbl(numdir_tbl(k),k) |
---|
1754 | enddo STREETLOOP |
---|
1755 | |
---|
1756 | else if (name == "BUILDING HEIGHTS") then |
---|
1757 | |
---|
1758 | read(string(indx+1:),*) k |
---|
1759 | HEIGHTLOOP : do |
---|
1760 | read(11,'(A512)', iostat=iostatus) string |
---|
1761 | if (string(1:1) == "#") cycle HEIGHTLOOP |
---|
1762 | if (trim(string) == "") cycle HEIGHTLOOP |
---|
1763 | if (string == "END BUILDING HEIGHTS") exit HEIGHTLOOP |
---|
1764 | read(string,*) dummy_hgt, dummy_pct |
---|
1765 | numhgt_tbl(k) = numhgt_tbl(k) + 1 |
---|
1766 | height_bin_tbl(numhgt_tbl(k), k) = dummy_hgt |
---|
1767 | hpercent_bin_tbl(numhgt_tbl(k),k) = dummy_pct |
---|
1768 | |
---|
1769 | enddo HEIGHTLOOP |
---|
1770 | pctsum = sum ( hpercent_bin_tbl(:,k) , mask=(hpercent_bin_tbl(:,k)>-1.E25 ) ) |
---|
1771 | if ( pctsum /= 100.) then |
---|
1772 | write (*,'(//,"Building height percentages for category ", I2, " must sum to 100.0")') k |
---|
1773 | write (*,'("Currently, they sum to ", F6.2,/)') pctsum |
---|
1774 | CALL wrf_error_fatal('pctsum is not equal to 100.') |
---|
1775 | endif |
---|
1776 | else if ( name == "Z0R") then |
---|
1777 | read(string(indx+1:),*) Z0R_tbl(1:icate) |
---|
1778 | else if ( name == "COP") then |
---|
1779 | read(string(indx+1:),*) cop_tbl(1:icate) |
---|
1780 | else if ( name == "PWIN") then |
---|
1781 | read(string(indx+1:),*) pwin_tbl(1:icate) |
---|
1782 | else if ( name == "BETA") then |
---|
1783 | read(string(indx+1:),*) beta_tbl(1:icate) |
---|
1784 | else if ( name == "SW_COND") then |
---|
1785 | read(string(indx+1:),*) sw_cond_tbl(1:icate) |
---|
1786 | else if ( name == "TIME_ON") then |
---|
1787 | read(string(indx+1:),*) time_on_tbl(1:icate) |
---|
1788 | else if ( name == "TIME_OFF") then |
---|
1789 | read(string(indx+1:),*) time_off_tbl(1:icate) |
---|
1790 | else if ( name == "TARGTEMP") then |
---|
1791 | read(string(indx+1:),*) targtemp_tbl(1:icate) |
---|
1792 | else if ( name == "GAPTEMP") then |
---|
1793 | read(string(indx+1:),*) gaptemp_tbl(1:icate) |
---|
1794 | else if ( name == "TARGHUM") then |
---|
1795 | read(string(indx+1:),*) targhum_tbl(1:icate) |
---|
1796 | else if ( name == "GAPHUM") then |
---|
1797 | read(string(indx+1:),*) gaphum_tbl(1:icate) |
---|
1798 | else if ( name == "PERFLO") then |
---|
1799 | read(string(indx+1:),*) perflo_tbl(1:icate) |
---|
1800 | else if (name == "HSEQUIP") then |
---|
1801 | read(string(indx+1:),*) hsequip_tbl(1:24) |
---|
1802 | else if (name == "HSEQUIP_SCALE_FACTOR") then |
---|
1803 | read(string(indx+1:),*) hsesf_tbl(1:icate) |
---|
1804 | !end BEP |
---|
1805 | else |
---|
1806 | CALL wrf_error_fatal('URBPARM.TBL: Unrecognized NAME = "'//trim(name)//'" in Subr URBAN_PARAM_INIT') |
---|
1807 | endif |
---|
1808 | enddo READLOOP |
---|
1809 | |
---|
1810 | CLOSE(11) |
---|
1811 | |
---|
1812 | ! Assign a few table values that do not need to come from URBPARM.TBL |
---|
1813 | |
---|
1814 | Z0HB_TBL = 0.1 * Z0B_TBL |
---|
1815 | Z0HG_TBL = 0.1 * Z0G_TBL |
---|
1816 | |
---|
1817 | DO LC = 1, ICATE |
---|
1818 | |
---|
1819 | ! HGT: Normalized height |
---|
1820 | HGT_TBL(LC) = ZR_TBL(LC) / ( ROAD_WIDTH(LC) + ROOF_WIDTH(LC) ) |
---|
1821 | |
---|
1822 | ! R: Normalized Roof Width (a.k.a. "building coverage ratio") |
---|
1823 | R_TBL(LC) = ROOF_WIDTH(LC) / ( ROAD_WIDTH(LC) + ROOF_WIDTH(LC) ) |
---|
1824 | |
---|
1825 | RW_TBL(LC) = 1.0 - R_TBL(LC) |
---|
1826 | BETR_TBL(LC) = 0.0 |
---|
1827 | BETB_TBL(LC) = 0.0 |
---|
1828 | BETG_TBL(LC) = 0.0 |
---|
1829 | |
---|
1830 | ! The following urban canyon geometry parameters are following Macdonald's (1998) formulations |
---|
1831 | |
---|
1832 | ! Lambda_P :: Plan areal fraction, which corresponds to R for a 2-d canyon. |
---|
1833 | ! Lambda_F :: Frontal area index, which corresponds to HGT for a 2-d canyon |
---|
1834 | ! Cd :: Drag coefficient ( 1.2 from Grimmond and Oke, 1998 ) |
---|
1835 | ! Alpha_macd :: Emperical coefficient ( 4.43 from Macdonald et al., 1998 ) |
