1 | MODULE module_sf_bep |
---|
2 | |
---|
3 | !USE module_model_constants |
---|
4 | USE module_sf_urban |
---|
5 | |
---|
6 | ! SGClarke 09/11/2008 |
---|
7 | ! Access urban_param.tbl values through calling urban_param_init in module_physics_init |
---|
8 | ! for CASE (BEPSCHEME) select sf_urban_physics |
---|
9 | ! |
---|
10 | ! ----------------------------------------------------------------------- |
---|
11 | ! Dimension for the array used in the BEP module |
---|
12 | ! ----------------------------------------------------------------------- |
---|
13 | |
---|
14 | integer nurbm ! Maximum number of urban classes |
---|
15 | parameter (nurbm=3) |
---|
16 | |
---|
17 | integer ndm ! Maximum number of street directions |
---|
18 | parameter (ndm=2) |
---|
19 | |
---|
20 | integer nz_um ! Maximum number of vertical levels in the urban grid |
---|
21 | parameter(nz_um=13) |
---|
22 | |
---|
23 | integer ng_u ! Number of grid levels in the ground |
---|
24 | parameter (ng_u=10) |
---|
25 | integer nwr_u ! Number of grid levels in the walls or roofs |
---|
26 | parameter (nwr_u=10) |
---|
27 | |
---|
28 | real dz_u ! Urban grid resolution |
---|
29 | parameter (dz_u=5.) |
---|
30 | |
---|
31 | ! The change of ng_u, nwr_u should be done in agreement with the block data |
---|
32 | ! in the routine "surf_temp" |
---|
33 | ! ----------------------------------------------------------------------- |
---|
34 | ! Constant used in the BEP module |
---|
35 | ! ----------------------------------------------------------------------- |
---|
36 | |
---|
37 | real vk ! von Karman constant |
---|
38 | real g_u ! Gravity acceleration |
---|
39 | real pi ! |
---|
40 | real r ! Perfect gas constant |
---|
41 | real cp_u ! Specific heat at constant pressure |
---|
42 | real rcp_u ! |
---|
43 | real sigma ! |
---|
44 | real p0 ! Reference pressure at the sea level |
---|
45 | real cdrag ! Drag force constant |
---|
46 | parameter(vk=0.40,g_u=9.81,pi=3.141592653,r=287.,cp_u=1004.) |
---|
47 | parameter(rcp_u=r/cp_u,sigma=5.67e-08,p0=1.e+5,cdrag=0.4) |
---|
48 | |
---|
49 | ! ----------------------------------------------------------------------- |
---|
50 | |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | CONTAINS |
---|
55 | |
---|
56 | subroutine BEP(FRC_URB2D,UTYPE_URB2D,itimestep,dz8w,dt,u_phy,v_phy, & |
---|
57 | th_phy,rho,p_phy,swdown,glw, & |
---|
58 | gmt,julday,xlong,xlat, & |
---|
59 | declin_urb,cosz_urb2d,omg_urb2d, & |
---|
60 | num_urban_layers, & |
---|
61 | trb_urb4d,tw1_urb4d,tw2_urb4d,tgb_urb4d, & |
---|
62 | sfw1_urb3d,sfw2_urb3d,sfr_urb3d,sfg_urb3d, & |
---|
63 | a_u,a_v,a_t,a_e,b_u,b_v, & |
---|
64 | b_t,b_e,dlg,dl_u,sf,vl, & |
---|
65 | rl_up,rs_abs,emiss,grdflx_urb, & |
---|
66 | ids,ide, jds,jde, kds,kde, & |
---|
67 | ims,ime, jms,jme, kms,kme, & |
---|
68 | its,ite, jts,jte, kts,kte) |
---|
69 | |
---|
70 | implicit none |
---|
71 | |
---|
72 | !------------------------------------------------------------------------ |
---|
73 | ! Input |
---|
74 | !------------------------------------------------------------------------ |
---|
75 | INTEGER :: ids,ide, jds,jde, kds,kde, & |
---|
76 | ims,ime, jms,jme, kms,kme, & |
---|
77 | its,ite, jts,jte, kts,kte, & |
---|
78 | itimestep |
---|
79 | |
---|
80 | |
---|
81 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: DZ8W |
---|
82 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: P_PHY |
---|
83 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: RHO |
---|
84 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: TH_PHY |
---|
85 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: T_PHY |
---|
86 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: U_PHY |
---|
87 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: V_PHY |
---|
88 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: U |
---|
89 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ):: V |
---|
90 | REAL, DIMENSION( ims:ime , jms:jme ) :: GLW |
---|
91 | REAL, DIMENSION( ims:ime , jms:jme ) :: swdown |
---|
92 | REAL, DIMENSION( ims:ime, jms:jme ) :: UST |
---|
93 | INTEGER, DIMENSION( ims:ime , jms:jme ), INTENT(IN ):: UTYPE_URB2D |
---|
94 | REAL, DIMENSION( ims:ime , jms:jme ), INTENT(IN ):: FRC_URB2D |
---|
95 | REAL, INTENT(IN ) :: GMT |
---|
96 | INTEGER, INTENT(IN ) :: JULDAY |
---|
97 | REAL, DIMENSION( ims:ime, jms:jme ), & |
---|
98 | INTENT(IN ) :: XLAT, XLONG |
---|
99 | REAL, INTENT(IN) :: DECLIN_URB |
---|
100 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) :: COSZ_URB2D |
---|
101 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) :: OMG_URB2D |
---|
102 | INTEGER, INTENT(IN ) :: num_urban_layers |
---|
103 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: trb_urb4d |
---|
104 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: tw1_urb4d |
---|
105 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: tw2_urb4d |
---|
106 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: tgb_urb4d |
---|
107 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: sfw1_urb3d |
---|
108 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: sfw2_urb3d |
---|
109 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: sfr_urb3d |
---|
110 | REAL, DIMENSION( ims:ime, 1:num_urban_layers, jms:jme ), INTENT(INOUT) :: sfg_urb3d |
---|
111 | ! integer nx,ny,nz ! Number of points in the mesocsale grid |
---|
112 | real z(ims:ime,kms:kme,jms:jme) ! Vertical coordinates |
---|
113 | REAL, INTENT(IN ):: DT ! Time step |
---|
114 | ! real zr(ims:ime,jms:jme) ! Solar zenith angle |
---|
115 | ! real deltar(ims:ime,jms:jme) ! Declination of the sun |
---|
116 | ! real ah(ims:ime,jms:jme) ! Hour angle |
---|
117 | ! real rs(ims:ime,jms:jme) ! Solar radiation |
---|
118 | !------------------------------------------------------------------------ |
---|
119 | ! Output |
---|
120 | !------------------------------------------------------------------------ |
---|
121 | ! real tsk(ims:ime,jms:jme) ! Average of surface temperatures (roads and roofs) |
---|
122 | ! |
---|
123 | ! Implicit and explicit components of the source and sink terms at each levels, |
---|
124 | ! the fluxes can be computed as follow: FX = A*X + B example: t_fluxes = a_t * pt + b_t |
---|
125 | real a_u(ims:ime,kms:kme,jms:jme) ! Implicit component for the momemtum in X-direction (center) |
---|
126 | real a_v(ims:ime,kms:kme,jms:jme) ! Implicit component for the momemtum in Y-direction (center) |
---|
127 | real a_t(ims:ime,kms:kme,jms:jme) ! Implicit component for the temperature |
---|
128 | real a_e(ims:ime,kms:kme,jms:jme) ! Implicit component for the TKE |
---|
129 | real b_u(ims:ime,kms:kme,jms:jme) ! Explicit component for the momemtum in X-direction (center) |
---|
130 | real b_v(ims:ime,kms:kme,jms:jme) ! Explicit component for the momemtum in Y-direction (center) |
---|
131 | real b_t(ims:ime,kms:kme,jms:jme) ! Explicit component for the temperature |
---|
132 | real b_e(ims:ime,kms:kme,jms:jme) ! Explicit component for the TKE |
---|
133 | real dlg(ims:ime,kms:kme,jms:jme) ! Height above ground (L_ground in formula (24) of the BLM paper). |
---|
134 | real dl_u(ims:ime,kms:kme,jms:jme) ! Length scale (lb in formula (22) ofthe BLM paper). |
---|
135 | ! urban surface and volumes |
---|
136 | real sf(ims:ime,kms:kme,jms:jme) ! surface of the urban grid cells |
---|
137 | real vl(ims:ime,kms:kme,jms:jme) ! volume of the urban grid cells |
---|
138 | ! urban fluxes |
---|
139 | real rl_up(ims:ime,jms:jme) ! upward long wave radiation |
---|
140 | real rs_abs(ims:ime,jms:jme) ! absorbed short wave radiation |
---|
141 | real emiss(ims:ime,jms:jme) ! emissivity averaged for urban surfaces |
---|
142 | real grdflx_urb(ims:ime,jms:jme) ! ground heat flux for urban areas |
---|
143 | !------------------------------------------------------------------------ |
---|
144 | ! Local |
---|
145 | !------------------------------------------------------------------------ |
---|
146 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
147 | ! Building parameters |
---|
148 | real alag_u(nurbm) ! Ground thermal diffusivity [m^2 s^-1] |
---|
149 | real alaw_u(nurbm) ! Wall thermal diffusivity [m^2 s^-1] |
---|
150 | real alar_u(nurbm) ! Roof thermal diffusivity [m^2 s^-1] |
---|
151 | real csg_u(nurbm) ! Specific heat of the ground material [J m^3 K^-1] |
---|
152 | real csw_u(nurbm) ! Specific heat of the wall material [J m^3 K^-1] |
---|
153 | real csr_u(nurbm) ! Specific heat of the roof material [J m^3 K^-1] |
---|
154 | real twini_u(nurbm) ! Initial temperature inside the building's wall [K] |
---|
155 | real trini_u(nurbm) ! Initial temperature inside the building's roof [K] |
---|
156 | real tgini_u(nurbm) ! Initial road temperature |
---|
157 | ! |
---|
158 | ! for twini_u, and trini_u the initial value at the deepest level is kept constant during the simulation |
---|
159 | ! |
---|
160 | ! Radiation paramters |
---|
161 | real albg_u(nurbm) ! Albedo of the ground |
---|
162 | real albw_u(nurbm) ! Albedo of the wall |
---|
163 | real albr_u(nurbm) ! Albedo of the roof |
---|
164 | real emg_u(nurbm) ! Emissivity of ground |
---|
165 | real emw_u(nurbm) ! Emissivity of wall |
---|
166 | real emr_u(nurbm) ! Emissivity of roof |
---|
167 | |
---|
168 | ! fww,fwg,fgw,fsw,fsg are the view factors used to compute the long wave |
---|
169 | ! and the short wave radation. |
---|
170 | real fww(nz_um,nz_um,ndm,nurbm) ! from wall to wall |
---|
171 | real fwg(nz_um,ndm,nurbm) ! from wall to ground |
---|
172 | real fgw(nz_um,ndm,nurbm) ! from ground to wall |
---|
173 | real fsw(nz_um,ndm,nurbm) ! from sky to wall |
---|
174 | real fws(nz_um,ndm,nurbm) ! from sky to wall |
---|
175 | real fsg(ndm,nurbm) ! from sky to ground |
---|
176 | |
---|
177 | ! Roughness parameters |
---|
178 | real z0g_u(nurbm) ! The ground's roughness length |
---|
179 | real z0r_u(nurbm) ! The roof's roughness length |
---|
180 | |
---|
181 | ! Street parameters |
---|
182 | integer nd_u(nurbm) ! Number of street direction for each urban class |
---|
183 | real strd_u(ndm,nurbm) ! Street length (fix to greater value to the horizontal length of the cells) |
---|
184 | real drst_u(ndm,nurbm) ! Street direction |
---|
185 | real ws_u(ndm,nurbm) ! Street width |
---|
186 | real bs_u(ndm,nurbm) ! Building width |
---|
187 | real h_b(nz_um,nurbm) ! Bulding's heights |
---|
188 | real d_b(nz_um,nurbm) ! Probability that a building has an height h_b |
---|
189 | real ss_u(nz_um,nurbm) ! Probability that a building has an height equal to z |
---|
190 | real pb_u(nz_um,nurbm) ! Probability that a building has an height greater or equal to z |
---|
191 | |
---|
192 | |
---|
193 | ! Grid parameters |
---|
194 | integer nz_u(nurbm) ! Number of layer in the urban grid |
---|
195 | |
---|
196 | real z_u(nz_um) ! Height of the urban grid levels |
---|
197 | |
---|
198 | ! 1D array used for the input and output of the routine "urban" |
---|
199 | |
---|
200 | real z1D(kms:kme) ! vertical coordinates |
---|
201 | real ua1D(kms:kme) ! wind speed in the x directions |
---|
202 | real va1D(kms:kme) ! wind speed in the y directions |
---|
203 | real pt1D(kms:kme) ! potential temperature |
---|
204 | real da1D(kms:kme) ! air density |
---|
205 | real pr1D(kms:kme) ! air pressure |
---|
206 | real pt01D(kms:kme) ! reference potential temperature |
---|
207 | real zr1D ! zenith angle |
---|
208 | real deltar1D ! declination of the sun |
---|
209 | real ah1D ! hour angle (it should come from the radiation routine) |
---|
210 | real rs1D ! solar radiation |
---|
211 | real rld1D ! downward flux of the longwave radiation |
---|
212 | |
---|
213 | |
---|
214 | real tw1D(2*ndm,nz_um,nwr_u) ! temperature in each layer of the wall |
---|
215 | real tg1D(ndm,ng_u) ! temperature in each layer of the ground |
---|
216 | real tr1D(ndm,nz_um,nwr_u) ! temperature in each layer of the roof |
---|
217 | real sfw1D(2*ndm,nz_um) ! sensible heat flux from walls |
---|
218 | real sfg1D(ndm) ! sensible heat flux from ground (road) |
---|
219 | real sfr1D(ndm,nz_um) ! sensible heat flux from roofs |
---|
220 | real sf1D(kms:kme) ! surface of the urban grid cells |
---|
221 | real vl1D(kms:kme) ! volume of the urban grid cells |
---|
222 | real a_u1D(kms:kme) ! Implicit component of the momentum sources or sinks in the X-direction |
---|
223 | real a_v1D(kms:kme) ! Implicit component of the momentum sources or sinks in the Y-direction |
---|
224 | real a_t1D(kms:kme) ! Implicit component of the heat sources or sinks |
---|
225 | real a_e1D(kms:kme) ! Implicit component of the TKE sources or sinks |
---|
226 | real b_u1D(kms:kme) ! Explicit component of the momentum sources or sinks in the X-direction |
---|
227 | real b_v1D(kms:kme) ! Explicit component of the momentum sources or sinks in the Y-direction |
---|
228 | real b_t1D(kms:kme) ! Explicit component of the heat sources or sinks |
---|
229 | real b_e1D(kms:kme) ! Explicit component of the TKE sources or sinks |
---|
230 | real dlg1D(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper). |
---|
231 | real dl_u1D(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper) |
---|
232 | real tsk1D ! Average of the road surface temperatures |
---|
233 | real time_bep |
---|
234 | ! arrays used to collapse indexes |
---|
235 | integer ind_zwd(nz_um,nwr_u,ndm) |
---|
236 | integer ind_gd(ng_u,ndm) |
---|
237 | integer ind_zd(nz_um,ndm) |
---|
238 | ! |
---|
239 | integer ix,iy,iz,iurb,id,iz_u,iw,ig,ir,ix1,iy1,k |
---|
240 | integer it, nint |
---|
241 | integer iii |
---|
242 | real time_h,tempo,shtot |
---|
243 | logical first |
---|
244 | character(len=80) :: text |
---|
245 | data first/.true./ |
---|
246 | save first,time_bep |
---|
247 | |
---|
248 | save alag_u,alaw_u,alar_u,csg_u,csw_u,csr_u, & |
---|
249 | albg_u,albw_u,albr_u,emg_u,emw_u,emr_u,fww,fwg,fgw,fsw,fws,fsg, & |
---|
250 | z0g_u,z0r_u, nd_u,strd_u,drst_u,ws_u,bs_u,h_b,d_b,ss_u,pb_u, & |
---|
251 | nz_u,z_u |
---|
252 | |
---|
253 | !------------------------------------------------------------------------ |
---|
254 | ! Calculation of the momentum, heat and turbulent kinetic fluxes |
---|
255 | ! produced by builgings |
---|
256 | ! |
---|
257 | ! Reference: |
---|
258 | ! Martilli, A., Clappier, A., Rotach, M.W.:2002, 'AN URBAN SURFACE EXCHANGE |
---|
259 | ! PARAMETERISATION FOR MESOSCALE MODELS', Boundary-Layer Meteorolgy 104: |
---|
260 | ! 261-304 |
---|
261 | !------------------------------------------------------------------------ |
---|
262 | !prepare the arrays to collapse indexes |
---|
263 | |
---|
264 | if(num_urban_layers.lt.nz_um*ndm*nwr_u)then |
---|
265 | write(*,*)'num_urban_layers too small, please increase to at least ', nz_um*ndm*nwr_u |
---|
266 | stop |
---|
267 | endif |
---|
268 | iii=0 |
---|
269 | do iz_u=1,nz_um |
---|
270 | do iw=1,nwr_u |
---|
271 | do id=1,ndm |
---|
272 | iii=iii+1 |
---|
273 | ind_zwd(iz_u,iw,id)=iii |
---|
274 | enddo |
---|
275 | enddo |
---|
276 | enddo |
---|
277 | |
---|
278 | iii=0 |
---|
279 | do ig=1,ng_u |
---|
280 | do id=1,ndm |
---|
281 | iii=iii+1 |
---|
282 | ind_gd(ig,id)=iii |
---|
283 | enddo |
---|
284 | enddo |
---|
285 | |
---|
286 | iii=0 |
---|
287 | do iz_u=1,nz_um |
---|
288 | do id=1,ndm |
---|
289 | iii=iii+1 |
---|
290 | ind_zd(iz_u,id)=iii |
---|
291 | enddo |
---|
292 | enddo |
---|
293 | do ix=its,ite |
---|
294 | do iy=jts,jte |
---|
295 | z(ix,kts,iy)=0. |
---|
296 | do iz=kts+1,kte+1 |
---|
297 | z(ix,iz,iy)=z(ix,iz-1,iy)+dz8w(ix,iz-1,iy) |
---|
298 | enddo |
---|
299 | enddo |
---|
300 | enddo |
---|
301 | |
---|
302 | if (first) then ! True only on first call |
---|
303 | call init_para(alag_u,alaw_u,alar_u,csg_u,csw_u,csr_u,& |
---|
304 | twini_u,trini_u,tgini_u,albg_u,albw_u,albr_u,emg_u,emw_u,& |
---|
305 | emr_u,z0g_u,z0r_u,nd_u,strd_u,drst_u,ws_u,bs_u,h_b,d_b) |
---|
306 | |
---|
307 | ! Initialisation of the urban parameters and calculation of the view factors |
---|
308 | call icBEP(alag_u,alaw_u,alar_u,csg_u,csw_u,csr_u, & |
---|
309 | albg_u,albw_u,albr_u,emg_u,emw_u,emr_u, & |
---|
310 | fww,fwg,fgw,fsw,fws,fsg, & |
---|
311 | z0g_u,z0r_u, & |
---|
312 | nd_u,strd_u,drst_u,ws_u,bs_u,h_b,d_b,ss_u,pb_u, & |
---|
313 | nz_u,z_u, & |
---|
314 | twini_u,trini_u) |
---|
315 | |
---|
316 | first=.false. |
---|
317 | |
---|
318 | endif ! first |
---|
319 | |
---|
320 | do ix=its,ite |
---|
321 | do iy=jts,jte |
---|
322 | if (FRC_URB2D(ix,iy).gt.0.) then ! Calling BEP only for existing urban classes. |
---|
323 | |
---|
324 | iurb=UTYPE_URB2D(ix,iy) |
---|
325 | |
---|
326 | do iz= kts,kte |
---|
327 | ua1D(iz)=u_phy(ix,iz,iy) |
---|
328 | va1D(iz)=v_phy(ix,iz,iy) |
---|
329 | pt1D(iz)=th_phy(ix,iz,iy) |
---|
330 | da1D(iz)=rho(ix,iz,iy) |
---|
331 | pr1D(iz)=p_phy(ix,iz,iy) |
---|
332 | ! pt01D(iz)=th_phy(ix,iz,iy) |
---|
333 | pt01D(iz)=300. |
---|
334 | z1D(iz)=z(ix,iz,iy) |
---|
335 | a_u1D(iz)=0. |
---|
336 | a_v1D(iz)=0. |
---|
337 | a_t1D(iz)=0. |
---|
338 | a_e1D(iz)=0. |
---|
339 | b_u1D(iz)=0. |
---|
340 | b_v1D(iz)=0. |
---|
341 | b_t1D(iz)=0. |
---|
342 | b_e1D(iz)=0. |
---|
343 | enddo |
---|
344 | z1D(kte+1)=z(ix,kte+1,iy) |
---|
345 | |
---|
346 | do id=1,ndm |
---|
347 | do iz_u=1,nz_um |
---|
348 | do iw=1,nwr_u |
---|
349 | ! tw1D(2*id-1,iz_u,iw)=tw1_u(ix,iy,ind_zwd(iz_u,iw,id)) |
---|
350 | ! tw1D(2*id,iz_u,iw)=tw2_u(ix,iy,ind_zwd(iz_u,iw,id)) |
---|
351 | if(ind_zwd(iz_u,iw,id).gt.num_urban_layers)write(*,*)'ind_zwd too big w',ind_zwd(iz_u,iw,id) |
---|
352 | tw1D(2*id-1,iz_u,iw)=tw1_urb4d(ix,ind_zwd(iz_u,iw,id),iy) |
---|
353 | tw1D(2*id,iz_u,iw)=tw2_urb4d(ix,ind_zwd(iz_u,iw,id),iy) |
---|
354 | enddo |
---|
