1 | !!WRF:MODEL_LAYER:PHYSICS |
---|
2 | ! |
---|
3 | MODULE module_sf_gfs |
---|
4 | |
---|
5 | |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | !------------------------------------------------------------------- |
---|
9 | SUBROUTINE SF_GFS(U3D,V3D,T3D,QV3D,P3D, & |
---|
10 | CP,ROVCP,R,XLV,PSFC,CHS,CHS2,CQS2,CPM, & |
---|
11 | ZNT,UST,PSIM,PSIH, & |
---|
12 | XLAND,HFX,QFX,LH,TSK,FLHC,FLQC, & |
---|
13 | QGH,QSFC,U10,V10, & |
---|
14 | GZ1OZ0,WSPD,BR,ISFFLX, & |
---|
15 | EP1,EP2,KARMAN,itimestep, & |
---|
16 | ids,ide, jds,jde, kds,kde, & |
---|
17 | ims,ime, jms,jme, kms,kme, & |
---|
18 | its,ite, jts,jte, kts,kte ) |
---|
19 | !------------------------------------------------------------------- |
---|
20 | USE MODULE_GFS_MACHINE, ONLY : kind_phys |
---|
21 | USE MODULE_GFS_FUNCPHYS , ONLY : gfuncphys,fpvs |
---|
22 | !------------------------------------------------------------------- |
---|
23 | IMPLICIT NONE |
---|
24 | !------------------------------------------------------------------- |
---|
25 | !-- U3D 3D u-velocity interpolated to theta points (m/s) |
---|
26 | !-- V3D 3D v-velocity interpolated to theta points (m/s) |
---|
27 | !-- T3D temperature (K) |
---|
28 | !-- QV3D 3D water vapor mixing ratio (Kg/Kg) |
---|
29 | !-- P3D 3D pressure (Pa) |
---|
30 | !-- CP heat capacity at constant pressure for dry air (J/kg/K) |
---|
31 | !-- ROVCP R/CP |
---|
32 | !-- R gas constant for dry air (J/kg/K) |
---|
33 | !-- XLV latent heat of vaporization for water (J/kg) |
---|
34 | !-- PSFC surface pressure (Pa) |
---|
35 | !-- ZNT roughness length (m) |
---|
36 | !-- UST u* in similarity theory (m/s) |
---|
37 | !-- PSIM similarity stability function for momentum |
---|
38 | !-- PSIH similarity stability function for heat |
---|
39 | !-- XLAND land mask (1 for land, 2 for water) |
---|
40 | !-- HFX upward heat flux at the surface (W/m^2) |
---|
41 | !-- QFX upward moisture flux at the surface (kg/m^2/s) |
---|
42 | !-- LH net upward latent heat flux at surface (W/m^2) |
---|
43 | !-- TSK surface temperature (K) |
---|
44 | !-- FLHC exchange coefficient for heat (m/s) |
---|
45 | !-- FLQC exchange coefficient for moisture (m/s) |
---|
46 | !-- QGH lowest-level saturated mixing ratio |
---|
47 | !-- U10 diagnostic 10m u wind |
---|
48 | !-- V10 diagnostic 10m v wind |
---|
49 | !-- GZ1OZ0 log(z/z0) where z0 is roughness length |
---|
50 | !-- WSPD wind speed at lowest model level (m/s) |
---|
51 | !-- BR bulk Richardson number in surface layer |
---|
52 | !-- ISFFLX isfflx=1 for surface heat and moisture fluxes |
---|
53 | !-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless) |
---|
54 | !-- KARMAN Von Karman constant |
---|
55 | !-- ids start index for i in domain |
---|
56 | !-- ide end index for i in domain |
---|
57 | !-- jds start index for j in domain |
---|
58 | !-- jde end index for j in domain |
---|
59 | !-- kds start index for k in domain |
---|
60 | !-- kde end index for k in domain |
---|
61 | !-- ims start index for i in memory |
---|
62 | !-- ime end index for i in memory |
---|
63 | !-- jms start index for j in memory |
---|
64 | !-- jme end index for j in memory |
---|
65 | !-- kms start index for k in memory |
---|
66 | !-- kme end index for k in memory |
---|
67 | !-- its start index for i in tile |
---|
68 | !-- ite end index for i in tile |
---|
69 | !-- jts start index for j in tile |
---|
70 | !-- jte end index for j in tile |
---|
71 | !-- kts start index for k in tile |
---|
72 | !-- kte end index for k in tile |
---|
73 | !------------------------------------------------------------------- |
---|
74 | |
---|
75 | INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde, & |
---|
76 | ims,ime, jms,jme, kms,kme, & |
---|
77 | its,ite, jts,jte, kts,kte, & |
---|
78 | ISFFLX,itimestep |
---|
79 | |
---|
80 | REAL, INTENT(IN) :: & |
---|
81 | CP, & |
---|
82 | EP1, & |
---|
83 | EP2, & |
---|
84 | KARMAN, & |
---|
85 | R, & |
---|
86 | ROVCP, & |
---|
87 | XLV |
---|
88 | |
---|
89 | REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN) :: & |
---|
90 | P3D, & |
---|
91 | QV3D, & |
---|
92 | T3D, & |
---|
93 | U3D, & |
---|
94 | V3D |
---|
95 | |
---|
96 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: & |
---|
97 | TSK, & |
---|
98 | PSFC, & |
---|
99 | XLAND |
---|
100 | |
---|
101 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: & |
---|
102 | UST, & |
---|
103 | ZNT |
---|
104 | |
---|
105 | REAL, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: & |
---|
106 | BR, & |
---|
107 | CHS, & |
---|
108 | CHS2, & |
---|
109 | CPM, & |
---|
110 | CQS2, & |
---|
111 | FLHC, & |
---|
112 | FLQC, & |
---|
113 | GZ1OZ0, & |
---|
114 | HFX, & |
---|
115 | LH, & |
---|
116 | PSIM, & |
---|
117 | PSIH, & |
---|
118 | QFX, & |
---|
119 | QGH, & |
---|
120 | QSFC, & |
---|
121 | U10, & |
---|
122 | V10, & |
---|
123 | WSPD |
---|
124 | |
---|
125 | |
---|
126 | !--------------------------- LOCAL VARS ------------------------------ |
---|
127 | |
---|
128 | REAL :: ESAT |
---|
129 | |
---|
130 | REAL (kind=kind_phys) :: & |
---|
131 | RHOX |
---|
132 | |
---|
133 | REAL (kind=kind_phys), DIMENSION(its:ite) :: & |
---|
134 | CH, & |
---|
135 | CM, & |
---|
136 | DDVEL, & |
---|
137 | DRAIN, & |
---|
138 | EP, & |
---|
139 | EVAP, & |
---|
140 | FH, & |
---|
141 | FH2, & |
---|
142 | FM, & |
---|
143 | HFLX, & |
---|
144 | PH, & |
---|
145 | PM, & |
---|
146 | PRSL1, & |
---|
147 | PRSLKI, & |
---|
148 | PS, & |
---|
149 | Q1, & |
---|
150 | Q2M, & |
---|
151 | QSS, & |
---|
152 | QSURF, & |
---|
153 | RB, & |
---|
154 | RCL, & |
---|
155 | RHO1, & |
---|
156 | SLIMSK, & |
---|
157 | STRESS, & |
---|
158 | T1, & |
---|
159 | T2M, & |
---|
160 | THGB, & |
---|
161 | THX, & |
---|
162 | TSKIN, & |
---|
163 | SHELEG, & |
---|
164 | U1, & |
---|
165 | U10M, & |
---|
166 | USTAR, & |
---|
167 | V1, & |
---|
168 | V10M, & |
---|
169 | WIND, & |
---|
170 | Z0RL, & |
---|
171 | Z1 |
---|
172 | |
---|
173 | |
---|
174 | INTEGER :: & |
---|
175 | I, & |
---|
176 | IM, & |
---|
177 | J, & |
---|
178 | K, & |
---|
179 | KM |
---|
180 | |
---|
181 | |
---|
182 | if(itimestep.eq.0) then |
---|
183 | CALL GFUNCPHYS |
---|
184 | endif |
---|
185 | |
---|
186 | IM=ITE-ITS+1 |
---|
187 | KM=KTE-KTS+1 |
---|
188 | |
---|
189 | DO J=jts,jte |
---|
190 | |
---|
191 | DO i=its,ite |
---|
192 | DDVEL(I)=0. |
---|
193 | RCL(i)=1. |
---|
194 | PRSL1(i)=P3D(i,kts,j)*.001 |
---|
195 | PS(i)=PSFC(i,j)*.001 |
---|
196 | Q1(I) = QV3D(i,kts,j) |
---|
197 | ! QSURF(I)=QSFC(I,J) |
---|
198 | QSURF(I)=0. |
---|
199 | SHELEG(I)=0. |
---|
200 | SLIMSK(i)=ABS(XLAND(i,j)-2.) |
---|
201 | TSKIN(i)=TSK(i,j) |
---|
202 | T1(I) = T3D(i,kts,j) |
---|
203 | U1(I) = U3D(i,kts,j) |
---|
204 | USTAR(I) = UST(i,j) |
---|
205 | V1(I) = V3D(i,kts,j) |
---|
206 | Z0RL(I) = ZNT(i,j)*100. |
---|
207 | ENDDO |
---|
208 | |
---|
209 | DO i=its,ite |
---|
210 | PRSLKI(i)=(PS(I)/PRSL1(I))**ROVCP |
---|
211 | THGB(I)=TSKIN(i)*(100./PS(I))**ROVCP |
---|
212 | THX(I)=T1(i)*(100./PRSL1(I))**ROVCP |
---|
213 | RHO1(I)=PRSL1(I)*1000./(R*T1(I)*(1.+EP1*Q1(I))) |
---|
214 | Q1(I)=Q1(I)/(1.+Q1(I)) |
---|
215 | ENDDO |
---|
216 | |
---|
217 | |
---|
218 | CALL PROGTM(IM,KM,PS,U1,V1,T1,Q1, & |
---|
219 | SHELEG,TSKIN,QSURF, & |
---|
220 | !WRF SMC,STC,DM,SOILTYP,SIGMAF,VEGTYPE,CANOPY,DLWFLX, & |
---|
221 | !WRF SLRAD,SNOWMT,DELT, & |
---|
222 | Z0RL, & |
---|
223 | !WRF TG3,GFLUX,F10M, & |
---|
224 | U10M,V10M,T2M,Q2M, & |
---|
225 | !WRF ZSOIL, & |
---|
226 | CM,CH,RB, & |
---|
227 | !WRF RHSCNPY,RHSMC,AIM,BIM,CIM, & |
---|
228 | RCL,PRSL1,PRSLKI,SLIMSK, & |
---|
229 | DRAIN,EVAP,HFLX,STRESS,EP, & |
---|
230 | FM,FH,USTAR,WIND,DDVEL, & |
---|
231 | PM,PH,FH2,QSS,Z1 ) |
---|
232 | |
---|
233 | |
---|
234 | DO i=its,ite |
---|
235 | U10(i,j)=U10M(i) |
---|
236 | V10(i,j)=V10M(i) |
---|
237 | BR(i,j)=RB(i) |
---|
238 | CHS(I,J)=CH(I)*WIND(I) |
---|
239 | CHS2(I,J)=USTAR(I)*KARMAN/FH2(I) |
---|
240 | CPM(I,J)=CP*(1.+0.8*QV3D(i,kts,j)) |
---|
241 | esat = fpvs(t1(i)) |
---|
242 | QGH(I,J)=ep2*esat/(1000.*ps(i)-esat) |
---|