---|
1836 | ! Beta_macd :: Correction factor for the drag coefficient ( 1.0 from Macdonald et al., 1998 ) |
---|
1837 | |
---|
1838 | Lambda_P = R_TBL(LC) |
---|
1839 | Lambda_F = HGT_TBL(LC) |
---|
1840 | Cd = 1.2 |
---|
1841 | alpha_macd = 4.43 |
---|
1842 | beta_macd = 1.0 |
---|
1843 | |
---|
1844 | |
---|
1845 | ZDC_TBL(LC) = ZR_TBL(LC) * ( 1.0 + ( alpha_macd ** ( -Lambda_P ) ) * ( Lambda_P - 1.0 ) ) |
---|
1846 | |
---|
1847 | Z0C_TBL(LC) = ZR_TBL(LC) * ( 1.0 - ZDC_TBL(LC)/ZR_TBL(LC) ) * & |
---|
1848 | exp (-(0.5 * beta_macd * Cd / (VonK**2) * ( 1.0-ZDC_TBL(LC)/ZR_TBL(LC) ) * Lambda_F )**(-0.5)) |
---|
1849 | |
---|
1850 | IF (SF_URBAN_PHYSICS == 1) THEN |
---|
1851 | ! Include roof height variability in Macdonald |
---|
1852 | ! to parameterize Z0R as a function of ZR_SD (Standard Deviation) |
---|
1853 | Lambda_FR = SIGMA_ZED_TBL(LC) / ( ROAD_WIDTH(LC) + ROOF_WIDTH(LC) ) |
---|
1854 | Z0R_TBL(LC) = ZR_TBL(LC) * ( 1.0 - ZDC_TBL(LC)/ZR_TBL(LC) ) & |
---|
1855 | * exp ( -(0.5 * beta_macd * Cd / (VonK**2) & |
---|
1856 | * ( 1.0-ZDC_TBL(LC)/ZR_TBL(LC) ) * Lambda_FR )**(-0.5)) |
---|
1857 | ENDIF |
---|
1858 | |
---|
1859 | ! |
---|
1860 | ! Z0HC still one-tenth of Z0C, as before ? |
---|
1861 | ! |
---|
1862 | |
---|
1863 | Z0HC_TBL(LC) = 0.1 * Z0C_TBL(LC) |
---|
1864 | |
---|
1865 | ! |
---|
1866 | ! Calculate Sky View Factor: |
---|
1867 | ! |
---|
1868 | DHGT=HGT_TBL(LC)/100. |
---|
1869 | HGT=0. |
---|
1870 | VFWS=0. |
---|
1871 | HGT=HGT_TBL(LC)-DHGT/2. |
---|
1872 | do k=1,99 |
---|
1873 | HGT=HGT-DHGT |
---|
1874 | VFWS=VFWS+0.25*(1.-HGT/SQRT(HGT**2.+RW_TBL(LC)**2.)) |
---|
1875 | end do |
---|
1876 | |
---|
1877 | VFWS=VFWS/99. |
---|
1878 | VFWS=VFWS*2. |
---|
1879 | |
---|
1880 | VFGS=1.-2.*VFWS*HGT_TBL(LC)/RW_TBL(LC) |
---|
1881 | SVF_TBL(LC)=VFGS |
---|
1882 | END DO |
---|
1883 | |
---|
1884 | deallocate(roof_width) |
---|
1885 | deallocate(road_width) |
---|
1886 | |
---|
1887 | END SUBROUTINE urban_param_init |
---|
1888 | !=========================================================================== |
---|
1889 | ! |
---|
1890 | ! subroutine urban_var_init: initialization of urban state variables |
---|
1891 | ! |
---|
1892 | !=========================================================================== |
---|
1893 | SUBROUTINE urban_var_init(ISURBAN, TSURFACE0_URB,TLAYER0_URB,TDEEP0_URB,IVGTYP, & ! in |
---|
1894 | ims,ime,jms,jme,kms,kme,num_soil_layers, & ! in |
---|
1895 | ! num_roof_layers,num_wall_layers,num_road_layers, & ! in |
---|
1896 | restart,sf_urban_physics, & !in |
---|
1897 | XXXR_URB2D,XXXB_URB2D,XXXG_URB2D,XXXC_URB2D, & ! inout |
---|
1898 | TR_URB2D,TB_URB2D,TG_URB2D,TC_URB2D,QC_URB2D, & ! inout |
---|
1899 | TRL_URB3D,TBL_URB3D,TGL_URB3D, & ! inout |
---|
1900 | SH_URB2D,LH_URB2D,G_URB2D,RN_URB2D, & ! inout |
---|
1901 | TS_URB2D, & ! inout |
---|
1902 | num_urban_layers, & ! in |
---|
1903 | TRB_URB4D,TW1_URB4D,TW2_URB4D,TGB_URB4D, & ! inout |
---|
1904 | TLEV_URB3D,QLEV_URB3D, & ! inout |
---|
1905 | TW1LEV_URB3D,TW2LEV_URB3D, & ! inout |
---|
1906 | TGLEV_URB3D,TFLEV_URB3D, & ! inout |
---|
1907 | SF_AC_URB3D,LF_AC_URB3D,CM_AC_URB3D, & ! inout |
---|
1908 | SFVENT_URB3D,LFVENT_URB3D, & ! inout |
---|
1909 | SFWIN1_URB3D,SFWIN2_URB3D, & ! inout |
---|
1910 | SFW1_URB3D,SFW2_URB3D,SFR_URB3D,SFG_URB3D, & ! inout |
---|
1911 | A_U_BEP,A_V_BEP,A_T_BEP,A_Q_BEP, & ! inout multi-layer urban |
---|
1912 | A_E_BEP,B_U_BEP,B_V_BEP, & ! inout multi-layer urban |
---|
1913 | B_T_BEP,B_Q_BEP,B_E_BEP,DLG_BEP, & ! inout multi-layer urban |
---|
1914 | DL_U_BEP,SF_BEP,VL_BEP, & ! inout multi-layer urban |
---|
1915 | FRC_URB2D, UTYPE_URB2D) ! inout |
---|
1916 | IMPLICIT NONE |
---|
1917 | |
---|
1918 | INTEGER, INTENT(IN) :: ISURBAN, sf_urban_physics |
---|
1919 | INTEGER, INTENT(IN) :: ims,ime,jms,jme,kms,kme,num_soil_layers |
---|
1920 | INTEGER, INTENT(IN) :: num_urban_layers !multi-layer urban |
---|