355 | enddo |
---|
356 | enddo |
---|
357 | |
---|
358 | do id=1,ndm |
---|
359 | do ig=1,ng_u |
---|
360 | ! tg1D(id,ig)=tg_u(ix,iy,ind_gd(ig,id)) |
---|
361 | tg1D(id,ig)=tgb_urb4d(ix,ind_gd(ig,id),iy) |
---|
362 | enddo |
---|
363 | do iz_u=1,nz_um |
---|
364 | do ir=1,nwr_u |
---|
365 | ! tr1D(id,iz_u,ir)=tr_u(ix,iy,ind_zwd(iz_u,ir,id)) |
---|
366 | if(ind_zwd(iz_u,ir,id).gt.num_urban_layers)write(*,*)'ind_zwd too big r',ind_zwd(iz_u,ir,id) |
---|
367 | tr1D(id,iz_u,ir)=trb_urb4d(ix,ind_zwd(iz_u,ir,id),iy) |
---|
368 | enddo |
---|
369 | enddo |
---|
370 | enddo |
---|
371 | |
---|
372 | do id=1,ndm |
---|
373 | do iz=1,nz_um |
---|
374 | ! sfw1D(2*id-1,iz)=sfw1(ix,iy,ind_zd(iz,id)) |
---|
375 | ! sfw1D(2*id,iz)=sfw2(ix,iy,ind_zd(iz,id)) |
---|
376 | sfw1D(2*id-1,iz)=sfw1_urb3d(ix,ind_zd(iz,id),iy) |
---|
377 | sfw1D(2*id,iz)=sfw2_urb3d(ix,ind_zd(iz,id),iy) |
---|
378 | enddo |
---|
379 | enddo |
---|
380 | |
---|
381 | do id=1,ndm |
---|
382 | ! sfg1D(id)=sfg(ix,iy,id) |
---|
383 | sfg1D(id)=sfg_urb3d(ix,id,iy) |
---|
384 | enddo |
---|
385 | |
---|
386 | do id=1,ndm |
---|
387 | do iz=1,nz_um |
---|
388 | ! sfr1D(id,iz)=sfr(ix,iy,ind_zd(iz,id)) |
---|
389 | sfr1D(id,iz)=sfr_urb3d(ix,ind_zd(iz,id),iy) |
---|
390 | enddo |
---|
391 | enddo |
---|
392 | |
---|
393 | |
---|
394 | rs1D=swdown(ix,iy) |
---|
395 | rld1D=glw(ix,iy) |
---|
396 | time_h=(itimestep*dt)/3600.+gmt |
---|
397 | |
---|
398 | zr1D=acos(COSZ_URB2D(ix,iy)) |
---|
399 | deltar1D=DECLIN_URB |
---|
400 | ah1D=OMG_URB2D(ix,iy) |
---|
401 | ! call angle(xlong(ix,iy),xlat(ix,iy),julday,time_h,zr1D,deltar1D,ah1D) |
---|
402 | |
---|
403 | call BEP1D(iurb,kms,kme,kts,kte,z1D,dt,ua1D,va1D,pt1D,da1D,pr1D,pt01D, & |
---|
404 | zr1D,deltar1D,ah1D,rs1D,rld1D, & |
---|
405 | alag_u,alaw_u,alar_u,csg_u,csw_u,csr_u, & |
---|
406 | albg_u,albw_u,albr_u,emg_u,emw_u,emr_u, & |
---|
407 | fww,fwg,fgw,fsw,fws,fsg, & |
---|
408 | z0g_u,z0r_u, & |
---|
409 | nd_u,strd_u,drst_u,ws_u,bs_u,h_b,d_b,ss_u,pb_u, & |
---|
410 | nz_u,z_u, & |
---|
411 | tw1D,tg1D,tr1D,sfw1D,sfg1D,sfr1D, & |
---|
412 | a_u1D,a_v1D,a_t1D,a_e1D, & |
---|
413 | b_u1D,b_v1D,b_t1D,b_e1D, & |
---|
414 | dlg1D,dl_u1D,tsk1D,sf1D,vl1D,rl_up(ix,iy), & |
---|
415 | rs_abs(ix,iy),emiss(ix,iy),grdflx_urb(ix,iy)) |
---|
416 | |
---|
417 | do id=1,ndm |
---|
418 | do iz=1,nz_um |
---|
419 | sfw1_urb3d(ix,ind_zd(iz,id),iy)=sfw1D(2*id-1,iz) |
---|
420 | sfw2_urb3d(ix,ind_zd(iz,id),iy)=sfw1D(2*id,iz) |
---|
421 | enddo |
---|
422 | enddo |
---|
423 | |
---|
424 | do id=1,ndm |
---|
425 | sfg_urb3d(ix,id,iy)=sfg1D(id) |
---|
426 | enddo |
---|
427 | |
---|
428 | do id=1,ndm |
---|
429 | do iz=1,nz_um |
---|
430 | sfr_urb3d(ix,ind_zd(iz,id),iy)=sfr1D(id,iz) |
---|
431 | enddo |
---|
432 | enddo |
---|
433 | ! |
---|
434 | do id=1,ndm |
---|
435 | do iz_u=1,nz_um |
---|
436 | do iw=1,nwr_u |
---|
437 | tw1_urb4d(ix,ind_zwd(iz_u,iw,id),iy)=tw1D(2*id-1,iz_u,iw) |
---|
438 | tw2_urb4d(ix,ind_zwd(iz_u,iw,id),iy)=tw1D(2*id,iz_u,iw) |
---|
439 | enddo |
---|
440 | enddo |
---|
441 | enddo |
---|
442 | |
---|
443 | do id=1,ndm |
---|
444 | do ig=1,ng_u |
---|
445 | tgb_urb4d(ix,ind_gd(ig,id),iy)=tg1D(id,ig) |
---|
446 | enddo |
---|
447 | do iz_u=1,nz_um |
---|
448 | do ir=1,nwr_u |
---|
449 | trb_urb4d(ix,ind_zwd(iz_u,ir,id),iy)=tr1D(id,iz_u,ir) |
---|
450 | enddo |
---|
451 | enddo |
---|
452 | enddo |
---|
453 | |
---|
454 | do iz= kts,kte |
---|
455 | sf(ix,iz,iy)=sf1D(iz) |
---|
456 | vl(ix,iz,iy)=vl1D(iz) |
---|
457 | a_u(ix,iz,iy)=a_u1D(iz) |
---|
458 | a_v(ix,iz,iy)=a_v1D(iz) |
---|
459 | a_t(ix,iz,iy)=a_t1D(iz) |
---|
460 | a_e(ix,iz,iy)=a_e1D(iz) |
---|
461 | b_u(ix,iz,iy)=b_u1D(iz) |
---|
462 | b_v(ix,iz,iy)=b_v1D(iz) |
---|
463 | b_t(ix,iz,iy)=b_t1D(iz) |
---|
464 | b_e(ix,iz,iy)=b_e1D(iz) |
---|
465 | dlg(ix,iz,iy)=dlg1D(iz) |
---|
466 | dl_u(ix,iz,iy)=dl_u1D(iz) |
---|
467 | enddo |
---|
468 | sf(ix,kte+1,iy)=sf1D(kte+1) |
---|
469 | ! tsk(ix,iy)=tsk1D |
---|
470 | ! |
---|
471 | endif ! FRC_URB2D |
---|
472 | |
---|
473 | enddo ! iy |
---|
474 | enddo ! ix |
---|
475 | |
---|
476 | |
---|
477 | time_bep=time_bep+dt |
---|
478 | |
---|
479 | |
---|
480 | return |
---|
481 | end subroutine BEP |
---|
482 | |
---|
483 | ! ===6=8===============================================================72 |
---|
484 | |
---|
485 | subroutine BEP1D(iurb,kms,kme,kts,kte,z,dt,ua,va,pt,da,pr,pt0, & |
---|
486 | zr,deltar,ah,rs,rld, & |
---|
487 | alag_u,alaw_u,alar_u,csg_u,csw_u,csr_u, & |
---|
488 | albg_u,albw_u,albr_u,emg_u,emw_u,emr_u, & |
---|
489 | fww,fwg,fgw,fsw,fws,fsg, & |
---|
490 | z0g_u,z0r_u, & |
---|
491 | nd_u,strd_u,drst_u,ws_u,bs_u,h_b,d_b,ss_u,pb_u, & |
---|
492 | nz_u,z_u, & |
---|
493 | tw,tg,tr,sfw,sfg,sfr, & |
---|
494 | a_u,a_v,a_t,a_e, & |
---|
495 | b_u,b_v,b_t,b_e, & |
---|
496 | dlg,dl_u,tsk,sf,vl,rl_up,rs_abs,emiss,grdflx_urb) |
---|
497 | |
---|
498 | ! ---------------------------------------------------------------------- |
---|
499 | ! This routine computes the effects of buildings on momentum, heat and |
---|
500 | ! TKE (turbulent kinetic energy) sources or sinks and on the mixing length. |
---|
501 | ! It provides momentum, heat and TKE sources or sinks at different levels of a |
---|
502 | ! mesoscale grid defined by the altitude of its cell interfaces "z" and |
---|
503 | ! its number of levels "nz". |
---|
504 | ! The meteorological input parameters (wind, temperature, solar radiation) |
---|
505 | ! are specified on the "mesoscale grid". |
---|
506 | ! The inputs concerning the building and street charateristics are defined |
---|
507 | ! on a "urban grid". The "urban grid" is defined with its number of levels |
---|
508 | ! "nz_u" and its space step "dz_u". |
---|
509 | ! The input parameters are interpolated on the "urban grid". The sources or sinks |
---|
510 | ! are calculated on the "urban grid". Finally the sources or sinks are |
---|
511 | ! interpolated on the "mesoscale grid". |
---|
512 | |
---|
513 | |
---|
514 | ! Mesoscale grid Urban grid Mesoscale grid |
---|
515 | ! |
---|
516 | ! z(4) --- --- |
---|
517 | ! | | |
---|
518 | ! | | |
---|
519 | ! | Interpolation Interpolation | |
---|
520 | ! | Sources or sinks calculation | |
---|
521 | ! z(3) --- --- |
---|
522 | ! | ua ua_u --- uv_a a_u | |
---|
523 | ! | va va_u | uv_b b_u | |
---|
524 | ! | pt pt_u --- uh_b a_v | |
---|
525 | ! z(2) --- | etc... etc...--- |
---|
526 | ! | z_u(1) --- | |
---|
527 | ! | | | |
---|
528 | ! z(1) ------------------------------------------------------------ |
---|
529 | |
---|
530 | ! |
---|
531 | ! Reference: |
---|
532 | ! Martilli, A., Clappier, A., Rotach, M.W.:2002, 'AN URBAN SURFACE EXCHANGE |
---|
533 | ! PARAMETERISATION FOR MESOSCALE MODELS', Boundary-Layer Meteorolgy 104: |
---|
534 | ! 261-304 |
---|
535 | |
---|
536 | ! ---------------------------------------------------------------------- |
---|
537 | |
---|
538 | implicit none |
---|
539 | |
---|
540 | |
---|
541 | |
---|
542 | ! ---------------------------------------------------------------------- |
---|
543 | ! INPUT: |
---|
544 | ! ---------------------------------------------------------------------- |
---|
545 | |
---|
546 | ! Data relative to the "mesoscale grid" |
---|
547 | |
---|
548 | ! integer nz ! Number of vertical levels |
---|
549 | integer kms,kme,kts,kte |
---|
550 | real z(kms:kme) ! Altitude above the ground of the cell interfaces. |
---|
551 | real ua(kms:kme) ! Wind speed in the x direction |
---|
552 | real va(kms:kme) ! Wind speed in the y direction |
---|
553 | real pt(kms:kme) ! Potential temperature |
---|
554 | real da(kms:kme) ! Air density |
---|
555 | real pr(kms:kme) ! Air pressure |
---|
556 | real pt0(kms:kme) ! Reference potential temperature (could be equal to "pt") |
---|
557 | real dt ! Time step |
---|
558 | real zr ! Zenith angle |
---|
559 | real deltar ! Declination of the sun |
---|
560 | real ah ! Hour angle |
---|
561 | real rs ! Solar radiation |
---|
562 | real rld ! Downward flux of the longwave radiation |
---|
563 | |
---|
564 | ! Data relative to the "urban grid" |
---|
565 | |
---|
566 | integer iurb ! Current urban class |
---|
567 | |
---|
568 | ! Building parameters |
---|
569 | real alag_u(nurbm) ! Ground thermal diffusivity [m^2 s^-1] |
---|
570 | real alaw_u(nurbm) ! Wall thermal diffusivity [m^2 s^-1] |
---|
571 | real alar_u(nurbm) ! Roof thermal diffusivity [m^2 s^-1] |
---|
572 | real csg_u(nurbm) ! Specific heat of the ground material [J m^3 K^-1] |
---|
573 | real csw_u(nurbm) ! Specific heat of the wall material [J m^3 K^-1] |
---|
574 | real csr_u(nurbm) ! Specific heat of the roof material [J m^3 K^-1] |
---|
575 | |
---|
576 | ! Radiation parameters |
---|
577 | real albg_u(nurbm) ! Albedo of the ground |
---|
578 | real albw_u(nurbm) ! Albedo of the wall |
---|
579 | real albr_u(nurbm) ! Albedo of the roof |
---|
580 | real emg_u(nurbm) ! Emissivity of ground |
---|
581 | real emw_u(nurbm) ! Emissivity of wall |
---|
582 | real emr_u(nurbm) ! Emissivity of roof |
---|
583 | |
---|
584 | ! fww,fwg,fgw,fsw,fsg are the view factors used to compute the long and |
---|
585 | ! short wave radation. |
---|
586 | ! The calculation of these factor is explained in the Appendix A of the BLM paper |
---|
587 | real fww(nz_um,nz_um,ndm,nurbm) ! from wall to wall |
---|
588 | real fwg(nz_um,ndm,nurbm) ! from wall to ground |
---|
589 | real fgw(nz_um,ndm,nurbm) ! from ground to wall |
---|
590 | real fsw(nz_um,ndm,nurbm) ! from sky to wall |
---|
591 | real fws(nz_um,ndm,nurbm) ! from wall to sky |
---|
592 | real fsg(ndm,nurbm) ! from sky to ground |
---|
593 | |
---|
594 | ! Roughness parameters |
---|
595 | real z0g_u(nurbm) ! The ground's roughness length |
---|
596 | real z0r_u(nurbm) ! The roof's roughness length |
---|
597 | |
---|
598 | ! Street parameters |
---|
599 | integer nd_u(nurbm) ! Number of street direction for each urban class |
---|
600 | real strd_u(ndm,nurbm) ! Street length (set to a greater value then the horizontal length of the cells) |
---|
601 | real drst_u(ndm,nurbm) ! Street direction |
---|
602 | real ws_u(ndm,nurbm) ! Street width |
---|
603 | real bs_u(ndm,nurbm) ! Building width |
---|
604 | real h_b(nz_um,nurbm) ! Bulding's heights |
---|
605 | real d_b(nz_um,nurbm) ! The probability that a building has an height "h_b" |
---|
606 | real ss_u(nz_um,nurbm) ! The probability that a building has an height equal to "z" |
---|
607 | real pb_u(nz_um,nurbm) ! The probability that a building has an height greater or equal to "z" |
---|
608 | |
---|
609 | ! Grid parameters |
---|
610 | integer nz_u(nurbm) ! Number of layer in the urban grid |
---|
611 | ! real dz_u ! Urban grid resolution |
---|
612 | real z_u(nz_um) ! Height of the urban grid levels |
---|
613 | |
---|
614 | |
---|
615 | ! ---------------------------------------------------------------------- |
---|
616 | ! INPUT-OUTPUT |
---|
617 | ! ---------------------------------------------------------------------- |
---|
618 | |
---|
619 | ! Data relative to the "urban grid" which should be stored from the current time step to the next one |
---|
620 | |
---|
621 | real tw(2*ndm,nz_um,nwr_u) ! Temperature in each layer of the wall [K] |
---|
622 | real tr(ndm,nz_um,nwr_u) ! Temperature in each layer of the roof [K] |
---|
623 | real tg(ndm,ng_u) ! Temperature in each layer of the ground [K] |
---|
624 | real sfw(2*ndm,nz_um) ! Sensible heat flux from walls |
---|
625 | real sfg(ndm) ! Sensible heat flux from ground (road) |
---|
626 | real sfr(ndm,nz_um) ! Sensible heat flux from roofs |
---|
627 | real gfg(ndm) ! Heat flux transferred from the surface of the ground (road) towards the interior |
---|
628 | real gfr(ndm,nz_um) ! Heat flux transferred from the surface of the roof towards the interior |
---|
629 | real gfw(2*ndm,nz_um) ! Heat flux transfered from the surface of the walls towards the interior |
---|
630 | ! ---------------------------------------------------------------------- |
---|
631 | ! OUTPUT: |
---|
632 | ! ---------------------------------------------------------------------- |
---|
633 | |
---|
634 | ! Data relative to the "mesoscale grid" |
---|
635 | |
---|
636 | real sf(kms:kme) ! Surface of the "mesoscale grid" cells taking into account the buildings |
---|
637 | real vl(kms:kme) ! Volume of the "mesoscale grid" cells taking into account the buildings |
---|
638 | |
---|
639 | ! Implicit and explicit components of the source and sink terms at each levels, |
---|
640 | ! the fluxes can be computed as follow: FX = A*X + B example: Heat fluxes = a_t * pt + b_t |
---|
641 | real a_u(kms:kme) ! Implicit component of the momentum sources or sinks in the X-direction |
---|
642 | real a_v(kms:kme) ! Implicit component of the momentum sources or sinks in the Y-direction |
---|
643 | real a_t(kms:kme) ! Implicit component of the heat sources or sinks |
---|
644 | real a_e(kms:kme) ! Implicit component of the TKE sources or sinks |
---|
645 | real b_u(kms:kme) ! Explicit component of the momentum sources or sinks in the X-direction |
---|
646 | real b_v(kms:kme) ! Explicit component of the momentum sources or sinks in the Y-direction |
---|
647 | real b_t(kms:kme) ! Explicit component of the heat sources or sinks |
---|
648 | real b_e(kms:kme) ! Explicit component of the TKE sources or sinks |
---|
649 | real dlg(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper). |
---|
650 | real dl_u(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper). |
---|
651 | real tsk ! Average of the road surface temperatures |
---|
652 | |
---|
653 | ! ---------------------------------------------------------------------- |
---|
654 | ! LOCAL: |
---|
655 | ! ---------------------------------------------------------------------- |
---|
656 | |
---|
657 | real dz(kms:kme) ! vertical space steps of the "mesoscale grid" |
---|
658 | |
---|
659 | ! Data interpolated from the "mesoscale grid" to the "urban grid" |
---|
660 | |
---|
661 | real ua_u(nz_um) ! Wind speed in the x direction |
---|
662 | real va_u(nz_um) ! Wind speed in the y direction |
---|
663 | real pt_u(nz_um) ! Potential temperature |
---|
664 | real da_u(nz_um) ! Air density |
---|
665 | real pt0_u(nz_um) ! Reference potential temperature |
---|
666 | real pr_u(nz_um) ! Air pressure |
---|
667 | |
---|
668 | ! Data defining the building and street charateristics |
---|
669 | |
---|
670 | integer nd ! Number of street direction for the current urban class |
---|
671 | |
---|
672 | real alag(ng_u) ! Ground thermal diffusivity for the current urban class [m^2 s^-1] |
---|
673 | real alar(nwr_u) ! Roof thermal diffusivity for the current urban class [m^2 s^-1] |
---|
674 | real alaw(nwr_u) ! Walls thermal diffusivity for the current urban class [m^2 s^-1] |
---|
675 | real csg(ng_u) ! Specific heat of the ground material of the current urban class [J m^3 K^-1] |
---|
676 | real csr(nwr_u) ! Specific heat of the roof material for the current urban class [J m^3 K^-1] |
---|
677 | real csw(nwr_u) ! Specific heat of the wall material for the current urban class [J m^3 K^-1] |
---|
678 | |
---|
679 | real z0(ndm,nz_um) ! Roughness lengths "profiles" |
---|
680 | real ws(ndm) ! Street widths of the current urban class |
---|
681 | real bs(ndm) ! Building widths of the current urban class |
---|
682 | real strd(ndm) ! Street lengths for the current urban class |
---|
683 | real drst(ndm) ! Street directions for the current urban class |
---|
684 | real ss(nz_um) ! Probability to have a building with height h |
---|
685 | real pb(nz_um) ! Probability to have a building with an height equal |
---|
686 | |
---|
687 | ! Solar radiation at each level of the "urban grid" |
---|
688 | |
---|
689 | real rsg(ndm) ! Short wave radiation from the ground |
---|
690 | real rsw(2*ndm,nz_um) ! Short wave radiation from the walls |
---|
691 | real rlg(ndm) ! Long wave radiation from the ground |
---|
692 | real rlw(2*ndm,nz_um) ! Long wave radiation from the walls |
---|
693 | |
---|
694 | ! Potential temperature of the surfaces at each level of the "urban grid" |
---|
695 | |
---|
696 | real ptg(ndm) ! Ground potential temperatures |
---|
697 | real ptr(ndm,nz_um) ! Roof potential temperatures |
---|
698 | real ptw(2*ndm,nz_um) ! Walls potential temperatures |
---|
699 | |
---|
700 | |
---|
701 | ! Explicit and implicit component of the momentum, temperature and TKE sources or sinks on |
---|
702 | ! vertical surfaces (walls) ans horizontal surfaces (roofs and street) |
---|
703 | ! The fluxes can be computed as follow: Fluxes of X = A*X + B |
---|
704 | ! Example: Momentum fluxes on vertical surfaces = uva_u * ua_u + uvb_u |
---|
705 | |
---|
706 | real uhb_u(ndm,nz_um) ! U (wind component) Horizontal surfaces, B (explicit) term |
---|
707 | real uva_u(2*ndm,nz_um) ! U (wind component) Vertical surfaces, A (implicit) term |
---|
708 | real uvb_u(2*ndm,nz_um) ! U (wind component) Vertical surfaces, B (explicit) term |
---|
709 | real vhb_u(ndm,nz_um) ! V (wind component) Horizontal surfaces, B (explicit) term |
---|
710 | real vva_u(2*ndm,nz_um) ! V (wind component) Vertical surfaces, A (implicit) term |
---|
711 | real vvb_u(2*ndm,nz_um) ! V (wind component) Vertical surfaces, B (explicit) term |
---|
712 | real thb_u(ndm,nz_um) ! Temperature Horizontal surfaces, B (explicit) term |
---|
713 | real tva_u(2*ndm,nz_um) ! Temperature Vertical surfaces, A (implicit) term |
---|
714 | real tvb_u(2*ndm,nz_um) ! Temperature Vertical surfaces, B (explicit) term |
---|
715 | real ehb_u(ndm,nz_um) ! Energy (TKE) Horizontal surfaces, B (explicit) term |
---|
716 | real evb_u(2*ndm,nz_um) ! Energy (TKE) Vertical surfaces, B (explicit) term |