243 | QSFC(I,J)=qss(i) |
---|
244 | PSIH(i,j)=PH(i) |
---|
245 | PSIM(i,j)=PM(i) |
---|
246 | UST(i,j)=ustar(i) |
---|
247 | WSPD(i,j)=WIND(i) |
---|
248 | ZNT(i,j)=Z0RL(i)*.01 |
---|
249 | ENDDO |
---|
250 | |
---|
251 | DO i=its,ite |
---|
252 | FLHC(i,j)=CPM(I,J)*RHO1(I)*CHS(I,J) |
---|
253 | FLQC(i,j)=RHO1(I)*CHS(I,J) |
---|
254 | GZ1OZ0(i,j)=LOG(Z1(I)/(Z0RL(I)*.01)) |
---|
255 | CQS2(i,j)=CHS2(I,J) |
---|
256 | ENDDO |
---|
257 | |
---|
258 | IF (ISFFLX.EQ.0) THEN |
---|
259 | DO i=its,ite |
---|
260 | HFX(i,j)=0. |
---|
261 | LH(i,j)=0. |
---|
262 | QFX(i,j)=0. |
---|
263 | ENDDO |
---|
264 | ELSE |
---|
265 | DO i=its,ite |
---|
266 | IF(XLAND(I,J)-1.5.GT.0.)THEN |
---|
267 | HFX(I,J)=FLHC(I,J)*(THGB(I)-THX(I)) |
---|
268 | ELSEIF(XLAND(I,J)-1.5.LT.0.)THEN |
---|
269 | HFX(I,J)=FLHC(I,J)*(THGB(I)-THX(I)) |
---|
270 | HFX(I,J)=AMAX1(HFX(I,J),-250.) |
---|
271 | ENDIF |
---|
272 | QFX(I,J)=FLQC(I,J)*(QSFC(I,J)-Q1(I)) |
---|
273 | QFX(I,J)=AMAX1(QFX(I,J),0.) |
---|
274 | LH(I,J)=XLV*QFX(I,J) |
---|
275 | ENDDO |
---|
276 | ENDIF |
---|
277 | |
---|
278 | |
---|
279 | ENDDO |
---|
280 | |
---|
281 | |
---|
282 | END SUBROUTINE SF_GFS |
---|
283 | |
---|
284 | |
---|
285 | !------------------------------------------------------------------- |
---|
286 | |
---|
287 | SUBROUTINE PROGTM(IM,KM,PS,U1,V1,T1,Q1, & |
---|
288 | & SHELEG,TSKIN,QSURF, & |
---|
289 | !WRF & SMC,STC,DM,SOILTYP,SIGMAF,VEGTYPE,CANOPY, & |
---|
290 | !WRF & DLWFLX,SLRAD,SNOWMT,DELT, & |
---|
291 | & Z0RL, & |
---|
292 | !WRF & TG3,GFLUX,F10M, & |
---|
293 | & U10M,V10M,T2M,Q2M, & |
---|
294 | !WRF & ZSOIL, & |
---|
295 | & CM, CH, RB, & |
---|
296 | !WRF & RHSCNPY,RHSMC,AIM,BIM,CIM, & |
---|
297 | & RCL,PRSL1,PRSLKI,SLIMSK, & |
---|
298 | & DRAIN,EVAP,HFLX,STRESS,EP, & |
---|
299 | & FM,FH,USTAR,WIND,DDVEL, & |
---|
300 | & PM,PH,FH2,QSS,Z1 ) |
---|
301 | ! |
---|
302 | |
---|
303 | USE MODULE_GFS_MACHINE, ONLY : kind_phys |
---|
304 | USE MODULE_GFS_FUNCPHYS, ONLY : fpvs |
---|
305 | USE MODULE_GFS_PHYSCONS, grav => con_g, SBC => con_sbc, HVAP => con_HVAP & |
---|
306 | &, CP => con_CP, HFUS => con_HFUS, JCAL => con_JCAL & |
---|
307 | &, EPS => con_eps, EPSM1 => con_epsm1, t0c => con_t0c & |
---|
308 | &, RVRDM1 => con_FVirt, RD => con_RD |
---|
309 | implicit none |
---|
310 | ! |
---|
311 | ! include 'constant.h' |
---|
312 | ! |
---|
313 | integer IM, km |
---|
314 | ! |
---|
315 | real(kind=kind_phys), parameter :: cpinv=1.0/cp, HVAPI=1.0/HVAP |
---|
316 | real(kind=kind_phys) DELT |
---|
317 | INTEGER SOILTYP(IM), VEGTYPE(IM) |
---|
318 | real(kind=kind_phys) PS(IM), U1(IM), V1(IM), & |
---|
319 | & T1(IM), Q1(IM), SHELEG(IM), & |
---|
320 | & TSKIN(IM), QSURF(IM), SMC(IM,KM), & |
---|
321 | & STC(IM,KM), DM(IM), SIGMAF(IM), & |
---|
322 | & CANOPY(IM), DLWFLX(IM), SLRAD(IM), & |
---|
323 | & SNOWMT(IM), Z0RL(IM), TG3(IM), & |
---|
324 | & GFLUX(IM), F10M(IM), U10M(IM), & |
---|
325 | & V10M(IM), T2M(IM), Q2M(IM), & |
---|
326 | & ZSOIL(IM,KM), CM(IM), CH(IM), & |
---|
327 | & RB(IM), RHSCNPY(IM), RHSMC(IM,KM), & |
---|
328 | & AIM(IM,KM), BIM(IM,KM), CIM(IM,KM), & |
---|
329 | & RCL(IM), PRSL1(IM), PRSLKI(IM), & |
---|
330 | & SLIMSK(IM), DRAIN(IM), EVAP(IM), & |
---|
331 | & HFLX(IM), RNET(IM), EP(IM), & |
---|
332 | & FM(IM), FH(IM), USTAR(IM), & |
---|
333 | & WIND(IM), DDVEL(IM), STRESS(IM) |
---|
334 | ! |
---|
335 | ! Locals |
---|
336 | ! |
---|
337 | integer k,i |
---|
338 | ! |
---|
339 | real(kind=kind_phys) CANFAC(IM), & |
---|
340 | & DDZ(IM), DDZ2(IM), DELTA(IM), & |
---|
341 | & DEW(IM), DF1(IM), DFT0(IM), & |
---|
342 | & DFT2(IM), DFT1(IM), & |
---|
343 | & DMDZ(IM), DMDZ2(IM), DTDZ1(IM), & |
---|
344 | & DTDZ2(IM), DTV(IM), EC(IM), & |
---|
345 | & EDIR(IM), ETPFAC(IM), & |
---|
346 | & FACTSNW(IM), FH2(IM), FM10(IM), & |
---|
347 | & FX(IM), GX(IM), & |
---|
348 | & HCPCT(IM), HL1(IM), HL12(IM), & |
---|
349 | & HLINF(IM), PARTLND(IM), PH(IM), & |
---|
350 | & PH2(IM), PM(IM), PM10(IM), & |
---|
351 | & PSURF(IM), Q0(IM), QS1(IM), & |
---|
352 | & QSS(IM), RAT(IM), RCAP(IM), & |
---|
353 | & RCH(IM), RHO(IM), RS(IM), & |
---|
354 | & RSMALL(IM), SLWD(IM), SMCZ(IM), & |
---|
355 | & SNET(IM), SNOEVP(IM), SNOWD(IM), & |
---|
356 | & T1O(IM), T2MO(IM), TERM1(IM), & |
---|
357 | & TERM2(IM), THETA1(IM), THV1(IM), & |
---|
358 | & TREF(IM), TSURF(IM), TV1(IM), & |
---|
359 | & TVS(IM), TSURFO(IM), TWILT(IM), & |
---|
360 | & XX(IM), XRCL(IM), YY(IM), & |
---|
361 | & Z0(IM), Z0MAX(IM), Z1(IM), & |
---|
362 | & ZTMAX(IM), ZZ(IM), PS1(IM) |
---|
363 | ! |
---|
364 | real(kind=kind_phys) a0, a0p, a1, a1p, aa, aa0, & |
---|
365 | & aa1, adtv, alpha, arnu, b1, b1p, & |
---|
366 | & b2, b2p, bb, bb0, bb1, bb2, & |
---|
367 | & bfact, ca, cc, cc1, cc2, cfactr, & |
---|
368 | & ch2o, charnock, cice, convrad, cq, csoil, & |
---|
369 | & ctfil1,ctfil2, delt2, df2, dfsnow, & |
---|
370 | & elocp, eth, ff, FMS, & |
---|
371 | !WRF & fhs, funcdf, funckt,g, hl0, hl0inf, & |
---|
372 | & fhs, g, hl0, hl0inf, & |
---|
373 | & hl110, hlt, hltinf,OLINF, rcq, rcs, & |
---|
374 | & rct, restar, rhoh2o,rnu, RSI, & |
---|
375 | & rss, scanop, sig2k, sigma, smcdry, & |
---|
376 | & t12, t14, tflx, tgice, topt, & |
---|
377 | & val, vis, zbot, snomin, tem |
---|
378 | ! |
---|
379 | ! |
---|
380 | |
---|
381 | PARAMETER (CHARNOCK=.014,CA=.4)!C CA IS THE VON KARMAN CONSTANT |
---|
382 | PARAMETER (G=grav,sigma=sbc) |
---|
383 | |
---|
384 | PARAMETER (ALPHA=5.,A0=-3.975,A1=12.32,B1=-7.755,B2=6.041) |
---|
385 | PARAMETER (A0P=-7.941,A1P=24.75,B1P=-8.705,B2P=7.899,VIS=1.4E-5) |
---|
386 | PARAMETER (AA1=-1.076,BB1=.7045,CC1=-.05808) |
---|
387 | PARAMETER (BB2=-.1954,CC2=.009999) |
---|
388 | PARAMETER (ELOCP=HVAP/CP,DFSNOW=.31,CH2O=4.2E6,CSOIL=1.26E6) |
---|
389 | PARAMETER (SCANOP=.5,CFACTR=.5,ZBOT=-3.,TGICE=271.2) |
---|
390 | PARAMETER (CICE=1880.*917.,topt=298.) |
---|
391 | PARAMETER (RHOH2O=1000.,CONVRAD=JCAL*1.E4/60.) |
---|
392 | PARAMETER (CTFIL1=.5,CTFIL2=1.-CTFIL1) |
---|
393 | PARAMETER (RNU=1.51E-5,ARNU=.135*RNU) |
---|
394 | parameter (snomin=1.0e-9) |
---|
395 | ! |
---|
396 | LOGICAL FLAG(IM), FLAGSNW(IM) |
---|
397 | !WRF real(kind=kind_phys) KT1(IM), KT2(IM), KTSOIL, & |
---|
398 | real(kind=kind_phys) KT1(IM), KT2(IM), & |
---|
399 | & ET(IM,KM), & |
---|
400 | & STSOIL(IM,KM), AI(IM,KM), BI(IM,KM), & |
---|
401 | & CI(IM,KM), RHSTC(IM,KM) |
---|
402 | real(kind=kind_phys) rsmax(13), rgl(13), rsmin(13), hs(13), & |
---|
403 | & smmax(9), smdry(9), smref(9), smwlt(9) |
---|
404 | |
---|
405 | ! |
---|
406 | ! the 13 vegetation types are: |
---|
407 | ! |
---|
408 | ! 1 ... broadleave-evergreen trees (tropical forest) |
---|
409 | ! 2 ... broadleave-deciduous trees |
---|
410 | ! 3 ... broadleave and needle leave trees (mixed forest) |
---|
411 | ! 4 ... needleleave-evergreen trees |
---|
412 | ! 5 ... needleleave-deciduous trees (larch) |
---|
413 | ! 6 ... broadleave trees with groundcover (savanna) |
---|
414 | ! 7 ... groundcover only (perenial) |
---|
415 | ! 8 ... broadleave shrubs with perenial groundcover |
---|
416 | ! 9 ... broadleave shrubs with bare soil |
---|
417 | ! 10 ... dwarf trees and shrubs with ground cover (trunda) |
---|
418 | ! 11 ... bare soil |
---|
419 | ! 12 ... cultivations (use parameters from type 7) |
---|
420 | ! 13 ... glacial |
---|
421 | ! |
---|
422 | data rsmax/13*5000./ |
---|
423 | data rsmin/150.,100.,125.,150.,100.,70.,40., & |
---|
424 | & 300.,400.,150.,999.,40.,999./ |
---|
425 | data rgl/5*30.,65.,4*100.,999.,100.,999./ |
---|
426 | data hs/41.69,54.53,51.93,47.35,47.35,54.53,36.35, & |
---|
427 | & 3*42.00,999.,36.35,999./ |
---|
428 | data smmax/.421,.464,.468,.434,.406,.465,.404,.439,.421/ |
---|
429 | data smdry/.07,.14,.22,.08,.18,.16,.12,.10,.07/ |
---|
430 | data smref/.283,.387,.412,.312,.338,.382,.315,.329,.283/ |
---|
431 | data smwlt/.029,.119,.139,.047,.010,.103,.069,.066,.029/ |
---|
432 | ! |
---|
433 | !!! save rsmax, rsmin, rgl, hs, smmax, smdry, smref, smwlt |
---|
434 | ! |
---|
435 | |
---|
436 | !WRF DELT2 = DELT * 2. |
---|
437 | ! |
---|
