1 | MODULE module_sf_bem |
---|
2 | ! ----------------------------------------------------------------------- |
---|
3 | ! Variables and constants used in the BEM module |
---|
4 | ! ----------------------------------------------------------------------- |
---|
5 | |
---|
6 | real emins !emissivity of the internal walls |
---|
7 | parameter (emins=0.9) |
---|
8 | real albins !albedo of the internal walls |
---|
9 | !! parameter (albins=0.5) |
---|
10 | parameter (albins=0.3) |
---|
11 | |
---|
12 | real thickwin !thickness of the window [m] |
---|
13 | parameter (thickwin=0.006) |
---|
14 | real cswin !Specific heat of the windows [J/(m3.K)] |
---|
15 | parameter(cswin= 2.268e+06) |
---|
16 | |
---|
17 | real temp_rat !power of the A.C. heating/cooling the indoor air [K/s] |
---|
18 | parameter(temp_rat=0.001) |
---|
19 | |
---|
20 | real hum_rat !power of the A.C. drying/moistening the indoor air [(Kg/kg)/s] |
---|
21 | parameter(hum_rat=1.e-06) |
---|
22 | |
---|
23 | |
---|
24 | CONTAINS |
---|
25 | |
---|
26 | !====6================================================================72 |
---|
27 | !====6================================================================72 |
---|
28 | |
---|
29 | subroutine BEM(nzcanm,nlev,nhourday,dt,bw,bl,dzlev, & |
---|
30 | nwal,nflo,nrof,ngrd,hswalout,gswal, & |
---|
31 | hswinout,hsrof,gsrof, & |
---|
32 | latent,sigma,albwal,albwin,albrof, & |
---|
33 | emrof,emwal,emwin,rswal,rlwal,rair,cp, & |
---|
34 | rhoout,tout,humout,press, & |
---|
35 | rs,rl,dzwal,cswal,kwal,pwin,cop,beta,sw_cond, & |
---|
36 | timeon,timeoff,targtemp,gaptemp,targhum,gaphum, & |
---|
37 | perflo,hsesf,hsequip,dzflo, & |
---|
38 | csflo,kflo,dzgrd,csgrd,kgrd,dzrof,csrof, & |
---|
39 | krof,tlev,shumlev,twal,twin,tflo,tgrd,trof, & |
---|
40 | hsout,hlout,consump,hsvent,hlvent) |
---|
41 | |
---|
42 | |
---|
43 | ! --------------------------------------------------------------------- |
---|
44 | implicit none |
---|
45 | |
---|
46 | ! --------------------------------------------------------------------- |
---|
47 | ! TOP |
---|
48 | ! --------------------- |
---|
49 | ! ! ----------------- !--->roof (-) : level number |
---|
50 | ! ! ! ! ! rem: the windows are given |
---|
51 | ! ! !---------------! ! with respect to the |
---|
52 | ! ! !---------------! ! vertical walls-->win(2) |
---|
53 | ! (n)! !(1) (1)!-!(n) |
---|
54 | ! ! !---------------! ! 2D vision of the building |
---|
55 | ! WEST ! !-------4-------! ! EAST |
---|
56 | ! I ! ! 1 ilev 2! ! II ^ |
---|
57 | ! ! !-------3--------! ! ! |
---|
58 | ! ! !---------------! !--->floor 1 ! |
---|
59 | ! ! ! ! ! ! |
---|
60 | ! ! ! ! ! ! |
---|
61 | ! ! ----------------- ! <--------------(n) |
---|
62 | ! ------------------------>ground ------------(1) |
---|
63 | ! BOTTOM |
---|
64 | ! i(6) |
---|
65 | ! i |
---|
66 | ! +---------v-----+ |
---|
67 | ! /| /| 3D vision of a room |
---|
68 | ! / | 4 / | |
---|
69 | ! / | / | |
---|
70 | ! / | / | |
---|
71 | ! / | / | |
---|
72 | ! +---------------+ | |
---|
73 | ! | 1 | | 2 | |
---|
74 | ! | +---------|-----+ |