---|
717 | |
---|
718 | ! |
---|
719 | real rs_abs ! solar radiation absorbed by urban surfaces |
---|
720 | real rl_up ! longwave radiation emitted by urban surface to the atmosphere |
---|
721 | real emiss ! mean emissivity of the urban surface |
---|
722 | real grdflx_urb ! ground heat flux |
---|
723 | real shtot,aaa |
---|
724 | real dt_int ! internal time step |
---|
725 | integer nt_int ! number of internal time step |
---|
726 | integer iz,id, it_int |
---|
727 | integer iwrong,iw,ix,iy |
---|
728 | |
---|
729 | ! ---------------------------------------------------------------------- |
---|
730 | ! END VARIABLES DEFINITIONS |
---|
731 | ! ---------------------------------------------------------------------- |
---|
732 | |
---|
733 | ! Fix some usefull parameters for the computation of the sources or sinks |
---|
734 | |
---|
735 | do iz=kts,kte |
---|
736 | dz(iz)=z(iz+1)-z(iz) |
---|
737 | end do |
---|
738 | call param(iurb,nz_u(iurb),nd_u(iurb), & |
---|
739 | csg_u,csg,alag_u,alag,csr_u,csr, & |
---|
740 | alar_u,alar,csw_u,csw,alaw_u,alaw, & |
---|
741 | ws_u,ws,bs_u,bs,z0g_u,z0r_u,z0, & |
---|
742 | strd_u,strd,drst_u,drst,ss_u,ss,pb_u,pb) |
---|
743 | |
---|
744 | ! Interpolation on the "urban grid" |
---|
745 | call interpol(kms,kme,kts,kte,nz_u(iurb),z,z_u,ua,ua_u) |
---|
746 | call interpol(kms,kme,kts,kte,nz_u(iurb),z,z_u,va,va_u) |
---|
747 | call interpol(kms,kme,kts,kte,nz_u(iurb),z,z_u,pt,pt_u) |
---|
748 | call interpol(kms,kme,kts,kte,nz_u(iurb),z,z_u,pt0,pt0_u) |
---|
749 | call interpol(kms,kme,kts,kte,nz_u(iurb),z,z_u,pr,pr_u) |
---|
750 | call interpol(kms,kme,kts,kte,nz_u(iurb),z,z_u,da,da_u) |
---|
751 | |
---|
752 | |
---|
753 | ! Compute the modification of the radiation due to the buildings |
---|
754 | |
---|
755 | call modif_rad(iurb,nd_u(iurb),nz_u(iurb),z_u,ws, & |
---|
756 | drst,strd,ss,pb, & |
---|
757 | tw,tg,albg_u(iurb),albw_u(iurb), & |
---|
758 | emw_u(iurb),emg_u(iurb), & |
---|
759 | fww,fwg,fgw,fsw,fsg, & |
---|
760 | zr,deltar,ah, & |
---|
761 | rs,rld,rsw,rsg,rlw,rlg) |
---|
762 | |
---|
763 | ! calculation of the urban albedo and the upward long wave radiation |
---|
764 | call upward_rad(nd_u(iurb),iurb,nz_u(iurb),ws,bs,sigma,fsw,fsg,pb,ss, & |
---|
765 | tg,emg_u(iurb),albg_u(iurb),rlg,rsg,sfg, & |
---|
766 | tw,emw_u(iurb),albw_u(iurb),rlw,rsw,sfw, & |
---|
767 | tr,emr_u(iurb),albr_u(iurb),rld,rs,sfr, & |
---|
768 | rs_abs,rl_up,emiss,grdflx_urb) |
---|
769 | |
---|
770 | ! Compute the surface temperatures |
---|
771 | |
---|
772 | |
---|
773 | call surf_temp(nz_u(iurb),nd_u(iurb),pr_u,dt,ss, & |
---|
774 | rs,rld,rsg,rlg,rsw,rlw, & |
---|
775 | tg,alag,csg,emg_u(iurb),albg_u(iurb),ptg,sfg,gfg, & |
---|
776 | tr,alar,csr,emr_u(iurb),albr_u(iurb),ptr,sfr,gfr, & |
---|
777 | tw,alaw,csw,emw_u(iurb),albw_u(iurb),ptw,sfw,gfw) |
---|
778 | |
---|
779 | |
---|
780 | ! Compute the implicit and explicit components of the sources or sinks on the "urban grid" |
---|
781 | |
---|
782 | call buildings(nd_u(iurb),nz_u(iurb),z0,ua_u,va_u, & |
---|
783 | pt_u,pt0_u,ptg,ptr,da_u,ptw,drst, & |
---|
784 | uva_u,vva_u,uvb_u,vvb_u,tva_u,tvb_u,evb_u, & |
---|
785 | uhb_u,vhb_u,thb_u,ehb_u,ss,dt) |
---|
786 | |
---|
787 | |
---|
788 | ! Calculation of the sensible heat fluxes for the ground, the wall and roof |
---|
789 | ! Sensible Heat Flux = density * Cp_U * ( A* potential temperature + B ) |
---|
790 | ! where A and B are the implicit and explicit components of the heat sources or sinks. |
---|
791 | ! |
---|
792 | ! |
---|
793 | |
---|
794 | do id=1,nd_u(iurb) |
---|
795 | sfg(id)=-da_u(1)*cp_u*thb_u(id,1) |
---|
796 | do iz=2,nz_u(iurb) |
---|
797 | sfr(id,iz)=-da_u(iz)*cp_u*thb_u(id,iz) |
---|
798 | enddo |
---|
799 | |
---|
800 | do iz=1,nz_u(iurb) |
---|
801 | sfw(2*id-1,iz)=-da_u(iz)*cp_u*(tvb_u(2*id-1,iz)+ & |
---|
802 | tva_u(2*id-1,iz)*pt_u(iz)) |
---|
803 | sfw(2*id,iz)=-da_u(iz)*cp_u*(tvb_u(2*id,iz)+ & |
---|
804 | tva_u(2*id,iz)*pt_u(iz)) |
---|
805 | enddo |
---|
806 | enddo |
---|
807 | |
---|
808 | ! calculation of the urban albedo and the upward long wave radiation |
---|
809 | |
---|
810 | ! call upward_rad(nd_u(iurb),iurb,nz_u(iurb),ws,bs,sigma,fsw,fsg,pb,ss, & |
---|
811 | ! tg,emg_u(iurb),albg_u(iurb),rlg,rsg, & |
---|
812 | ! tw,emw_u(iurb),albw_u(iurb),rlw,rsw, & |
---|
813 | ! tr,emr_u(iurb),albr_u(iurb),rld,rs, & |
---|
814 | ! rs_abs,rl_up,emiss) |
---|
815 | |
---|
816 | ! Interpolation on the "mesoscale grid" |
---|
817 | |
---|
818 | call urban_meso(nd_u(iurb),kms,kme,kts,kte,nz_u(iurb),z,dz,z_u,pb,ss,bs,ws,sf, & |
---|
819 | vl,uva_u,vva_u,uvb_u,vvb_u,tva_u,tvb_u,evb_u, & |
---|
820 | uhb_u,vhb_u,thb_u,ehb_u, & |
---|
821 | a_u,a_v,a_t,a_e,b_u,b_v,b_t,b_e) |
---|
822 | |
---|
823 | |
---|
824 | ! computation of the mean road temperature tsk (this value could be used |
---|
825 | ! to replace the surface temperature in the radiation routines, if needed). |
---|
826 | |
---|
827 | ! tsk=0. |
---|
828 | ! do id=1,nd_u(iurb) |
---|
829 | ! tsk=tsk+tg(id,ng_u)/nd_u(iurb) |
---|
830 | ! enddo |
---|
831 | |
---|
832 | ! Calculation of the length scale taking into account the buildings effects |
---|
833 | |
---|
834 | call interp_length(nd_u(iurb),kms,kme,kts,kte,nz_u(iurb),z_u,z,ss,ws,bs,dlg,dl_u) |
---|
835 | |
---|
836 | return |
---|
837 | end subroutine BEP1D |
---|
838 | |
---|
839 | ! ===6=8===============================================================72 |
---|
840 | ! ===6=8===============================================================72 |
---|
841 | |
---|
842 | subroutine param(iurb,nz,nd, & |
---|
843 | csg_u,csg,alag_u,alag,csr_u,csr, & |
---|
844 | alar_u,alar,csw_u,csw,alaw_u,alaw, & |
---|
845 | ws_u,ws,bs_u,bs,z0g_u,z0r_u,z0, & |
---|
846 | strd_u,strd,drst_u,drst,ss_u,ss,pb_u,pb) |
---|
847 | |
---|
848 | ! ---------------------------------------------------------------------- |
---|
849 | ! This routine prepare some usefull parameters |
---|
850 | ! ---------------------------------------------------------------------- |
---|
851 | |
---|
852 | implicit none |
---|
853 | |
---|
854 | |
---|
855 | ! ---------------------------------------------------------------------- |
---|
856 | ! INPUT: |
---|
857 | ! ---------------------------------------------------------------------- |
---|
858 | integer iurb ! Current urban class |
---|
859 | integer nz ! Number of vertical urban levels in the current class |
---|
860 | integer nd ! Number of street direction for the current urban class |
---|
861 | real alag_u(nurbm) ! Ground thermal diffusivity [m^2 s^-1] |
---|
862 | real alar_u(nurbm) ! Roof thermal diffusivity [m^2 s^-1] |
---|
863 | real alaw_u(nurbm) ! Wall thermal diffusivity [m^2 s^-1] |
---|
864 | real bs_u(ndm,nurbm) ! Building width |
---|
865 | real csg_u(nurbm) ! Specific heat of the ground material [J m^3 K^-1] |
---|
866 | real csr_u(nurbm) ! Specific heat of the roof material [J m^3 K^-1] |
---|
867 | real csw_u(nurbm) ! Specific heat of the wall material [J m^3 K^-1] |
---|
868 | real drst_u(ndm,nurbm) ! Street direction |
---|
869 | real strd_u(ndm,nurbm) ! Street length |
---|
870 | real ws_u(ndm,nurbm) ! Street width |
---|
871 | real z0g_u(nurbm) ! The ground's roughness length |
---|
872 | real z0r_u(nurbm) ! The roof's roughness length |
---|
873 | real ss_u(nz_um,nurbm) ! The probability that a building has an height equal to "z" |
---|
874 | real pb_u(nz_um,nurbm) ! The probability that a building has an height greater or equal to "z" |
---|
875 | |
---|
876 | ! ---------------------------------------------------------------------- |
---|
877 | ! OUTPUT: |
---|
878 | ! ---------------------------------------------------------------------- |
---|
879 | real alag(ng_u) ! Ground thermal diffusivity at each ground levels |
---|
880 | real alar(nwr_u) ! Roof thermal diffusivity at each roof levels |
---|
881 | real alaw(nwr_u) ! Wall thermal diffusivity at each wall levels |
---|
882 | real csg(ng_u) ! Specific heat of the ground material at each ground levels |
---|
883 | real csr(nwr_u) ! Specific heat of the roof material at each roof levels |
---|
884 | real csw(nwr_u) ! Specific heat of the wall material at each wall levels |
---|
885 | real bs(ndm) ! Building width for the current urban class |
---|
886 | real drst(ndm) ! street directions for the current urban class |
---|
887 | real strd(ndm) ! Street lengths for the current urban class |
---|
888 | real ws(ndm) ! Street widths of the current urban class |
---|
889 | real z0(ndm,nz_um) ! Roughness lengths "profiles" |
---|
890 | real ss(nz_um) ! Probability to have a building with height h |
---|
891 | real pb(nz_um) ! Probability to have a building with an height equal |
---|
892 | |
---|
893 | ! ---------------------------------------------------------------------- |
---|
894 | ! LOCAL: |
---|
895 | ! ---------------------------------------------------------------------- |
---|
896 | integer id,ig,ir,iw,iz |
---|
897 | |
---|
898 | ! ---------------------------------------------------------------------- |
---|
899 | ! END VARIABLES DEFINITIONS |
---|
900 | ! ---------------------------------------------------------------------- |
---|
901 | ! |
---|
902 | !Initialize the variables |
---|
903 | ! |
---|
904 | ss=0. |
---|
905 | pb=0. |
---|
906 | csg=0. |
---|
907 | alag=0. |
---|
908 | csr=0. |
---|
909 | alar=0. |
---|
910 | csw=0. |
---|
911 | alaw=0. |
---|
912 | z0=0. |
---|
913 | ws=0. |
---|
914 | bs=0. |
---|
915 | strd=0. |
---|
916 | drst=0. |
---|
917 | |
---|
918 | do iz=1,nz+1 |
---|
919 | ss(iz)=ss_u(iz,iurb) |
---|
920 | pb(iz)=pb_u(iz,iurb) |
---|
921 | end do |
---|
922 | |
---|
923 | do ig=1,ng_u |
---|
924 | csg(ig)=csg_u(iurb) |
---|
925 | alag(ig)=alag_u(iurb) |
---|
926 | enddo |
---|
927 | |
---|
928 | do ir=1,nwr_u |
---|
929 | csr(ir)=csr_u(iurb) |
---|
930 | alar(ir)=alar_u(iurb) |
---|
931 | enddo |
---|
932 | |
---|
933 | do iw=1,nwr_u |
---|
934 | csw(iw)=csw_u(iurb) |
---|
935 | alaw(iw)=alaw_u(iurb) |
---|
936 | enddo |
---|
937 | |
---|
938 | do id=1,nd |
---|
939 | z0(id,1)=z0g_u(iurb) |
---|
940 | do iz=2,nz+1 |
---|
941 | z0(id,iz)=z0r_u(iurb) |
---|
942 | enddo |
---|
943 | enddo |
---|
944 | |
---|
945 | do id=1,nd |
---|
946 | ws(id)=ws_u(id,iurb) |
---|
947 | bs(id)=bs_u(id,iurb) |
---|
948 | strd(id)=strd_u(id,iurb) |
---|
949 | drst(id)=drst_u(id,iurb) |
---|
950 | enddo |
---|
951 | |
---|
952 | |
---|
953 | return |
---|
954 | end subroutine param |
---|
955 | |
---|
956 | ! ===6=8===============================================================72 |
---|
957 | ! ===6=8===============================================================72 |
---|
958 | |
---|
959 | subroutine interpol(kms,kme,kts,kte,nz_u,z,z_u,c,c_u) |
---|
960 | |
---|
961 | ! ---------------------------------------------------------------------- |
---|
962 | ! This routine interpolate para |
---|
963 | ! meters from the "mesoscale grid" to |
---|
964 | ! the "urban grid". |
---|
965 | ! See p300 Appendix B.1 of the BLM paper. |
---|
966 | ! ---------------------------------------------------------------------- |
---|
967 | |
---|
968 | implicit none |
---|
969 | |
---|
970 | ! ---------------------------------------------------------------------- |
---|
971 | ! INPUT: |
---|
972 | ! ---------------------------------------------------------------------- |
---|
973 | ! Data relative to the "mesoscale grid" |
---|
974 | integer kts,kte,kms,kme |
---|
975 | real z(kms:kme) ! Altitude of the cell interface |
---|
976 | real c(kms:kme) ! Parameter which has to be interpolated |
---|
977 | ! Data relative to the "urban grid" |
---|
978 | integer nz_u ! Number of levels |
---|
979 | !! real z_u(nz_u+1) ! Altitude of the cell interface |
---|
980 | real z_u(nz_um) ! Altitude of the cell interface |
---|
981 | ! ---------------------------------------------------------------------- |
---|
982 | ! OUTPUT: |
---|
983 | ! ---------------------------------------------------------------------- |
---|
984 | !! real c_u(nz_u) ! Interpolated paramters in the "urban grid" |
---|
985 | real c_u(nz_um) ! Interpolated paramters in the "urban grid" |
---|
986 | |
---|
987 | ! LOCAL: |
---|
988 | ! ---------------------------------------------------------------------- |
---|
989 | integer iz_u,iz |
---|
990 | real ctot,dz |
---|
991 | |
---|
992 | ! ---------------------------------------------------------------------- |
---|
993 | ! END VARIABLES DEFINITIONS |
---|
994 | ! ---------------------------------------------------------------------- |
---|
995 | |
---|
996 | do iz_u=1,nz_u |
---|
997 | ctot=0. |
---|
998 | do iz=kts,kte |
---|
999 | dz=max(min(z(iz+1),z_u(iz_u+1))-max(z(iz),z_u(iz_u)),0.) |
---|
1000 | ctot=ctot+c(iz)*dz |
---|
1001 | enddo |
---|
1002 | c_u(iz_u)=ctot/(z_u(iz_u+1)-z_u(iz_u)) |
---|
1003 | enddo |
---|
1004 | |
---|
1005 | return |
---|
1006 | end subroutine interpol |
---|
1007 | |
---|
1008 | ! ===6=8===============================================================72 |
---|
1009 | ! ===6=8===============================================================72 |
---|
1010 | |
---|
1011 | subroutine modif_rad(iurb,nd,nz_u,z,ws,drst,strd,ss,pb, & |
---|
1012 | tw,tg,albg,albw,emw,emg, & |
---|
1013 | fww,fwg,fgw,fsw,fsg, & |
---|
1014 | zr,deltar,ah, & |
---|
1015 | rs,rl,rsw,rsg,rlw,rlg) |
---|
1016 | |
---|
1017 | ! ---------------------------------------------------------------------- |
---|
1018 | ! This routine computes the modification of the short wave and |
---|
1019 | ! long wave radiation due to the buildings. |
---|
1020 | ! ---------------------------------------------------------------------- |
---|
1021 | |
---|
1022 | implicit none |
---|
1023 | |
---|
1024 | |
---|
1025 | ! ---------------------------------------------------------------------- |
---|
1026 | ! INPUT: |
---|
1027 | ! ---------------------------------------------------------------------- |
---|
1028 | integer iurb ! current urban class |
---|
1029 | integer nd ! Number of street direction for the current urban class |
---|
1030 | integer nz_u ! Number of layer in the urban grid |
---|
1031 | real z(nz_um) ! Height of the urban grid levels |
---|
1032 | real ws(ndm) ! Street widths of the current urban class |
---|
1033 | real drst(ndm) ! street directions for the current urban class |
---|
1034 | real strd(ndm) ! Street lengths for the current urban class |
---|
1035 | real ss(nz_um) ! probability to have a building with height h |
---|
1036 | real pb(nz_um) ! probability to have a building with an height equal |
---|
1037 | real tw(2*ndm,nz_um,nwr_u) ! Temperature in each layer of the wall [K] |
---|
1038 | real tg(ndm,ng_u) ! Temperature in each layer of the ground [K] |
---|
1039 | real albg ! Albedo of the ground for the current urban class |
---|
1040 | real albw ! Albedo of the wall for the current urban class |
---|
1041 | real emg ! Emissivity of ground for the current urban class |
---|
1042 | real emw ! Emissivity of wall for the current urban class |
---|
1043 | real fgw(nz_um,ndm,nurbm) ! View factors from ground to wall |
---|
1044 | real fsg(ndm,nurbm) ! View factors from sky to ground |
---|
1045 | real fsw(nz_um,ndm,nurbm) ! View factors from sky to wall |
---|
1046 | real fws(nz_um,ndm,nurbm) ! View factors from wall to sky |
---|
1047 | real fwg(nz_um,ndm,nurbm) ! View factors from wall to ground |
---|
1048 | real fww(nz_um,nz_um,ndm,nurbm) ! View factors from wall to wall |
---|
1049 | real ah ! Hour angle (it should come from the radiation routine) |
---|
1050 | real zr ! zenith angle |
---|
1051 | real deltar ! Declination of the sun |
---|
1052 | real rs ! solar radiation |
---|
1053 | real rl ! downward flux of the longwave radiation |
---|
1054 | ! ---------------------------------------------------------------------- |
---|
1055 | ! OUTPUT: |
---|
1056 | ! ---------------------------------------------------------------------- |
---|
1057 | real rlg(ndm) ! Long wave radiation at the ground |
---|
1058 | real rlw(2*ndm,nz_um) ! Long wave radiation at the walls |
---|
1059 | real rsg(ndm) ! Short wave radiation at the ground |
---|
1060 | real rsw(2*ndm,nz_um) ! Short wave radiation at the walls |
---|
1061 | |
---|
1062 | ! ---------------------------------------------------------------------- |
---|
1063 | ! LOCAL: |
---|
1064 | ! ---------------------------------------------------------------------- |
---|
1065 | |
---|
1066 | integer id,iz |
---|
1067 | |
---|
1068 | ! Calculation of the shadow effects |
---|
1069 | |
---|
1070 | call shadow_mas(nd,nz_u,zr,deltar,ah,drst,ws,ss,pb,z, & |
---|
1071 | rs,rsw,rsg) |
---|
1072 | |
---|
1073 | ! Calculation of the reflection effects |
---|
1074 | do id=1,nd |
---|
1075 | call long_rad(iurb,nz_u,id,emw,emg, & |
---|
1076 | fwg,fww,fgw,fsw,fsg,tg,tw,rlg,rlw,rl,pb) |
---|
1077 | |
---|
1078 | call short_rad(iurb,nz_u,id,albw,albg,fwg,fww,fgw,rsg,rsw,pb) |
---|
1079 | |
---|
1080 | enddo |
---|
1081 | |
---|
1082 | return |
---|
1083 | end subroutine modif_rad |
---|
1084 | |
---|
1085 | |
---|
1086 | ! ===6=8===============================================================72 |
---|
1087 | ! ===6=8===============================================================72 |
---|
1088 | |
---|
1089 | subroutine surf_temp(nz_u,nd,pr,dt,ss,rs,rl,rsg,rlg,rsw,rlw, & |
---|
1090 | tg,alag,csg,emg,albg,ptg,sfg,gfg, & |
---|
1091 | tr,alar,csr,emr,albr,ptr,sfr,gfr, & |
---|
1092 | tw,alaw,csw,emw,albw,ptw,sfw,gfw) |
---|
1093 | |
---|
1094 | |
---|
1095 | ! ---------------------------------------------------------------------- |
---|