1921 | ! INTEGER, INTENT(IN) :: num_roof_layers, num_wall_layers, num_road_layers |
---|
1922 | |
---|
1923 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) :: TSURFACE0_URB |
---|
1924 | REAL, DIMENSION( ims:ime, 1:num_soil_layers, jms:jme ), INTENT(IN) :: TLAYER0_URB |
---|
1925 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) :: TDEEP0_URB |
---|
1926 | INTEGER, DIMENSION( ims:ime, jms:jme ), INTENT(IN) :: IVGTYP |
---|
1927 | LOGICAL , INTENT(IN) :: restart |
---|
1928 | |
---|
1929 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: TR_URB2D |
---|
1930 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: TB_URB2D |
---|
1931 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: TG_URB2D |
---|
1932 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: TC_URB2D |
---|
1933 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: QC_URB2D |
---|
1934 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: XXXR_URB2D |
---|
1935 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: XXXB_URB2D |
---|
1936 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: XXXG_URB2D |
---|
1937 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: XXXC_URB2D |
---|
1938 | |
---|
1939 | ! REAL, DIMENSION(ims:ime, 1:num_roof_layers, jms:jme), INTENT(INOUT) :: TRL_URB3D |
---|
1940 | ! REAL, DIMENSION(ims:ime, 1:num_wall_layers, jms:jme), INTENT(INOUT) :: TBL_URB3D |
---|
1941 | ! REAL, DIMENSION(ims:ime, 1:num_road_layers, jms:jme), INTENT(INOUT) :: TGL_URB3D |
---|
1942 | REAL, DIMENSION(ims:ime, 1:num_soil_layers, jms:jme), INTENT(INOUT) :: TRL_URB3D |
---|
1943 | REAL, DIMENSION(ims:ime, 1:num_soil_layers, jms:jme), INTENT(INOUT) :: TBL_URB3D |
---|
1944 | REAL, DIMENSION(ims:ime, 1:num_soil_layers, jms:jme), INTENT(INOUT) :: TGL_URB3D |
---|
1945 | |
---|
1946 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: SH_URB2D |
---|
1947 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: LH_URB2D |
---|
1948 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: G_URB2D |
---|
1949 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: RN_URB2D |
---|
1950 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: TS_URB2D |
---|
1951 | |
---|
1952 | ! multi-layer UCM variables |
---|
1953 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: TRB_URB4D |
---|
1954 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: TW1_URB4D |
---|
1955 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: TW2_URB4D |
---|
1956 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: TGB_URB4D |
---|
1957 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: TLEV_URB3D |
---|
1958 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: QLEV_URB3D |
---|
1959 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: TW1LEV_URB3D |
---|
1960 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: TW2LEV_URB3D |
---|
1961 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: TGLEV_URB3D |
---|
1962 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: TFLEV_URB3D |
---|
1963 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: LF_AC_URB3D |
---|
1964 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: SF_AC_URB3D |
---|
1965 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: CM_AC_URB3D |
---|
1966 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: SFVENT_URB3D |
---|
1967 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: LFVENT_URB3D |
---|
1968 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: SFWIN1_URB3D |
---|
1969 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: SFWIN2_URB3D |
---|
1970 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: SFW1_URB3D |
---|
1971 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: SFW2_URB3D |
---|
1972 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: SFR_URB3D |
---|
1973 | REAL, DIMENSION(ims:ime, 1:num_urban_layers, jms:jme), INTENT(INOUT) :: SFG_URB3D |
---|
1974 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: A_U_BEP |