---|
75 | ! dzlev | / | / |
---|
76 | ! | / 3 | / |
---|
77 | ! | /bw | / |
---|
78 | ! | / | / |
---|
79 | ! |/ |/ |
---|
80 | ! +---------------+ |
---|
81 | ! ^ bl |
---|
82 | ! i |
---|
83 | ! i |
---|
84 | ! (5) |
---|
85 | !----------------------------------------------------------------------- |
---|
86 | |
---|
87 | |
---|
88 | ! Input: |
---|
89 | ! ----- |
---|
90 | |
---|
91 | real dt !time step [s] |
---|
92 | |
---|
93 | integer nzcanm !Maximum number of vertical levels in the urban grid |
---|
94 | integer nlev !number of floors in the building |
---|
95 | integer nwal !number of levels inside the wall |
---|
96 | integer nrof !number of levels inside the roof |
---|
97 | integer nflo !number of levels inside the floor |
---|
98 | integer ngrd !number of levels inside the ground |
---|
99 | real dzlev !vertical grid resolution [m] |
---|
100 | real bl !Building length [m] |
---|
101 | real bw !Building width [m] |
---|
102 | |
---|
103 | real albwal !albedo of the walls |
---|
104 | real albwin !albedo of the windows |
---|
105 | real albrof !albedo of the roof |
---|
106 | |
---|
107 | real emwal !emissivity of the walls |
---|
108 | |
---|
109 | real emrof !emissivity of the roof |
---|
110 | real emwin !emissivity of the windows |
---|
111 | |
---|
112 | real pwin !window proportion |
---|
113 | real, intent(in) :: cop !Coefficient of performance of the A/C systems |
---|
114 | real, intent(in) :: beta !Thermal efficiency of the heat exchanger |
---|
115 | integer, intent(in) :: sw_cond ! Air Conditioning switch |
---|
116 | real, intent(in) :: timeon ! Initial local time of A/C systems |
---|
117 | real, intent(in) :: timeoff ! Ending local time of A/C systems |
---|
118 | real, intent(in) :: targtemp ! Target temperature of A/C systems |
---|
119 | real, intent(in) :: gaptemp ! Comfort range of indoor temperature |
---|
120 | real, intent(in) :: targhum ! Target humidity of A/C systems |
---|
121 | real, intent(in) :: gaphum ! Comfort range of specific humidity |
---|
122 | real, intent(in) :: perflo ! Peak number of occupants per unit floor area |
---|
123 | real, intent(in) :: hsesf ! |
---|
124 | real, intent(in) :: hsequip(24) ! |
---|
125 | |
---|
126 | real cswal(nwal) !Specific heat of the wall [J/(m3.K)] |
---|
127 | |
---|
128 | real csflo(nflo) !Specific heat of the floor [J/(m3.K)] |
---|
129 | real csrof(nrof) !Specific heat of the roof [J/(m3.K)] |
---|
130 | real csgrd(ngrd) !Specific heat of the ground [J/(m3.K)] |
---|
131 | |
---|
132 | real kwal(nwal+1) !Thermal conductivity in each layers of the walls (face) [W/(m.K)] |
---|
133 | real kflo(nflo+1) !Thermal diffusivity in each layers of the floors (face) [W/(m.K)] |
---|
134 | real krof(nrof+1) !Thermal diffusivity in each layers of the roof (face) [W/(m.K)] |
---|
135 | real kgrd(ngrd+1) !Thermal diffusivity in each layers of the ground (face) [W/(m.K)] |
---|
136 | |
---|
137 | real dzwal(nwal) !Layer sizes of walls [m] |
---|
138 | real dzflo(nflo) !Layer sizes of floors [m] |
---|
139 | real dzrof(nrof) !Layer sizes of roof [m] |