1096 | ! Computation of the surface temperatures for walls, ground and roofs |
---|
1097 | ! ---------------------------------------------------------------------- |
---|
1098 | |
---|
1099 | implicit none |
---|
1100 | |
---|
1101 | |
---|
1102 | |
---|
1103 | ! ---------------------------------------------------------------------- |
---|
1104 | ! INPUT: |
---|
1105 | ! ---------------------------------------------------------------------- |
---|
1106 | integer nz_u ! Number of vertical layers defined in the urban grid |
---|
1107 | integer nd ! Number of street direction for the current urban class |
---|
1108 | real alag(ng_u) ! Ground thermal diffusivity for the current urban class [m^2 s^-1] |
---|
1109 | real alar(nwr_u) ! Roof thermal diffusivity for the current urban class [m^2 s^-1] |
---|
1110 | real alaw(nwr_u) ! Wall thermal diffusivity for the current urban class [m^2 s^-1] |
---|
1111 | real albg ! Albedo of the ground for the current urban class |
---|
1112 | real albr ! Albedo of the roof for the current urban class |
---|
1113 | real albw ! Albedo of the wall for the current urban class |
---|
1114 | real csg(ng_u) ! Specific heat of the ground material of the current urban class [J m^3 K^-1] |
---|
1115 | real csr(nwr_u) ! Specific heat of the roof material for the current urban class [J m^3 K^-1] |
---|
1116 | real csw(nwr_u) ! Specific heat of the wall material for the current urban class [J m^3 K^-1] |
---|
1117 | real dt ! Time step |
---|
1118 | real emg ! Emissivity of ground for the current urban class |
---|
1119 | real emr ! Emissivity of roof for the current urban class |
---|
1120 | real emw ! Emissivity of wall for the current urban class |
---|
1121 | real pr(nz_um) ! Air pressure |
---|
1122 | real rs ! Solar radiation |
---|
1123 | real rl ! Downward flux of the longwave radiation |
---|
1124 | real rlg(ndm) ! Long wave radiation at the ground |
---|
1125 | real rlw(2*ndm,nz_um) ! Long wave radiation at the walls |
---|
1126 | real rsg(ndm) ! Short wave radiation at the ground |
---|
1127 | real rsw(2*ndm,nz_um) ! Short wave radiation at the walls |
---|
1128 | real sfg(ndm) ! Sensible heat flux from ground (road) |
---|
1129 | real sfr(ndm,nz_um) ! Sensible heat flux from roofs |
---|
1130 | real sfw(2*ndm,nz_um) ! Sensible heat flux from walls |
---|
1131 | real gfg(ndm) ! Heat flux transferred from the surface of the ground (road) toward the interior |
---|
1132 | real gfr(ndm,nz_um) ! Heat flux transferred from the surface of the roof toward the interior |
---|
1133 | real gfw(2*ndm,nz_um) ! Heat flux transfered from the surface of the walls toward the interior |
---|
1134 | real ss(nz_um) ! Probability to have a building with height h |
---|
1135 | real tg(ndm,ng_u) ! Temperature in each layer of the ground [K] |
---|
1136 | real tr(ndm,nz_um,nwr_u) ! Temperature in each layer of the roof [K] |
---|
1137 | real tw(2*ndm,nz_um,nwr_u) ! Temperature in each layer of the wall [K] |
---|
1138 | |
---|
1139 | |
---|
1140 | ! ---------------------------------------------------------------------- |
---|
1141 | ! OUTPUT: |
---|
1142 | ! ---------------------------------------------------------------------- |
---|
1143 | real ptg(ndm) ! Ground potential temperatures |
---|
1144 | real ptr(ndm,nz_um) ! Roof potential temperatures |
---|
1145 | real ptw(2*ndm,nz_um) ! Walls potential temperatures |
---|
1146 | |
---|
1147 | ! ---------------------------------------------------------------------- |
---|
1148 | ! LOCAL: |
---|
1149 | ! ---------------------------------------------------------------------- |
---|
1150 | integer id,ig,ir,iw,iz |
---|
1151 | |
---|
1152 | real rtg(ndm) ! Total radiation at ground(road) surface (solar+incoming long+outgoing long) |
---|
1153 | real rtr(ndm,nz_um) ! Total radiation at roof surface (solar+incoming long+outgoing long) |
---|
1154 | real rtw(2*ndm,nz_um) ! Radiation at walls surface (solar+incoming long+outgoing long) |
---|
1155 | real tg_tmp(ng_u) |
---|
1156 | real tr_tmp(nwr_u) |
---|
1157 | real tw_tmp(nwr_u) |
---|
1158 | |
---|
1159 | real dzg_u(ng_u) ! Layer sizes in the ground |
---|
1160 | |
---|
1161 | real dzr_u(nwr_u) ! Layers sizes in the roof |
---|
1162 | |
---|
1163 | real dzw_u(nwr_u) ! Layer sizes in the wall |
---|
1164 | |
---|
1165 | |
---|
1166 | data dzg_u /0.2,0.12,0.08,0.05,0.03,0.02,0.02,0.01,0.005,0.0025/ |
---|
1167 | data dzr_u /0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.01,0.005,0.0025/ |
---|
1168 | data dzw_u /0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.01,0.005,0.0025/ |
---|
1169 | ! ---------------------------------------------------------------------- |
---|
1170 | ! END VARIABLES DEFINITIONS |
---|
1171 | ! ---------------------------------------------------------------------- |
---|
1172 | |
---|
1173 | |
---|
1174 | |
---|
1175 | do id=1,nd |
---|
1176 | |
---|
1177 | ! Calculation for the ground surfaces |
---|
1178 | do ig=1,ng_u |
---|
1179 | tg_tmp(ig)=tg(id,ig) |
---|
1180 | end do |
---|
1181 | ! |
---|
1182 | call soil_temp(ng_u,dzg_u,tg_tmp,ptg(id),alag,csg, & |
---|
1183 | rsg(id),rlg(id),pr(1), & |
---|
1184 | dt,emg,albg, & |
---|
1185 | rtg(id),sfg(id),gfg(id)) |
---|
1186 | do ig=1,ng_u |
---|
1187 | tg(id,ig)=tg_tmp(ig) |
---|
1188 | end do |
---|
1189 | |
---|
1190 | ! Calculation for the roofs surfaces |
---|
1191 | |
---|
1192 | do iz=2,nz_u |
---|
1193 | |
---|
1194 | if(ss(iz).gt.0.)then |
---|
1195 | do ir=1,nwr_u |
---|
1196 | tr_tmp(ir)=tr(id,iz,ir) |
---|
1197 | end do |
---|
1198 | |
---|
1199 | call soil_temp(nwr_u,dzr_u,tr_tmp,ptr(id,iz), & |
---|
1200 | alar,csr,rs,rl,pr(iz),dt,emr,albr, & |
---|
1201 | rtr(id,iz),sfr(id,iz),gfr(id,iz)) |
---|
1202 | do ir=1,nwr_u |
---|
1203 | tr(id,iz,ir)=tr_tmp(ir) |
---|
1204 | end do |
---|
1205 | |
---|
1206 | end if |
---|
1207 | |
---|
1208 | end do !iz |
---|
1209 | |
---|
1210 | ! Calculation for the walls surfaces |
---|
1211 | |
---|
1212 | do iz=1,nz_u |
---|
1213 | |
---|
1214 | do iw=1,nwr_u |
---|
1215 | tw_tmp(iw)=tw(2*id-1,iz,iw) |
---|
1216 | end do |
---|
1217 | call soil_temp(nwr_u,dzw_u,tw_tmp,ptw(2*id-1,iz),alaw, & |
---|
1218 | csw, & |
---|
1219 | rsw(2*id-1,iz),rlw(2*id-1,iz), & |
---|
1220 | pr(iz),dt,emw, & |
---|
1221 | albw,rtw(2*id-1,iz),sfw(2*id-1,iz),gfw(2*id-1,iz)) |
---|
1222 | |
---|
1223 | do iw=1,nwr_u |
---|
1224 | tw(2*id-1,iz,iw)=tw_tmp(iw) |
---|
1225 | end do |
---|
1226 | |
---|
1227 | do iw=1,nwr_u |
---|
1228 | tw_tmp(iw)=tw(2*id,iz,iw) |
---|
1229 | end do |
---|
1230 | |
---|
1231 | call soil_temp(nwr_u,dzw_u,tw_tmp,ptw(2*id,iz),alaw, & |
---|
1232 | csw, & |
---|
1233 | rsw(2*id,iz),rlw(2*id,iz), & |
---|
1234 | pr(iz),dt,emw, & |
---|
1235 | albw,rtw(2*id,iz),sfw(2*id,iz),gfw(2*id,iz)) |
---|
1236 | do iw=1,nwr_u |
---|
1237 | tw(2*id,iz,iw)=tw_tmp(iw) |
---|
1238 | end do |
---|
1239 | |
---|
1240 | end do !iz |
---|
1241 | |
---|
1242 | end do !id |
---|
1243 | |
---|
1244 | return |
---|
1245 | end subroutine surf_temp |
---|
1246 | |
---|
1247 | ! ===6=8===============================================================72 |
---|
1248 | ! ===6=8===============================================================72 |
---|
1249 | |
---|
1250 | subroutine buildings(nd,nz,z0,ua_u,va_u,pt_u,pt0_u, & |
---|
1251 | ptg,ptr,da_u,ptw, & |
---|
1252 | drst,uva_u,vva_u,uvb_u,vvb_u, & |
---|
1253 | tva_u,tvb_u,evb_u, & |
---|
1254 | uhb_u,vhb_u,thb_u,ehb_u,ss,dt) |
---|
1255 | |
---|
1256 | ! ---------------------------------------------------------------------- |
---|
1257 | ! This routine computes the sources or sinks of the different quantities |
---|
1258 | ! on the urban grid. The actual calculation is done in the subroutines |
---|
1259 | ! called flux_wall, and flux_flat. |
---|
1260 | ! ---------------------------------------------------------------------- |
---|
1261 | |
---|
1262 | implicit none |
---|
1263 | |
---|
1264 | |
---|
1265 | ! ---------------------------------------------------------------------- |
---|
1266 | ! INPUT: |
---|
1267 | ! ---------------------------------------------------------------------- |
---|
1268 | integer nd ! Number of street direction for the current urban class |
---|
1269 | integer nz ! number of vertical space steps |
---|
1270 | real ua_u(nz_um) ! Wind speed in the x direction on the urban grid |
---|
1271 | real va_u(nz_um) ! Wind speed in the y direction on the urban grid |
---|
1272 | real da_u(nz_um) ! air density on the urban grid |
---|
1273 | real drst(ndm) ! Street directions for the current urban class |
---|
1274 | real dz |
---|
1275 | real pt_u(nz_um) ! Potential temperature on the urban grid |
---|
1276 | real pt0_u(nz_um) ! reference potential temperature on the urban grid |
---|
1277 | real ptg(ndm) ! Ground potential temperatures |
---|
1278 | real ptr(ndm,nz_um) ! Roof potential temperatures |
---|
1279 | real ptw(2*ndm,nz_um) ! Walls potential temperatures |
---|
1280 | real ss(nz_um) ! probability to have a building with height h |
---|
1281 | real z0(ndm,nz_um) ! Roughness lengths "profiles" |
---|
1282 | real dt ! time step |
---|
1283 | |
---|
1284 | |
---|
1285 | ! ---------------------------------------------------------------------- |
---|
1286 | ! OUTPUT: |
---|
1287 | ! ---------------------------------------------------------------------- |
---|
1288 | ! Explicit and implicit component of the momentum, temperature and TKE sources or sinks on |
---|
1289 | ! vertical surfaces (walls) and horizontal surfaces (roofs and street) |
---|
1290 | ! The fluxes can be computed as follow: Fluxes of X = A*X + B |
---|
1291 | ! Example: Momentum fluxes on vertical surfaces = uva_u * ua_u + uvb_u |
---|
1292 | |
---|
1293 | real uhb_u(ndm,nz_um) ! U (wind component) Horizontal surfaces, B (explicit) term |
---|
1294 | real uva_u(2*ndm,nz_um) ! U (wind component) Vertical surfaces, A (implicit) term |
---|
1295 | real uvb_u(2*ndm,nz_um) ! U (wind component) Vertical surfaces, B (explicit) term |
---|
1296 | real vhb_u(ndm,nz_um) ! V (wind component) Horizontal surfaces, B (explicit) term |
---|
1297 | real vva_u(2*ndm,nz_um) ! V (wind component) Vertical surfaces, A (implicit) term |
---|
1298 | real vvb_u(2*ndm,nz_um) ! V (wind component) Vertical surfaces, B (explicit) term |
---|
1299 | real thb_u(ndm,nz_um) ! Temperature Horizontal surfaces, B (explicit) term |
---|
1300 | real tva_u(2*ndm,nz_um) ! Temperature Vertical surfaces, A (implicit) term |
---|
1301 | real tvb_u(2*ndm,nz_um) ! Temperature Vertical surfaces, B (explicit) term |
---|
1302 | real ehb_u(ndm,nz_um) ! Energy (TKE) Horizontal surfaces, B (explicit) term |
---|
1303 | real evb_u(2*ndm,nz_um) ! Energy (TKE) Vertical surfaces, B (explicit) term |
---|
1304 | |
---|
1305 | ! ---------------------------------------------------------------------- |
---|
1306 | ! LOCAL: |
---|
1307 | ! ---------------------------------------------------------------------- |
---|
1308 | integer id,iz |
---|
1309 | |
---|
1310 | ! ---------------------------------------------------------------------- |
---|
1311 | ! END VARIABLES DEFINITIONS |
---|
1312 | ! ---------------------------------------------------------------------- |
---|
1313 | dz=dz_u |
---|
1314 | |
---|
1315 | do id=1,nd |
---|
1316 | |
---|
1317 | ! Calculation at the ground surfaces |
---|
1318 | call flux_flat(dz,z0(id,1),ua_u(1),va_u(1),pt_u(1),pt0_u(1), & |
---|
1319 | ptg(id),uhb_u(id,1), & |
---|
1320 | vhb_u(id,1),thb_u(id,1),ehb_u(id,1)) |
---|
1321 | |
---|
1322 | ! Calculation at the roof surfaces |
---|
1323 | do iz=2,nz |
---|
1324 | if(ss(iz).gt.0)then |
---|
1325 | call flux_flat(dz,z0(id,iz),ua_u(iz), & |
---|
1326 | va_u(iz),pt_u(iz),pt0_u(iz), & |
---|
1327 | ptr(id,iz),uhb_u(id,iz), & |
---|
1328 | vhb_u(id,iz),thb_u(id,iz),ehb_u(id,iz)) |
---|
1329 | else |
---|
1330 | uhb_u(id,iz) = 0.0 |
---|
1331 | vhb_u(id,iz) = 0.0 |
---|
1332 | thb_u(id,iz) = 0.0 |
---|
1333 | ehb_u(id,iz) = 0.0 |
---|
1334 | endif |
---|
1335 | end do |
---|
1336 | |
---|
1337 | ! Calculation at the wall surfaces |
---|
1338 | do iz=1,nz |
---|
1339 | call flux_wall(ua_u(iz),va_u(iz),pt_u(iz),da_u(iz), & |
---|
1340 | ptw(2*id-1,iz), & |
---|
1341 | uva_u(2*id-1,iz),vva_u(2*id-1,iz), & |
---|
1342 | uvb_u(2*id-1,iz),vvb_u(2*id-1,iz), & |
---|
1343 | tva_u(2*id-1,iz),tvb_u(2*id-1,iz), & |
---|
1344 | evb_u(2*id-1,iz),drst(id),dt) |
---|
1345 | |
---|
1346 | call flux_wall(ua_u(iz),va_u(iz),pt_u(iz),da_u(iz), & |
---|
1347 | ptw(2*id,iz), & |
---|
1348 | uva_u(2*id,iz),vva_u(2*id,iz), & |
---|
1349 | uvb_u(2*id,iz),vvb_u(2*id,iz), & |
---|
1350 | tva_u(2*id,iz),tvb_u(2*id,iz), & |
---|
1351 | evb_u(2*id,iz),drst(id),dt) |
---|
1352 | ! |
---|
1353 | |
---|
1354 | end do |
---|
1355 | |
---|
1356 | end do |
---|
1357 | |
---|
1358 | return |
---|
1359 | end subroutine buildings |
---|
1360 | |
---|
1361 | |
---|
1362 | ! ===6=8===============================================================72 |
---|
1363 | ! ===6=8===============================================================72 |
---|
1364 | |
---|
1365 | subroutine urban_meso(nd,kms,kme,kts,kte,nz_u,z,dz,z_u,pb,ss,bs,ws,sf,vl, & |
---|
1366 | uva_u,vva_u,uvb_u,vvb_u,tva_u,tvb_u,evb_u, & |
---|
1367 | uhb_u,vhb_u,thb_u,ehb_u, & |
---|
1368 | a_u,a_v,a_t,a_e,b_u,b_v,b_t,b_e) |
---|
1369 | |
---|
1370 | ! ---------------------------------------------------------------------- |
---|
1371 | ! This routine interpolates the parameters from the "urban grid" to the |
---|
1372 | ! "mesoscale grid". |
---|
1373 | ! See p300-301 Appendix B.2 of the BLM paper. |
---|
1374 | ! ---------------------------------------------------------------------- |
---|
1375 | |
---|
1376 | implicit none |
---|
1377 | |
---|
1378 | ! ---------------------------------------------------------------------- |
---|
1379 | ! INPUT: |
---|
1380 | ! ---------------------------------------------------------------------- |
---|
1381 | ! Data relative to the "mesoscale grid" |
---|
1382 | integer kms,kme,kts,kte |
---|
1383 | real z(kms:kme) ! Altitude above the ground of the cell interface |
---|
1384 | real dz(kms:kme) ! Vertical space steps |
---|
1385 | |
---|
1386 | ! Data relative to the "uban grid" |
---|
1387 | integer nz_u ! Number of layer in the urban grid |
---|
1388 | integer nd ! Number of street direction for the current urban class |
---|
1389 | real bs(ndm) ! Building widths of the current urban class |
---|
1390 | real ws(ndm) ! Street widths of the current urban class |
---|
1391 | real z_u(nz_um) ! Height of the urban grid levels |
---|
1392 | real pb(nz_um) ! Probability to have a building with an height equal |
---|
1393 | real ss(nz_um) ! Probability to have a building with height h |
---|
1394 | real uhb_u(ndm,nz_um) ! U (x-wind component) Horizontal surfaces, B (explicit) term |
---|
1395 | real uva_u(2*ndm,nz_um) ! U (x-wind component) Vertical surfaces, A (implicit) term |
---|
1396 | real uvb_u(2*ndm,nz_um) ! U (x-wind component) Vertical surfaces, B (explicit) term |
---|
1397 | real vhb_u(ndm,nz_um) ! V (y-wind component) Horizontal surfaces, B (explicit) term |
---|
1398 | real vva_u(2*ndm,nz_um) ! V (y-wind component) Vertical surfaces, A (implicit) term |
---|
1399 | real vvb_u(2*ndm,nz_um) ! V (y-wind component) Vertical surfaces, B (explicit) term |
---|
1400 | real thb_u(ndm,nz_um) ! Temperature Horizontal surfaces, B (explicit) term |
---|
1401 | real tva_u(2*ndm,nz_um) ! Temperature Vertical surfaces, A (implicit) term |
---|
1402 | real tvb_u(2*ndm,nz_um) ! Temperature Vertical surfaces, B (explicit) term |
---|
1403 | real ehb_u(ndm,nz_um) ! Energy (TKE) Horizontal surfaces, B (explicit) term |
---|
1404 | real evb_u(2*ndm,nz_um) ! Energy (TKE) Vertical surfaces, B (explicit) term |
---|
1405 | |
---|
1406 | ! ---------------------------------------------------------------------- |
---|
1407 | ! OUTPUT: |
---|
1408 | ! ---------------------------------------------------------------------- |
---|
1409 | ! Data relative to the "mesoscale grid" |
---|
1410 | real sf(kms:kme) ! Surface of the "mesoscale grid" cells taking into account the buildings |
---|
1411 | real vl(kms:kme) ! Volume of the "mesoscale grid" cells taking into account the buildings |
---|
1412 | real a_u(kms:kme) ! Implicit component of the momentum sources or sinks in the X-direction |
---|
1413 | real a_v(kms:kme) ! Implicit component of the momentum sources or sinks in the Y-direction |
---|
1414 | real a_t(kms:kme) ! Implicit component of the heat sources or sinks |
---|
1415 | real a_e(kms:kme) ! Implicit component of the TKE sources or sinks |
---|
1416 | real b_u(kms:kme) ! Explicit component of the momentum sources or sinks in the X-direction |
---|
1417 | real b_v(kms:kme) ! Explicit component of the momentum sources or sinks in the Y-direction |
---|
1418 | real b_t(kms:kme) ! Explicit component of the heat sources or sinks |
---|
1419 | real b_e(kms:kme) ! Explicit component of the TKE sources or sinks |
---|
1420 | |
---|
1421 | ! ---------------------------------------------------------------------- |
---|
1422 | ! LOCAL: |
---|
1423 | ! ---------------------------------------------------------------------- |
---|
1424 | real dzz |
---|
1425 | real fact |
---|
1426 | integer id,iz,iz_u |
---|
1427 | real se,sr,st,su,sv |
---|
1428 | real uet(kms:kme) ! Contribution to TKE due to walls |
---|
1429 | real veb,vta,vtb,vte,vtot,vua,vub,vva,vvb |
---|
1430 | |
---|
1431 | |
---|
1432 | ! ---------------------------------------------------------------------- |
---|
1433 | ! END VARIABLES DEFINITIONS |
---|
1434 | ! ---------------------------------------------------------------------- |