---|
1975 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: A_V_BEP |
---|
1976 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: A_T_BEP |
---|
1977 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: A_Q_BEP |
---|
1978 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: A_E_BEP |
---|
1979 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: B_U_BEP |
---|
1980 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: B_V_BEP |
---|
1981 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: B_T_BEP |
---|
1982 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: B_Q_BEP |
---|
1983 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: B_E_BEP |
---|
1984 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: VL_BEP |
---|
1985 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: DLG_BEP |
---|
1986 | REAL, DIMENSION(ims:ime, kms:kme,jms:jme),INTENT(INOUT) :: SF_BEP |
---|
1987 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: DL_U_BEP |
---|
1988 | ! |
---|
1989 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: FRC_URB2D |
---|
1990 | INTEGER, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: UTYPE_URB2D |
---|
1991 | INTEGER :: UTYPE_URB |
---|
1992 | |
---|
1993 | INTEGER :: I,J,K |
---|
1994 | |
---|
1995 | DO I=ims,ime |
---|
1996 | DO J=jms,jme |
---|
1997 | |
---|
1998 | ! XXXR_URB2D(I,J)=0. |
---|
1999 | ! XXXB_URB2D(I,J)=0. |
---|
2000 | ! XXXG_URB2D(I,J)=0. |
---|
2001 | ! XXXC_URB2D(I,J)=0. |
---|
2002 | |
---|
2003 | SH_URB2D(I,J)=0. |
---|
2004 | LH_URB2D(I,J)=0. |
---|
2005 | G_URB2D(I,J)=0. |
---|
2006 | RN_URB2D(I,J)=0. |
---|
2007 | |
---|
2008 | !m |
---|
2009 | FRC_URB2D(I,J)=0. |
---|
2010 | UTYPE_URB2D(I,J)=0 |
---|
2011 | |
---|
2012 | IF( IVGTYP(I,J) == ISURBAN) THEN |
---|
2013 | UTYPE_URB2D(I,J) = 2 ! for default. high-intensity |
---|
2014 | UTYPE_URB = UTYPE_URB2D(I,J) ! for default. high-intensity |
---|
2015 | FRC_URB2D(I,J) = FRC_URB_TBL(UTYPE_URB) |
---|
2016 | ENDIF |
---|
2017 | IF( IVGTYP(I,J) == 31) THEN |
---|
2018 | UTYPE_URB2D(I,J) = 3 ! low-intensity residential |
---|
2019 | UTYPE_URB = UTYPE_URB2D(I,J) ! low-intensity residential |
---|
2020 | FRC_URB2D(I,J) = FRC_URB_TBL(UTYPE_URB) |
---|
2021 | ENDIF |
---|
2022 | IF( IVGTYP(I,J) == 32) THEN |
---|
2023 | UTYPE_URB2D(I,J) = 2 ! high-intensity |
---|
2024 | UTYPE_URB = UTYPE_URB2D(I,J) ! high-intensity |
---|
2025 | FRC_URB2D(I,J) = FRC_URB_TBL(UTYPE_URB) |
---|
2026 | ENDIF |
---|
2027 | IF( IVGTYP(I,J) == 33) THEN |
---|
2028 | UTYPE_URB2D(I,J) = 1 ! Commercial/Industrial/Transportation |
---|
2029 | UTYPE_URB = UTYPE_URB2D(I,J) ! Commercial/Industrial/Transportation |
---|
2030 | FRC_URB2D(I,J) = FRC_URB_TBL(UTYPE_URB) |
---|
2031 | ENDIF |
---|
2032 | |
---|
2033 | |
---|
2034 | QC_URB2D(I,J)=0.01 |
---|
2035 | |
---|
2036 | IF (.not.restart) THEN |
---|
2037 | |
---|
2038 | XXXR_URB2D(I,J)=0. |
---|
2039 | XXXB_URB2D(I,J)=0. |
---|
2040 | XXXG_URB2D(I,J)=0. |
---|
2041 | XXXC_URB2D(I,J)=0. |
---|
2042 | |
---|
2043 | |
---|
2044 | TC_URB2D(I,J)=TSURFACE0_URB(I,J)+0. |
---|
2045 | TR_URB2D(I,J)=TSURFACE0_URB(I,J)+0. |
---|
2046 | TB_URB2D(I,J)=TSURFACE0_URB(I,J)+0. |
---|
2047 | TG_URB2D(I,J)=TSURFACE0_URB(I,J)+0. |
---|
2048 | ! |
---|
2049 | TS_URB2D(I,J)=TSURFACE0_URB(I,J)+0. |
---|
2050 | |
---|
2051 | ! DO K=1,num_roof_layers |
---|
2052 | ! DO K=1,num_soil_layers |
---|
2053 | ! TRL_URB3D(I,1,J)=TLAYER0_URB(I,1,J)+0. |
---|
2054 | ! TRL_URB3D(I,2,J)=TLAYER0_URB(I,2,J)+0. |
---|
2055 | ! TRL_URB3D(I,3,J)=TLAYER0_URB(I,3,J)+0. |
---|
2056 | ! TRL_URB3D(I,4,J)=TLAYER0_URB(I,4,J)+0. |
---|
2057 | |
---|
2058 | TRL_URB3D(I,1,J)=TLAYER0_URB(I,1,J)+0. |
---|
2059 | TRL_URB3D(I,2,J)=0.5*(TLAYER0_URB(I,1,J)+TLAYER0_URB(I,2,J)) |
---|
2060 | TRL_URB3D(I,3,J)=TLAYER0_URB(I,2,J)+0. |
---|
2061 | TRL_URB3D(I,4,J)=TLAYER0_URB(I,2,J)+(TLAYER0_URB(I,3,J)-TLAYER0_URB(I,2,J))*0.29 |
---|
2062 | ! END DO |
---|
2063 | |
---|
2064 | ! DO K=1,num_wall_layers |