---|
140 | real dzgrd(ngrd) !Layer sizes of ground [m] |
---|
141 | |
---|
142 | real latent !latent heat of evaporation [J/Kg] |
---|
143 | |
---|
144 | |
---|
145 | real rs !external short wave radiation [W/m2] |
---|
146 | real rl !external long wave radiation [W/m2] |
---|
147 | real rswal(4,nzcanm) !short wave radiation reaching the exterior walls [W/m2] |
---|
148 | real rlwal(4,nzcanm) !long wave radiation reaching the walls [W/m2] |
---|
149 | real rhoout(nzcanm) !exterior air density [kg/m3] |
---|
150 | real tout(nzcanm) !external temperature [K] |
---|
151 | real humout(nzcanm) !absolute humidity [Kgwater/Kgair] |
---|
152 | real press(nzcanm) !external air pressure [Pa] |
---|
153 | |
---|
154 | real hswalout(4,nzcanm) !outside walls sensible heat flux [W/m2] |
---|
155 | real hswinout(4,nzcanm) !outside window sensible heat flux [W/m2] |
---|
156 | real hsrof !Sensible heat flux at the roof [W/m2] |
---|
157 | |
---|
158 | real rair !ideal gas constant [J.kg-1.K-1] |
---|
159 | real sigma !parameter (wall is not black body) [W/m2.K4] |
---|
160 | real cp !specific heat of air [J/kg.K] |
---|
161 | |
---|
162 | |
---|
163 | !Input-Output |
---|
164 | !------------ |
---|
165 | real tlev(nzcanm) !temperature of the floors [K] |
---|
166 | real shumlev(nzcanm) !specific humidity of the floor [kg/kg] |
---|
167 | real twal(4,nwal,nzcanm) !walls temperatures [K] |
---|
168 | real twin(4,nzcanm) !windows temperatures [K] |
---|
169 | real tflo(nflo,nzcanm-1) !floor temperatures [K] |
---|
170 | real tgrd(ngrd) !ground temperature [K] |
---|
171 | real trof(nrof) !roof temperature [K] |
---|
172 | real hsout(nzcanm) !sensible heat emitted outside the floor [W] |
---|
173 | real hlout(nzcanm) !latent heat emitted outside the floor [W] |
---|
174 | real consump(nzcanm) !Consumption for the a.c. in each floor [W] |
---|
175 | real hsvent(nzcanm) !sensible heat generated by natural ventilation [W] |
---|
176 | real hlvent(nzcanm) !latent heat generated by natural ventilation [W] |
---|
177 | real gsrof !heat flux flowing inside the roof [W/m²] |
---|
178 | real gswal(4,nzcanm) !heat flux flowing inside the floors [W/m²] |
---|
179 | |
---|
180 | ! Local: |
---|
181 | ! ----- |
---|
182 | integer swwal !swich for the physical coefficients calculation |
---|
183 | integer ilev !index for rooms |
---|
184 | integer iwal !index for walls |
---|
185 | integer iflo !index for floors |
---|
186 | integer ivw !index for vertical walls |
---|
187 | integer igrd !index for ground |
---|
188 | integer irof !index for roof |
---|
189 | real hseqocc(nzcanm) !sensible heat generated by equipments and occupants [W] |
---|
190 | real hleqocc(nzcanm) !latent heat generated by occupants [W] |
---|
191 | real hscond(nzcanm) !sensible heat generated by wall conduction [W] |
---|
192 | real hslev(nzcanm) !sensible heat flux generated inside the room [W] |
---|
193 | real hllev(nzcanm) !latent heat flux generatd inside the room [W] |
---|
194 | real surwal(6,nzcanm) !Surface of the walls [m2] |
---|