---|
1435 | |
---|
1436 | ! initialisation |
---|
1437 | |
---|
1438 | do iz=kts,kte |
---|
1439 | a_u(iz)=0. |
---|
1440 | a_v(iz)=0. |
---|
1441 | a_t(iz)=0. |
---|
1442 | a_e(iz)=0. |
---|
1443 | b_u(iz)=0. |
---|
1444 | b_v(iz)=0. |
---|
1445 | b_e(iz)=0. |
---|
1446 | b_t(iz)=0. |
---|
1447 | uet(iz)=0. |
---|
1448 | end do |
---|
1449 | |
---|
1450 | ! horizontal surfaces |
---|
1451 | do iz=kts,kte |
---|
1452 | sf(iz)=0. |
---|
1453 | vl(iz)=0. |
---|
1454 | enddo |
---|
1455 | sf(kte+1)=0. |
---|
1456 | |
---|
1457 | do id=1,nd |
---|
1458 | do iz=kts+1,kte+1 |
---|
1459 | sr=0. |
---|
1460 | do iz_u=2,nz_u |
---|
1461 | if(z(iz).lt.z_u(iz_u).and.z(iz).ge.z_u(iz_u-1))then |
---|
1462 | sr=pb(iz_u) |
---|
1463 | endif |
---|
1464 | enddo |
---|
1465 | sf(iz)=sf(iz)+((ws(id)+(1.-sr)*bs(id))/(ws(id)+bs(id)))/nd |
---|
1466 | enddo |
---|
1467 | enddo |
---|
1468 | |
---|
1469 | ! volume |
---|
1470 | do iz=kts,kte |
---|
1471 | do id=1,nd |
---|
1472 | vtot=0. |
---|
1473 | do iz_u=1,nz_u |
---|
1474 | dzz=max(min(z_u(iz_u+1),z(iz+1))-max(z_u(iz_u),z(iz)),0.) |
---|
1475 | vtot=vtot+pb(iz_u+1)*dzz |
---|
1476 | enddo |
---|
1477 | vtot=vtot/(z(iz+1)-z(iz)) |
---|
1478 | vl(iz)=vl(iz)+(1.-vtot*bs(id)/(ws(id)+bs(id)))/nd |
---|
1479 | enddo |
---|
1480 | enddo |
---|
1481 | |
---|
1482 | ! horizontal surface impact |
---|
1483 | |
---|
1484 | do id=1,nd |
---|
1485 | |
---|
1486 | fact=1./vl(kts)/dz(kts)*ws(id)/(ws(id)+bs(id))/nd |
---|
1487 | b_t(kts)=b_t(kts)+thb_u(id,1)*fact |
---|
1488 | b_u(kts)=b_u(kts)+uhb_u(id,1)*fact |
---|
1489 | b_v(kts)=b_v(kts)+vhb_u(id,1)*fact |
---|
1490 | b_e(kts)=b_e(kts)+ehb_u(id,1)*fact*(z_u(2)-z_u(1)) |
---|
1491 | |
---|
1492 | do iz=kts,kte |
---|
1493 | st=0. |
---|
1494 | su=0. |
---|
1495 | sv=0. |
---|
1496 | se=0. |
---|
1497 | do iz_u=2,nz_u |
---|
1498 | if(z(iz).le.z_u(iz_u).and.z(iz+1).gt.z_u(iz_u))then |
---|
1499 | st=st+ss(iz_u)*thb_u(id,iz_u) |
---|
1500 | su=su+ss(iz_u)*uhb_u(id,iz_u) |
---|
1501 | sv=sv+ss(iz_u)*vhb_u(id,iz_u) |
---|
1502 | se=se+ss(iz_u)*ehb_u(id,iz_u)*(z_u(iz_u+1)-z_u(iz_u)) |
---|
1503 | endif |
---|
1504 | enddo |
---|
1505 | |
---|
1506 | fact=bs(id)/(ws(id)+bs(id))/vl(iz)/dz(iz)/nd |
---|
1507 | b_t(iz)=b_t(iz)+st*fact |
---|
1508 | b_u(iz)=b_u(iz)+su*fact |
---|
1509 | b_v(iz)=b_v(iz)+sv*fact |
---|
1510 | b_e(iz)=b_e(iz)+se*fact |
---|
1511 | enddo |
---|
1512 | enddo |
---|
1513 | |
---|
1514 | ! vertical surface impact |
---|
1515 | |
---|
1516 | do iz=kts,kte |
---|
1517 | uet(iz)=0. |
---|
1518 | do id=1,nd |
---|
1519 | vtb=0. |
---|
1520 | vta=0. |
---|
1521 | vua=0. |
---|
1522 | vub=0. |
---|
1523 | vva=0. |
---|
1524 | vvb=0. |
---|
1525 | veb=0. |
---|
1526 | vte=0. |
---|
1527 | do iz_u=1,nz_u |
---|
1528 | dzz=max(min(z_u(iz_u+1),z(iz+1))-max(z_u(iz_u),z(iz)),0.) |
---|
1529 | fact=dzz/(ws(id)+bs(id)) |
---|
1530 | vtb=vtb+pb(iz_u+1)* & |
---|
1531 | (tvb_u(2*id-1,iz_u)+tvb_u(2*id,iz_u))*fact |
---|
1532 | vta=vta+pb(iz_u+1)* & |
---|
1533 | (tva_u(2*id-1,iz_u)+tva_u(2*id,iz_u))*fact |
---|
1534 | vua=vua+pb(iz_u+1)* & |
---|
1535 | (uva_u(2*id-1,iz_u)+uva_u(2*id,iz_u))*fact |
---|
1536 | vva=vva+pb(iz_u+1)* & |
---|
1537 | (vva_u(2*id-1,iz_u)+vva_u(2*id,iz_u))*fact |
---|
1538 | vub=vub+pb(iz_u+1)* & |
---|
1539 | (uvb_u(2*id-1,iz_u)+uvb_u(2*id,iz_u))*fact |
---|
1540 | vvb=vvb+pb(iz_u+1)* & |
---|
1541 | (vvb_u(2*id-1,iz_u)+vvb_u(2*id,iz_u))*fact |
---|
1542 | veb=veb+pb(iz_u+1)* & |
---|
1543 | (evb_u(2*id-1,iz_u)+evb_u(2*id,iz_u))*fact |
---|
1544 | enddo |
---|
1545 | |
---|
1546 | fact=1./vl(iz)/dz(iz)/nd |
---|
1547 | b_t(iz)=b_t(iz)+vtb*fact |
---|
1548 | a_t(iz)=a_t(iz)+vta*fact |
---|
1549 | a_u(iz)=a_u(iz)+vua*fact |
---|
1550 | a_v(iz)=a_v(iz)+vva*fact |
---|
1551 | b_u(iz)=b_u(iz)+vub*fact |
---|
1552 | b_v(iz)=b_v(iz)+vvb*fact |
---|
1553 | b_e(iz)=b_e(iz)+veb*fact |
---|
1554 | uet(iz)=uet(iz)+vte*fact |
---|
1555 | enddo |
---|
1556 | enddo |
---|
1557 | |
---|
1558 | |
---|
1559 | |
---|
1560 | return |
---|
1561 | end subroutine urban_meso |
---|
1562 | |
---|
1563 | ! ===6=8===============================================================72 |
---|
1564 | |
---|
1565 | ! ===6=8===============================================================72 |
---|
1566 | |
---|
1567 | subroutine interp_length(nd,kms,kme,kts,kte,nz_u,z_u,z,ss,ws,bs, & |
---|
1568 | dlg,dl_u) |
---|
1569 | |
---|
1570 | ! ---------------------------------------------------------------------- |
---|
1571 | ! Calculation of the length scales |
---|
1572 | ! See p272-274 formula (22) and (24) of the BLM paper |
---|
1573 | ! ---------------------------------------------------------------------- |
---|
1574 | |
---|
1575 | implicit none |
---|
1576 | |
---|
1577 | |
---|
1578 | ! ---------------------------------------------------------------------- |
---|
1579 | ! INPUT: |
---|
1580 | ! ---------------------------------------------------------------------- |
---|
1581 | integer kms,kme,kts,kte |
---|
1582 | real z(kms:kme) ! Altitude above the ground of the cell interface |
---|
1583 | integer nd ! Number of street direction for the current urban class |
---|
1584 | integer nz_u ! Number of levels in the "urban grid" |
---|
1585 | real z_u(nz_um) ! Height of the urban grid levels |
---|
1586 | real bs(ndm) ! Building widths of the current urban class |
---|
1587 | real ss(nz_um) ! Probability to have a building with height h |
---|
1588 | real ws(ndm) ! Street widths of the current urban class |
---|
1589 | |
---|
1590 | |
---|
1591 | ! ---------------------------------------------------------------------- |
---|
1592 | ! OUTPUT: |
---|
1593 | ! ---------------------------------------------------------------------- |
---|
1594 | real dlg(kms:kme) ! Height above ground (L_ground in formula (24) of the BLM paper). |
---|
1595 | real dl_u(kms:kme) ! Length scale (lb in formula (22) ofthe BLM paper). |
---|
1596 | |
---|
1597 | ! ---------------------------------------------------------------------- |
---|
1598 | ! LOCAL: |
---|
1599 | ! ---------------------------------------------------------------------- |
---|
1600 | real dlgtmp |
---|
1601 | integer id,iz,iz_u |
---|
1602 | real sftot |
---|
1603 | real ulu,ssl |
---|
1604 | |
---|
1605 | ! ---------------------------------------------------------------------- |
---|
1606 | ! END VARIABLES DEFINITIONS |
---|
1607 | ! ---------------------------------------------------------------------- |
---|
1608 | |
---|
1609 | do iz=kts,kte |
---|
1610 | ulu=0. |
---|
1611 | ssl=0. |
---|
1612 | do id=1,nd |
---|
1613 | do iz_u=2,nz_u |
---|
1614 | if(z_u(iz_u).gt.z(iz))then |
---|
1615 | ulu=ulu+ss(iz_u)/z_u(iz_u)/nd |
---|
1616 | ssl=ssl+ss(iz_u)/nd |
---|
1617 | endif |
---|
1618 | enddo |
---|
1619 | enddo |
---|
1620 | |
---|
1621 | if(ulu.ne.0)then |
---|
1622 | dl_u(iz)=ssl/ulu |
---|
1623 | else |
---|
1624 | dl_u(iz)=0. |
---|
1625 | endif |
---|
1626 | enddo |
---|
1627 | |
---|
1628 | |
---|
1629 | do iz=kts,kte |
---|
1630 | dlg(iz)=0. |
---|
1631 | do id=1,nd |
---|
1632 | sftot=ws(id) |
---|
1633 | dlgtmp=ws(id)/((z(iz)+z(iz+1))/2.) |
---|
1634 | do iz_u=1,nz_u |
---|
1635 | if((z(iz)+z(iz+1))/2..gt.z_u(iz_u))then |
---|
1636 | dlgtmp=dlgtmp+ss(iz_u)*bs(id)/ & |
---|
1637 | ((z(iz)+z(iz+1))/2.-z_u(iz_u)) |
---|
1638 | sftot=sftot+ss(iz_u)*bs(id) |
---|
1639 | endif |
---|
1640 | enddo |
---|
1641 | dlg(iz)=dlg(iz)+dlgtmp/sftot/nd |
---|
1642 | enddo |
---|
1643 | dlg(iz)=1./dlg(iz) |
---|
1644 | enddo |
---|
1645 | |
---|
1646 | return |
---|
1647 | end subroutine interp_length |
---|
1648 | |
---|
1649 | ! ===6=8===============================================================72 |
---|
1650 | ! ===6=8===============================================================72 |
---|
1651 | |
---|
1652 | subroutine shadow_mas(nd,nz_u,zr,deltar,ah,drst,ws,ss,pb,z, & |
---|
1653 | rs,rsw,rsg) |
---|
1654 | |
---|
1655 | ! ---------------------------------------------------------------------- |
---|
1656 | ! Modification of short wave radiation to take into account |
---|
1657 | ! the shadow produced by the buildings |
---|
1658 | ! ---------------------------------------------------------------------- |
---|
1659 | |
---|
1660 | implicit none |
---|
1661 | |
---|
1662 | ! ---------------------------------------------------------------------- |
---|
1663 | ! INPUT: |
---|
1664 | ! ---------------------------------------------------------------------- |
---|
1665 | integer nd ! Number of street direction for the current urban class |
---|
1666 | integer nz_u ! number of vertical layers defined in the urban grid |
---|
1667 | real ah ! Hour angle (it should come from the radiation routine) |
---|
1668 | real deltar ! Declination of the sun |
---|
1669 | real drst(ndm) ! street directions for the current urban class |
---|
1670 | real rs ! solar radiation |
---|
1671 | real ss(nz_um) ! probability to have a building with height h |
---|
1672 | real pb(nz_um) ! Probability that a building has an height greater or equal to h |
---|
1673 | real ws(ndm) ! Street width of the current urban class |
---|
1674 | real z(nz_um) ! Height of the urban grid levels |
---|
1675 | real zr ! zenith angle |
---|
1676 | |
---|
1677 | ! ---------------------------------------------------------------------- |
---|
1678 | ! OUTPUT: |
---|
1679 | ! ---------------------------------------------------------------------- |
---|
1680 | real rsg(ndm) ! Short wave radiation at the ground |
---|
1681 | real rsw(2*ndm,nz_um) ! Short wave radiation at the walls |
---|
1682 | |
---|
1683 | ! ---------------------------------------------------------------------- |
---|
1684 | ! LOCAL: |
---|
1685 | ! ---------------------------------------------------------------------- |
---|
1686 | integer id,iz,jz |
---|
1687 | real aae,aaw,bbb,phix,rd,rtot,wsd |
---|
1688 | |
---|
1689 | ! ---------------------------------------------------------------------- |
---|
1690 | ! END VARIABLES DEFINITIONS |
---|
1691 | ! ---------------------------------------------------------------------- |
---|
1692 | |
---|
1693 | if(rs.eq.0.or.sin(zr).eq.1)then |
---|
1694 | do id=1,nd |
---|
1695 | rsg(id)=0. |
---|
1696 | do iz=1,nz_u |
---|
1697 | rsw(2*id-1,iz)=0. |
---|
1698 | rsw(2*id,iz)=0. |
---|
1699 | enddo |
---|
1700 | enddo |
---|
1701 | else |
---|
1702 | !test |
---|
1703 | if(abs(sin(zr)).gt.1.e-10)then |
---|
1704 | if(cos(deltar)*sin(ah)/sin(zr).ge.1)then |
---|
1705 | bbb=pi/2. |
---|
1706 | elseif(cos(deltar)*sin(ah)/sin(zr).le.-1)then |
---|
1707 | bbb=-pi/2. |
---|
1708 | else |
---|
1709 | bbb=asin(cos(deltar)*sin(ah)/sin(zr)) |
---|
1710 | endif |
---|
1711 | else |
---|
1712 | if(cos(deltar)*sin(ah).ge.0)then |
---|
1713 | bbb=pi/2. |
---|
1714 | elseif(cos(deltar)*sin(ah).lt.0)then |
---|
1715 | bbb=-pi/2. |
---|
1716 | endif |
---|
1717 | endif |
---|
1718 | |
---|
1719 | phix=zr |
---|
1720 | |
---|
1721 | do id=1,nd |
---|
1722 | |
---|
1723 | rsg(id)=0. |
---|
1724 | |
---|
1725 | aae=bbb-drst(id) |
---|
1726 | aaw=bbb-drst(id)+pi |
---|
1727 | |
---|
1728 | do iz=1,nz_u |
---|
1729 | rsw(2*id-1,iz)=0. |
---|
1730 | rsw(2*id,iz)=0. |
---|
1731 | if(pb(iz+1).gt.0.)then |
---|
1732 | do jz=1,nz_u |
---|
1733 | if(abs(sin(aae)).gt.1.e-10)then |
---|
1734 | call shade_wall(z(iz),z(iz+1),z(jz+1),phix,aae, & |
---|
1735 | ws(id),rd) |
---|
1736 | rsw(2*id-1,iz)=rsw(2*id-1,iz)+rs*rd*ss(jz+1)/pb(iz+1) |
---|
1737 | |
---|
1738 | endif |
---|
1739 | |
---|
1740 | if(abs(sin(aaw)).gt.1.e-10)then |
---|
1741 | call shade_wall(z(iz),z(iz+1),z(jz+1),phix,aaw, & |
---|
1742 | ws(id),rd) |
---|
1743 | rsw(2*id,iz)=rsw(2*id,iz)+rs*rd*ss(jz+1)/pb(iz+1) |
---|
1744 | |
---|
1745 | endif |
---|
1746 | enddo |
---|
1747 | endif |
---|
1748 | enddo |
---|
1749 | if(abs(sin(aae)).gt.1.e-10)then |
---|
1750 | wsd=abs(ws(id)/sin(aae)) |
---|
1751 | |
---|
1752 | do jz=1,nz_u |
---|
1753 | rd=max(0.,wsd-z(jz+1)*tan(phix)) |
---|
1754 | rsg(id)=rsg(id)+rs*rd*ss(jz+1)/wsd |
---|
1755 | enddo |
---|
1756 | rtot=0. |
---|
1757 | |
---|
1758 | do iz=1,nz_u |
---|
1759 | rtot=rtot+(rsw(2*id,iz)+rsw(2*id-1,iz))* & |
---|
1760 | (z(iz+1)-z(iz)) |
---|
1761 | enddo |
---|
1762 | rtot=rtot+rsg(id)*ws(id) |
---|
1763 | else |
---|
1764 | rsg(id)=rs |
---|
1765 | endif |
---|
1766 | |
---|
1767 | enddo |
---|
1768 | endif |
---|
1769 | |
---|
1770 | return |
---|
1771 | end subroutine shadow_mas |
---|
1772 | |
---|
1773 | ! ===6=8===============================================================72 |
---|
1774 | ! ===6=8===============================================================72 |
---|
1775 | |
---|
1776 | subroutine shade_wall(z1,z2,hu,phix,aa,ws,rd) |
---|
1777 | |
---|
1778 | ! ---------------------------------------------------------------------- |
---|
1779 | ! This routine computes the effects of a shadow induced by a building of |
---|
1780 | ! height hu, on a portion of wall between z1 and z2. See equation A10, |
---|
1781 | ! and correction described below formula A11, and figure A1. Basically rd |
---|
1782 | ! is the ratio between the horizontal surface illuminated and the portion |
---|
1783 | ! of wall. Referring to figure A1, multiplying radiation flux density on |
---|
1784 | ! a horizontal surface (rs) by x1-x2 we have the radiation energy per |
---|
1785 | ! unit time. Dividing this by z2-z1, we obtain the radiation flux |
---|
1786 | ! density reaching the portion of the wall between z2 and z1 |
---|
1787 | ! (everything is assumed in 2D) |
---|
1788 | ! ---------------------------------------------------------------------- |
---|
1789 | |
---|
1790 | implicit none |
---|
1791 | |
---|
1792 | ! ---------------------------------------------------------------------- |
---|
1793 | ! INPUT: |
---|
1794 | ! ---------------------------------------------------------------------- |
---|
1795 | real aa ! Angle between the sun direction and the face of the wall (A12) |
---|
1796 | real hu ! Height of the building that generates the shadow |
---|
1797 | real phix ! Solar zenith angle |
---|
1798 | real ws ! Width of the street |
---|
1799 | real z1 ! Height of the level z(iz) |
---|
1800 | real z2 ! Height of the level z(iz+1) |
---|
1801 | |
---|
1802 | ! ---------------------------------------------------------------------- |
---|
1803 | ! OUTPUT: |
---|
1804 | ! ---------------------------------------------------------------------- |
---|
1805 | real rd ! Ratio between (x1-x2)/(z2-z1), see Fig. 1A. |
---|
1806 | ! Multiplying rd by rs (radiation flux |
---|
1807 | ! density on a horizontal surface) gives |
---|
1808 | ! the radiation flux density on the |
---|
1809 | ! portion of wall between z1 and z2. |
---|
1810 | ! ---------------------------------------------------------------------- |
---|
1811 | ! LOCAL: |
---|
1812 | ! ---------------------------------------------------------------------- |
---|
1813 | real x1,x2 ! x1,x2 see Fig. A1. |
---|
1814 | |
---|
1815 | ! ---------------------------------------------------------------------- |
---|
1816 | ! END VARIABLES DEFINITIONS |
---|
1817 | ! ---------------------------------------------------------------------- |
---|
1818 | |
---|
1819 | x1=min((hu-z1)*tan(phix),max(0.,ws/sin(aa))) |
---|
1820 | |
---|
1821 | x2=max((hu-z2)*tan(phix),0.) |
---|
1822 | |
---|
1823 | rd=max(0.,sin(aa)*(max(0.,x1-x2))/(z2-z1)) |
---|
1824 | |
---|
1825 | return |
---|
1826 | end subroutine shade_wall |
---|
1827 | |
---|
1828 | ! ===6=8===============================================================72 |
---|
1829 | ! ===6=8===============================================================72 |
---|
1830 | |
---|
1831 | subroutine long_rad(iurb,nz_u,id,emw,emg, & |
---|
1832 | fwg,fww,fgw,fsw,fsg,tg,tw,rlg,rlw,rl,pb) |
---|
1833 | |
---|
1834 | ! ---------------------------------------------------------------------- |
---|
1835 | ! This routine computes the effects of the reflections of long-wave |
---|
1836 | ! radiation in the street canyon by solving the system |
---|
1837 | ! of 2*nz_u+1 eqn. in 2*nz_u+1 |
---|
1838 | ! unkonwn defined in A4, A5 and A6 of the paper (pages 295 and 296). |
---|
1839 | ! The system is solved by solving A X= B, |
---|
1840 | ! with A matrix B vector, and X solution. |
---|
1841 | ! ---------------------------------------------------------------------- |
---|
1842 | |
---|
1843 | implicit none |
---|
1844 | |
---|
1845 | |
---|
1846 | |
---|
1847 | ! ---------------------------------------------------------------------- |
---|
1848 | ! INPUT: |
---|
1849 | ! ---------------------------------------------------------------------- |
---|
1850 | real emg ! Emissivity of ground for the current urban class |
---|
1851 | real emw ! Emissivity of wall for the current urban class |
---|
1852 | real fgw(nz_um,ndm,nurbm) ! View factors from ground to wall |
---|
1853 | real fsg(ndm,nurbm) ! View factors from sky to ground |
---|
1854 | real fsw(nz_um,ndm,nurbm) ! View factors from sky to wall |
---|
1855 | real fwg(nz_um,ndm,nurbm) ! View factors from wall to ground |
---|
1856 | real fww(nz_um,nz_um,ndm,nurbm) ! View factors from wall to wall |
---|
1857 | integer id ! Current street direction |
---|
1858 | integer iurb ! Current urban class |
---|
1859 | integer nz_u ! Number of layer in the urban grid |
---|
1860 | real pb(nz_um) ! Probability to have a building with an height equal |
---|
1861 | real rl ! Downward flux of the longwave radiation |
---|
1862 | real tg(ndm,ng_u) ! Temperature in each layer of the ground [K] |
---|
1863 | real tw(2*ndm,nz_um,nwr_u) ! Temperature in each layer of the wall [K] |
---|
1864 | |
---|
1865 | |
---|