---|
2065 | ! DO K=1,num_soil_layers |
---|
2066 | !m TBL_URB3D(I,1,J)=TLAYER0_URB(I,1,J)+0. |
---|
2067 | !m TBL_URB3D(I,2,J)=TLAYER0_URB(I,2,J)+0. |
---|
2068 | !m TBL_URB3D(I,3,J)=TLAYER0_URB(I,3,J)+0. |
---|
2069 | !m TBL_URB3D(I,4,J)=TLAYER0_URB(I,4,J)+0. |
---|
2070 | |
---|
2071 | TBL_URB3D(I,1,J)=TLAYER0_URB(I,1,J)+0. |
---|
2072 | TBL_URB3D(I,2,J)=0.5*(TLAYER0_URB(I,1,J)+TLAYER0_URB(I,2,J)) |
---|
2073 | TBL_URB3D(I,3,J)=TLAYER0_URB(I,2,J)+0. |
---|
2074 | TBL_URB3D(I,4,J)=TLAYER0_URB(I,2,J)+(TLAYER0_URB(I,3,J)-TLAYER0_URB(I,2,J))*0.29 |
---|
2075 | |
---|
2076 | ! END DO |
---|
2077 | |
---|
2078 | ! DO K=1,num_road_layers |
---|
2079 | DO K=1,num_soil_layers |
---|
2080 | TGL_URB3D(I,K,J)=TLAYER0_URB(I,K,J)+0. |
---|
2081 | END DO |
---|
2082 | |
---|
2083 | ! multi-layer urban |
---|
2084 | ! IF( sf_urban_physics .EQ. 2)THEN |
---|
2085 | IF((SF_URBAN_PHYSICS.eq.2).OR.(SF_URBAN_PHYSICS.eq.3)) THEN |
---|
2086 | DO k=1,num_urban_layers |
---|
2087 | ! TRB_URB4D(I,k,J)=TSURFACE0_URB(I,J) |
---|
2088 | ! TW1_URB4D(I,k,J)=TSURFACE0_URB(I,J) |
---|
2089 | ! TW2_URB4D(I,k,J)=TSURFACE0_URB(I,J) |
---|
2090 | ! TGB_URB4D(I,k,J)=TSURFACE0_URB(I,J) |
---|
2091 | !MT TRB_URB4D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2092 | !MT TW1_URB4D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2093 | !MT TW2_URB4D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2094 | IF (UTYPE_URB2D(I,J) > 0) THEN |
---|
2095 | TRB_URB4D(I,K,J)=TBLEND_TBL(UTYPE_URB2D(I,J)) |
---|
2096 | TW1_URB4D(I,K,J)=TBLEND_TBL(UTYPE_URB2D(I,J)) |
---|
2097 | TW2_URB4D(I,K,J)=TBLEND_TBL(UTYPE_URB2D(I,J)) |
---|
2098 | ELSE |
---|
2099 | TRB_URB4D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2100 | TW1_URB4D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2101 | TW2_URB4D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2102 | ENDIF |
---|
2103 | TGB_URB4D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2104 | SFW1_URB3D(I,K,J)=0. |
---|
2105 | SFW2_URB3D(I,K,J)=0. |
---|
2106 | SFR_URB3D(I,K,J)=0. |
---|
2107 | SFG_URB3D(I,K,J)=0. |
---|
2108 | ENDDO |
---|
2109 | |
---|
2110 | ENDIF |
---|
2111 | |
---|
2112 | if (SF_URBAN_PHYSICS.EQ.3) then |
---|
2113 | LF_AC_URB3D(I,J)=0. |
---|
2114 | SF_AC_URB3D(I,J)=0. |
---|
2115 | CM_AC_URB3D(I,J)=0. |
---|
2116 | SFVENT_URB3D(I,J)=0. |
---|
2117 | LFVENT_URB3D(I,J)=0. |
---|
2118 | |
---|
2119 | DO K=1,num_urban_layers |
---|
2120 | TLEV_URB3D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2121 | TW1LEV_URB3D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2122 | TW2LEV_URB3D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2123 | TGLEV_URB3D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2124 | TFLEV_URB3D(I,K,J)=tlayer0_urb(I,1,J) |
---|
2125 | QLEV_URB3D(I,K,J)=0.01 |
---|
2126 | SFWIN1_URB3D(I,K,J)=0. |
---|
2127 | SFWIN2_URB3D(I,K,J)=0. |
---|
2128 | !rm LF_AC_URB3D(I,J)=0. |
---|
2129 | !rm SF_AC_URB3D(I,J)=0. |
---|
2130 | !rm CM_AC_URB3D(I,J)=0. |
---|
2131 | !rm SFVENT_URB3D(I,J)=0. |
---|
2132 | !rm LFVENT_URB3D(I,J)=0. |
---|
2133 | ENDDO |
---|
2134 | |
---|
2135 | endif |
---|
2136 | |
---|
2137 | ! IF( sf_urban_physics .EQ. 2 )THEN |
---|
2138 | IF((SF_URBAN_PHYSICS.eq.2).OR.(SF_URBAN_PHYSICS.eq.3)) THEN |
---|
2139 | DO K= KMS,KME |
---|
2140 | SF_BEP(I,K,J)=1. |
---|
2141 | VL_BEP(I,K,J)=1. |
---|
2142 | A_U_BEP(I,K,J)=0. |
---|
2143 | A_V_BEP(I,K,J)=0. |
---|
2144 | A_T_BEP(I,K,J)=0. |
---|
2145 | A_E_BEP(I,K,J)=0. |
---|
2146 | A_Q_BEP(I,K,J)=0. |
---|
2147 | B_U_BEP(I,K,J)=0. |
---|
2148 | B_V_BEP(I,K,J)=0. |
---|
2149 | B_T_BEP(I,K,J)=0. |
---|
2150 | B_E_BEP(I,K,J)=0. |
---|
2151 | B_Q_BEP(I,K,J)=0. |
---|
2152 | DLG_BEP(I,K,J)=0. |
---|
2153 | DL_U_BEP(I,K,J)=0. |
---|
2154 | END DO |
---|
2155 | ENDIF !sf_urban_physics=2 |
---|
2156 | ENDIF !restart |
---|
2157 | END DO |
---|
2158 | END DO |
---|
2159 | RETURN |
---|
2160 | END SUBROUTINE urban_var_init |
---|