195 | real surwal1D(6) !wall surfaces of a generic room [m2] |
---|
196 | real rsint(6) !short wave radiation reaching the indoor walls[W/m2] |
---|
197 | real rswalins(6,nzcanm) !internal short wave radiation for the building [W/m2] |
---|
198 | real twin1D(4) !temperature of windows for a particular room [K] |
---|
199 | real twal_int(6) !temperature of the first internal layers of a room [K] |
---|
200 | real rlint(6) !internal wall long wave radiation [w/m2] |
---|
201 | real rlwalins(6,nzcanm) !internal long wave radiation for the building [W/m2] |
---|
202 | real hrwalout(4,nzcanm) !external radiative flux to the walls [W/m2] |
---|
203 | real hrwalins(6,nzcanm) !inside radiative flux to the walls [W/m2] |
---|
204 | real hrwinout(4,nzcanm) !external radiative flux to the window [W/m2] |
---|
205 | real hrwinins(4,nzcanm) !inside radiative flux to the window [W/m2] |
---|
206 | real hrrof !external radiative flux to the roof [W/m2] |
---|
207 | real hs |
---|
208 | real hsneed(nzcanm) !sensible heat needed by the room [W] |
---|
209 | real hlneed(nzcanm) !latent heat needed by the room [W] |
---|
210 | real hswalins(6,nzcanm) !inside walls sensible heat flux [W/m2] |
---|
211 | real hswalins1D(6) |
---|
212 | real hswinins(4,nzcanm) !inside window sensible heat flux [W/m2] |
---|
213 | real hswinins1D(4) |
---|
214 | real htot(2) !total heat flux at the wall [W/m2] |
---|
215 | real twal1D(nwal) |
---|
216 | real tflo1D(nflo) |
---|
217 | real tgrd1D(ngrd) |
---|
218 | real trof1D(nrof) |
---|
219 | real rswal1D(4) |
---|
220 | real Qb !Overall heat capacity of the indoor air [J/K] |
---|
221 | real vollev !volume of the room [m3] |
---|
222 | real rhoint !density of the internal air [Kg/m3] |
---|
223 | real cpint !specific heat of the internal air [J/kg.K] |
---|
224 | real humdry !specific humidiy of dry air [kg water/kg dry air] |
---|
225 | real radflux !Function to compute the total radiation budget |
---|
226 | real consumpbuild !Energetic consumption for the entire building [KWh/s] |
---|
227 | real hsoutbuild !Total sensible heat ejected into the atmosphere[W] |
---|
228 | !by the air conditioning system and per building |
---|
229 | real nhourday !number of hours from midnight, local time |
---|
230 | !-------------------------------------------- |
---|
231 | !Initialization |
---|
232 | !-------------------------------------------- |
---|
233 | |
---|
234 | do ilev=1,nzcanm |
---|
235 | hseqocc(ilev)=0. |
---|
236 | hleqocc(ilev)=0. |
---|
237 | hscond(ilev)=0. |
---|
238 | hslev(ilev)=0. |
---|
239 | hllev(ilev)=0. |
---|
240 | enddo |
---|
241 | |
---|
242 | !Calculation of the surfaces of the building |
---|
243 | !-------------------------------------------- |
---|
244 | |
---|
245 | |
---|
246 | do ivw=1,6 |
---|
247 | do ilev=1,nzcanm |
---|
248 | surwal(ivw,ilev)=1. !initialisation |
---|
249 | end do |
---|
250 | end do |
---|
251 | |
---|
252 | do ilev=1,nlev |
---|
253 | do ivw=1,2 |
---|
254 | surwal(ivw,ilev)=dzlev*bw |
---|
255 | end do |
---|
256 | do ivw=3,4 |
---|
257 | surwal(ivw,ilev)=dzlev*bl |