1866 | ! ---------------------------------------------------------------------- |
---|
1867 | ! OUTPUT: |
---|
1868 | ! ---------------------------------------------------------------------- |
---|
1869 | real rlg(ndm) ! Long wave radiation at the ground |
---|
1870 | real rlw(2*ndm,nz_um) ! Long wave radiation at the walls |
---|
1871 | |
---|
1872 | ! ---------------------------------------------------------------------- |
---|
1873 | ! LOCAL: |
---|
1874 | ! ---------------------------------------------------------------------- |
---|
1875 | integer i,j |
---|
1876 | real aaa(2*nz_um+1,2*nz_um+1) ! terms of the matrix |
---|
1877 | real bbb(2*nz_um+1) ! terms of the vector |
---|
1878 | |
---|
1879 | ! ---------------------------------------------------------------------- |
---|
1880 | ! END VARIABLES DEFINITIONS |
---|
1881 | ! ---------------------------------------------------------------------- |
---|
1882 | |
---|
1883 | |
---|
1884 | ! west wall |
---|
1885 | |
---|
1886 | do i=1,nz_u |
---|
1887 | |
---|
1888 | do j=1,nz_u |
---|
1889 | aaa(i,j)=0. |
---|
1890 | enddo |
---|
1891 | |
---|
1892 | aaa(i,i)=1. |
---|
1893 | |
---|
1894 | do j=nz_u+1,2*nz_u |
---|
1895 | aaa(i,j)=-(1.-emw)*fww(j-nz_u,i,id,iurb)*pb(j-nz_u+1) |
---|
1896 | enddo |
---|
1897 | |
---|
1898 | !! aaa(i,2*nz_u+1)=-(1.-emg)*fgw(i,id,iurb)*pb(i+1) |
---|
1899 | aaa(i,2*nz_u+1)=-(1.-emg)*fgw(i,id,iurb) |
---|
1900 | |
---|
1901 | bbb(i)=fsw(i,id,iurb)*rl+emg*fgw(i,id,iurb)*sigma*tg(id,ng_u)**4 |
---|
1902 | do j=1,nz_u |
---|
1903 | bbb(i)=bbb(i)+pb(j+1)*emw*sigma*fww(j,i,id,iurb)* & |
---|
1904 | tw(2*id,j,nwr_u)**4+ & |
---|
1905 | fww(j,i,id,iurb)*rl*(1.-pb(j+1)) |
---|
1906 | enddo |
---|
1907 | |
---|
1908 | enddo |
---|
1909 | |
---|
1910 | ! east wall |
---|
1911 | |
---|
1912 | do i=1+nz_u,2*nz_u |
---|
1913 | |
---|
1914 | do j=1,nz_u |
---|
1915 | aaa(i,j)=-(1.-emw)*fww(j,i-nz_u,id,iurb)*pb(j+1) |
---|
1916 | enddo |
---|
1917 | |
---|
1918 | do j=1+nz_u,2*nz_u |
---|
1919 | aaa(i,j)=0. |
---|
1920 | enddo |
---|
1921 | |
---|
1922 | aaa(i,i)=1. |
---|
1923 | |
---|
1924 | !! aaa(i,2*nz_u+1)=-(1.-emg)*fgw(i-nz_u,id,iurb)*pb(i-nz_u+1) |
---|
1925 | aaa(i,2*nz_u+1)=-(1.-emg)*fgw(i-nz_u,id,iurb) |
---|
1926 | |
---|
1927 | bbb(i)=fsw(i-nz_u,id,iurb)*rl+ & |
---|
1928 | emg*fgw(i-nz_u,id,iurb)*sigma*tg(id,ng_u)**4 |
---|
1929 | |
---|
1930 | do j=1,nz_u |
---|
1931 | bbb(i)=bbb(i)+pb(j+1)*emw*sigma*fww(j,i-nz_u,id,iurb)* & |
---|
1932 | tw(2*id-1,j,nwr_u)**4+ & |
---|
1933 | fww(j,i-nz_u,id,iurb)*rl*(1.-pb(j+1)) |
---|
1934 | enddo |
---|
1935 | |
---|
1936 | enddo |
---|
1937 | |
---|
1938 | ! ground |
---|
1939 | do j=1,nz_u |
---|
1940 | aaa(2*nz_u+1,j)=-(1.-emw)*fwg(j,id,iurb)*pb(j+1) |
---|
1941 | enddo |
---|
1942 | |
---|
1943 | do j=nz_u+1,2*nz_u |
---|
1944 | aaa(2*nz_u+1,j)=-(1.-emw)*fwg(j-nz_u,id,iurb)*pb(j-nz_u+1) |
---|
1945 | enddo |
---|
1946 | |
---|
1947 | aaa(2*nz_u+1,2*nz_u+1)=1. |
---|
1948 | |
---|
1949 | bbb(2*nz_u+1)=fsg(id,iurb)*rl |
---|
1950 | |
---|
1951 | do i=1,nz_u |
---|
1952 | bbb(2*nz_u+1)=bbb(2*nz_u+1)+emw*sigma*fwg(i,id,iurb)*pb(i+1)* & |
---|
1953 | (tw(2*id-1,i,nwr_u)**4+tw(2*id,i,nwr_u)**4)+ & |
---|
1954 | 2.*fwg(i,id,iurb)*(1.-pb(i+1))*rl |
---|
1955 | enddo |
---|
1956 | |
---|
1957 | |
---|
1958 | |
---|
1959 | call gaussj(aaa,2*nz_u+1,bbb,2*nz_um+1) |
---|
1960 | |
---|
1961 | do i=1,nz_u |
---|
1962 | rlw(2*id-1,i)=bbb(i) |
---|
1963 | enddo |
---|
1964 | |
---|
1965 | do i=nz_u+1,2*nz_u |
---|
1966 | rlw(2*id,i-nz_u)=bbb(i) |
---|
1967 | enddo |
---|
1968 | |
---|
1969 | rlg(id)=bbb(2*nz_u+1) |
---|
1970 | |
---|
1971 | return |
---|
1972 | end subroutine long_rad |
---|
1973 | |
---|
1974 | ! ===6=8===============================================================72 |
---|
1975 | ! ===6=8===============================================================72 |
---|
1976 | |
---|
1977 | subroutine short_rad(iurb,nz_u,id,albw, & |
---|
1978 | albg,fwg,fww,fgw,rsg,rsw,pb) |
---|
1979 | |
---|
1980 | ! ---------------------------------------------------------------------- |
---|
1981 | ! This routine computes the effects of the reflections of short-wave |
---|
1982 | ! (solar) radiation in the street canyon by solving the system |
---|
1983 | ! of 2*nz_u+1 eqn. in 2*nz_u+1 |
---|
1984 | ! unkonwn defined in A4, A5 and A6 of the paper (pages 295 and 296). |
---|
1985 | ! The system is solved by solving A X= B, |
---|
1986 | ! with A matrix B vector, and X solution. |
---|
1987 | ! ---------------------------------------------------------------------- |
---|
1988 | |
---|
1989 | implicit none |
---|
1990 | |
---|
1991 | |
---|
1992 | |
---|
1993 | ! ---------------------------------------------------------------------- |
---|
1994 | ! INPUT: |
---|
1995 | ! ---------------------------------------------------------------------- |
---|
1996 | real albg ! Albedo of the ground for the current urban class |
---|
1997 | real albw ! Albedo of the wall for the current urban class |
---|
1998 | real fgw(nz_um,ndm,nurbm) ! View factors from ground to wall |
---|
1999 | real fwg(nz_um,ndm,nurbm) ! View factors from wall to ground |
---|
2000 | real fww(nz_um,nz_um,ndm,nurbm) ! View factors from wall to wall |
---|
2001 | integer id ! current street direction |
---|
2002 | integer iurb ! current urban class |
---|
2003 | integer nz_u ! Number of layer in the urban grid |
---|
2004 | real pb(nz_um) ! probability to have a building with an height equal |
---|
2005 | |
---|
2006 | ! ---------------------------------------------------------------------- |
---|
2007 | ! OUTPUT: |
---|
2008 | ! ---------------------------------------------------------------------- |
---|
2009 | real rsg(ndm) ! Short wave radiation at the ground |
---|
2010 | real rsw(2*ndm,nz_um) ! Short wave radiation at the walls |
---|
2011 | |
---|
2012 | ! ---------------------------------------------------------------------- |
---|
2013 | ! LOCAL: |
---|
2014 | ! ---------------------------------------------------------------------- |
---|
2015 | integer i,j |
---|
2016 | real aaa(2*nz_um+1,2*nz_um+1) ! terms of the matrix |
---|
2017 | real bbb(2*nz_um+1) ! terms of the vector |
---|
2018 | |
---|
2019 | ! ---------------------------------------------------------------------- |
---|
2020 | ! END VARIABLES DEFINITIONS |
---|
2021 | ! ---------------------------------------------------------------------- |
---|
2022 | |
---|
2023 | |
---|
2024 | ! west wall |
---|
2025 | |
---|
2026 | do i=1,nz_u |
---|
2027 | do j=1,nz_u |
---|
2028 | aaa(i,j)=0. |
---|
2029 | enddo |
---|
2030 | |
---|
2031 | aaa(i,i)=1. |
---|
2032 | |
---|
2033 | do j=nz_u+1,2*nz_u |
---|
2034 | aaa(i,j)=-albw*fww(j-nz_u,i,id,iurb)*pb(j-nz_u+1) |
---|
2035 | enddo |
---|
2036 | |
---|
2037 | aaa(i,2*nz_u+1)=-albg*fgw(i,id,iurb) |
---|
2038 | bbb(i)=rsw(2*id-1,i) |
---|
2039 | |
---|
2040 | enddo |
---|
2041 | |
---|
2042 | ! east wall |
---|
2043 | |
---|
2044 | do i=1+nz_u,2*nz_u |
---|
2045 | do j=1,nz_u |
---|
2046 | aaa(i,j)=-albw*fww(j,i-nz_u,id,iurb)*pb(j+1) |
---|
2047 | enddo |
---|
2048 | |
---|
2049 | do j=1+nz_u,2*nz_u |
---|
2050 | aaa(i,j)=0. |
---|
2051 | enddo |
---|
2052 | |
---|
2053 | aaa(i,i)=1. |
---|
2054 | aaa(i,2*nz_u+1)=-albg*fgw(i-nz_u,id,iurb) |
---|
2055 | bbb(i)=rsw(2*id,i-nz_u) |
---|
2056 | |
---|
2057 | enddo |
---|
2058 | |
---|
2059 | ! ground |
---|
2060 | |
---|
2061 | do j=1,nz_u |
---|
2062 | aaa(2*nz_u+1,j)=-albw*fwg(j,id,iurb)*pb(j+1) |
---|
2063 | enddo |
---|
2064 | |
---|
2065 | do j=nz_u+1,2*nz_u |
---|
2066 | aaa(2*nz_u+1,j)=-albw*fwg(j-nz_u,id,iurb)*pb(j-nz_u+1) |
---|
2067 | enddo |
---|
2068 | |
---|
2069 | aaa(2*nz_u+1,2*nz_u+1)=1. |
---|
2070 | bbb(2*nz_u+1)=rsg(id) |
---|
2071 | |
---|
2072 | call gaussj(aaa,2*nz_u+1,bbb,2*nz_um+1) |
---|
2073 | |
---|
2074 | do i=1,nz_u |
---|
2075 | rsw(2*id-1,i)=bbb(i) |
---|
2076 | enddo |
---|
2077 | |
---|
2078 | do i=nz_u+1,2*nz_u |
---|
2079 | rsw(2*id,i-nz_u)=bbb(i) |
---|
2080 | enddo |
---|
2081 | |
---|
2082 | rsg(id)=bbb(2*nz_u+1) |
---|
2083 | |
---|
2084 | return |
---|
2085 | end subroutine short_rad |
---|
2086 | |
---|
2087 | |
---|
2088 | ! ===6=8===============================================================72 |
---|
2089 | ! ===6=8===============================================================72 |
---|
2090 | |
---|
2091 | subroutine gaussj(a,n,b,np) |
---|
2092 | |
---|
2093 | ! ---------------------------------------------------------------------- |
---|
2094 | ! This routine solve a linear system of n equations of the form |
---|
2095 | ! A X = B |
---|
2096 | ! where A is a matrix a(i,j) |
---|
2097 | ! B a vector and X the solution |
---|
2098 | ! In output b is replaced by the solution |
---|
2099 | ! ---------------------------------------------------------------------- |
---|
2100 | |
---|
2101 | implicit none |
---|
2102 | |
---|
2103 | ! ---------------------------------------------------------------------- |
---|
2104 | ! INPUT: |
---|
2105 | ! ---------------------------------------------------------------------- |
---|
2106 | integer np |
---|
2107 | real a(np,np) |
---|
2108 | |
---|
2109 | ! ---------------------------------------------------------------------- |
---|
2110 | ! OUTPUT: |
---|
2111 | ! ---------------------------------------------------------------------- |
---|
2112 | real b(np) |
---|
2113 | |
---|
2114 | ! ---------------------------------------------------------------------- |
---|
2115 | ! LOCAL: |
---|
2116 | ! ---------------------------------------------------------------------- |
---|
2117 | integer nmax |
---|
2118 | parameter (nmax=150) |
---|
2119 | |
---|
2120 | real big,dum |
---|
2121 | integer i,icol,irow |
---|
2122 | integer j,k,l,ll,n |
---|
2123 | integer ipiv(nmax) |
---|
2124 | real pivinv |
---|
2125 | |
---|
2126 | ! ---------------------------------------------------------------------- |
---|
2127 | ! END VARIABLES DEFINITIONS |
---|
2128 | ! ---------------------------------------------------------------------- |
---|
2129 | |
---|
2130 | do j=1,n |
---|
2131 | ipiv(j)=0. |
---|
2132 | enddo |
---|
2133 | |
---|
2134 | do i=1,n |
---|
2135 | big=0. |
---|
2136 | do j=1,n |
---|
2137 | if(ipiv(j).ne.1)then |
---|
2138 | do k=1,n |
---|
2139 | if(ipiv(k).eq.0)then |
---|
2140 | if(abs(a(j,k)).ge.big)then |
---|
2141 | big=abs(a(j,k)) |
---|
2142 | irow=j |
---|
2143 | icol=k |
---|
2144 | endif |
---|
2145 | elseif(ipiv(k).gt.1)then |
---|
2146 | pause 'singular matrix in gaussj' |
---|
2147 | endif |
---|
2148 | enddo |
---|
2149 | endif |
---|
2150 | enddo |
---|
2151 | |
---|
2152 | ipiv(icol)=ipiv(icol)+1 |
---|
2153 | |
---|
2154 | if(irow.ne.icol)then |
---|
2155 | do l=1,n |
---|
2156 | dum=a(irow,l) |
---|
2157 | a(irow,l)=a(icol,l) |
---|
2158 | a(icol,l)=dum |
---|
2159 | enddo |
---|
2160 | |
---|
2161 | dum=b(irow) |
---|
2162 | b(irow)=b(icol) |
---|
2163 | b(icol)=dum |
---|
2164 | |
---|
2165 | endif |
---|
2166 | |
---|
2167 | if(a(icol,icol).eq.0)pause 'singular matrix in gaussj' |
---|
2168 | |
---|
2169 | pivinv=1./a(icol,icol) |
---|
2170 | a(icol,icol)=1 |
---|
2171 | |
---|
2172 | do l=1,n |
---|
2173 | a(icol,l)=a(icol,l)*pivinv |
---|
2174 | enddo |
---|
2175 | |
---|
2176 | b(icol)=b(icol)*pivinv |
---|
2177 | |
---|
2178 | do ll=1,n |
---|
2179 | if(ll.ne.icol)then |
---|
2180 | dum=a(ll,icol) |
---|
2181 | a(ll,icol)=0. |
---|
2182 | do l=1,n |
---|
2183 | a(ll,l)=a(ll,l)-a(icol,l)*dum |
---|
2184 | enddo |
---|
2185 | |
---|
2186 | b(ll)=b(ll)-b(icol)*dum |
---|
2187 | |
---|
2188 | endif |
---|
2189 | enddo |
---|
2190 | enddo |
---|
2191 | |
---|
2192 | return |
---|
2193 | end subroutine gaussj |
---|
2194 | |
---|
2195 | ! ===6=8===============================================================72 |
---|
2196 | ! ===6=8===============================================================72 |
---|
2197 | |
---|
2198 | subroutine soil_temp(nz,dz,temp,pt,ala,cs, & |
---|
2199 | rs,rl,press,dt,em,alb,rt,sf,gf) |
---|
2200 | |
---|
2201 | ! ---------------------------------------------------------------------- |
---|
2202 | ! This routine solves the Fourier diffusion equation for heat in |
---|
2203 | ! the material (wall, roof, or ground). Resolution is done implicitely. |
---|
2204 | ! Boundary conditions are: |
---|
2205 | ! - fixed temperature at the interior |
---|
2206 | ! - energy budget at the surface |
---|
2207 | ! ---------------------------------------------------------------------- |
---|
2208 | |
---|
2209 | implicit none |
---|
2210 | |
---|
2211 | |
---|
2212 | |
---|
2213 | ! ---------------------------------------------------------------------- |
---|
2214 | ! INPUT: |
---|
2215 | ! ---------------------------------------------------------------------- |
---|
2216 | integer nz ! Number of layers |
---|
2217 | real ala(nz) ! Thermal diffusivity in each layers [m^2 s^-1] |
---|
2218 | real alb ! Albedo of the surface |
---|
2219 | real cs(nz) ! Specific heat of the material [J m^3 K^-1] |
---|
2220 | real dt ! Time step |
---|
2221 | real em ! Emissivity of the surface |
---|
2222 | real press ! Pressure at ground level |
---|
2223 | real rl ! Downward flux of the longwave radiation |
---|
2224 | real rs ! Solar radiation |
---|
2225 | real sf ! Sensible heat flux at the surface |
---|
2226 | real temp(nz) ! Temperature in each layer [K] |
---|
2227 | real dz(nz) ! Layer sizes [m] |
---|
2228 | |
---|
2229 | |
---|
2230 | ! ---------------------------------------------------------------------- |
---|
2231 | ! OUTPUT: |
---|
2232 | ! ---------------------------------------------------------------------- |
---|
2233 | real gf ! Heat flux transferred from the surface toward the interior |
---|
2234 | real pt ! Potential temperature at the surface |
---|
2235 | real rt ! Total radiation at the surface (solar+incoming long+outgoing long) |
---|
2236 | |
---|
2237 | ! ---------------------------------------------------------------------- |
---|
2238 | ! LOCAL: |
---|
2239 | ! ---------------------------------------------------------------------- |
---|
2240 | integer iz |
---|
2241 | real a(nz,3) |
---|
2242 | real alpha |
---|
2243 | real c(nz) |
---|
2244 | real cddz(nz+2) |
---|
2245 | real tsig |
---|
2246 | |
---|
2247 | ! ---------------------------------------------------------------------- |
---|
2248 | ! END VARIABLES DEFINITIONS |
---|
2249 | ! ---------------------------------------------------------------------- |
---|
2250 | |
---|
2251 | tsig=temp(nz) |
---|
2252 | alpha=(1.-alb)*rs+em*rl-em*sigma*(tsig**4)+sf |
---|
2253 | ! Compute cddz=2*cd/dz |
---|
2254 | |
---|
2255 | cddz(1)=ala(1)/dz(1) |
---|
2256 | do iz=2,nz |
---|
2257 | cddz(iz)=2.*ala(iz)/(dz(iz)+dz(iz-1)) |
---|
2258 | enddo |
---|
2259 | ! cddz(nz+1)=ala(nz+1)/dz(nz) |
---|
2260 | |
---|
2261 | a(1,1)=0. |
---|
2262 | a(1,2)=1. |
---|
2263 | a(1,3)=0. |
---|
2264 | c(1)=temp(1) |
---|
2265 | |
---|
2266 | do iz=2,nz-1 |
---|
2267 | a(iz,1)=-cddz(iz)*dt/dz(iz) |
---|
2268 | a(iz,2)=1+dt*(cddz(iz)+cddz(iz+1))/dz(iz) |
---|
2269 | a(iz,3)=-cddz(iz+1)*dt/dz(iz) |
---|
2270 | c(iz)=temp(iz) |
---|
2271 | enddo |
---|
2272 | |
---|
2273 | a(nz,1)=-dt*cddz(nz)/dz(nz) |
---|
2274 | a(nz,2)=1.+dt*cddz(nz)/dz(nz) |
---|
2275 | a(nz,3)=0. |
---|
2276 | c(nz)=temp(nz)+dt*alpha/cs(nz)/dz(nz) |
---|
2277 | |
---|
2278 | |
---|
2279 | call invert(nz,a,c,temp) |
---|
2280 | |
---|
2281 | |
---|
2282 | pt=temp(nz)*(press/1.e+5)**(-rcp_u) |
---|
2283 | |
---|
2284 | rt=(1.-alb)*rs+em*rl-em*sigma*(tsig**4) |
---|
2285 | |
---|
2286 | ! gf=-cddz(nz)*(temp(nz)-temp(nz-1))*cs(nz) |
---|
2287 | gf=(1.-alb)*rs+em*rl-em*sigma*(tsig**4)+sf |
---|
2288 | return |
---|
2289 | end subroutine soil_temp |
---|
2290 | |
---|
2291 | ! ===6=8===============================================================72 |
---|
2292 | ! ===6=8===============================================================72 |
---|
2293 | |
---|
2294 | subroutine invert(n,a,c,x) |
---|
2295 | |
---|
2296 | ! ---------------------------------------------------------------------- |
---|
2297 | ! Inversion and resolution of a tridiagonal matrix |
---|
2298 | ! A X = C |
---|
2299 | ! ---------------------------------------------------------------------- |
---|
2300 | |
---|
2301 | implicit none |
---|
2302 | |
---|
2303 | ! ---------------------------------------------------------------------- |
---|
2304 | ! INPUT: |
---|
2305 | ! ---------------------------------------------------------------------- |
---|
2306 | integer n |
---|
2307 | real a(n,3) ! a(*,1) lower diagonal (Ai,i-1) |
---|
2308 | ! a(*,2) principal diagonal (Ai,i) |
---|
2309 | ! a(*,3) upper diagonal (Ai,i+1) |
---|
2310 | real c(n) |
---|
2311 | |
---|
2312 | ! ---------------------------------------------------------------------- |
---|
2313 | ! OUTPUT: |
---|
2314 | ! ---------------------------------------------------------------------- |
---|
2315 | real x(n) |
---|
2316 | |
---|
2317 | ! ---------------------------------------------------------------------- |
---|
2318 | ! LOCAL: |
---|
2319 | ! ---------------------------------------------------------------------- |
---|
2320 | integer i |
---|
2321 | |
---|
2322 | ! ---------------------------------------------------------------------- |
---|
2323 | ! END VARIABLES DEFINITIONS |
---|
2324 | ! ---------------------------------------------------------------------- |
---|
2325 | |
---|
2326 | do i=n-1,1,-1 |
---|
2327 | c(i)=c(i)-a(i,3)*c(i+1)/a(i+1,2) |
---|
2328 | a(i,2)=a(i,2)-a(i,3)*a(i+1,1)/a(i+1,2) |
---|
2329 | enddo |
---|
2330 | |
---|
2331 | do i=2,n |
---|
2332 | c(i)=c(i)-a(i,1)*c(i-1)/a(i-1,2) |
---|
2333 | enddo |