438 | ! ESTIMATE SIGMA ** K AT 2 M |
---|
439 | ! |
---|
440 | SIG2K = 1. - 4. * G * 2. / (CP * 280.) |
---|
441 | ! |
---|
442 | ! INITIALIZE VARIABLES. ALL UNITS ARE SUPPOSEDLY M.K.S. UNLESS SPECIFIE |
---|
443 | ! PSURF IS IN PASCALS |
---|
444 | ! WIND IS WIND SPEED, THETA1 IS ADIABATIC SURFACE TEMP FROM LEVEL 1 |
---|
445 | ! RHO IS DENSITY, QS1 IS SAT. HUM. AT LEVEL1 AND QSS IS SAT. HUM. AT |
---|
446 | ! SURFACE |
---|
447 | ! CONVERT SLRAD TO THE CIVILIZED UNIT FROM LANGLEY MINUTE-1 K-4 |
---|
448 | ! SURFACE ROUGHNESS LENGTH IS CONVERTED TO M FROM CM |
---|
449 | ! |
---|
450 | !! |
---|
451 | ! qs1 = fpvs(t1) |
---|
452 | ! qss = fpvs(tskin) |
---|
453 | DO I=1,IM |
---|
454 | XRCL(I) = SQRT(RCL(I)) |
---|
455 | PSURF(I) = 1000. * PS(I) |
---|
456 | PS1(I) = 1000. * PRSL1(I) |
---|
457 | ! SLWD(I) = SLRAD(I) * CONVRAD |
---|
458 | !WRF SLWD(I) = SLRAD(I) |
---|
459 | ! |
---|
460 | ! DLWFLX has been given a negative sign for downward longwave |
---|
461 | ! snet is the net shortwave flux |
---|
462 | ! |
---|
463 | !WRF SNET(I) = -SLWD(I) - DLWFLX(I) |
---|
464 | WIND(I) = XRCL(I) * SQRT(U1(I) * U1(I) + V1(I) * V1(I)) & |
---|
465 | & + MAX(0.0_kind_phys, MIN(DDVEL(I), 30.0_kind_phys)) |
---|
466 | WIND(I) = MAX(WIND(I),1._kind_phys) |
---|
467 | Q0(I) = MAX(Q1(I),1.E-8_kind_phys) |
---|
468 | TSURF(I) = TSKIN(I) |
---|
469 | THETA1(I) = T1(I) * PRSLKI(I) |
---|
470 | TV1(I) = T1(I) * (1. + RVRDM1 * Q0(I)) |
---|
471 | THV1(I) = THETA1(I) * (1. + RVRDM1 * Q0(I)) |
---|
472 | TVS(I) = TSURF(I) * (1. + RVRDM1 * Q0(I)) |
---|
473 | RHO(I) = PS1(I) / (RD * TV1(I)) |
---|
474 | !jfe QS1(I) = 1000. * FPVS(T1(I)) |
---|
475 | qs1(i) = fpvs(t1(i)) |
---|
476 | QS1(I) = EPS * QS1(I) / (PS1(I) + EPSM1 * QS1(I)) |
---|
477 | QS1(I) = MAX(QS1(I), 1.E-8_kind_phys) |
---|
478 | Q0(I) = min(QS1(I),Q0(I)) |
---|
479 | !jfe QSS(I) = 1000. * FPVS(TSURF(I)) |
---|
480 | qss(i) = fpvs(tskin(i)) |
---|
481 | QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
482 | ! RS = PLANTR |
---|
483 | RS(I) = 0. |
---|
484 | !WRF if(VEGTYPE(I).gt.0.) RS(I) = rsmin(VEGTYPE(I)) |
---|
485 | Z0(I) = .01 * Z0RL(i) |
---|
486 | !WRF CANOPY(I)= MAX(CANOPY(I),0._kind_phys) |
---|
487 | DM(I) = 1. |
---|
488 | !WRF |
---|
489 | GOTO 1111 |
---|
490 | !WRF |
---|
491 | FACTSNW(I) = 10. |
---|
492 | IF(SLIMSK(I).EQ.2.) FACTSNW(I) = 3. |
---|
493 | ! |
---|
494 | ! SNOW DEPTH IN WATER EQUIVALENT IS CONVERTED FROM MM TO M UNIT |
---|
495 | ! |
---|
496 | SNOWD(I) = SHELEG(I) / 1000. |
---|
497 | FLAGSNW(I) = .FALSE. |
---|
498 | ! |
---|
499 | ! WHEN SNOW DEPTH IS LESS THAN 1 MM, A PATCHY SNOW IS ASSUMED AND |
---|
500 | ! SOIL IS ALLOWED TO INTERACT WITH THE ATMOSPHERE. |
---|
501 | ! WE SHOULD EVENTUALLY MOVE TO A LINEAR COMBINATION OF SOIL AND |
---|
502 | ! SNOW UNDER THE CONDITION OF PATCHY SNOW. |
---|
503 | ! |
---|
504 | IF(SNOWD(I).GT..001.OR.SLIMSK(I).EQ.2.) RS(I) = 0. |
---|
505 | IF(SNOWD(I).GT..001) FLAGSNW(I) = .TRUE. |
---|
506 | !##DG IF(LAT.EQ.LATD) THEN |
---|
507 | !##DG PRINT *, ' WIND,TV1,TVS,Q1,QS1,SNOW,SLIMSK=', |
---|
508 | !##DG& WIND,TV1,TVS,Q1,QS1,SNOWD,SLIMSK |
---|
509 | !##DG PRINT *, ' SNET, SLWD =', SNET, SLWD(I) |
---|
510 | !##DG ENDIF |
---|
511 | IF(SLIMSK(I).EQ.0.) THEN |
---|
512 | ZSOIL(I,1) = 0. |
---|
513 | ELSEIF(SLIMSK(I).EQ.1.) THEN |
---|
514 | ZSOIL(I,1) = -.10 |
---|
515 | ELSE |
---|
516 | ZSOIL(I,1) = -3. / KM |
---|
517 | ENDIF |
---|
518 | !WRF |
---|
519 | 1111 CONTINUE |
---|
520 | !WRF |
---|
521 | ENDDO |
---|
522 | |
---|
523 | !! |
---|
524 | !WRF |
---|
525 | GOTO 2222 |
---|
526 | !WRF |
---|
527 | DO K = 2, KM |
---|
528 | DO I=1,IM |
---|
529 | IF(SLIMSK(I).EQ.0.) THEN |
---|
530 | ZSOIL(I,K) = 0. |
---|
531 | ELSEIF(SLIMSK(I).EQ.1.) THEN |
---|
532 | ZSOIL(I,K) = ZSOIL(I,K-1) & |
---|
533 | & + (-2. - ZSOIL(I,1)) / (KM - 1) |
---|
534 | ELSE |
---|
535 | ZSOIL(I,K) = - 3. * FLOAT(K) / FLOAT(KM) |
---|
536 | ENDIF |
---|
537 | ENDDO |
---|
538 | ENDDO |
---|
539 | !WRF |
---|
540 | 2222 CONTINUE |
---|
541 | !WRF |
---|
542 | !! |
---|
543 | DO I=1,IM |
---|
544 | Z1(I) = -RD * TV1(I) * LOG(PS1(I)/PSURF(I)) / G |
---|
545 | DRAIN(I) = 0. |
---|
546 | ENDDO |
---|
547 | |
---|
548 | !! |
---|
549 | DO K = 1, KM |
---|
550 | DO I=1,IM |
---|
551 | ET(I,K) = 0. |
---|
552 | RHSMC(I,K) = 0. |
---|
553 | AIM(I,K) = 0. |
---|
554 | BIM(I,K) = 1. |
---|
555 | CIM(I,K) = 0. |
---|
556 | STSOIL(I,K) = STC(I,K) |
---|
557 | ENDDO |
---|
558 | ENDDO |
---|
559 | |
---|
560 | DO I=1,IM |
---|
561 | EDIR(I) = 0. |
---|
562 | EC(I) = 0. |
---|
563 | EVAP(I) = 0. |
---|
564 | EP(I) = 0. |
---|
565 | SNOWMT(I) = 0. |
---|
566 | GFLUX(I) = 0. |
---|
567 | RHSCNPY(I) = 0. |
---|
568 | FX(I) = 0. |
---|
569 | ETPFAC(I) = 0. |
---|
570 | CANFAC(I) = 0. |
---|
571 | ENDDO |
---|
572 | ! |
---|
573 | ! COMPUTE STABILITY DEPENDENT EXCHANGE COEFFICIENTS |
---|
574 | ! |
---|
575 | ! THIS PORTION OF THE CODE IS PRESENTLY SUPPRESSED |
---|
576 | ! |
---|
577 | DO I=1,IM |
---|
578 | IF(SLIMSK(I).EQ.0.) THEN |
---|
579 | USTAR(I) = SQRT(G * Z0(I) / CHARNOCK) |
---|
580 | ENDIF |
---|
581 | ! |
---|
582 | ! COMPUTE STABILITY INDICES (RB AND HLINF) |
---|
583 | ! |
---|
584 | |
---|
585 | Z0MAX(I) = MIN(Z0(I),0.1 * Z1(I)) |
---|
586 | ZTMAX(I) = Z0MAX(I) |
---|
587 | IF(SLIMSK(I).EQ.0.) THEN |
---|
588 | RESTAR = USTAR(I) * Z0MAX(I) / VIS |
---|
589 | RESTAR = MAX(RESTAR,.000001_kind_phys) |
---|
590 | ! RESTAR = ALOG(RESTAR) |
---|
591 | ! RESTAR = MIN(RESTAR,5.) |
---|
592 | ! RESTAR = MAX(RESTAR,-5.) |
---|
593 | ! RAT(I) = AA1 + BB1 * RESTAR + CC1 * RESTAR ** 2 |
---|
594 | ! RAT(I) = RAT(I) / (1. + BB2 * RESTAR |
---|
595 | ! & + CC2 * RESTAR ** 2) |
---|
596 | ! Rat taken from Zeng, Zhao and Dickinson 1997 |
---|
597 | RAT(I) = 2.67 * restar ** .25 - 2.57 |
---|
598 | RAT(I) = min(RAT(I),7._kind_phys) |
---|
599 | ZTMAX(I) = Z0MAX(I) * EXP(-RAT(I)) |
---|
600 | ENDIF |
---|
601 | ENDDO |
---|
602 | |
---|
603 | !##DG IF(LAT.EQ.LATD) THEN |
---|
604 | !##DG PRINT *, ' z0max, ztmax, restar, RAT(I) =', |
---|
605 | !##DG & z0max, ztmax, restar, RAT(I) |
---|
606 | !##DG ENDIF |
---|
607 | DO I = 1, IM |
---|
608 | DTV(I) = THV1(I) - TVS(I) |
---|
609 | ADTV = ABS(DTV(I)) |
---|
610 | ADTV = MAX(ADTV,.001_kind_phys) |
---|
611 | DTV(I) = SIGN(1._kind_phys,DTV(I)) * ADTV |
---|
612 | RB(I) = G * DTV(I) * Z1(I) / (.5 * (THV1(I) + TVS(I)) & |
---|
613 | & * WIND(I) * WIND(I)) |
---|
614 | RB(I) = MAX(RB(I),-5000._kind_phys) |
---|
615 | ! FM(I) = LOG((Z0MAX(I)+Z1(I)) / Z0MAX(I)) |
---|
616 | ! FH(I) = LOG((ZTMAX(I)+Z1(I)) / ZTMAX(I)) |
---|
617 | FM(I) = LOG((Z1(I)) / Z0MAX(I)) |
---|
618 | FH(I) = LOG((Z1(I)) / ZTMAX(I)) |
---|
619 | HLINF(I) = RB(I) * FM(I) * FM(I) / FH(I) |
---|
620 | FM10(I) = LOG((Z0MAX(I)+10.) / Z0MAX(I)) |
---|
621 | FH2(I) = LOG((ZTMAX(I)+2.) / ZTMAX(I)) |
---|
622 | ENDDO |
---|
623 | !##DG IF(LAT.EQ.LATD) THEN |
---|
624 | !##DG PRINT *, ' DTV, RB(I), FM(I), FH(I), HLINF =', |
---|
625 | !##DG & dtv, rb, FM(I), FH(I), hlinf |
---|
626 | !##DG ENDIF |
---|
627 | ! |
---|
628 | ! STABLE CASE |
---|
629 | ! |
---|
630 | DO I = 1, IM |
---|
631 | IF(DTV(I).GE.0.) THEN |
---|
632 | HL1(I) = HLINF(I) |
---|
633 | ENDIF |
---|
634 | IF(DTV(I).GE.0..AND.HLINF(I).GT..25) THEN |
---|
635 | HL0INF = Z0MAX(I) * HLINF(I) / Z1(I) |
---|
636 | HLTINF = ZTMAX(I) * HLINF(I) / Z1(I) |
---|
637 | AA = SQRT(1. + 4. * ALPHA * HLINF(I)) |
---|
638 | AA0 = SQRT(1. + 4. * ALPHA * HL0INF) |
---|
639 | BB = AA |
---|
640 | BB0 = SQRT(1. + 4. * ALPHA * HLTINF) |
---|
641 | PM(I) = AA0 - AA + LOG((AA + 1.) / (AA0 + 1.)) |
---|
642 | PH(I) = BB0 - BB + LOG((BB + 1.) / (BB0 + 1.)) |
---|
643 | FMS = FM(I) - PM(I) |
---|
644 | FHS = FH(I) - PH(I) |
---|
645 | HL1(I) = FMS * FMS * RB(I) / FHS |
---|
646 | ENDIF |
---|
647 | ENDDO |
---|
648 | ! |
---|
649 | ! SECOND ITERATION |
---|
650 | ! |
---|
651 | DO I = 1, IM |
---|
652 | IF(DTV(I).GE.0.) THEN |
---|
653 | HL0 = Z0MAX(I) * HL1(I) / Z1(I) |
---|
654 | HLT = ZTMAX(I) * HL1(I) / Z1(I) |
---|
655 | AA = SQRT(1. + 4. * ALPHA * HL1(I)) |
---|