2161 | !=========================================================================== |
---|
2162 | ! |
---|
2163 | ! force_restore |
---|
2164 | ! |
---|
2165 | !=========================================================================== |
---|
2166 | SUBROUTINE force_restore(CAP,AKS,DELT,S,R,H,LE,TSLEND,TSP,TS) |
---|
2167 | |
---|
2168 | REAL, INTENT(IN) :: CAP,AKS,DELT,S,R,H,LE,TSLEND,TSP |
---|
2169 | REAL, INTENT(OUT) :: TS |
---|
2170 | REAL :: C1,C2 |
---|
2171 | |
---|
2172 | C2=24.*3600./2./3.14159 |
---|
2173 | C1=SQRT(0.5*C2*CAP*AKS) |
---|
2174 | |
---|
2175 | TS = TSP + DELT*( (S+R-H-LE)/C1 -(TSP-TSLEND)/C2 ) |
---|
2176 | |
---|
2177 | END SUBROUTINE force_restore |
---|
2178 | !=========================================================================== |
---|
2179 | ! |
---|
2180 | ! bisection (not used) |
---|
2181 | ! |
---|
2182 | !============================================================================== |
---|
2183 | SUBROUTINE bisection(TSP,PS,S,EPS,RX,SIG,RHO,CP,CH,UA,QA,TA,EL,BET,AKS,TSL,DZ,TS) |
---|
2184 | |
---|
2185 | REAL, INTENT(IN) :: TSP,PS,S,EPS,RX,SIG,RHO,CP,CH,UA,QA,TA,EL,BET,AKS,TSL,DZ |
---|
2186 | REAL, INTENT(OUT) :: TS |
---|
2187 | REAL :: ES,QS0,R,H,ELE,G0,F1,F |
---|
2188 | |
---|
2189 | TS1 = TSP - 5. |
---|
2190 | TS2 = TSP + 5. |
---|
2191 | |
---|
2192 | DO ITERATION = 1,22 |
---|
2193 | |
---|
2194 | ES=6.11*EXP( (2.5*10.**6./461.51)*(TS1-273.15)/(273.15*TS1) ) |
---|
2195 | QS0=0.622*ES/(PS-0.378*ES) |
---|
2196 | R=EPS*(RX-SIG*(TS1**4.)/60.) |
---|
2197 | H=RHO*CP*CH*UA*(TS1-TA)*100. |
---|
2198 | ELE=RHO*EL*CH*UA*BET*(QS0-QA)*100. |
---|
2199 | G0=AKS*(TS1-TSL)/(DZ/2.) |
---|
2200 | F1= S + R - H - ELE - G0 |
---|
2201 | |
---|
2202 | TS=0.5*(TS1+TS2) |
---|
2203 | |
---|
2204 | ES=6.11*EXP( (2.5*10.**6./461.51)*(TS-273.15)/(273.15*TS) ) |
---|
2205 | QS0=0.622*ES/(PS-0.378*ES) |
---|
2206 | R=EPS*(RX-SIG*(TS**4.)/60.) |
---|
2207 | H=RHO*CP*CH*UA*(TS-TA)*100. |
---|
2208 | ELE=RHO*EL*CH*UA*BET*(QS0-QA)*100. |
---|
2209 | G0=AKS*(TS-TSL)/(DZ/2.) |
---|
2210 | F = S + R - H - ELE - G0 |
---|
2211 | |
---|
2212 | IF (F1*F > 0.0) THEN |
---|
2213 | TS1=TS |
---|
2214 | ELSE |
---|
2215 | TS2=TS |
---|
2216 | END IF |
---|
2217 | |
---|
2218 | END DO |
---|
2219 | |
---|
2220 | RETURN |
---|
2221 | END SUBROUTINE bisection |
---|
2222 | !=========================================================================== |
---|
2223 | |
---|
2224 | SUBROUTINE SFCDIF_URB (ZLM,Z0,THZ0,THLM,SFCSPD,AKANDA,AKMS,AKHS,RLMO,CD) |
---|
2225 | |
---|
2226 | ! ---------------------------------------------------------------------- |
---|
2227 | ! SUBROUTINE SFCDIF_URB (Urban version of SFCDIF_off) |
---|
2228 | ! ---------------------------------------------------------------------- |
---|
2229 | ! CALCULATE SURFACE LAYER EXCHANGE COEFFICIENTS VIA ITERATIVE PROCESS. |
---|
2230 | ! SEE CHEN ET AL (1997, BLM) |
---|
2231 | ! ---------------------------------------------------------------------- |
---|
2232 | |
---|
2233 | IMPLICIT NONE |
---|
2234 | REAL WWST, WWST2, G, VKRM, EXCM, BETA, BTG, ELFC, WOLD, WNEW |
---|
2235 | REAL PIHF, EPSU2, EPSUST, EPSIT, EPSA, ZTMIN, ZTMAX, HPBL, & |
---|
2236 | & SQVISC |
---|
2237 | REAL RIC, RRIC, FHNEU, RFC,RLMO_THR, RFAC, ZZ, PSLMU, PSLMS, PSLHU, & |
---|
2238 | & PSLHS |
---|
2239 | REAL XX, PSPMU, YY, PSPMS, PSPHU, PSPHS, ZLM, Z0, THZ0, THLM |
---|
2240 | REAL SFCSPD, AKANDA, AKMS, AKHS, ZU, ZT, RDZ, CXCH |
---|
2241 | REAL DTHV, DU2, BTGH, WSTAR2, USTAR, ZSLU, ZSLT, RLOGU, RLOGT |
---|
2242 | REAL RLMO, ZETALT, ZETALU, ZETAU, ZETAT, XLU4, XLT4, XU4, XT4 |
---|
2243 | !CC ......REAL ZTFC |
---|
2244 | |
---|
2245 | REAL XLU, XLT, XU, XT, PSMZ, SIMM, PSHZ, SIMH, USTARK, RLMN, & |
---|
2246 | & RLMA |
---|
2247 | |
---|
2248 | INTEGER ITRMX, ILECH, ITR |
---|
2249 | REAL, INTENT(OUT) :: CD |
---|
2250 | PARAMETER & |
---|
2251 | & (WWST = 1.2,WWST2 = WWST * WWST,G = 9.8,VKRM = 0.40, & |
---|
2252 | & EXCM = 0.001 & |
---|