---|
258 | end do |
---|
259 | do ivw=5,6 |
---|
260 | surwal(ivw,ilev)=bw*bl |
---|
261 | end do |
---|
262 | end do |
---|
263 | |
---|
264 | |
---|
265 | ! Calculation of the short wave radiations at the internal walls |
---|
266 | ! --------------------------------------------------------------- |
---|
267 | |
---|
268 | |
---|
269 | do ilev=1,nlev |
---|
270 | |
---|
271 | do ivw=1,4 |
---|
272 | rswal1D(ivw)=rswal(ivw,ilev) |
---|
273 | end do |
---|
274 | |
---|
275 | do ivw=1,6 |
---|
276 | surwal1D(ivw)=surwal(ivw,ilev) |
---|
277 | end do |
---|
278 | |
---|
279 | call int_rsrad(albwin,albins,pwin,rswal1D,& |
---|
280 | surwal1D,bw,bl,dzlev,rsint) |
---|
281 | |
---|
282 | do ivw=1,6 |
---|
283 | rswalins(ivw,ilev)=rsint(ivw) |
---|
284 | end do |
---|
285 | |
---|
286 | end do !ilev |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | ! Calculation of the long wave radiation at the internal walls |
---|
291 | !------------------------------------------------------------- |
---|
292 | |
---|
293 | |
---|
294 | !Intermediate rooms |
---|
295 | |
---|
296 | if (nlev.gt.2) then |
---|
297 | do ilev=2,nlev-1 |
---|
298 | |
---|
299 | do ivw=1,4 |
---|
300 | twin1D(ivw)=twin(ivw,ilev) |
---|
301 | twal_int(ivw)=twal(ivw,1,ilev) |
---|
302 | end do |
---|
303 | |
---|
304 | twal_int(5)=tflo(nflo,ilev-1) |
---|
305 | twal_int(6)=tflo(1,ilev) |
---|
306 | |
---|
307 | call int_rlrad(emins,emwin,sigma,twal_int,twin1D,& |
---|
308 | pwin,bw,bl,dzlev,rlint) |
---|
309 | |
---|
310 | |
---|
311 | do ivw=1,6 |
---|
312 | rlwalins(ivw,ilev)=rlint(ivw) |
---|
313 | end do |
---|
314 | |
---|
315 | end do !ilev |
---|
316 | end if |
---|
317 | |
---|
318 | |
---|
319 | if (nlev.ne.1) then |
---|
320 | |
---|
321 | !bottom room |
---|
322 | |
---|
323 | do ivw=1,4 |
---|
324 | twin1D(ivw)=twin(ivw,1) |
---|
325 | twal_int(ivw)=twal(ivw,1,1) |
---|
326 | end do |
---|
327 | |
---|
328 | twal_int(5)=tgrd(ngrd) |
---|
329 | twal_int(6)=tflo(1,1) |
---|
330 | |
---|
331 | |
---|
332 | call int_rlrad(emins,emwin,sigma,twal_int,twin1D,& |
---|
333 | pwin,bw,bl,dzlev,rlint) |
---|
334 | |
---|
335 | do ivw=1,6 |
---|
336 | rlwalins(ivw,1)=rlint(ivw) |
---|
337 | end do |
---|
338 | |
---|
339 | !top room |
---|
340 | |
---|
341 | do ivw=1,4 |
---|
342 | twin1D(ivw)=twin(ivw,nlev) |
---|
343 | twal_int(ivw)=twal(ivw,1,nlev) |
---|
344 | end do |
---|
345 | |
---|
346 | twal_int(5)=tflo(nflo,nlev-1) |
---|
347 | twal_int(6)=trof(1) |
---|
348 | |
---|
349 | |
---|
350 | call int_rlrad(emins,emwin,sigma,twal_int,twin1D,& |
---|
351 | pwin,bw,bl,dzlev,rlint) |
---|
352 | |
---|
353 | do ivw=1,6 |
---|
354 | rlwalins(ivw,nlev)=rlint(ivw) |
---|
355 | end do |
---|
356 | |
---|
357 | else !Top <---> Bottom |
---|
358 | |
---|
359 | do ivw=1,4 |
---|
360 | twin1D(ivw)=twin(ivw,1) |
---|
361 | twal_int(ivw)=twal(ivw,1,1) |
---|
362 | end do |
---|
363 | |
---|
364 | twal_int(5)=tgrd(ngrd) |
---|
365 | twal_int(6)=trof(1) |
---|
366 | |
---|
367 | call int_rlrad(emins,emwin,sigma,twal_int,twin1D, & |
---|
368 | pwin,bw,bl,dzlev,rlint) |