656 | AA0 = SQRT(1. + 4. * ALPHA * HL0) |
---|
657 | BB = AA |
---|
658 | BB0 = SQRT(1. + 4. * ALPHA * HLT) |
---|
659 | PM(I) = AA0 - AA + LOG((AA + 1.) / (AA0 + 1.)) |
---|
660 | PH(I) = BB0 - BB + LOG((BB + 1.) / (BB0 + 1.)) |
---|
661 | HL110 = HL1(I) * 10. / Z1(I) |
---|
662 | AA = SQRT(1. + 4. * ALPHA * HL110) |
---|
663 | PM10(I) = AA0 - AA + LOG((AA + 1.) / (AA0 + 1.)) |
---|
664 | HL12(I) = HL1(I) * 2. / Z1(I) |
---|
665 | ! AA = SQRT(1. + 4. * ALPHA * HL12(I)) |
---|
666 | BB = SQRT(1. + 4. * ALPHA * HL12(I)) |
---|
667 | PH2(I) = BB0 - BB + LOG((BB + 1.) / (BB0 + 1.)) |
---|
668 | ENDIF |
---|
669 | ENDDO |
---|
670 | !! |
---|
671 | !##DG IF(LAT.EQ.LATD) THEN |
---|
672 | !##DG PRINT *, ' HL1(I), PM, PH =', |
---|
673 | !##DG & HL1(I), pm, ph |
---|
674 | !##DG ENDIF |
---|
675 | ! |
---|
676 | ! UNSTABLE CASE |
---|
677 | ! |
---|
678 | ! |
---|
679 | ! CHECK FOR UNPHYSICAL OBUKHOV LENGTH |
---|
680 | ! |
---|
681 | DO I=1,IM |
---|
682 | IF(DTV(I).LT.0.) THEN |
---|
683 | OLINF = Z1(I) / HLINF(I) |
---|
684 | IF(ABS(OLINF).LE.50. * Z0MAX(I)) THEN |
---|
685 | HLINF(I) = -Z1(I) / (50. * Z0MAX(I)) |
---|
686 | ENDIF |
---|
687 | ENDIF |
---|
688 | ENDDO |
---|
689 | ! |
---|
690 | ! GET PM AND PH |
---|
691 | ! |
---|
692 | DO I = 1, IM |
---|
693 | IF(DTV(I).LT.0..AND.HLINF(I).GE.-.5) THEN |
---|
694 | HL1(I) = HLINF(I) |
---|
695 | PM(I) = (A0 + A1 * HL1(I)) * HL1(I) & |
---|
696 | & / (1. + B1 * HL1(I) + B2 * HL1(I) * HL1(I)) |
---|
697 | PH(I) = (A0P + A1P * HL1(I)) * HL1(I) & |
---|
698 | & / (1. + B1P * HL1(I) + B2P * HL1(I) * HL1(I)) |
---|
699 | HL110 = HL1(I) * 10. / Z1(I) |
---|
700 | PM10(I) = (A0 + A1 * HL110) * HL110 & |
---|
701 | & / (1. + B1 * HL110 + B2 * HL110 * HL110) |
---|
702 | HL12(I) = HL1(I) * 2. / Z1(I) |
---|
703 | PH2(I) = (A0P + A1P * HL12(I)) * HL12(I) & |
---|
704 | & / (1. + B1P * HL12(I) + B2P * HL12(I) * HL12(I)) |
---|
705 | ENDIF |
---|
706 | IF(DTV(I).LT.0.AND.HLINF(I).LT.-.5) THEN |
---|
707 | HL1(I) = -HLINF(I) |
---|
708 | PM(I) = LOG(HL1(I)) + 2. * HL1(I) ** (-.25) - .8776 |
---|
709 | PH(I) = LOG(HL1(I)) + .5 * HL1(I) ** (-.5) + 1.386 |
---|
710 | HL110 = HL1(I) * 10. / Z1(I) |
---|
711 | PM10(I) = LOG(HL110) + 2. * HL110 ** (-.25) - .8776 |
---|
712 | HL12(I) = HL1(I) * 2. / Z1(I) |
---|
713 | PH2(I) = LOG(HL12(I)) + .5 * HL12(I) ** (-.5) + 1.386 |
---|
714 | ENDIF |
---|
715 | ENDDO |
---|
716 | ! |
---|
717 | ! FINISH THE EXCHANGE COEFFICIENT COMPUTATION TO PROVIDE FM AND FH |
---|
718 | ! |
---|
719 | DO I = 1, IM |
---|
720 | |
---|
721 | FM(I) = FM(I) - PM(I) |
---|
722 | FH(I) = FH(I) - PH(I) |
---|
723 | FM10(I) = FM10(I) - PM10(I) |
---|
724 | FH2(I) = FH2(I) - PH2(I) |
---|
725 | CM(I) = CA * CA / (FM(I) * FM(I)) |
---|
726 | CH(I) = CA * CA / (FM(I) * FH(I)) |
---|
727 | CQ = CH(I) |
---|
728 | STRESS(I) = CM(I) * WIND(I) * WIND(I) |
---|
729 | USTAR(I) = SQRT(STRESS(I)) |
---|
730 | ! USTAR(I) = SQRT(CM(I) * WIND(I) * WIND(I)) |
---|
731 | ENDDO |
---|
732 | !##DG IF(LAT.EQ.LATD) THEN |
---|
733 | !##DG PRINT *, ' FM, FH, CM, CH(I), USTAR =', |
---|
734 | !##DG & FM, FH, CM, ch, USTAR |
---|
735 | !##DG ENDIF |
---|
736 | ! |
---|
737 | ! UPDATE Z0 OVER OCEAN |
---|
738 | ! |
---|
739 | DO I = 1, IM |
---|
740 | IF(SLIMSK(I).EQ.0.) THEN |
---|
741 | Z0(I) = (CHARNOCK / G) * USTAR(I) ** 2 |
---|
742 | ! NEW IMPLEMENTATION OF Z0 |
---|
743 | ! CC = USTAR(I) * Z0 / RNU |
---|
744 | ! PP = CC / (1. + CC) |
---|
745 | ! FF = G * ARNU / (CHARNOCK * USTAR(I) ** 3) |
---|
746 | ! Z0 = ARNU / (USTAR(I) * FF ** PP) |
---|
747 | Z0(I) = MIN(Z0(I),.1_kind_phys) |
---|
748 | Z0(I) = MAX(Z0(I),1.E-7_kind_phys) |
---|
749 | Z0RL(I) = 100. * Z0(I) |
---|
750 | ENDIF |
---|
751 | ENDDO |
---|
752 | |
---|
753 | GOTO 5555 |
---|
754 | ! |
---|
755 | ! RCP = RHO CP CH V |
---|
756 | ! |
---|
757 | DO I = 1, IM |
---|
758 | RCH(I) = RHO(I) * CP * CH(I) * WIND(I) |
---|
759 | ENDDO |
---|
760 | |
---|
761 | |
---|
762 | ! |
---|
763 | ! SENSIBLE AND LATENT HEAT FLUX OVER OPEN WATER |
---|
764 | ! |
---|
765 | DO I = 1, IM |
---|
766 | IF(SLIMSK(I).EQ.0.) THEN |
---|
767 | EVAP(I) = ELOCP * RCH(I) * (QSS(I) - Q1(I)) |
---|
768 | DM(I) = 1. |
---|
769 | QSURF(I) = QSS(I) |
---|
770 | ENDIF |
---|
771 | ENDDO |
---|
772 | |
---|
773 | ! |
---|
774 | ! COMPUTE SOIL/SNOW/ICE HEAT FLUX IN PREPARATION FOR SURFACE ENERGY |
---|
775 | ! BALANCE CALCULATION |
---|
776 | ! |
---|
777 | DO I = 1, IM |
---|
778 | GFLUX(I) = 0. |
---|
779 | IF(SLIMSK(I).EQ.1.) THEN |
---|
780 | SMCZ(I) = .5 * (SMC(I,1) + .20) |
---|
781 | DFT0(I) = KTSOIL(SMCZ(I),SOILTYP(I)) |
---|
782 | ELSEIF(SLIMSK(I).EQ.2.) THEN |
---|
783 | ! DF FOR ICE IS TAKEN FROM MAYKUT AND UNTERSTEINER |
---|
784 | ! DF IS IN SI UNIT OF W K-1 M-1 |
---|
785 | DFT0(I) = 2.2 |
---|
786 | ENDIF |
---|
787 | ENDDO |
---|
788 | !! |
---|
789 | DO I=1,IM |
---|
790 | IF(SLIMSK(I).NE.0.) THEN |
---|
791 | ! IF(SNOWD(I).GT..001) THEN |
---|
792 | IF(FLAGSNW(I)) THEN |
---|
793 | ! |
---|
794 | ! WHEN SNOW COVERED, GROUND HEAT FLUX COMES FROM SNOW |
---|
795 | ! |
---|
796 | TFLX = MIN(T1(I), TSURF(I)) |
---|
797 | GFLUX(I) = -DFSNOW * (TFLX - STSOIL(I,1)) & |
---|
798 | & / (FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) |
---|
799 | ELSE |
---|
800 | GFLUX(I) = DFT0(I) * (STSOIL(I,1) - TSURF(I)) & |
---|
801 | & / (-.5 * ZSOIL(I,1)) |
---|
802 | ENDIF |
---|
803 | GFLUX(I) = MAX(GFLUX(I),-200._kind_phys) |
---|
804 | GFLUX(I) = MIN(GFLUX(I),+200._kind_phys) |
---|
805 | ENDIF |
---|
806 | ENDDO |
---|
807 | DO I = 1, IM |
---|
808 | FLAG(I) = SLIMSK(I).NE.0. |
---|
809 | PARTLND(I) = 1. |
---|
810 | IF(SNOWD(I).GT.0..AND.SNOWD(I).LE..001) THEN |
---|
811 | PARTLND(I) = 1. - SNOWD(I) / .001 |
---|
812 | ENDIF |
---|
813 | ENDDO |
---|
814 | DO I = 1, IM |
---|
815 | SNOEVP(I) = 0. |
---|
816 | if(SNOWD(I).gt..001) PARTLND(I) = 0. |
---|
817 | ENDDO |
---|
818 | ! |
---|
819 | ! COMPUTE POTENTIAL EVAPORATION FOR LAND AND SEA ICE |
---|
820 | ! |
---|
821 | DO I = 1, IM |
---|
822 | IF(FLAG(I)) THEN |
---|
823 | T12 = T1(I) * T1(I) |
---|
824 | T14 = T12 * T12 |
---|
825 | ! |
---|
826 | ! RCAP = FNET - SIGMA T**4 + GFLX - RHO CP CH V (T1-THETA1) |
---|
827 | ! |
---|
828 | RCAP(I) = -SLWD(I) - SIGMA * T14 + GFLUX(I) & |
---|
829 | & - RCH(I) * (T1(I) - THETA1(I)) |
---|
830 | ! |
---|
831 | ! RSMALL = 4 SIGMA T**3 / RCH(I) + 1 |
---|
832 | ! |
---|
833 | RSMALL(I) = 4. * SIGMA * T1(I) * T12 / RCH(I) + 1. |
---|
834 | ! |
---|
835 | ! DELTA = L / CP * DQS/DT |
---|
836 | ! |
---|
837 | DELTA(I) = ELOCP * EPS * HVAP * QS1(I) / (RD * T12) |
---|
838 | ! |
---|
839 | ! POTENTIAL EVAPOTRANSPIRATION ( WATTS / M**2 ) AND |
---|
840 | ! POTENTIAL EVAPORATION |
---|
841 | ! |
---|
842 | TERM1(I) = ELOCP * RSMALL(I) * RCH(I)*(QS1(I)-Q0(I)) |
---|
843 | TERM2(I) = RCAP(I) * DELTA(I) |
---|
844 | EP(I) = (ELOCP * RSMALL(I) * RCH(I) * (QS1(I) - Q0(I)) & |
---|
845 | & + RCAP(I) * DELTA(I)) |
---|
846 | EP(I) = EP(I) / (RSMALL(I) + DELTA(I)) |
---|
847 | ENDIF |
---|
848 | ENDDO |
---|
849 | ! |
---|
850 | ! ACTUAL EVAPORATION OVER LAND IN THREE PARTS : EDIR, ET, AND EC |
---|
851 | ! |
---|
852 | ! DIRECT EVAPORATION FROM SOIL, THE UNIT GOES FROM M S-1 TO KG M-2 S-1 |
---|
853 | ! |
---|
854 | DO I = 1, IM |
---|
855 | FLAG(I) = SLIMSK(I).EQ.1..AND.EP(I).GT.0. |
---|
856 | ENDDO |
---|
857 | DO I = 1, IM |
---|
858 | IF(FLAG(I)) THEN |
---|
859 | DF1(I) = FUNCDF(SMC(I,1),SOILTYP(I)) |
---|
860 | KT1(I) = FUNCKT(SMC(I,1),SOILTYP(I)) |
---|
861 | endif |
---|
862 | if(FLAG(I).and.STC(I,1).lt.t0c) then |
---|
863 | DF1(I) = 0. |
---|
864 | KT1(I) = 0. |
---|
865 | endif |
---|
866 | IF(FLAG(I)) THEN |
---|
867 | ! TREF = .75 * THSAT(SOILTYP(I)) |
---|
868 | TREF(I) = smref(SOILTYP(I)) |
---|
869 | ! TWILT = TWLT(SOILTYP(I)) |
---|
870 | TWILT(I) = smwlt(SOILTYP(I)) |
---|
871 | smcdry = smdry(SOILTYP(I)) |
---|
872 | ! FX(I) = -2. * DF1(I) * (SMC(I,1) - .23) / ZSOIL(I,1) |
---|
873 | ! & - KT1(I) |
---|
874 | FX(I) = -2. * DF1(I) * (SMC(I,1) - smcdry) / ZSOIL(I,1) & |
---|
875 | & - KT1(I) |
---|
876 | FX(I) = MIN(FX(I), EP(I)/HVAP) |