---|
2334 | |
---|
2335 | do i=1,n |
---|
2336 | x(i)=c(i)/a(i,2) |
---|
2337 | enddo |
---|
2338 | |
---|
2339 | return |
---|
2340 | end subroutine invert |
---|
2341 | |
---|
2342 | |
---|
2343 | ! ===6=8===============================================================72 |
---|
2344 | ! ===6=8===============================================================72 |
---|
2345 | |
---|
2346 | subroutine flux_wall(ua,va,pt,da,ptw,uva,vva,uvb,vvb, & |
---|
2347 | tva,tvb,evb,drst,dt) |
---|
2348 | |
---|
2349 | ! ---------------------------------------------------------------------- |
---|
2350 | ! This routine computes the surface sources or sinks of momentum, tke, |
---|
2351 | ! and heat from vertical surfaces (walls). |
---|
2352 | ! ---------------------------------------------------------------------- |
---|
2353 | |
---|
2354 | implicit none |
---|
2355 | |
---|
2356 | |
---|
2357 | |
---|
2358 | ! INPUT: |
---|
2359 | ! ----- |
---|
2360 | real drst ! street directions for the current urban class |
---|
2361 | real da ! air density |
---|
2362 | real pt ! potential temperature |
---|
2363 | real ptw ! Walls potential temperatures |
---|
2364 | real ua ! wind speed |
---|
2365 | real va ! wind speed |
---|
2366 | |
---|
2367 | real dt !time step |
---|
2368 | ! OUTPUT: |
---|
2369 | ! ------ |
---|
2370 | ! Explicit and implicit component of the momentum, temperature and TKE sources or sinks on |
---|
2371 | ! vertical surfaces (walls). |
---|
2372 | ! The fluxes can be computed as follow: Fluxes of X = A*X + B |
---|
2373 | ! Example: Momentum fluxes on vertical surfaces = uva_u * ua_u + uvb_u |
---|
2374 | real uva ! U (wind component) Vertical surfaces, A (implicit) term |
---|
2375 | real uvb ! U (wind component) Vertical surfaces, B (explicit) term |
---|
2376 | real vva ! V (wind component) Vertical surfaces, A (implicit) term |
---|
2377 | real vvb ! V (wind component) Vertical surfaces, B (explicit) term |
---|
2378 | real tva ! Temperature Vertical surfaces, A (implicit) term |
---|
2379 | real tvb ! Temperature Vertical surfaces, B (explicit) term |
---|
2380 | real evb ! Energy (TKE) Vertical surfaces, B (explicit) term |
---|
2381 | |
---|
2382 | ! LOCAL: |
---|
2383 | ! ----- |
---|
2384 | real hc |
---|
2385 | real u_ort |
---|
2386 | real vett |
---|
2387 | |
---|
2388 | ! ------------------------- |
---|
2389 | ! END VARIABLES DEFINITIONS |
---|
2390 | ! ------------------------- |
---|
2391 | |
---|
2392 | vett=(ua**2+va**2)**.5 |
---|
2393 | |
---|
2394 | u_ort=abs((cos(drst)*ua-sin(drst)*va)) |
---|
2395 | |
---|
2396 | uva=-cdrag*u_ort/2.*cos(drst)*cos(drst) |
---|
2397 | vva=-cdrag*u_ort/2.*sin(drst)*sin(drst) |
---|
2398 | |
---|
2399 | uvb=cdrag*u_ort/2.*sin(drst)*cos(drst)*va |
---|
2400 | vvb=cdrag*u_ort/2.*sin(drst)*cos(drst)*ua |
---|
2401 | |
---|
2402 | hc=5.678*(1.09+0.23*(vett/0.3048)) |
---|
2403 | |
---|
2404 | if(hc.gt.da*cp_u/dt)then |
---|
2405 | hc=da*cp_u/dt |
---|
2406 | endif |
---|
2407 | |
---|
2408 | ! tvb=hc*ptw/da/cp_u |
---|
2409 | ! tva=-hc/da/cp_u |
---|
2410 | !!!!!!!!!!!!!!!!!!!! |
---|
2411 | ! explicit |
---|
2412 | tvb=hc*ptw/da/cp_u-hc/da/cp_u*pt !c |
---|
2413 | tva = 0. !c |
---|
2414 | |
---|
2415 | evb=cdrag*(abs(u_ort)**3.)/2. |
---|
2416 | |
---|
2417 | return |
---|
2418 | end subroutine flux_wall |
---|
2419 | |
---|
2420 | ! ===6=8===============================================================72 |
---|
2421 | |
---|
2422 | ! ===6=8===============================================================72 |
---|
2423 | |
---|
2424 | subroutine flux_flat(dz,z0,ua,va,pt,pt0,ptg, & |
---|
2425 | uhb,vhb,thb,ehb) |
---|
2426 | |
---|
2427 | ! ---------------------------------------------------------------------- |
---|
2428 | ! Calculation of the flux at the ground |
---|
2429 | ! Formulation of Louis (Louis, 1979) |
---|
2430 | ! ---------------------------------------------------------------------- |
---|
2431 | |
---|
2432 | implicit none |
---|
2433 | |
---|
2434 | |
---|
2435 | |
---|
2436 | ! ---------------------------------------------------------------------- |
---|
2437 | ! INPUT: |
---|
2438 | ! ---------------------------------------------------------------------- |
---|
2439 | real dz ! first vertical level |
---|
2440 | real pt ! potential temperature |
---|
2441 | real pt0 ! reference potential temperature |
---|
2442 | real ptg ! ground potential temperature |
---|
2443 | real ua ! wind speed |
---|
2444 | real va ! wind speed |
---|
2445 | real z0 ! Roughness length |
---|
2446 | |
---|
2447 | ! ---------------------------------------------------------------------- |
---|
2448 | ! OUTPUT: |
---|
2449 | ! ---------------------------------------------------------------------- |
---|
2450 | ! Explicit component of the momentum, temperature and TKE sources or sinks on horizontal |
---|
2451 | ! surfaces (roofs and street) |
---|
2452 | ! The fluxes can be computed as follow: Fluxes of X = B |
---|
2453 | ! Example: Momentum fluxes on horizontal surfaces = uhb_u |
---|
2454 | real uhb ! U (wind component) Horizontal surfaces, B (explicit) term |
---|
2455 | real vhb ! V (wind component) Horizontal surfaces, B (explicit) term |
---|
2456 | real thb ! Temperature Horizontal surfaces, B (explicit) term |
---|
2457 | real tva ! Temperature Vertical surfaces, A (implicit) term |
---|
2458 | real tvb ! Temperature Vertical surfaces, B (explicit) term |
---|
2459 | real ehb ! Energy (TKE) Horizontal surfaces, B (explicit) term |
---|
2460 | |
---|
2461 | |
---|
2462 | ! ---------------------------------------------------------------------- |
---|
2463 | ! LOCAL: |
---|
2464 | ! ---------------------------------------------------------------------- |
---|
2465 | real aa |
---|
2466 | real al |
---|
2467 | real buu |
---|
2468 | real c |
---|
2469 | real fbuw |
---|
2470 | real fbpt |
---|
2471 | real fh |
---|
2472 | real fm |
---|
2473 | real ric |
---|
2474 | real tstar |
---|
2475 | real ustar |
---|
2476 | real utot |
---|
2477 | real wstar |
---|
2478 | real zz |
---|
2479 | |
---|
2480 | real b,cm,ch,rr,tol |
---|
2481 | parameter(b=9.4,cm=7.4,ch=5.3,rr=0.74,tol=.001) |
---|
2482 | |
---|
2483 | ! ---------------------------------------------------------------------- |
---|
2484 | ! END VARIABLES DEFINITIONS |
---|
2485 | ! ---------------------------------------------------------------------- |
---|
2486 | |
---|
2487 | |
---|
2488 | ! computation of the ground temperature |
---|
2489 | |
---|
2490 | utot=(ua**2+va**2)**.5 |
---|
2491 | |
---|
2492 | |
---|
2493 | !!!! Louis formulation |
---|
2494 | ! |
---|
2495 | ! compute the bulk Richardson Number |
---|
2496 | |
---|
2497 | zz=dz/2. |
---|
2498 | |
---|
2499 | ! if(tstar.lt.0.)then |
---|
2500 | ! wstar=(-ustar*tstar*g*hii/pt)**(1./3.) |
---|
2501 | ! else |
---|
2502 | ! wstar=0. |
---|
2503 | ! endif |
---|
2504 | ! |
---|
2505 | ! if (utot.le.0.7*wstar) utot=max(0.7*wstar,0.00001) |
---|
2506 | |
---|
2507 | utot=max(utot,0.01) |
---|
2508 | |
---|
2509 | ric=2.*g_u*zz*(pt-ptg)/((pt+ptg)*(utot**2)) |
---|
2510 | |
---|
2511 | aa=vk/log(zz/z0) |
---|
2512 | |
---|
2513 | ! determine the parameters fm and fh for stable, neutral and unstable conditions |
---|
2514 | |
---|
2515 | if(ric.gt.0)then |
---|
2516 | fm=1/(1+0.5*b*ric)**2 |
---|
2517 | fh=fm |
---|
2518 | else |
---|
2519 | c=b*cm*aa*aa*(zz/z0)**.5 |
---|
2520 | fm=1-b*ric/(1+c*(-ric)**.5) |
---|
2521 | c=c*ch/cm |
---|
2522 | fh=1-b*ric/(1+c*(-ric)**.5) |
---|
2523 | endif |
---|
2524 | |
---|
2525 | fbuw=-aa*aa*utot*utot*fm |
---|
2526 | fbpt=-aa*aa*utot*(pt-ptg)*fh/rr |
---|
2527 | |
---|
2528 | ustar=(-fbuw)**.5 |
---|
2529 | tstar=-fbpt/ustar |
---|
2530 | |
---|
2531 | al=(vk*g_u*tstar)/(pt*ustar*ustar) |
---|
2532 | |
---|
2533 | buu=-g_u/pt0*ustar*tstar |
---|
2534 | |
---|
2535 | uhb=-ustar*ustar*ua/utot |
---|
2536 | vhb=-ustar*ustar*va/utot |
---|
2537 | thb=-ustar*tstar |
---|
2538 | ! thb= 0. |
---|
2539 | ehb=buu |
---|
2540 | !!!!!!!!!!!!!!! |
---|
2541 | |
---|
2542 | return |
---|
2543 | end subroutine flux_flat |
---|
2544 | |
---|
2545 | ! ===6=8===============================================================72 |
---|
2546 | ! ===6=8===============================================================72 |
---|
2547 | |
---|
2548 | subroutine icBEP (alag_u,alaw_u,alar_u,csg_u,csw_u,csr_u, & |
---|
2549 | albg_u,albw_u,albr_u,emg_u,emw_u,emr_u, & |
---|
2550 | fww,fwg,fgw,fsw,fws,fsg, & |
---|
2551 | z0g_u,z0r_u, & |
---|
2552 | nd_u,strd_u,drst_u,ws_u,bs_u,h_b,d_b,ss_u,pb_u, & |
---|
2553 | nz_u,z_u, & |
---|
2554 | twini_u,trini_u) |
---|
2555 | |
---|
2556 | |
---|
2557 | implicit none |
---|
2558 | |
---|
2559 | |
---|
2560 | ! Building parameters |
---|
2561 | real alag_u(nurbm) ! Ground thermal diffusivity [m^2 s^-1] |
---|
2562 | real alaw_u(nurbm) ! Wall thermal diffusivity [m^2 s^-1] |
---|
2563 | real alar_u(nurbm) ! Roof thermal diffusivity [m^2 s^-1] |
---|
2564 | real csg_u(nurbm) ! Specific heat of the ground material [J m^3 K^-1] |
---|
2565 | real csw_u(nurbm) ! Specific heat of the wall material [J m^3 K^-1] |
---|
2566 | real csr_u(nurbm) ! Specific heat of the roof material [J m^3 K^-1] |
---|
2567 | real twini_u(nurbm) ! Temperature inside the buildings behind the wall [K] |
---|
2568 | real trini_u(nurbm) ! Temperature inside the buildings behind the roof [K] |
---|
2569 | |
---|
2570 | ! Radiation parameters |
---|
2571 | real albg_u(nurbm) ! Albedo of the ground |
---|
2572 | real albw_u(nurbm) ! Albedo of the wall |
---|
2573 | real albr_u(nurbm) ! Albedo of the roof |
---|
2574 | real emg_u(nurbm) ! Emissivity of ground |
---|
2575 | real emw_u(nurbm) ! Emissivity of wall |
---|
2576 | real emr_u(nurbm) ! Emissivity of roof |
---|
2577 | |
---|
2578 | ! Roughness parameters |
---|
2579 | real z0g_u(nurbm) ! The ground's roughness length |
---|
2580 | real z0r_u(nurbm) ! The roof's roughness length |
---|
2581 | |
---|
2582 | ! Street parameters |
---|
2583 | integer nd_u(nurbm) ! Number of street direction for each urban class |
---|
2584 | |
---|
2585 | real strd_u(ndm,nurbm) ! Street length (fix to greater value to the horizontal length of the cells) |
---|
2586 | real drst_u(ndm,nurbm) ! Street direction [degree] |
---|
2587 | real ws_u(ndm,nurbm) ! Street width [m] |
---|
2588 | real bs_u(ndm,nurbm) ! Building width [m] |
---|
2589 | real h_b(nz_um,nurbm) ! Bulding's heights [m] |
---|
2590 | real d_b(nz_um,nurbm) ! The probability that a building has an height h_b |
---|
2591 | ! ----------------------------------------------------------------------- |
---|
2592 | ! Output |
---|
2593 | !------------------------------------------------------------------------ |
---|
2594 | |
---|
2595 | |
---|
2596 | |
---|
2597 | ! fww,fwg,fgw,fsw,fsg are the view factors used to compute the long wave |
---|
2598 | ! and the short wave radation. They are the part of radiation from a surface |
---|
2599 | ! or from the sky to another surface. |
---|
2600 | real fww(nz_um,nz_um,ndm,nurbm) ! from wall to wall |
---|
2601 | real fwg(nz_um,ndm,nurbm) ! from wall to ground |
---|
2602 | real fgw(nz_um,ndm,nurbm) ! from ground to wall |
---|
2603 | real fsw(nz_um,ndm,nurbm) ! from sky to wall |
---|
2604 | real fws(nz_um,ndm,nurbm) ! from wall to sky |
---|
2605 | real fsg(ndm,nurbm) ! from sky to ground |
---|
2606 | |
---|
2607 | real ss_u(nz_um,nurbm) ! The probability that a building has an height equal to z |
---|
2608 | real pb_u(nz_um,nurbm) ! The probability that a building has an height greater or equal to z |
---|
2609 | |
---|
2610 | ! Grid parameters |
---|
2611 | integer nz_u(nurbm) ! Number of layer in the urban grid |
---|
2612 | real z_u(nz_um) ! Height of the urban grid levels |
---|
2613 | |
---|
2614 | |
---|
2615 | ! ----------------------------------------------------------------------- |
---|
2616 | ! Local |
---|
2617 | !------------------------------------------------------------------------ |
---|
2618 | |
---|
2619 | integer iz_u,id,ilu,iurb |
---|
2620 | |
---|
2621 | real dtot |
---|
2622 | real hbmax |
---|
2623 | |
---|
2624 | !------------------------------------------------------------------------ |
---|
2625 | |
---|
2626 | |
---|
2627 | ! ----------------------------------------------------------------------- |
---|
2628 | ! This routine initialise the urban paramters for the BEP module |
---|
2629 | !------------------------------------------------------------------------ |
---|
2630 | ! |
---|
2631 | !Initialize variables |
---|
2632 | ! |
---|
2633 | nz_u=0 |
---|
2634 | z_u=0. |
---|
2635 | ss_u=0. |
---|
2636 | pb_u=0. |
---|
2637 | fww=0. |
---|
2638 | fwg=0. |
---|
2639 | fgw=0. |
---|
2640 | fsw=0. |
---|
2641 | fws=0. |
---|
2642 | fsg=0. |
---|
2643 | |
---|
2644 | ! Computation of the urban levels height |
---|
2645 | |
---|
2646 | z_u(1)=0. |
---|
2647 | |
---|
2648 | do iz_u=1,nz_um-1 |
---|
2649 | z_u(iz_u+1)=z_u(iz_u)+dz_u |
---|
2650 | enddo |
---|
2651 | |
---|
2652 | ! Normalisation of the building density |
---|
2653 | |
---|
2654 | do iurb=1,nurbm |
---|
2655 | dtot=0. |
---|
2656 | do ilu=1,nz_um |
---|
2657 | dtot=dtot+d_b(ilu,iurb) |
---|
2658 | enddo |
---|
2659 | do ilu=1,nz_um |
---|
2660 | d_b(ilu,iurb)=d_b(ilu,iurb)/dtot |
---|
2661 | enddo |
---|
2662 | enddo |
---|
2663 | |
---|
2664 | ! Compute the view factors, pb and ss |
---|
2665 | |
---|
2666 | do iurb=1,nurbm |
---|
2667 | hbmax=0. |
---|
2668 | nz_u(iurb)=0 |
---|
2669 | do ilu=1,nz_um |
---|
2670 | if(h_b(ilu,iurb).gt.hbmax)hbmax=h_b(ilu,iurb) |
---|
2671 | enddo |
---|
2672 | |
---|
2673 | do iz_u=1,nz_um-1 |
---|
2674 | if(z_u(iz_u+1).gt.hbmax)go to 10 |
---|
2675 | enddo |
---|
2676 | |
---|
2677 | 10 continue |
---|
2678 | nz_u(iurb)=iz_u+1 |
---|
2679 | |
---|
2680 | do id=1,nd_u(iurb) |
---|
2681 | |
---|
2682 | call view_factors(iurb,nz_u(iurb),id,strd_u(id,iurb), & |
---|
2683 | z_u,ws_u(id,iurb), & |
---|
2684 | fww,fwg,fgw,fsg,fsw,fws) |
---|
2685 | |
---|
2686 | do iz_u=1,nz_u(iurb) |
---|
2687 | ss_u(iz_u,iurb)=0. |
---|
2688 | do ilu=1,nz_um |
---|
2689 | if(z_u(iz_u).le.h_b(ilu,iurb) & |
---|
2690 | .and.z_u(iz_u+1).gt.h_b(ilu,iurb))then |
---|
2691 | ss_u(iz_u,iurb)=ss_u(iz_u,iurb)+d_b(ilu,iurb) |
---|
2692 | endif |
---|
2693 | enddo |
---|
2694 | enddo |
---|
2695 | |
---|
2696 | pb_u(1,iurb)=1. |
---|
2697 | do iz_u=1,nz_u(iurb) |
---|
2698 | pb_u(iz_u+1,iurb)=max(0.,pb_u(iz_u,iurb)-ss_u(iz_u,iurb)) |
---|
2699 | enddo |
---|
2700 | |
---|
2701 | enddo |
---|
2702 | end do |
---|
2703 | |
---|
2704 | |
---|
2705 | return |
---|
2706 | end subroutine icBEP |
---|
2707 | |
---|
2708 | ! ===6=8===============================================================72 |
---|
2709 | ! ===6=8===============================================================72 |
---|
2710 | |
---|
2711 | subroutine view_factors(iurb,nz_u,id,dxy,z,ws,fww,fwg,fgw,fsg,fsw,fws) |
---|
2712 | |
---|
2713 | implicit none |
---|
2714 | |
---|
2715 | |
---|
2716 | |
---|
2717 | ! ----------------------------------------------------------------------- |
---|
2718 | ! Input |
---|
2719 | !------------------------------------------------------------------------ |
---|
2720 | |
---|
2721 | integer iurb ! Number of the urban class |
---|
2722 | integer nz_u ! Number of levels in the urban grid |
---|
2723 | integer id ! Street direction number |
---|
2724 | real ws ! Street width |
---|
2725 | real z(nz_um) ! Height of the urban grid levels |
---|
2726 | real dxy ! Street lenght |
---|
2727 | |
---|
2728 | |
---|
2729 | ! ----------------------------------------------------------------------- |
---|
2730 | ! Output |
---|
2731 | !------------------------------------------------------------------------ |
---|
2732 | |
---|
2733 | ! fww,fwg,fgw,fsw,fsg are the view factors used to compute the long wave |
---|
2734 | ! and the short wave radation. They are the part of radiation from a surface |
---|
2735 | ! or from the sky to another surface. |
---|
2736 | |
---|
2737 | real fww(nz_um,nz_um,ndm,nurbm) ! from wall to wall |
---|
2738 | real fwg(nz_um,ndm,nurbm) ! from wall to ground |
---|
2739 | real fgw(nz_um,ndm,nurbm) ! from ground to wall |
---|
2740 | real fsw(nz_um,ndm,nurbm) ! from sky to wall |
---|
2741 | real fws(nz_um,ndm,nurbm) ! from wall to sky |
---|
2742 | real fsg(ndm,nurbm) ! from sky to ground |
---|
2743 | |
---|
2744 | |
---|
2745 | ! ----------------------------------------------------------------------- |
---|
2746 | ! Local |
---|
2747 | !------------------------------------------------------------------------ |
---|
2748 | |
---|
2749 | integer jz,iz |
---|
2750 | |
---|
2751 | real hut |
---|
2752 | real f1,f2,f12,f23,f123,ftot |
---|
2753 | real fprl,fnrm |
---|
2754 | real a1,a2,a3,a4,a12,a23,a123 |
---|
2755 | |
---|
2756 | ! ----------------------------------------------------------------------- |
---|
2757 | ! This routine calculates the view factors |
---|
2758 | !------------------------------------------------------------------------ |
---|
2759 | |
---|
2760 | hut=z(nz_u+1) |
---|
2761 | |
---|
2762 | do jz=1,nz_u |
---|
2763 | |
---|
2764 | ! radiation from wall to wall |
---|
2765 | |
---|
2766 | do iz=1,nz_u |
---|
2767 | |
---|
2768 | call fprls (fprl,dxy,abs(z(jz+1)-z(iz )),ws) |
---|
2769 | f123=fprl |
---|
2770 | call fprls (fprl,dxy,abs(z(jz+1)-z(iz+1)),ws) |
---|
2771 | f23=fprl |
---|
2772 | call fprls (fprl,dxy,abs(z(jz )-z(iz )),ws) |
---|
2773 | f12=fprl |
---|
2774 | call fprls (fprl,dxy,abs(z(jz )-z(iz+1)),ws) |
---|
2775 | f2 = fprl |
---|
2776 | |
---|
2777 | a123=dxy*(abs(z(jz+1)-z(iz ))) |
---|
2778 | a12 =dxy*(abs(z(jz )-z(iz ))) |