---|
369 | |
---|
370 | do ivw=1,6 |
---|
371 | rlwalins(ivw,1)=rlint(ivw) |
---|
372 | end do |
---|
373 | |
---|
374 | end if |
---|
375 | |
---|
376 | |
---|
377 | ! Calculation of the radiative fluxes |
---|
378 | ! ----------------------------------- |
---|
379 | |
---|
380 | !External vertical walls and windows |
---|
381 | |
---|
382 | do ilev=1,nlev |
---|
383 | do ivw=1,4 |
---|
384 | call radfluxs(radflux,albwal,rswal(ivw,ilev), & |
---|
385 | emwal,rlwal(ivw,ilev),sigma, & |
---|
386 | twal(ivw,nwal,ilev)) |
---|
387 | |
---|
388 | hrwalout(ivw,ilev)=radflux |
---|
389 | |
---|
390 | hrwinout(ivw,ilev)=emwin*rlwal(ivw,ilev)- & |
---|
391 | emwin*sigma*(twin(ivw,ilev)**4) |
---|
392 | |
---|
393 | |
---|
394 | end do ! ivw |
---|
395 | end do ! ilev |
---|
396 | |
---|
397 | !Roof |
---|
398 | |
---|
399 | call radfluxs(radflux,albrof,rs,emrof,rl,sigma,trof(nrof)) |
---|
400 | |
---|
401 | hrrof=radflux |
---|
402 | |
---|
403 | !Internal walls for intermediate rooms |
---|
404 | |
---|
405 | if(nlev.gt.2) then |
---|
406 | |
---|
407 | do ilev=2,nlev-1 |
---|
408 | do ivw=1,4 |
---|
409 | |
---|
410 | call radfluxs(radflux,albins,rswalins(ivw,ilev), & |
---|
411 | emins,rlwalins(ivw,ilev),sigma, & |
---|
412 | twal(ivw,1,ilev)) |
---|
413 | |
---|
414 | hrwalins(ivw,ilev)=radflux |
---|
415 | |
---|
416 | end do !ivw |
---|
417 | |
---|
418 | call radfluxs(radflux,albins,rswalins(5,ilev), & |
---|
419 | emins,rlwalins(5,ilev),sigma,& |
---|
420 | tflo(nflo,ilev-1)) |
---|
421 | |
---|
422 | hrwalins(5,ilev)=radflux |
---|
423 | |
---|
424 | call radfluxs(radflux,albins,rswalins(6,ilev), & |
---|
425 | emins,rlwalins(6,ilev),sigma,& |
---|
426 | tflo(1,ilev)) |
---|
427 | hrwalins(6,ilev)=radflux |
---|
428 | |
---|
429 | end do !ilev |
---|
430 | |
---|
431 | end if |
---|
432 | |
---|
433 | |
---|
434 | !Internal walls for the bottom and the top room |
---|
435 | ! |
---|
436 | if (nlev.ne.1) then |
---|
437 | |
---|
438 | !bottom floor |
---|
439 | |
---|
440 | do ivw=1,4 |
---|
441 | |
---|
442 | call radfluxs(radflux,albins,rswalins(ivw,1), & |
---|
443 | emins,rlwalins(ivw,1),sigma, & |
---|
444 | twal(ivw,1,1)) |
---|
445 | |
---|
446 | hrwalins(ivw,1)=radflux |
---|
447 | |
---|
448 | end do |
---|
449 | |
---|
450 | |
---|
451 | call radfluxs(radflux,albins,rswalins(5,1),& |
---|
452 | emins,rlwalins(5,1),sigma,& !bottom |
---|
453 | tgrd(ngrd)) |
---|
454 | |
---|
455 | hrwalins(5,1)=radflux |
---|
456 | |
---|
457 | |
---|
458 | call radfluxs(radflux,albins,rswalins(6,1),& |
---|
459 | emins,rlwalins(6,1),sigma,& |
---|
460 | tflo(1,1)) |
---|
461 | |
---|
462 | hrwalins(6,1)=radflux |
---|
463 | |
---|
464 | !roof floor |
---|
465 | |
---|
466 | do ivw=1,4 |
---|
467 | |
---|
468 | call radfluxs(radflux,albins,rswalins(ivw,nlev), & |
---|
469 | emins,rlwalins(ivw,nlev),sigma,& |
---|
470 | twal(ivw,1,nlev)) |
---|
471 | |
---|
472 | hrwalins(ivw,nlev)=radflux |
---|
473 | |
---|
474 | end do !top |
---|
475 | |
---|
476 | |
---|
477 | call radfluxs(radflux,albins,rswalins(5,nlev), & |