2253 | & ,BETA = 1./270.,BTG = BETA * G,ELFC = VKRM * BTG & |
---|
2254 | & ,WOLD =.15,WNEW = 1. - WOLD,ITRMX = 05, & |
---|
2255 | & PIHF = 3.14159265/2.) |
---|
2256 | PARAMETER & |
---|
2257 | & (EPSU2 = 1.E-4,EPSUST = 0.07,EPSIT = 1.E-4,EPSA = 1.E-8 & |
---|
2258 | & ,ZTMIN = -5.,ZTMAX = 1.,HPBL = 1000.0 & |
---|
2259 | & ,SQVISC = 258.2) |
---|
2260 | PARAMETER & |
---|
2261 | & (RIC = 0.183,RRIC = 1.0/ RIC,FHNEU = 0.8,RFC = 0.191 & |
---|
2262 | & ,RLMO_THR = 0.001,RFAC = RIC / (FHNEU * RFC * RFC)) |
---|
2263 | |
---|
2264 | ! ---------------------------------------------------------------------- |
---|
2265 | ! NOTE: THE TWO CODE BLOCKS BELOW DEFINE FUNCTIONS |
---|
2266 | ! ---------------------------------------------------------------------- |
---|
2267 | ! LECH'S SURFACE FUNCTIONS |
---|
2268 | ! ---------------------------------------------------------------------- |
---|
2269 | PSLMU (ZZ)= -0.96* log (1.0-4.5* ZZ) |
---|
2270 | PSLMS (ZZ)= ZZ * RRIC -2.076* (1. -1./ (ZZ +1.)) |
---|
2271 | PSLHU (ZZ)= -0.96* log (1.0-4.5* ZZ) |
---|
2272 | |
---|
2273 | ! ---------------------------------------------------------------------- |
---|
2274 | ! PAULSON'S SURFACE FUNCTIONS |
---|
2275 | ! ---------------------------------------------------------------------- |
---|
2276 | PSLHS (ZZ)= ZZ * RFAC -2.076* (1. -1./ (ZZ +1.)) |
---|
2277 | PSPMU (XX)= -2.* log ( (XX +1.)*0.5) - log ( (XX * XX +1.)*0.5) & |
---|
2278 | & +2.* ATAN (XX) & |
---|
2279 | &- PIHF |
---|
2280 | PSPMS (YY)= 5.* YY |
---|
2281 | PSPHU (XX)= -2.* log ( (XX * XX +1.)*0.5) |
---|
2282 | |
---|
2283 | ! ---------------------------------------------------------------------- |
---|
2284 | ! THIS ROUTINE SFCDIF CAN HANDLE BOTH OVER OPEN WATER (SEA, OCEAN) AND |
---|
2285 | ! OVER SOLID SURFACE (LAND, SEA-ICE). |
---|
2286 | ! ---------------------------------------------------------------------- |
---|
2287 | PSPHS (YY)= 5.* YY |
---|
2288 | |
---|
2289 | ! ---------------------------------------------------------------------- |
---|
2290 | ! ZTFC: RATIO OF ZOH/ZOM LESS OR EQUAL THAN 1 |
---|
2291 | ! C......ZTFC=0.1 |
---|
2292 | ! CZIL: CONSTANT C IN Zilitinkevich, S. S.1995,:NOTE ABOUT ZT |
---|
2293 | ! ---------------------------------------------------------------------- |
---|
2294 | ILECH = 0 |
---|
2295 | |
---|
2296 | ! ---------------------------------------------------------------------- |
---|
2297 | ! ZILFC = - CZIL * VKRM * SQVISC |
---|
2298 | ! C.......ZT=Z0*ZTFC |
---|
2299 | ZU = Z0 |
---|
2300 | RDZ = 1./ ZLM |
---|
2301 | CXCH = EXCM * RDZ |
---|
2302 | DTHV = THLM - THZ0 |
---|
2303 | |
---|
2304 | ! ---------------------------------------------------------------------- |
---|
2305 | ! BELJARS CORRECTION OF USTAR |
---|
2306 | ! ---------------------------------------------------------------------- |
---|
2307 | DU2 = MAX (SFCSPD * SFCSPD,EPSU2) |
---|
2308 | !cc If statements to avoid TANGENT LINEAR problems near zero |
---|
2309 | BTGH = BTG * HPBL |
---|
2310 | IF (BTGH * AKHS * DTHV .ne. 0.0) THEN |
---|
2311 | WSTAR2 = WWST2* ABS (BTGH * AKHS * DTHV)** (2./3.) |
---|
2312 | ELSE |
---|
2313 | WSTAR2 = 0.0 |
---|
2314 | END IF |
---|
2315 | |
---|
2316 | ! ---------------------------------------------------------------------- |
---|
2317 | ! ZILITINKEVITCH APPROACH FOR ZT |
---|
2318 | ! ---------------------------------------------------------------------- |
---|
2319 | USTAR = MAX (SQRT (AKMS * SQRT (DU2+ WSTAR2)),EPSUST) |
---|
2320 | |
---|
2321 | ! ---------------------------------------------------------------------- |
---|
2322 | ! KCL/TL Try Kanda approach instead (Kanda et al. 2007, JAMC) |
---|
2323 | ! ZT = EXP (ZILFC * SQRT (USTAR * Z0))* Z0 |
---|
2324 | ZT = EXP (2.0-AKANDA*(SQVISC**2 * USTAR * Z0)**0.25)* Z0 |
---|
2325 | |
---|
2326 | ZSLU = ZLM + ZU |
---|
2327 | |
---|
2328 | ZSLT = ZLM + ZT |
---|
2329 | RLOGU = log (ZSLU / ZU) |
---|
2330 | |
---|
2331 | RLOGT = log (ZSLT / ZT) |