---|
2779 | a23 =dxy*(abs(z(jz+1)-z(iz+1))) |
---|
2780 | a1 =dxy*(abs(z(iz+1)-z(iz ))) |
---|
2781 | a2 =dxy*(abs(z(jz )-z(iz+1))) |
---|
2782 | a3 =dxy*(abs(z(jz+1)-z(jz ))) |
---|
2783 | |
---|
2784 | ftot=0.5*(a123*f123-a23*f23-a12*f12+a2*f2)/a1 |
---|
2785 | |
---|
2786 | fww(iz,jz,id,iurb)=ftot*a1/a3 |
---|
2787 | |
---|
2788 | enddo |
---|
2789 | |
---|
2790 | ! radiation from ground to wall |
---|
2791 | |
---|
2792 | call fnrms (fnrm,z(jz+1),dxy,ws) |
---|
2793 | f12=fnrm |
---|
2794 | call fnrms (fnrm,z(jz) ,dxy,ws) |
---|
2795 | f1=fnrm |
---|
2796 | |
---|
2797 | a1 = ws*dxy |
---|
2798 | |
---|
2799 | a12= ws*dxy |
---|
2800 | |
---|
2801 | a4=(z(jz+1)-z(jz))*dxy |
---|
2802 | |
---|
2803 | ftot=(a12*f12-a12*f1)/a1 |
---|
2804 | |
---|
2805 | fgw(jz,id,iurb)=ftot*a1/a4 |
---|
2806 | |
---|
2807 | ! radiation from sky to wall |
---|
2808 | |
---|
2809 | call fnrms(fnrm,hut-z(jz) ,dxy,ws) |
---|
2810 | f12 = fnrm |
---|
2811 | call fnrms (fnrm,hut-z(jz+1),dxy,ws) |
---|
2812 | f1 =fnrm |
---|
2813 | |
---|
2814 | a1 = ws*dxy |
---|
2815 | |
---|
2816 | a12= ws*dxy |
---|
2817 | |
---|
2818 | a4 = (z(jz+1)-z(jz))*dxy |
---|
2819 | |
---|
2820 | ftot=(a12*f12-a12*f1)/a1 |
---|
2821 | |
---|
2822 | fsw(jz,id,iurb)=ftot*a1/a4 |
---|
2823 | |
---|
2824 | enddo |
---|
2825 | |
---|
2826 | ! radiation from wall to sky |
---|
2827 | do iz=1,nz_u |
---|
2828 | call fnrms(fnrm,ws,dxy,hut-z(iz)) |
---|
2829 | f12=fnrm |
---|
2830 | call fnrms(fnrm,ws,dxy,hut-z(iz+1)) |
---|
2831 | f1=fnrm |
---|
2832 | a1 = (z(iz+1)-z(iz))*dxy |
---|
2833 | a2 = (hut-z(iz+1))*dxy |
---|
2834 | a12= (hut-z(iz))*dxy |
---|
2835 | a4 = ws*dxy |
---|
2836 | ftot=(a12*f12-a2*f1)/a1 |
---|
2837 | fws(iz,id,iurb)=ftot*a1/a4 |
---|
2838 | |
---|
2839 | enddo |
---|
2840 | !!!!!!!!!!!!! |
---|
2841 | |
---|
2842 | |
---|
2843 | do iz=1,nz_u |
---|
2844 | |
---|
2845 | ! radiation from wall to ground |
---|
2846 | |
---|
2847 | call fnrms (fnrm,ws,dxy,z(iz+1)) |
---|
2848 | f12=fnrm |
---|
2849 | call fnrms (fnrm,ws,dxy,z(iz )) |
---|
2850 | f1 =fnrm |
---|
2851 | |
---|
2852 | a1= (z(iz+1)-z(iz) )*dxy |
---|
2853 | |
---|
2854 | a2 = z(iz)*dxy |
---|
2855 | a12= z(iz+1)*dxy |
---|
2856 | a4 = ws*dxy |
---|
2857 | |
---|
2858 | ftot=(a12*f12-a2*f1)/a1 |
---|
2859 | |
---|
2860 | fwg(iz,id,iurb)=ftot*a1/a4 |
---|
2861 | |
---|
2862 | enddo |
---|
2863 | |
---|
2864 | ! radiation from sky to ground |
---|
2865 | |
---|
2866 | call fprls (fprl,dxy,ws,hut) |
---|
2867 | fsg(id,iurb)=fprl |
---|
2868 | |
---|
2869 | return |
---|
2870 | end subroutine view_factors |
---|
2871 | |
---|
2872 | ! ===6=8===============================================================72 |
---|
2873 | ! ===6=8===============================================================72 |
---|
2874 | |
---|
2875 | SUBROUTINE fprls (fprl,a,b,c) |
---|
2876 | |
---|
2877 | implicit none |
---|
2878 | |
---|
2879 | |
---|
2880 | |
---|
2881 | real a,b,c |
---|
2882 | real x,y |
---|
2883 | real fprl |
---|
2884 | |
---|
2885 | |
---|
2886 | x=a/c |
---|
2887 | y=b/c |
---|
2888 | |
---|
2889 | if(a.eq.0.or.b.eq.0.)then |
---|
2890 | fprl=0. |
---|
2891 | else |
---|
2892 | fprl=log( ( (1.+x**2)*(1.+y**2)/(1.+x**2+y**2) )**.5)+ & |
---|
2893 | y*((1.+x**2)**.5)*atan(y/((1.+x**2)**.5))+ & |
---|
2894 | x*((1.+y**2)**.5)*atan(x/((1.+y**2)**.5))- & |
---|
2895 | y*atan(y)-x*atan(x) |
---|
2896 | fprl=fprl*2./(pi*x*y) |
---|
2897 | endif |
---|
2898 | |
---|
2899 | return |
---|
2900 | end subroutine fprls |
---|
2901 | |
---|
2902 | ! ===6=8===============================================================72 |
---|
2903 | ! ===6=8===============================================================72 |
---|
2904 | |
---|
2905 | SUBROUTINE fnrms (fnrm,a,b,c) |
---|
2906 | |
---|
2907 | implicit none |
---|
2908 | |
---|
2909 | |
---|
2910 | |
---|
2911 | real a,b,c |
---|
2912 | real x,y,z,a1,a2,a3,a4,a5,a6 |
---|
2913 | real fnrm |
---|
2914 | |
---|
2915 | x=a/b |
---|
2916 | y=c/b |
---|
2917 | z=x**2+y**2 |
---|
2918 | |
---|
2919 | if(y.eq.0.or.x.eq.0)then |
---|
2920 | fnrm=0. |
---|
2921 | else |
---|
2922 | a1=log( (1.+x*x)*(1.+y*y)/(1.+z) ) |
---|
2923 | a2=y*y*log(y*y*(1.+z)/z/(1.+y*y) ) |
---|
2924 | a3=x*x*log(x*x*(1.+z)/z/(1.+x*x) ) |
---|
2925 | a4=y*atan(1./y) |
---|
2926 | a5=x*atan(1./x) |
---|
2927 | a6=sqrt(z)*atan(1./sqrt(z)) |
---|
2928 | fnrm=0.25*(a1+a2+a3)+a4+a5-a6 |
---|
2929 | fnrm=fnrm/(pi*y) |
---|
2930 | endif |
---|
2931 | |
---|
2932 | return |
---|
2933 | end subroutine fnrms |
---|
2934 | ! ===6=8===============================================================72 |
---|
2935 | |
---|
2936 | SUBROUTINE init_para(alag_u,alaw_u,alar_u,csg_u,csw_u,csr_u,& |
---|
2937 | twini_u,trini_u,tgini_u,albg_u,albw_u,albr_u,emg_u,emw_u,& |
---|
2938 | emr_u,z0g_u,z0r_u,nd_u,strd_u,drst_u,ws_u,bs_u,h_b,d_b) |
---|
2939 | |
---|
2940 | ! initialization routine, where the variables from the table are read |
---|
2941 | |
---|
2942 | implicit none |
---|
2943 | |
---|
2944 | integer iurb ! urban class number |
---|
2945 | ! Building parameters |
---|
2946 | real alag_u(nurbm) ! Ground thermal diffusivity [m^2 s^-1] |
---|
2947 | real alaw_u(nurbm) ! Wall thermal diffusivity [m^2 s^-1] |
---|
2948 | real alar_u(nurbm) ! Roof thermal diffusivity [m^2 s^-1] |
---|
2949 | real csg_u(nurbm) ! Specific heat of the ground material [J m^3 K^-1] |
---|
2950 | real csw_u(nurbm) ! Specific heat of the wall material [J m^3 K^-1] |
---|
2951 | real csr_u(nurbm) ! Specific heat of the roof material [J m^3 K^-1] |
---|
2952 | real twini_u(nurbm) ! Temperature inside the buildings behind the wall [K] |
---|
2953 | real trini_u(nurbm) ! Temperature inside the buildings behind the roof [K] |
---|
2954 | real tgini_u(nurbm) ! Initial road temperature |
---|
2955 | |
---|
2956 | ! Radiation parameters |
---|
2957 | real albg_u(nurbm) ! Albedo of the ground |
---|
2958 | real albw_u(nurbm) ! Albedo of the wall |
---|
2959 | real albr_u(nurbm) ! Albedo of the roof |
---|
2960 | real emg_u(nurbm) ! Emissivity of ground |
---|
2961 | real emw_u(nurbm) ! Emissivity of wall |
---|
2962 | real emr_u(nurbm) ! Emissivity of roof |
---|
2963 | |
---|
2964 | ! Roughness parameters |
---|
2965 | real z0g_u(nurbm) ! The ground's roughness length |
---|
2966 | real z0r_u(nurbm) ! The roof's roughness length |
---|
2967 | |
---|
2968 | ! Street parameters |
---|
2969 | integer nd_u(nurbm) ! Number of street direction for each urban class |
---|
2970 | |
---|
2971 | real strd_u(ndm,nurbm) ! Street length (fix to greater value to the horizontal length of the cells) |
---|
2972 | real drst_u(ndm,nurbm) ! Street direction [degree] |
---|
2973 | real ws_u(ndm,nurbm) ! Street width [m] |
---|
2974 | real bs_u(ndm,nurbm) ! Building width [m] |
---|
2975 | real h_b(nz_um,nurbm) ! Bulding's heights [m] |
---|
2976 | real d_b(nz_um,nurbm) ! The probability that a building has an height h_b |
---|
2977 | |
---|
2978 | integer i,iu |
---|
2979 | integer nurb ! number of urban classes used |
---|
2980 | |
---|
2981 | ! |
---|
2982 | !Initialize some variables |
---|
2983 | ! |
---|
2984 | |
---|
2985 | h_b=0. |
---|
2986 | d_b=0. |
---|
2987 | |
---|
2988 | nurb=ICATE |
---|
2989 | do iu=1,nurb |
---|
2990 | nd_u(iu)=0 |
---|
2991 | enddo |
---|
2992 | |
---|
2993 | csw_u=CAPB_TBL / (( 1.0 / 4.1868 ) * 1.E-6) |
---|
2994 | csr_u=CAPR_TBL / (( 1.0 / 4.1868 ) * 1.E-6) |
---|
2995 | csg_u=CAPG_TBL / (( 1.0 / 4.1868 ) * 1.E-6) |
---|
2996 | do i=1,icate |
---|
2997 | alaw_u(i)=AKSB_TBL(i) / csw_u(i) / (( 1.0 / 4.1868 ) * 1.E-2) |
---|
2998 | alar_u(i)=AKSR_TBL(i) / csr_u(i) / (( 1.0 / 4.1868 ) * 1.E-2) |
---|
2999 | alag_u(i)=AKSG_TBL(i) / csg_u(i) / (( 1.0 / 4.1868 ) * 1.E-2) |
---|
3000 | enddo |
---|
3001 | twini_u=TBLEND_TBL |
---|
3002 | trini_u=TRLEND_TBL |
---|
3003 | tgini_u=TGLEND_TBL |
---|
3004 | albw_u=ALBB_TBL |
---|
3005 | albr_u=ALBR_TBL |
---|
3006 | albg_u=ALBG_TBL |
---|
3007 | emw_u=EPSB_TBL |
---|
3008 | emr_u=EPSR_TBL |
---|
3009 | emg_u=EPSG_TBL |
---|
3010 | z0r_u=Z0R_TBL |
---|
3011 | z0g_u=Z0G_TBL |
---|
3012 | nd_u=NUMDIR_TBL |
---|
3013 | do iu=1,icate |
---|
3014 | if(ndm.lt.nd_u(iu))then |
---|
3015 | write(*,*)'ndm too small in module_sf_bep, please increase to at least ', nd_u(iu) |
---|
3016 | write(*,*)'remember also that num_urban_layers should be equal or greater than nz_um*ndm*nwr-u!' |
---|
3017 | stop |
---|
3018 | endif |
---|
3019 | do i=1,nd_u(iu) |
---|
3020 | drst_u(i,iu)=STREET_DIRECTION_TBL(i,iu) * pi/180. |
---|
3021 | ws_u(i,iu)=STREET_WIDTH_TBL(i,iu) |
---|
3022 | bs_u(i,iu)=BUILDING_WIDTH_TBL(i,iu) |
---|
3023 | enddo |
---|
3024 | enddo |
---|
3025 | do iu=1,ICATE |
---|
3026 | if(nz_um.lt.numhgt_tbl(iu)+3)then |
---|
3027 | write(*,*)'nz_um too small in module_sf_bep, please increase to at least ',numhgt_tbl(iu)+3 |
---|
3028 | write(*,*)'remember also that num_urban_layers should be equal or greater than nz_um*ndm*nwr-u!' |
---|
3029 | stop |
---|
3030 | endif |
---|
3031 | do i=1,NUMHGT_TBL(iu) |
---|
3032 | h_b(i,iu)=HEIGHT_BIN_TBL(i,iu) |
---|
3033 | d_b(i,iu)=HPERCENT_BIN_TBL(i,iu) |
---|
3034 | enddo |
---|
3035 | enddo |
---|
3036 | |
---|
3037 | do i=1,ndm |
---|
3038 | do iu=1,nurbm |
---|
3039 | strd_u(i,iu)=100000. |
---|
3040 | enddo |
---|
3041 | enddo |
---|
3042 | |
---|
3043 | return |
---|
3044 | END SUBROUTINE init_para |
---|
3045 | !============================================================== |
---|
3046 | |
---|
3047 | !============================================================== |
---|
3048 | subroutine angle(along,alat,day,realt,zr,deltar,ah) |
---|
3049 | ! ---------------- |
---|
3050 | ! |
---|
3051 | ! Computation of the solar angles |
---|
3052 | ! schayes (1982,atm. env. , p1407) |
---|
3053 | ! Inputs |
---|
3054 | !======================== |
---|
3055 | ! along=longitud |
---|
3056 | ! alat=latitude |
---|
3057 | ! day=julian day (from the beginning of the year) |
---|
3058 | ! realt= time GMT in hours |
---|
3059 | ! Outputs |
---|
3060 | !============================ |
---|
3061 | ! zr=solar zenith angle |
---|
3062 | ! deltar=declination angle |
---|
3063 | ! ah=hour angle |
---|
3064 | !=============================== |
---|
3065 | |
---|
3066 | implicit none |
---|
3067 | real along,alat, realt, zr, deltar, ah, arg |
---|
3068 | real rad,om,radh,initt, pii, drad, alongt, cphi, sphi |
---|
3069 | real c1, c2, c3, s1, s2, s3, delta, rmsr2, cd, sid |
---|
3070 | real et, ahor, chor, coznt |
---|
3071 | integer day |
---|
3072 | |
---|
3073 | |
---|
3074 | data rad,om,radh,initt/0.0174533,0.0172142,0.26179939,0/ |
---|
3075 | |
---|
3076 | zr=0. |
---|
3077 | deltar=0. |
---|
3078 | ah=0. |
---|
3079 | |
---|
3080 | pii = 3.14159265358979312 |
---|
3081 | drad = pii/180. |
---|
3082 | |
---|
3083 | alongt=along/15. |
---|
3084 | cphi=cos(alat*drad) |
---|
3085 | sphi=sin(alat*drad) |
---|
3086 | ! |
---|
3087 | ! declination |
---|
3088 | ! |
---|
3089 | arg=om*day |
---|
3090 | c1=cos(arg) |
---|
3091 | c2=cos(2.*arg) |
---|
3092 | c3=cos(3.*arg) |
---|
3093 | s1=sin(arg) |
---|
3094 | s2=sin(2.*arg) |
---|
3095 | s3=sin(3.*arg) |
---|
3096 | delta=0.33281-22.984*c1-0.3499*c2-0.1398*c3+3.7872*s1+0.03205*s2+0.07187*s3 |
---|
3097 | rmsr2=(1./(1.-0.01673*c1))**2 |
---|
3098 | deltar=delta*rad |
---|
3099 | cd=cos(deltar) |
---|
3100 | sid=sin(deltar) |
---|
3101 | ! |
---|
3102 | ! time equation in hours |
---|
3103 | ! |
---|
3104 | et=0.0072*c1-0.0528*c2-0.0012*c3-0.1229*s1-0.1565*s2-0.0041*s3 |
---|
3105 | ! |
---|
3106 | ! |
---|
3107 | ! hour angle |
---|
3108 | ! |
---|
3109 | |
---|
3110 | ! ifh=0 |
---|
3111 | |
---|
3112 | ! ahor=realt-12.+ifh+et+alongt |
---|
3113 | ahor=realt-12.+et+alongt |
---|
3114 | ah=ahor*radh |
---|
3115 | chor=cos(ah) |
---|
3116 | ! |
---|
3117 | ! zenith angle |
---|
3118 | ! |
---|
3119 | coznt=sphi*sid+cphi*cd*chor |
---|
3120 | |
---|
3121 | zr=acos(coznt) |
---|
3122 | |
---|
3123 | return |
---|
3124 | |
---|
3125 | END SUBROUTINE angle |
---|
3126 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
3127 | |
---|
3128 | subroutine upward_rad(nd_u,iurb,nz_u,ws,bs,sigma,fsw,fsg,pb,ss, & |
---|
3129 | tg,emg_u,albg_u,rlg,rsg,sfg, & |
---|
3130 | tw,emw_u,albw_u,rlw,rsw,sfw, & |
---|
3131 | tr,emr_u,albr_u,rld,rs, sfr, & |
---|
3132 | rs_abs,rl_up,emiss,grdflx_urb) |
---|
3133 | ! |
---|
3134 | ! IN this surboutine we compute the upward longwave flux, and the albedo |
---|
3135 | ! needed for the radiation scheme |
---|
3136 | ! |
---|
3137 | implicit none |
---|
3138 | |
---|
3139 | ! |
---|
3140 | !INPUT VARIABLES |
---|
3141 | ! |
---|
3142 | real rsw(2*ndm,nz_um) ! Short wave radiation at the wall for a given canyon direction [W/m2] |
---|
3143 | real rlw(2*ndm,nz_um) ! Long wave radiation at the walls for a given canyon direction [W/m2] |
---|
3144 | real rsg(ndm) ! Short wave radiation at the canyon for a given canyon direction [W/m2] |
---|
3145 | real rlg(ndm) ! Long wave radiation at the ground for a given canyon direction [W/m2] |
---|
3146 | real rs ! Short wave radiation at the horizontal surface from the sun [W/m²] |
---|
3147 | real sfw(2*ndm,nz_um) ! Sensible heat flux from walls [W/m²] |
---|
3148 | real sfg(ndm) ! Sensible heat flux from ground (road) [W/m²] |
---|
3149 | real sfr(ndm,nz_um) ! Sensible heat flux from roofs [W/m²] |
---|
3150 | real rld ! Long wave radiation from the sky [W/m²] |
---|
3151 | real albg_u ! albedo of the ground/street |
---|
3152 | real albw_u ! albedo of the walls |
---|
3153 | real albr_u ! albedo of the roof |
---|
3154 | real ws(ndm) ! width of the street |
---|
3155 | real bs(ndm) |
---|
3156 | ! building size |
---|
3157 | real pb(nz_um) ! Probability to have a building with an height equal or higher |
---|
3158 | integer nz_u |
---|
3159 | real ss(nz_um) ! Probability to have a building of a given height |
---|
3160 | real sigma |
---|
3161 | real emg_u ! emissivity of the street |
---|
3162 | real emw_u ! emissivity of the wall |
---|
3163 | real emr_u ! emissivity of the roof |
---|
3164 | real fsw(nz_um,ndm,nurbm) ! View factors from sky to wall |
---|
3165 | real fsg(ndm,nurbm) ! groud to sky view factor |
---|
3166 | real tw(2*ndm,nz_um,nwr_u) ! Temperature in each layer of the wall [K] |
---|
3167 | real tr(ndm,nz_um,nwr_u) ! Temperature in each layer of the roof [K] |
---|
3168 | real tg(ndm,ng_u) ! Temperature in each layer of the ground [K] |
---|
3169 | integer iurb ! urban class |
---|
3170 | integer id ! street direction |
---|
3171 | integer nd_u ! number of street directions |
---|
3172 | !OUTPUT/INPUT |
---|
3173 | real rs_abs ! absrobed solar radiationfor this street direction |
---|
3174 | real rl_up ! upward longwave radiation for this street direction |
---|
3175 | real emiss ! mean emissivity |
---|
3176 | real grdflx_urb ! ground heat flux |
---|
3177 | !LOCAL |
---|
3178 | integer iz,iw |
---|
3179 | real rl_inc,rl_emit |
---|
3180 | real gfl |
---|
3181 | integer ix,iy,iwrong |
---|
3182 | |
---|
3183 | iwrong=1 |
---|
3184 | do iz=1,nz_u+1 |
---|
3185 | do id=1,nd_u |
---|
3186 | do iw=1,nwr_u |
---|
3187 | if(tr(id,iz,iw).lt.100.)then |
---|
3188 | write(*,*)'in upward_rad ',iz,id,iw,tr(id,iz,iw) |
---|
3189 | iwrong=0 |
---|
3190 | endif |
---|
3191 | enddo |
---|
3192 | enddo |
---|
3193 | enddo |
---|
3194 | if(iwrong.eq.0)stop |
---|
3195 | |
---|
3196 | rl_up=0. |
---|
3197 | |
---|
3198 | rs_abs=0. |
---|
3199 | rl_inc=0. |
---|
3200 | emiss=0. |
---|
3201 | rl_emit=0. |
---|
3202 | grdflx_urb=0. |
---|
3203 | do id=1,nd_u |
---|
3204 | rl_emit=rl_emit-( emg_u*sigma*(tg(id,ng_u)**4.)+(1-emg_u)*rlg(id))*ws(id)/(ws(id)+bs(id))/nd_u |
---|
3205 | rl_inc=rl_inc+rlg(id)*ws(id)/(ws(id)+bs(id))/nd_u |
---|
3206 | rs_abs=rs_abs+(1.-albg_u)*rsg(id)*ws(id)/(ws(id)+bs(id))/nd_u |
---|
3207 | gfl=(1.-albg_u)*rsg(id)+emg_u*rlg(id)-emg_u*sigma*(tg(id,ng_u)**4.)+sfg(id) |
---|
3208 | grdflx_urb=grdflx_urb-gfl*ws(id)/(ws(id)+bs(id))/nd_u |
---|
3209 | |
---|
3210 | do iz=2,nz_u |
---|
3211 | rl_emit=rl_emit-(emr_u*sigma*(tr(id,iz,nwr_u)**4.)+(1-emr_u)*rld)*ss(iz)*bs(id)/(ws(id)+bs(id))/nd_u |
---|
3212 | rl_inc=rl_inc+rld*ss(iz)*bs(id)/(ws(id)+bs(id))/nd_u |
---|
3213 | rs_abs=rs_abs+(1.-albr_u)*rs*ss(iz)*bs(id)/(ws(id)+bs(id))/nd_u |
---|
3214 | gfl=(1.-albr_u)*rs+emr_u*rld-emr_u*sigma*(tr(id,iz,nwr_u)**4.)+sfr(id,iz) |
---|
3215 | grdflx_urb=grdflx_urb-gfl*ss(iz)*bs(id)/(ws(id)+bs(id))/nd_u |
---|
3216 | enddo |
---|
3217 | |
---|
3218 | do iz=1,nz_u |
---|
3219 | rl_emit=rl_emit-(emw_u*sigma*( tw(2*id-1,iz,nwr_u)**4.+tw(2*id,iz,nwr_u)**4. )+ & |
---|
3220 | (1-emw_u)*( rlw(2*id-1,iz)+rlw(2*id,iz) ) )*dz_u*pb(iz+1)/(ws(id)+bs(id))/nd_u |
---|
3221 | rl_inc=rl_inc+(( rlw(2*id-1,iz)+rlw(2*id,iz) ) )*dz_u*pb(iz+1)/(ws(id)+bs(id))/nd_u |
---|
3222 | rs_abs=rs_abs+((1.-albw_u)*( rsw(2*id-1,iz)+rsw(2*id,iz) ) )*dz_u*pb(iz+1)/(ws(id)+bs(id))/nd_u |
---|
3223 | gfl=(1.-albw_u)*(rsw(2*id-1,iz)+rsw(2*id,iz)) +emw_u*( rlw(2*id-1,iz)+rlw(2*id,iz) ) & |
---|
3224 | -emw_u*sigma*( tw(2*id-1,iz,nwr_u)**4.+tw(2*id,iz,nwr_u)**4. )+(sfw(2*id-1,iz)+sfw(2*id,iz)) |
---|
3225 | grdflx_urb=grdflx_urb-gfl*dz_u*pb(iz+1)/(ws(id)+bs(id))/nd_u |
---|
3226 | enddo |
---|
3227 | |
---|
3228 | enddo |
---|
3229 | emiss=(emg_u+emw_u+emr_u)/3. |
---|
3230 | rl_up=(rl_inc+rl_emit)-rld |
---|
3231 | |
---|
3232 | |
---|
3233 | return |
---|
3234 | |
---|
3235 | END SUBROUTINE upward_rad |
---|
3236 | |
---|
3237 | !====6=8===============================================================72 |
---|
3238 | !====6=8===============================================================72 |
---|
3239 | END MODULE module_sf_bep |
---|