---|
877 | FX(I) = MAX(FX(I),0._kind_phys) |
---|
878 | ! |
---|
879 | ! SIGMAF IS THE FRACTION OF AREA COVERED BY VEGETATION |
---|
880 | ! |
---|
881 | EDIR(I) = FX(I) * (1. - SIGMAF(I)) * PARTLND(I) |
---|
882 | ENDIF |
---|
883 | ENDDO |
---|
884 | ! |
---|
885 | ! calculate stomatal resistance |
---|
886 | ! |
---|
887 | DO I = 1, IM |
---|
888 | if(FLAG(I)) then |
---|
889 | ! |
---|
890 | ! resistance due to PAR. We use net solar flux as proxy at the present time |
---|
891 | ! |
---|
892 | ff = .55 * 2. * SNET(I) / rgl(VEGTYPE(I)) |
---|
893 | rcs = (ff + RS(I)/rsmax(VEGTYPE(I))) / (1. + ff) |
---|
894 | rcs = max(rcs,.0001_kind_phys) |
---|
895 | rct = 1. |
---|
896 | rcq = 1. |
---|
897 | ! |
---|
898 | ! resistance due to thermal effect |
---|
899 | ! |
---|
900 | ! rct = 1. - .0016 * (topt - theta1) ** 2 |
---|
901 | ! rct = max(rct,.0001) |
---|
902 | ! |
---|
903 | ! resistance due to humidity |
---|
904 | ! |
---|
905 | ! rcq = 1. / (1. + hs(VEGTYPE(I)) * (QS1(I) - Q0(I))) |
---|
906 | ! rcq = max(rcq,.0001) |
---|
907 | ! |
---|
908 | ! compute resistance without the effect of soil moisture |
---|
909 | ! |
---|
910 | RS(I) = RS(I) / (rcs * rct * rcq) |
---|
911 | endif |
---|
912 | ENDDO |
---|
913 | ! |
---|
914 | ! TRANSPIRATION FROM ALL LEVELS OF THE SOIL |
---|
915 | ! |
---|
916 | DO I = 1, IM |
---|
917 | IF(FLAG(I)) THEN |
---|
918 | CANFAC(I) = (CANOPY(I) / SCANOP) ** CFACTR |
---|
919 | endif |
---|
920 | IF(FLAG(I)) THEN |
---|
921 | ETPFAC(I) = SIGMAF(I) & |
---|
922 | & * (1. - CANFAC(I)) / HVAP |
---|
923 | GX(I) = (SMC(I,1) - TWILT(I)) / (TREF(I) - TWILT(I)) |
---|
924 | GX(I) = MAX(GX(I),0._kind_phys) |
---|
925 | GX(I) = MIN(GX(I),1._kind_phys) |
---|
926 | ! |
---|
927 | ! resistance due to soil moisture deficit |
---|
928 | ! |
---|
929 | rss = GX(I) * (ZSOIL(I,1) / ZSOIL(I,km)) |
---|
930 | rss = max(rss,.0001_kind_phys) |
---|
931 | RSI = RS(I) / rss |
---|
932 | ! |
---|
933 | ! transpiration a la Monteith |
---|
934 | ! |
---|
935 | eth = (TERM1(I) + TERM2(I)) / & |
---|
936 | & (DELTA(I) + RSMALL(I) * (1. + RSI * CH(I) * WIND(I))) |
---|
937 | ET(I,1) = ETPFAC(I) * eth & |
---|
938 | & * PARTLND(I) |
---|
939 | ENDIF |
---|
940 | ENDDO |
---|
941 | !! |
---|
942 | DO K = 2, KM |
---|
943 | DO I=1,IM |
---|
944 | IF(FLAG(I)) THEN |
---|
945 | GX(I) = (SMC(I,K) - TWILT(I)) / (TREF(I) - TWILT(I)) |
---|
946 | GX(I) = MAX(GX(I),0._kind_phys) |
---|
947 | GX(I) = MIN(GX(I),1._kind_phys) |
---|
948 | ! |
---|
949 | ! resistance due to soil moisture deficit |
---|
950 | ! |
---|
951 | rss = GX(I) * ((ZSOIL(I,k) - ZSOIL(I,k-1))/ZSOIL(I,km)) |
---|
952 | rss = max(rss,1.e-6_kind_phys) |
---|
953 | RSI = RS(I) / rss |
---|
954 | ! |
---|
955 | ! transpiration a la Monteith |
---|
956 | ! |
---|
957 | eth = (TERM1(I) + TERM2(I)) / & |
---|
958 | & (DELTA(I) + RSMALL(I) * (1. + RSI * CH(I) * WIND(I))) |
---|
959 | ET(I,K) = eth & |
---|
960 | & * ETPFAC(I) * PARTLND(I) |
---|
961 | ENDIF |
---|
962 | ENDDO |
---|
963 | ENDDO |
---|
964 | !! |
---|
965 | 400 CONTINUE |
---|
966 | ! |
---|
967 | ! CANOPY RE-EVAPORATION |
---|
968 | ! |
---|
969 | DO I=1,IM |
---|
970 | IF(FLAG(I)) THEN |
---|
971 | EC(I) = SIGMAF(I) * CANFAC(I) * EP(I) / HVAP |
---|
972 | EC(I) = EC(I) * PARTLND(I) |
---|
973 | EC(I) = min(EC(I),CANOPY(I)/delt) |
---|
974 | ENDIF |
---|
975 | ENDDO |
---|
976 | ! |
---|
977 | ! SUM UP TOTAL EVAPORATION |
---|
978 | ! |
---|
979 | DO I = 1, IM |
---|
980 | IF(FLAG(I)) THEN |
---|
981 | EVAP(I) = EDIR(I) + EC(I) |
---|
982 | ENDIF |
---|
983 | ENDDO |
---|
984 | !! |
---|
985 | DO K = 1, KM |
---|
986 | DO I=1,IM |
---|
987 | IF(FLAG(I)) THEN |
---|
988 | EVAP(I) = EVAP(I) + ET(I,K) |
---|
989 | ENDIF |
---|
990 | ENDDO |
---|
991 | ENDDO |
---|
992 | !! |
---|
993 | ! |
---|
994 | ! RETURN EVAP UNIT FROM KG M-2 S-1 TO WATTS M-2 |
---|
995 | ! |
---|
996 | DO I=1,IM |
---|
997 | IF(FLAG(I)) THEN |
---|
998 | EVAP(I) = MIN(EVAP(I)*HVAP,EP(I)) |
---|
999 | ENDIF |
---|
1000 | ENDDO |
---|
1001 | !##DG IF(LAT.EQ.LATD) THEN |
---|
1002 | !##DG PRINT *, 'FX(I), SIGMAF, EDIR(I), ETPFAC=', FX(I)*HVAP,SIGMAF, |
---|
1003 | !##DG& EDIR(I)*HVAP,ETPFAC*HVAP |
---|
1004 | !##DG PRINT *, ' ET =', (ET(K)*HVAP,K=1,KM) |
---|
1005 | !##DG PRINT *, ' CANFAC(I), EC(I), EVAP', CANFAC(I),EC(I)*HVAP,EVAP |
---|
1006 | !##DG ENDIF |
---|
1007 | ! |
---|
1008 | ! EVAPORATION OVER BARE SEA ICE |
---|
1009 | ! |
---|
1010 | DO I = 1, IM |
---|
1011 | ! IF(SLIMSK(I).EQ.2.AND.SNOWD(I).LE..001) THEN |
---|
1012 | IF(SLIMSK(I).EQ.2.) THEN |
---|
1013 | EVAP(I) = PARTLND(I) * EP(I) |
---|
1014 | ENDIF |
---|
1015 | ENDDO |
---|
1016 | ! |
---|
1017 | ! TREAT DOWNWARD MOISTURE FLUX SITUATION |
---|
1018 | ! (EVAP WAS PRESET TO ZERO SO NO UPDATE NEEDED) |
---|
1019 | ! DEW IS CONVERTED FROM KG M-2 TO M TO CONFORM TO PRECIP UNIT |
---|
1020 | ! |
---|
1021 | DO I = 1, IM |
---|
1022 | FLAG(I) = SLIMSK(I).NE.0..AND.EP(I).LE.0. |
---|
1023 | DEW(I) = 0. |
---|
1024 | ENDDO |
---|
1025 | DO I = 1, IM |
---|
1026 | IF(FLAG(I)) THEN |
---|
1027 | DEW(I) = -EP(I) * DELT / (HVAP * RHOH2O) |
---|
1028 | EVAP(I) = EP(I) |
---|
1029 | DEW(I) = DEW(I) * PARTLND(I) |
---|
1030 | EVAP(I) = EVAP(I) * PARTLND(I) |
---|
1031 | DM(I) = 1. |
---|
1032 | ENDIF |
---|
1033 | ENDDO |
---|
1034 | ! |
---|
1035 | ! SNOW COVERED LAND AND SEA ICE |
---|
1036 | ! |
---|
1037 | DO I = 1, IM |
---|
1038 | FLAG(I) = SLIMSK(I).NE.0..AND.SNOWD(I).GT.0. |
---|
1039 | ENDDO |
---|
1040 | ! |
---|
1041 | ! CHANGE OF SNOW DEPTH DUE TO EVAPORATION OR SUBLIMATION |
---|
1042 | ! |
---|
1043 | ! CONVERT EVAP FROM KG M-2 S-1 TO M S-1 TO DETERMINE THE REDUCTION OF S |
---|
1044 | ! |
---|
1045 | DO I = 1, IM |
---|
1046 | IF(FLAG(I)) THEN |
---|
1047 | BFACT = SNOWD(I) / (DELT * EP(I) / (HVAP * RHOH2O)) |
---|
1048 | BFACT = MIN(BFACT,1._kind_phys) |
---|
1049 | ! |
---|
1050 | ! THE EVAPORATION OF SNOW |
---|
1051 | ! |
---|
1052 | IF(EP(I).LE.0.) BFACT = 1. |
---|
1053 | IF(SNOWD(I).LE..001) THEN |
---|
1054 | ! EVAP = (SNOWD(I)/.001)*BFACT*EP(I) + EVAP |
---|
1055 | ! SNOEVP(I) = bfact * EP(I) * (1. - PARTLND(I)) |
---|
1056 | ! EVAP = EVAP + SNOEVP(I) |
---|
1057 | SNOEVP(I) = bfact * EP(I) |
---|
1058 | ! EVAP = EVAP + SNOEVP(I) * (1. - PARTLND(I)) |
---|
1059 | EVAP(I)=EVAP(I)+SNOEVP(I)*(1.-PARTLND(I)) |
---|
1060 | ELSE |
---|
1061 | ! EVAP(I) = BFACT * EP(I) |
---|
1062 | SNOEVP(I) = bfact * EP(I) |
---|
1063 | EVAP(I) = SNOEVP(I) |
---|
1064 | ENDIF |
---|
1065 | TSURF(I) = T1(I) + & |
---|
1066 | & (RCAP(I) - GFLUX(I) - DFSNOW * (T1(I) - STSOIL(I,1)) & |
---|
1067 | & /(FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) & |
---|
1068 | ! & + THETA1 - T1 & |
---|
1069 | ! & - BFACT * EP(I)) / (RSMALL(I) * RCH(I) & |
---|
1070 | & - SNOEVP(I)) / (RSMALL(I) * RCH(I) & |
---|
1071 | & + DFSNOW / (FACTSNW(I)* MAX(SNOWD(I),.001_kind_phys))) |
---|
1072 | ! SNOWD(I) = SNOWD(I) - BFACT * EP(I) * DELT / (RHOH2O * HVAP) |
---|
1073 | SNOWD(I) = SNOWD(I) - SNOEVP(I) * delt / (rhoh2o * hvap) |
---|
1074 | SNOWD(I) = MAX(SNOWD(I),0._kind_phys) |
---|
1075 | ENDIF |
---|
1076 | ENDDO |
---|
1077 | ! |
---|
1078 | ! SNOW MELT (M) |
---|
1079 | ! |
---|
1080 | 500 CONTINUE |
---|
1081 | DO I = 1, IM |
---|
1082 | FLAG(I) = SLIMSK(I).NE.0. & |
---|
1083 | & .AND.SNOWD(I).GT..0 |
---|
1084 | ENDDO |
---|
1085 | DO I = 1, IM |
---|
1086 | IF(FLAG(I).AND.TSURF(I).GT.T0C) THEN |
---|
1087 | SNOWMT(I) = RCH(I) * RSMALL(I) * DELT & |
---|
1088 | & * (TSURF(I) - T0C) / (RHOH2O * HFUS) |
---|
1089 | SNOWMT(I) = min(SNOWMT(I),SNOWD(I)) |
---|
1090 | SNOWD(I) = SNOWD(I) - SNOWMT(I) |
---|
1091 | SNOWD(I) = MAX(SNOWD(I),0._kind_phys) |
---|
1092 | TSURF(I) = MAX(T0C,TSURF(I) & |
---|
1093 | & -HFUS*SNOWMT(I)*RHOH2O/(RCH(I)*RSMALL(I)*DELT)) |
---|
1094 | ENDIF |
---|
1095 | ENDDO |
---|
1096 | ! |
---|
1097 | ! We need to re-evaluate evaporation because of snow melt |
---|
1098 | ! the skin temperature is now bounded to 0 deg C |
---|
1099 | ! |
---|
1100 | ! qss = fpvs(tsurf) |
---|
1101 | DO I = 1, IM |
---|
1102 | ! IF (SNOWD(I) .GT. 0.0) THEN |