---|
2332 | |
---|
2333 | RLMO = ELFC * AKHS * DTHV / USTAR **3 |
---|
2334 | ! ---------------------------------------------------------------------- |
---|
2335 | ! 1./MONIN-OBUKKHOV LENGTH-SCALE |
---|
2336 | ! ---------------------------------------------------------------------- |
---|
2337 | DO ITR = 1,ITRMX |
---|
2338 | ZETALT = MAX (ZSLT * RLMO,ZTMIN) |
---|
2339 | RLMO = ZETALT / ZSLT |
---|
2340 | ZETALU = ZSLU * RLMO |
---|
2341 | ZETAU = ZU * RLMO |
---|
2342 | |
---|
2343 | ZETAT = ZT * RLMO |
---|
2344 | IF (ILECH .eq. 0) THEN |
---|
2345 | IF (RLMO .lt. 0.0)THEN |
---|
2346 | XLU4 = 1. -16.* ZETALU |
---|
2347 | XLT4 = 1. -16.* ZETALT |
---|
2348 | XU4 = 1. -16.* ZETAU |
---|
2349 | |
---|
2350 | XT4 = 1. -16.* ZETAT |
---|
2351 | XLU = SQRT (SQRT (XLU4)) |
---|
2352 | XLT = SQRT (SQRT (XLT4)) |
---|
2353 | XU = SQRT (SQRT (XU4)) |
---|
2354 | |
---|
2355 | XT = SQRT (SQRT (XT4)) |
---|
2356 | |
---|
2357 | PSMZ = PSPMU (XU) |
---|
2358 | SIMM = PSPMU (XLU) - PSMZ + RLOGU |
---|
2359 | PSHZ = PSPHU (XT) |
---|
2360 | SIMH = PSPHU (XLT) - PSHZ + RLOGT |
---|
2361 | ELSE |
---|
2362 | ZETALU = MIN (ZETALU,ZTMAX) |
---|
2363 | ZETALT = MIN (ZETALT,ZTMAX) |
---|
2364 | PSMZ = PSPMS (ZETAU) |
---|
2365 | SIMM = PSPMS (ZETALU) - PSMZ + RLOGU |
---|
2366 | PSHZ = PSPHS (ZETAT) |
---|
2367 | SIMH = PSPHS (ZETALT) - PSHZ + RLOGT |
---|
2368 | END IF |
---|
2369 | ! ---------------------------------------------------------------------- |
---|
2370 | ! LECH'S FUNCTIONS |
---|
2371 | ! ---------------------------------------------------------------------- |
---|
2372 | ELSE |
---|
2373 | IF (RLMO .lt. 0.)THEN |
---|
2374 | PSMZ = PSLMU (ZETAU) |
---|
2375 | SIMM = PSLMU (ZETALU) - PSMZ + RLOGU |
---|
2376 | PSHZ = PSLHU (ZETAT) |
---|
2377 | SIMH = PSLHU (ZETALT) - PSHZ + RLOGT |
---|
2378 | ELSE |
---|
2379 | ZETALU = MIN (ZETALU,ZTMAX) |
---|
2380 | ZETALT = MIN (ZETALT,ZTMAX) |
---|
2381 | PSMZ = PSLMS (ZETAU) |
---|
2382 | SIMM = PSLMS (ZETALU) - PSMZ + RLOGU |
---|
2383 | PSHZ = PSLHS (ZETAT) |
---|
2384 | SIMH = PSLHS (ZETALT) - PSHZ + RLOGT |
---|
2385 | END IF |
---|
2386 | ! ---------------------------------------------------------------------- |
---|
2387 | ! BELJAARS CORRECTION FOR USTAR |
---|
2388 | ! ---------------------------------------------------------------------- |
---|
2389 | END IF |
---|
2390 | USTAR = MAX (SQRT (AKMS * SQRT (DU2+ WSTAR2)),EPSUST) |
---|
2391 | !KCL/TL |
---|
2392 | !ZT = EXP (ZILFC * SQRT (USTAR * Z0))* Z0 |
---|
2393 | ZT = EXP (2.0-AKANDA*(SQVISC**2 * USTAR * Z0)**0.25)* Z0 |
---|
2394 | ZSLT = ZLM + ZT |
---|
2395 | RLOGT = log (ZSLT / ZT) |
---|
2396 | USTARK = USTAR * VKRM |
---|
2397 | AKMS = MAX (USTARK / SIMM,CXCH) |
---|
2398 | AKHS = MAX (USTARK / SIMH,CXCH) |
---|
2399 | ! |
---|
2400 | IF (BTGH * AKHS * DTHV .ne. 0.0) THEN |
---|
2401 | WSTAR2 = WWST2* ABS (BTGH * AKHS * DTHV)** (2./3.) |
---|
2402 | ELSE |
---|
2403 | WSTAR2 = 0.0 |
---|
2404 | END IF |
---|
2405 | !----------------------------------------------------------------------- |
---|
2406 | RLMN = ELFC * AKHS * DTHV / USTAR **3 |
---|
2407 | !----------------------------------------------------------------------- |
---|
2408 | ! IF(ABS((RLMN-RLMO)/RLMA).LT.EPSIT) GO TO 110 |
---|
2409 | !----------------------------------------------------------------------- |
---|
2410 | RLMA = RLMO * WOLD+ RLMN * WNEW |
---|
2411 | !----------------------------------------------------------------------- |
---|
2412 | RLMO = RLMA |
---|
2413 | |
---|
2414 | END DO |
---|
2415 | |
---|
2416 | CD = USTAR*USTAR/SFCSPD**2 |
---|
2417 | ! ---------------------------------------------------------------------- |
---|
2418 | END SUBROUTINE SFCDIF_URB |
---|
2419 | ! ---------------------------------------------------------------------- |
---|
2420 | !=========================================================================== |
---|
2421 | END MODULE module_sf_urban |
---|