---|
1103 | IF (SNOWD(I) .GT. snomin) THEN |
---|
1104 | !jfe QSS(I) = 1000. * FPVS(TSURF(I)) |
---|
1105 | qss(i) = fpvs(tsurf(i)) |
---|
1106 | QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
1107 | EVAP(I) = elocp * RCH(I) * (QSS(I) - Q0(I)) |
---|
1108 | ENDIF |
---|
1109 | ENDDO |
---|
1110 | ! |
---|
1111 | ! PREPARE TENDENCY TERMS FOR THE SOIL MOISTURE FIELD WITHOUT PRECIPITAT |
---|
1112 | ! THE UNIT OF MOISTURE FLUX NEEDS TO BECOME M S-1 FOR SOIL MOISTURE |
---|
1113 | ! HENCE THE FACTOR OF RHOH2O |
---|
1114 | ! |
---|
1115 | DO I = 1, IM |
---|
1116 | FLAG(I) = SLIMSK(I).EQ.1. |
---|
1117 | if(FLAG(I)) then |
---|
1118 | DF1(I) = FUNCDF(SMCZ(I),SOILTYP(I)) |
---|
1119 | KT1(I) = FUNCKT(SMCZ(I),SOILTYP(I)) |
---|
1120 | endif |
---|
1121 | if(FLAG(I).and.STC(I,1).lt.t0c) then |
---|
1122 | DF1(I) = 0. |
---|
1123 | KT1(I) = 0. |
---|
1124 | endif |
---|
1125 | IF(FLAG(I)) THEN |
---|
1126 | RHSCNPY(I) = -EC(I) + SIGMAF(I) * RHOH2O * DEW(I) / DELT |
---|
1127 | SMCZ(I) = MAX(SMC(I,1), SMC(I,2)) |
---|
1128 | DMDZ(I) = (SMC(I,1) - SMC(I,2)) / (-.5 * ZSOIL(I,2)) |
---|
1129 | RHSMC(I,1) = (DF1(I) * DMDZ(I) + KT1(I) & |
---|
1130 | & + (EDIR(I) + ET(I,1))) / (ZSOIL(I,1) * RHOH2O) |
---|
1131 | RHSMC(I,1) = RHSMC(I,1) - (1. - SIGMAF(I)) * DEW(I) / & |
---|
1132 | & ( ZSOIL(I,1) * delt) |
---|
1133 | DDZ(I) = 1. / (-.5 * ZSOIL(I,2)) |
---|
1134 | ! |
---|
1135 | ! AIM, BIM, AND CIM ARE THE ELEMENTS OF THE TRIDIAGONAL MATRIX FOR THE |
---|
1136 | ! IMPLICIT UPDATE OF THE SOIL MOISTURE |
---|
1137 | ! |
---|
1138 | AIM(I,1) = 0. |
---|
1139 | BIM(I,1) = DF1(I) * DDZ(I) / (-ZSOIL(I,1) * RHOH2O) |
---|
1140 | CIM(I,1) = -BIM(I,1) |
---|
1141 | ENDIF |
---|
1142 | ENDDO |
---|
1143 | !! |
---|
1144 | DO K = 2, KM |
---|
1145 | IF(K.LT.KM) THEN |
---|
1146 | DO I=1,IM |
---|
1147 | IF(FLAG(I)) THEN |
---|
1148 | DF2 = FUNCDF(SMCZ(I),SOILTYP(I)) |
---|
1149 | KT2(I) = FUNCKT(SMCZ(I),SOILTYP(I)) |
---|
1150 | ENDIF |
---|
1151 | IF(FLAG(I).and.STC(I,k).lt.t0c) THEN |
---|
1152 | df2 = 0. |
---|
1153 | KT2(I) = 0. |
---|
1154 | ENDIF |
---|
1155 | IF(FLAG(I)) THEN |
---|
1156 | DMDZ2(I) = (SMC(I,K) - SMC(I,K+1)) & |
---|
1157 | & / (.5 * (ZSOIL(I,K-1) - ZSOIL(I,K+1))) |
---|
1158 | SMCZ(I) = MAX(SMC(I,K), SMC(I,K+1)) |
---|
1159 | RHSMC(I,K) = (DF2 * DMDZ2(I) + KT2(I) & |
---|
1160 | & - DF1(I) * DMDZ(I) - KT1(I) + ET(I,K)) & |
---|
1161 | & / (RHOH2O*(ZSOIL(I,K) - ZSOIL(I,K-1))) |
---|
1162 | DDZ2(I) = 2. / (ZSOIL(I,K-1) - ZSOIL(I,K+1)) |
---|
1163 | CIM(I,K) = -DF2 * DDZ2(I) & |
---|
1164 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K))*RHOH2O) |
---|
1165 | ENDIF |
---|
1166 | ENDDO |
---|
1167 | ELSE |
---|
1168 | DO I = 1, IM |
---|
1169 | IF(FLAG(I)) THEN |
---|
1170 | KT2(I) = FUNCKT(SMC(I,K),SOILTYP(I)) |
---|
1171 | ENDIF |
---|
1172 | if(FLAG(I).and.STC(I,k).lt.t0c) KT2(I) = 0. |
---|
1173 | IF(FLAG(I)) THEN |
---|
1174 | RHSMC(I,K) = (KT2(I) & |
---|
1175 | & - DF1(I) * DMDZ(I) - KT1(I) + ET(I,K)) & |
---|
1176 | & / (RHOH2O*(ZSOIL(I,K) - ZSOIL(I,K-1))) |
---|
1177 | DRAIN(I) = KT2(I) |
---|
1178 | CIM(I,K) = 0. |
---|
1179 | ENDIF |
---|
1180 | ENDDO |
---|
1181 | ENDIF |
---|
1182 | DO I = 1, IM |
---|
1183 | IF(FLAG(I)) THEN |
---|
1184 | AIM(I,K) = -DF1(I) * DDZ(I) & |
---|
1185 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K))*RHOH2O) |
---|
1186 | BIM(I,K) = -(AIM(I,K) + CIM(I,K)) |
---|
1187 | DF1(I) = DF2 |
---|
1188 | KT1(I) = KT2(I) |
---|
1189 | DMDZ(I) = DMDZ2(I) |
---|
1190 | DDZ(I) = DDZ2(I) |
---|
1191 | ENDIF |
---|
1192 | ENDDO |
---|
1193 | ENDDO |
---|
1194 | !! |
---|
1195 | 600 CONTINUE |
---|
1196 | ! |
---|
1197 | ! UPDATE SOIL TEMPERATURE AND SEA ICE TEMPERATURE |
---|
1198 | ! |
---|
1199 | DO I=1,IM |
---|
1200 | FLAG(I) = SLIMSK(I).NE.0. |
---|
1201 | ENDDO |
---|
1202 | ! |
---|
1203 | ! SURFACE TEMPERATURE IS PART OF THE UPDATE WHEN SNOW IS ABSENT |
---|
1204 | ! |
---|
1205 | DO I=1,IM |
---|
1206 | ! IF(FLAG(I).AND.SNOWD(I).LE..001) THEN |
---|
1207 | IF(FLAG(I).AND..NOT.FLAGSNW(I)) THEN |
---|
1208 | YY(I) = T1(I) + & |
---|
1209 | ! & (RCAP(I)-GFLUX(I) + THETA1 - T1(I) & |
---|
1210 | & (RCAP(I)-GFLUX(I) & |
---|
1211 | & - EVAP(I)) / (RSMALL(I) * RCH(I)) |
---|
1212 | ZZ(I) = 1. + DFT0(I) / (-.5 * ZSOIL(I,1) * RCH(I) * RSMALL(I)) |
---|
1213 | XX(I) = DFT0(I) * (STSOIL(I,1) - YY(I)) / & |
---|
1214 | & (.5 * ZSOIL(I,1) * ZZ(I)) |
---|
1215 | ENDIF |
---|
1216 | ! IF(FLAG(I).AND.SNOWD(I).GT..001) THEN |
---|
1217 | IF(FLAG(I).AND.FLAGSNW(I)) THEN |
---|
1218 | YY(I) = STSOIL(I,1) |
---|
1219 | ! |
---|
1220 | ! HEAT FLUX FROM SNOW IS EXPLICIT IN TIME |
---|
1221 | ! |
---|
1222 | ZZ(I) = 1. |
---|
1223 | XX(I) = DFSNOW * (STSOIL(I,1) - TSURF(I)) & |
---|
1224 | & / (-FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) |
---|
1225 | ENDIF |
---|
1226 | ENDDO |
---|
1227 | ! |
---|
1228 | ! COMPUTE THE FORCING AND THE IMPLICIT MATRIX ELEMENTS FOR UPDATE |
---|
1229 | ! |
---|
1230 | ! CH2O IS THE HEAT CAPACITY OF WATER AND CSOIL IS THE HEAT CAPACITY OF |
---|
1231 | ! |
---|
1232 | DO I = 1, IM |
---|
1233 | IF(FLAG(I)) THEN |
---|
1234 | SMCZ(I) = MAX(SMC(I,1), SMC(I,2)) |
---|
1235 | DTDZ1(I) = (STSOIL(I,1) - STSOIL(I,2)) / (-.5 * ZSOIL(I,2)) |
---|
1236 | IF(SLIMSK(I).EQ.1.) THEN |
---|
1237 | DFT1(I) = KTSOIL(SMCZ(I),SOILTYP(I)) |
---|
1238 | HCPCT(I) = SMC(I,1) * CH2O + (1. - SMC(I,1)) * CSOIL |
---|
1239 | ELSE |
---|
1240 | DFT1(I) = DFT0(I) |
---|
1241 | HCPCT(I) = CICE |
---|
1242 | ENDIF |
---|
1243 | DFT2(I) = DFT1(I) |
---|
1244 | DDZ(I) = 1. / (-.5 * ZSOIL(I,2)) |
---|
1245 | ! |
---|
1246 | ! AI, BI, AND CI ARE THE ELEMENTS OF THE TRIDIAGONAL MATRIX FOR THE |
---|
1247 | ! IMPLICIT UPDATE OF THE SOIL TEMPERATURE |
---|
1248 | ! |
---|
1249 | AI(I,1) = 0. |
---|
1250 | BI(I,1) = DFT1(I) * DDZ(I) / (-ZSOIL(I,1) * HCPCT(I)) |
---|
1251 | CI(I,1) = -BI(I,1) |
---|
1252 | BI(I,1) = BI(I,1) & |
---|
1253 | & + DFT0(I) / (.5 * ZSOIL(I,1) **2 * HCPCT(I) * ZZ(I)) |
---|
1254 | ! SS = DFT0(I) * (STSOIL(I,1) - YY(I)) & |
---|
1255 | ! & / (.5 * ZSOIL(I,1) * ZZ(I)) |
---|
1256 | ! RHSTC(1) = (DFT1(I) * DTDZ1(I) - SS) |
---|
1257 | RHSTC(I,1) = (DFT1(I) * DTDZ1(I) - XX(I)) & |
---|
1258 | & / (ZSOIL(I,1) * HCPCT(I)) |
---|
1259 | ENDIF |
---|
1260 | ENDDO |
---|
1261 | !! |
---|
1262 | DO K = 2, KM |
---|
1263 | DO I=1,IM |
---|
1264 | IF(SLIMSK(I).EQ.1.) THEN |
---|
1265 | HCPCT(I) = SMC(I,K) * CH2O + (1. - SMC(I,K)) * CSOIL |
---|
1266 | ELSEIF(SLIMSK(I).EQ.2.) THEN |
---|
1267 | HCPCT(I) = CICE |
---|
1268 | ENDIF |
---|
1269 | ENDDO |
---|
1270 | IF(K.LT.KM) THEN |
---|
1271 | DO I = 1, IM |
---|
1272 | IF(FLAG(I)) THEN |
---|
1273 | DTDZ2(I) = (STSOIL(I,K) - STSOIL(I,K+1)) & |
---|
1274 | & / (.5 * (ZSOIL(I,K-1) - ZSOIL(I,K+1))) |
---|
1275 | SMCZ(I) = MAX(SMC(I,K), SMC(I,K+1)) |
---|
1276 | IF(SLIMSK(I).EQ.1.) THEN |
---|
1277 | DFT2(I) = KTSOIL(SMCZ(I),SOILTYP(I)) |
---|
1278 | ENDIF |
---|
1279 | DDZ2(I) = 2. / (ZSOIL(I,K-1) - ZSOIL(I,K+1)) |
---|
1280 | CI(I,K) = -DFT2(I) * DDZ2(I) & |
---|
1281 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K)) * HCPCT(I)) |
---|
1282 | ENDIF |
---|
1283 | ENDDO |
---|
1284 | ELSE |
---|
1285 | ! |
---|
1286 | ! AT THE BOTTOM, CLIMATOLOGY IS ASSUMED AT 2M DEPTH FOR LAND AND |
---|
1287 | ! FREEZING TEMPERATURE IS ASSUMED FOR SEA ICE AT Z(KM) |
---|
1288 | DO I = 1, IM |
---|
1289 | IF(SLIMSK(I).EQ.1.) THEN |
---|
1290 | DTDZ2(I) = (STSOIL(I,K) - TG3(I)) & |
---|
1291 | & / (.5 * (ZSOIL(I,K-1) + ZSOIL(I,K)) - ZBOT) |
---|
1292 | DFT2(I) = KTSOIL(SMC(I,K),SOILTYP(I)) |
---|
1293 | CI(I,K) = 0. |
---|
1294 | ENDIF |
---|
1295 | IF(SLIMSK(I).EQ.2.) THEN |
---|
1296 | DTDZ2(I) = (STSOIL(I,K) - TGICE) & |
---|
1297 | & / (.5 * ZSOIL(I,K-1) - .5 * ZSOIL(I,K)) |
---|
1298 | DFT2(I) = DFT1(I) |
---|
1299 | CI(I,K) = 0. |
---|
1300 | ENDIF |
---|
1301 | ENDDO |
---|
1302 | ENDIF |
---|
1303 | DO I = 1, IM |
---|
1304 | IF(FLAG(I)) THEN |
---|
1305 | RHSTC(I,K) = (DFT2(I) * DTDZ2(I) - DFT1(I) * DTDZ1(I)) & |
---|
1306 | & / ((ZSOIL(I,K) - ZSOIL(I,K-1)) * HCPCT(I)) |
---|
1307 | AI(I,K) = -DFT1(I) * DDZ(I) & |
---|
1308 | & / ((ZSOIL(I,K-1) - ZSOIL(I,K)) * HCPCT(I)) |
---|
1309 | BI(I,K) = -(AI(I,K) + CI(I,K)) |
---|
1310 | DFT1(I) = DFT2(I) |
---|
1311 | DTDZ1(I) = DTDZ2(I) |
---|
1312 | DDZ(I) = DDZ2(I) |
---|
1313 | ENDIF |
---|
1314 | ENDDO |
---|
1315 | ENDDO |
---|
1316 | !! |
---|
1317 | 700 CONTINUE |
---|
1318 | ! |
---|
1319 | ! SOLVE THE TRI-DIAGONAL MATRIX |
---|
1320 | ! |
---|
1321 | DO K = 1, KM |
---|
1322 | DO I=1,IM |
---|
1323 | IF(FLAG(I)) THEN |
---|
1324 | RHSTC(I,K) = RHSTC(I,K) * DELT2 |
---|
1325 | AI(I,K) = AI(I,K) * DELT2 |
---|
1326 | BI(I,K) = 1. + BI(I,K) * DELT2 |
---|
1327 | CI(I,K) = CI(I,K) * DELT2 |
---|
1328 | ENDIF |
---|
1329 | ENDDO |
---|
1330 | ENDDO |
---|
1331 | ! FORWARD ELIMINATION |
---|
1332 | DO I=1,IM |
---|
1333 | IF(FLAG(I)) THEN |
---|
1334 | CI(I,1) = -CI(I,1) / BI(I,1) |
---|
1335 | RHSTC(I,1) = RHSTC(I,1) / BI(I,1) |
---|
1336 | ENDIF |
---|
1337 | ENDDO |
---|
1338 | !! |
---|
1339 | DO K = 2, KM |
---|
1340 | DO I=1,IM |
---|
1341 | IF(FLAG(I)) THEN |
---|
1342 | CC = 1. / (BI(I,K) + AI(I,K) * CI(I,K-1)) |
---|
1343 | CI(I,K) = -CI(I,K) * CC |
---|
1344 | RHSTC(I,K) = (RHSTC(I,K) - AI(I,K) * RHSTC(I,K-1)) * CC |
---|
1345 | ENDIF |
---|
1346 | ENDDO |
---|
1347 | ENDDO |
---|
1348 | !! |
---|
1349 | ! BACKWARD SUBSTITUTTION |
---|
1350 | DO I=1,IM |
---|
1351 | IF(FLAG(I)) THEN |
---|
1352 | CI(I,KM) = RHSTC(I,KM) |
---|
1353 | ENDIF |
---|
1354 | ENDDO |
---|
1355 | !! |
---|
1356 | DO K = KM-1, 1 |
---|
1357 | DO I=1,IM |
---|
1358 | IF(FLAG(I)) THEN |
---|
1359 | CI(I,K) = CI(I,K) * CI(I,K+1) + RHSTC(I,K) |
---|
1360 | ENDIF |
---|
1361 | ENDDO |
---|
1362 | ENDDO |
---|
1363 | ! |
---|
1364 | ! UPDATE SOIL AND ICE TEMPERATURE |
---|
1365 | ! |
---|
1366 | DO K = 1, KM |
---|
1367 | DO I=1,IM |
---|
1368 | IF(FLAG(I)) THEN |
---|
1369 | STSOIL(I,K) = STSOIL(I,K) + CI(I,K) |
---|
1370 | ENDIF |
---|
1371 | ENDDO |
---|
1372 | ENDDO |
---|
1373 | ! |
---|
1374 | ! UPDATE SURFACE TEMPERATURE FOR SNOW FREE SURFACES |
---|
1375 | ! |
---|
1376 | DO I=1,IM |
---|
1377 | ! IF(SLIMSK(I).NE.0..AND.SNOWD(I).LE..001) THEN |
---|
1378 | IF(SLIMSK(I).NE.0..AND..NOT.FLAGSNW(I)) THEN |
---|
1379 | TSURF(I) = (YY(I) + (ZZ(I) - 1.) * STSOIL(I,1)) / ZZ(I) |
---|
1380 | ENDIF |
---|
1381 | ! IF(SLIMSK(I).EQ.2..AND.SNOWD(I).LE..001) THEN |
---|
1382 | IF(SLIMSK(I).EQ.2..AND..NOT.FLAGSNW(I)) THEN |
---|
1383 | TSURF(I) = MIN(TSURF(I),T0C) |
---|
1384 | ENDIF |
---|
1385 | ENDDO |
---|
1386 | !! |
---|
1387 | DO K = 1, KM |
---|
1388 | DO I=1,IM |
---|
1389 | IF(SLIMSK(I).EQ.2) THEN |
---|
1390 | STSOIL(I,K) = MIN(STSOIL(I,K),T0C) |
---|
1391 | ENDIF |
---|
1392 | ENDDO |
---|
1393 | ENDDO |
---|
1394 | ! |
---|
1395 | ! TIME FILTER FOR SOIL AND SKIN TEMPERATURE |
---|
1396 | ! |
---|
1397 | DO I=1,IM |
---|
1398 | IF(SLIMSK(I).NE.0.) THEN |
---|
1399 | TSKIN(I) = CTFIL1 * TSURF(I) + CTFIL2 * TSKIN(I) |
---|
1400 | ENDIF |
---|
1401 | ENDDO |
---|
1402 | DO K = 1, KM |
---|
1403 | DO I=1,IM |
---|
1404 | IF(SLIMSK(I).NE.0.) THEN |
---|
1405 | STC(I,K) = CTFIL1 * STSOIL(I,K) + CTFIL2 * STC(I,K) |
---|
1406 | ENDIF |
---|
1407 | ENDDO |
---|
1408 | ENDDO |
---|
1409 | ! |
---|
1410 | ! GFLUX CALCULATION |
---|
1411 | ! |
---|
1412 | DO I=1,IM |
---|
1413 | FLAG(I) = SLIMSK(I).NE.0. & |
---|
1414 | ! & .AND.SNOWD(I).GT..001 & |
---|
1415 | & .AND.FLAGSNW(I) |
---|
1416 | ENDDO |
---|
1417 | DO I = 1, IM |
---|
1418 | IF(FLAG(I)) THEN |
---|
1419 | GFLUX(I) = -DFSNOW * (TSKIN(I) - STC(I,1)) & |
---|
1420 | & / (FACTSNW(I) * MAX(SNOWD(I),.001_kind_phys)) |
---|
1421 | ENDIF |
---|
1422 | ENDDO |
---|
1423 | DO I = 1, IM |
---|
1424 | ! IF(SLIMSK(I).NE.0..AND.SNOWD(I).LE..001) THEN |
---|
1425 | IF( SLIMSK(I).NE.0..AND..NOT.FLAGSNW(I)) THEN |
---|
1426 | GFLUX(I) = DFT0(I) * (STC(I,1) - TSKIN(I)) & |
---|
1427 | & / (-.5 * ZSOIL(I,1)) |
---|
1428 | ENDIF |
---|
1429 | ENDDO |
---|
1430 | |
---|
1431 | |
---|
1432 | 5555 CONTINUE |
---|
1433 | |
---|
1434 | ! |
---|
1435 | ! CALCULATE SENSIBLE HEAT FLUX |
---|
1436 | ! |
---|
1437 | !WRF DO I = 1, IM |
---|
1438 | !WRF HFLX(I) = RCH(I) * (TSKIN(I) - THETA1(I)) |
---|
1439 | !WRF ENDDO |
---|
1440 | ! |
---|
1441 | ! THE REST OF THE OUTPUT |
---|
1442 | ! |
---|
1443 | !WRF DO I = 1, IM |
---|
1444 | !WRF QSURF(I) = Q1(I) + EVAP(I) / (ELOCP * RCH(I)) |
---|
1445 | !WRF DM(I) = 1. |
---|
1446 | ! |
---|
1447 | ! CONVERT SNOW DEPTH BACK TO MM OF WATER EQUIVALENT |
---|
1448 | ! |
---|
1449 | !WRF SHELEG(I) = SNOWD(I) * 1000. |
---|
1450 | !WRF ENDDO |
---|
1451 | ! |
---|
1452 | |
---|
1453 | DO I = 1, IM |
---|
1454 | F10M(I) = FM10(I) / FM(I) |
---|
1455 | F10M(I) = min(F10M(I),1._kind_phys) |
---|
1456 | U10M(I) = F10M(I) * XRCL(I) * U1(I) |
---|
1457 | V10M(I) = F10M(I) * XRCL(I) * V1(I) |
---|
1458 | !WRF T2M(I) = TSKIN(I) * (1. - FH2(I) / FH(I)) & |
---|
1459 | !WRF & + THETA1(I) * FH2(I) / FH(I) |
---|
1460 | !WRF T2M(I) = T2M(I) * SIG2K |
---|
1461 | ! Q2M(I) = QSURF(I) * (1. - FH2(I) / FH(I)) & |
---|
1462 | ! & + Q1(I) * FH2(I) / FH(I) |
---|
1463 | ! T2M(I) = T1 |
---|
1464 | ! Q2M(I) = Q1 |
---|
1465 | !WRF IF(EVAP(I).GE.0.) THEN |
---|
1466 | ! |
---|
1467 | ! IN CASE OF EVAPORATION, USE THE INFERRED QSURF TO DEDUCE Q2M |
---|
1468 | ! |
---|
1469 | !WRF Q2M(I) = QSURF(I) * (1. - FH2(I) / FH(I)) & |
---|
1470 | !WRF & + Q1(I) * FH2(I) / FH(I) |
---|
1471 | !WRF ELSE |
---|
1472 | ! |
---|
1473 | ! FOR DEW FORMATION SITUATION, USE SATURATED Q AT TSKIN |
---|
1474 | ! |
---|
1475 | !jfe QSS(I) = 1000. * FPVS(TSKIN(I)) |
---|
1476 | !WRF qss(I) = fpvs(tskin(I)) |
---|
1477 | !WRF QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
1478 | !WRF Q2M(I) = QSS(I) * (1. - FH2(I) / FH(I)) & |
---|
1479 | !WRF & + Q1(I) * FH2(I) / FH(I) |
---|
1480 | !WRF ENDIF |
---|
1481 | !jfe QSS(I) = 1000. * FPVS(T2M(I)) |
---|
1482 | !WRF QSS(I) = fpvs(t2m(I)) |
---|
1483 | ! QSS(I) = 1000. * T2MO(I) |
---|
1484 | !WRF QSS(I) = EPS * QSS(I) / (PSURF(I) + EPSM1 * QSS(I)) |
---|
1485 | !WRF Q2M(I) = MIN(Q2M(I),QSS(I)) |
---|
1486 | ENDDO |
---|
1487 | !! |
---|
1488 | ! DO I = 1, IM |
---|
1489 | ! RNET(I) = -SLWD(I) - SIGMA * TSKIN(I) **4 |
---|
1490 | ! ENDDO |
---|
1491 | !! |
---|
1492 | ! |
---|
1493 | !WRF do i=1,im |
---|
1494 | !WRF tem = 1.0 / rho(i) |
---|
1495 | !WRF hflx(i) = hflx(i) * tem * cpinv |
---|
1496 | !WRF evap(i) = evap(i) * tem * hvapi |
---|
1497 | !WRF enddo |
---|
1498 | |
---|
1499 | |
---|
1500 | ! |
---|
1501 | !##DG IF(LAT.EQ.LATD) THEN |
---|
1502 | !C RBAL = -SLWD-SIGMA*TSKIN**4+GFLUX |
---|
1503 | !C & -EVAP - HFLX |
---|
1504 | !##DG PRINT 6000,HFLX,EVAP,GFLUX, |
---|
1505 | !##DG& STC(1), STC(2),TSKIN,RNET,SLWD |
---|
1506 | !##DG PRINT *, ' T1 =', T1 |
---|
1507 | 6000 FORMAT(8(F8.2,',')) |
---|
1508 | !C PRINT *, ' EP, ETP,T2M(I) =', EP, ETP,T2M(I) |
---|
1509 | !C PRINT *, ' FH, FH2 =', FH, FH2 |
---|
1510 | !C PRINT *, ' PH, PH2 =', PH, PH2 |
---|
1511 | !C PRINT *, ' CH, RCH =', CH, RCH |
---|
1512 | !C PRINT *, ' TERM1, TERM2 =', TERM1, TERM2 |
---|
1513 | !C PRINT *, ' RS(I), PLANTR =', RS(I), PLANTR |
---|
1514 | !##DG ENDIF |
---|
1515 | |
---|
1516 | RETURN |
---|
1517 | END SUBROUTINE PROGTM |
---|
1518 | ! |
---|
1519 | ! PROGT2 IS THE SECOND PART OF THE SOIL MODEL THAT IS EXECUTED |
---|
1520 | ! AFTER PRECIPITATION FOR THE TIME STEP HAS BEEN CALCULATED |
---|
1521 | ! |
---|
1522 | !FPP$ NOCONCUR R |
---|
1523 | !FPP$ EXPAND(FUNCDF,FUNCKT,THSAT) |
---|
1524 | SUBROUTINE PROGT2(IM,KM,RHSCNPY, & |
---|
1525 | & RHSMC,AI,BI,CI,SMC,SLIMSK, & |
---|
1526 | & CANOPY,PRECIP,RUNOFF,SNOWMT, & |
---|
1527 | & ZSOIL,SOILTYP,SIGMAF,DELT,me) |
---|
1528 | !c |
---|
1529 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
1530 | implicit none |
---|
1531 | integer km, IM, me |
---|
1532 | real(kind=kind_phys) delt |
---|
1533 | real(kind=kind_phys) RHSCNPY(IM), RHSMC(IM,KM), AI(IM,KM), & |
---|
1534 | & BI(IM,KM), CI(IM,KM), SMC(IM,KM), & |
---|
1535 | & SLIMSK(IM), CANOPY(IM), PRECIP(IM), & |
---|
1536 | & RUNOFF(IM), SNOWMT(IM), ZSOIL(IM,KM), & |
---|
1537 | & SIGMAF(IM) |
---|
1538 | INTEGER SOILTYP(IM) |
---|
1539 | ! |
---|
1540 | integer k, lond, i |
---|
1541 | real(kind=kind_phys) CNPY(IM), PRCP(IM), TSAT(IM), & |
---|
1542 | & INF(IM), INFMAX(IM), SMSOIL(IM,KM) |
---|
1543 | ! |
---|
1544 | real(kind=kind_phys) cc, ctfil1, ctfil2, delt2, & |
---|
1545 | & drip, rffact, rhoh2o, & |
---|
1546 | !WRF & rzero, scanop, tdif, thsat, KSAT |
---|
1547 | & rzero, scanop, tdif, KSAT |
---|
1548 | ! |
---|
1549 | LOGICAL FLAG(IM) |
---|
1550 | !c |
---|
1551 | PARAMETER (SCANOP=.5, RHOH2O=1000.) |
---|
1552 | PARAMETER (CTFIL1=.5, CTFIL2=1.-CTFIL1) |
---|
1553 | ! PARAMETER (CTFIL1=1., CTFIL2=1.-CTFIL1) |
---|
1554 | PARAMETER (RFFACT=.15) |
---|
1555 | ! |
---|
1556 | !##DG LATD = 44 |
---|
1557 | LOND = 353 |
---|
1558 | DELT2 = DELT * 2. |
---|
1559 | ! |
---|
1560 | ! PRECIPITATION RATE IS NEEDED IN UNIT OF KG M-2 S-1 |
---|
1561 | ! |
---|
1562 | DO I=1,IM |
---|
1563 | PRCP(I) = RHOH2O * (PRECIP(I)+SNOWMT(I)) / DELT |
---|
1564 | RUNOFF(I) = 0. |
---|
1565 | CNPY(I) = CANOPY(I) |
---|
1566 | ENDDO |
---|
1567 | !##DG IF(LAT.EQ.LATD) THEN |
---|
1568 | !##DG PRINT *, ' BEFORE RUNOFF CAL, RHSMC =', RHSMC(1) |
---|
1569 | !##DG ENDIF |
---|
1570 | ! |
---|
1571 | ! UPDATE CANOPY WATER CONTENT |
---|
1572 | ! |
---|
1573 | DO I=1,IM |
---|
1574 | IF(SLIMSK(I).EQ.1.) THEN |
---|
1575 | RHSCNPY(I) = RHSCNPY(I) + SIGMAF(I) * PRCP(I) |
---|
1576 | CANOPY(I) = CANOPY(I) + DELT * RHSCNPY(I) |
---|
1577 | CANOPY(I) = MAX(CANOPY(I),0._kind_phys) |
---|
1578 | PRCP(I) = PRCP(I) * (1. - SIGMAF(I)) |
---|
1579 | IF(CANOPY(I).GT.SCANOP) THEN |
---|
1580 | DRIP = CANOPY(I) - SCANOP |
---|
1581 | CANOPY(I) = SCANOP |
---|
1582 | PRCP(I) = PRCP(I) + DRIP / DELT |
---|
1583 | ENDIF |
---|
1584 | ! |
---|
1585 | ! CALCULATE INFILTRATION RATE |
---|
1586 | ! |
---|
1587 | INF(I) = PRCP(I) |
---|
1588 | TSAT(I) = THSAT(SOILTYP(I)) |
---|
1589 | ! DSAT = FUNCDF(TSAT(I),SOILTYP(I)) |
---|
1590 | ! KSAT = FUNCKT(TSAT(I),SOILTYP(I)) |
---|
1591 | ! INFMAX(I) = -DSAT * (TSAT(I) - SMC(I,1)) |
---|
1592 | ! & / (.5 * ZSOIL(I,1)) & |
---|
1593 | ! & + KSAT |
---|
1594 | INFMAX(I) = (-ZSOIL(I,1)) * & |
---|
1595 | & ((TSAT(I) - SMC(I,1)) / DELT - RHSMC(I,1)) & |
---|
1596 | & * RHOH2O |
---|
1597 | INFMAX(I) = MAX(RFFACT*INFMAX(I),0._kind_phys) |
---|
1598 | ! IF(SMC(I,1).GE.TSAT(I)) INFMAX(I) = KSAT |
---|
1599 | ! IF(SMC(I,1).GE.TSAT(I)) INFMAX(I) = ZSOIL(I,1) * RHSMC(I,1) |
---|
1600 | IF(INF(I).GT.INFMAX(I)) THEN |
---|
1601 | RUNOFF(I) = INF(I) - INFMAX(I) |
---|
1602 | INF(I) = INFMAX(I) |
---|
1603 | ENDIF |
---|
1604 | INF(I) = INF(I) / RHOH2O |
---|
1605 | RHSMC(I,1) = RHSMC(I,1) - INF(I) / ZSOIL(I,1) |
---|
1606 | ENDIF |
---|
1607 | ENDDO |
---|
1608 | !! |
---|
1609 | !##DG IF(LAT.EQ.LATD) THEN |
---|
1610 | !##DG PRINT *, ' PRCP(I), INFMAX(I), RUNOFF =', PRCP(I),INFMAX(I),RUNOFF |
---|
1611 | !##DG PRINT *, ' SMSOIL =', SMC(1), SMC(2) |
---|
1612 | !##DG PRINT *, ' RHSMC =', RHSMC(1) |
---|
1613 | !##DG ENDIF |
---|
1614 | ! |
---|
1615 | ! WE CURRENTLY IGNORE THE EFFECT OF RAIN ON SEA ICE |
---|
1616 | ! |
---|
1617 | DO I=1,IM |
---|
1618 | FLAG(I) = SLIMSK(I).EQ.1. |
---|
1619 | ENDDO |
---|
1620 | !! |
---|
1621 | ! |
---|
1622 | ! SOLVE THE TRI-DIAGONAL MATRIX |
---|
1623 | ! |
---|
1624 | DO K = 1, KM |
---|
1625 | DO I=1,IM |
---|
1626 | IF(FLAG(I)) THEN |
---|
1627 | RHSMC(I,K) = RHSMC(I,K) * DELT2 |
---|
1628 | AI(I,K) = AI(I,K) * DELT2 |
---|
1629 | BI(I,K) = 1. + BI(I,K) * DELT2 |
---|
1630 | CI(I,K) = CI(I,K) * DELT2 |
---|
1631 | ENDIF |
---|
1632 | ENDDO |
---|
1633 | ENDDO |
---|
1634 | ! FORWARD ELIMINATION |
---|
1635 | DO I=1,IM |
---|
1636 | IF(FLAG(I)) THEN |
---|
1637 | CI(I,1) = -CI(I,1) / BI(I,1) |
---|
1638 | RHSMC(I,1) = RHSMC(I,1) / BI(I,1) |
---|
1639 | ENDIF |
---|
1640 | ENDDO |
---|
1641 | DO K = 2, KM |
---|
1642 | DO I=1,IM |
---|
1643 | IF(FLAG(I)) THEN |
---|
1644 | CC = 1. / (BI(I,K) + AI(I,K) * CI(I,K-1)) |
---|
1645 | CI(I,K) = -CI(I,K) * CC |
---|
1646 | RHSMC(I,K)=(RHSMC(I,K)-AI(I,K)*RHSMC(I,K-1))*CC |
---|
1647 | ENDIF |
---|
1648 | ENDDO |
---|
1649 | ENDDO |
---|
1650 | ! BACKWARD SUBSTITUTTION |
---|
1651 | DO I=1,IM |
---|
1652 | IF(FLAG(I)) THEN |
---|
1653 | CI(I,KM) = RHSMC(I,KM) |
---|
1654 | ENDIF |
---|
1655 | ENDDO |
---|
1656 | !! |
---|
1657 | DO K = KM-1, 1 |
---|
1658 | DO I=1,IM |
---|
1659 | IF(FLAG(I)) THEN |
---|
1660 | CI(I,K) = CI(I,K) * CI(I,K+1) + RHSMC(I,K) |
---|
1661 | ENDIF |
---|
1662 | ENDDO |
---|
1663 | ENDDO |
---|
1664 | 100 CONTINUE |
---|
1665 | ! |
---|
1666 | ! UPDATE SOIL MOISTURE |
---|
1667 | ! |
---|
1668 | DO K = 1, KM |
---|
1669 | DO I=1,IM |
---|
1670 | IF(FLAG(I)) THEN |
---|
1671 | SMSOIL(I,K) = SMC(I,K) + CI(I,K) |
---|
1672 | SMSOIL(I,K) = MAX(SMSOIL(I,K),0._kind_phys) |
---|
1673 | TDIF = MAX(SMSOIL(I,K) - TSAT(I),0._kind_phys) |
---|
1674 | RUNOFF(I) = RUNOFF(I) - & |
---|
1675 | & RHOH2O * TDIF * ZSOIL(I,K) / DELT |
---|
1676 | SMSOIL(I,K) = SMSOIL(I,K) - TDIF |
---|
1677 | ENDIF |
---|
1678 | ENDDO |
---|
1679 | ENDDO |
---|
1680 | DO K = 1, KM |
---|
1681 | DO I=1,IM |
---|
1682 | IF(FLAG(I)) THEN |
---|
1683 | SMC(I,K) = CTFIL1 * SMSOIL(I,K) + CTFIL2 * SMC(I,K) |
---|
1684 | ENDIF |
---|
1685 | ENDDO |
---|
1686 | ENDDO |
---|
1687 | ! IF(FLAG(I)) THEN |
---|
1688 | ! CANOPY(I) = CTFIL1 * CANOPY(I) + CTFIL2 * CNPY(I) |
---|
1689 | ! ENDIF |
---|
1690 | ! I = 1 |
---|
1691 | ! PRINT *, ' SMC' |
---|
1692 | ! PRINT 6000, SMC(1), SMC(2) |
---|
1693 | !6000 FORMAT(2(F8.5,',')) |
---|
1694 | RETURN |
---|
1695 | END SUBROUTINE PROGT2 |
---|
1696 | FUNCTION KTSOIL(THETA,KTYPE) |
---|
1697 | ! |
---|
1698 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
1699 | USE module_progtm , ONLY : TSAT, DFKT |
---|
1700 | implicit none |
---|
1701 | integer ktype,kw |
---|
1702 | real(kind=kind_phys) ktsoil, theta, w |
---|
1703 | ! |
---|
1704 | W = (THETA / TSAT(KTYPE)) * 20. + 1. |
---|
1705 | KW = W |
---|
1706 | KW = MIN(KW,21) |
---|
1707 | KW = MAX(KW,1) |
---|
1708 | KTSOIL = DFKT(KW,KTYPE) & |
---|
1709 | & + (W - KW) * (DFKT(KW+1,KTYPE) - DFKT(KW,KTYPE)) |
---|
1710 | RETURN |
---|
1711 | END FUNCTION KTSOIL |
---|
1712 | FUNCTION FUNCDF(THETA,KTYPE) |
---|
1713 | ! |
---|
1714 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
1715 | USE module_progtm , ONLY : TSAT, DFK |
---|
1716 | implicit none |
---|
1717 | integer ktype,kw |
---|
1718 | real(kind=kind_phys) funcdf,theta,w |
---|
1719 | ! |
---|
1720 | W = (THETA / TSAT(KTYPE)) * 20. + 1. |
---|
1721 | KW = W |
---|
1722 | KW = MIN(KW,21) |
---|
1723 | KW = MAX(KW,1) |
---|
1724 | FUNCDF = DFK(KW,KTYPE) & |
---|
1725 | & + (W - KW) * (DFK(KW+1,KTYPE) - DFK(KW,KTYPE)) |
---|
1726 | RETURN |
---|
1727 | END FUNCTION FUNCDF |
---|
1728 | FUNCTION FUNCKT(THETA,KTYPE) |
---|
1729 | ! |
---|
1730 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
1731 | USE module_progtm , ONLY : TSAT, KTK |
---|
1732 | implicit none |
---|
1733 | integer ktype,kw |
---|
1734 | real(kind=kind_phys) funckt,theta,w |
---|
1735 | ! |
---|
1736 | W = (THETA / TSAT(KTYPE)) * 20. + 1. |
---|
1737 | KW = W |
---|
1738 | KW = MIN(KW,21) |
---|
1739 | KW = MAX(KW,1) |
---|
1740 | FUNCKT = KTK(KW,KTYPE) & |
---|
1741 | & + (W - KW) * (KTK(KW+1,KTYPE) - KTK(KW,KTYPE)) |
---|
1742 | RETURN |
---|
1743 | END FUNCTION FUNCKT |
---|
1744 | FUNCTION THSAT(KTYPE) |
---|
1745 | ! |
---|
1746 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
1747 | USE module_progtm , ONLY : TSAT |
---|
1748 | implicit none |
---|
1749 | integer ktype |
---|
1750 | real(kind=kind_phys) thsat |
---|
1751 | ! |
---|
1752 | THSAT = TSAT(KTYPE) |
---|
1753 | RETURN |
---|
1754 | END FUNCTION THSAT |
---|
1755 | FUNCTION TWLT(KTYPE) |
---|
1756 | |
---|
1757 | USE MODULE_GFS_MACHINE , ONLY : kind_phys |
---|
1758 | ! USE module_progtm |
---|
1759 | implicit none |
---|
1760 | integer ktype |
---|
1761 | real(kind=kind_phys) twlt |
---|
1762 | ! |
---|
1763 | TWLT = .1 |
---|
1764 | RETURN |
---|
1765 | END FUNCTION TWLT |
---|
1766 | |
---|
1767 | END MODULE module_sf_gfs |
---|