---|
478 | emins,rlwalins(5,nlev),sigma,& |
---|
479 | tflo(nflo,nlev-1)) |
---|
480 | |
---|
481 | hrwalins(5,nlev)=radflux |
---|
482 | |
---|
483 | call radfluxs(radflux,albins,rswalins(6,nlev), & |
---|
484 | emins,rlwalins(6,nlev),sigma,& |
---|
485 | trof(1)) |
---|
486 | |
---|
487 | hrwalins(6,nlev)=radflux |
---|
488 | |
---|
489 | else ! Top <---> Bottom room |
---|
490 | |
---|
491 | do ivw=1,4 |
---|
492 | |
---|
493 | call radfluxs(radflux,albins,rswalins(ivw,1),& |
---|
494 | emins,rlwalins(ivw,1),sigma, & |
---|
495 | twal(ivw,1,1)) |
---|
496 | |
---|
497 | hrwalins(ivw,1)=radflux |
---|
498 | |
---|
499 | end do |
---|
500 | |
---|
501 | call radfluxs(radflux,albins,rswalins(5,1),& |
---|
502 | emins,rlwalins(5,1),sigma, & |
---|
503 | tgrd(ngrd)) |
---|
504 | |
---|
505 | hrwalins(5,1)=radflux |
---|
506 | |
---|
507 | call radfluxs(radflux,albins,rswalins(6,nlev), & |
---|
508 | emins,rlwalins(6,nlev),sigma,& |
---|
509 | trof(1)) |
---|
510 | hrwalins(6,1)=radflux |
---|
511 | |
---|
512 | end if |
---|
513 | |
---|
514 | |
---|
515 | !Windows |
---|
516 | |
---|
517 | do ilev=1,nlev |
---|
518 | do ivw=1,4 |
---|
519 | hrwinins(ivw,ilev)=emwin*rlwalins(ivw,ilev)- & |
---|
520 | emwin*sigma*(twin(ivw,ilev)**4) |
---|
521 | end do |
---|
522 | end do |
---|
523 | |
---|
524 | |
---|
525 | ! Calculation of the sensible heat fluxes |
---|
526 | ! --------------------------------------- |
---|
527 | |
---|
528 | !Vertical fluxes for walls |
---|
529 | |
---|
530 | do ilev=1,nlev |
---|
531 | do ivw=1,4 |
---|
532 | |
---|
533 | call hsinsflux (2,2,tlev(ilev),twal(ivw,1,ilev),hs) |
---|
534 | |
---|
535 | hswalins(ivw,ilev)=hs |
---|
536 | |
---|
537 | end do ! ivw |
---|
538 | end do ! ilev |
---|
539 | |
---|
540 | |
---|
541 | !Vertical fluxes for windows |
---|
542 | |
---|
543 | do ilev=1,nlev |
---|
544 | |
---|
545 | do ivw=1,4 |
---|
546 | |
---|
547 | call hsinsflux (2,1,tlev(ilev),twin(ivw,ilev),hs) |
---|
548 | |
---|
549 | hswinins(ivw,ilev)=hs |
---|
550 | |
---|
551 | end do ! ivw |
---|
552 | |
---|
553 | end do !ilev |
---|
554 | |
---|
555 | !Horizontal fluxes |
---|
556 | |
---|
557 | if (nlev.gt.2) then |
---|
558 | |
---|
559 | do ilev=2,nlev-1 |
---|
560 | |
---|
561 | call hsinsflux (1,2,tlev(ilev),tflo(nflo,ilev-1),hs) |
---|
562 | |
---|
563 | hswalins(5,ilev)=hs |
---|
564 | |
---|
565 | call hsinsflux (1,2,tlev(ilev),tflo(1,ilev),hs) |
---|
566 | |
---|
567 | hswalins(6,ilev)=hs |
---|
568 | |
---|
569 | end do ! ilev |
---|
570 | |
---|
571 | end if |
---|
572 | |
---|
573 | if (nlev.ne.1) then |
---|
574 | |
---|
575 | call hsinsflux (1,2,tlev(1),tgrd(ngrd),hs) |
---|
576 | |
---|
577 | hswalins(5,1)=hs !Bottom room |
---|
578 | |
---|
579 | call hsinsflux (1,2,tlev(1),tflo(1,1),hs) |
---|
580 | |
---|
581 | hswalins(6,1)=hs |
---|
582 | |
---|
583 | call hsinsflux (1,2,tlev(nlev),tflo(nflo,nlev-1),hs) |
---|
584 | |
---|
585 | hswalins(5,nlev)=hs !Top room |
---|
586 | |
---|
587 | call hsinsflux (1,2,tlev(nlev),trof(1),hs) |
---|
588 | |
---|
589 | hswalins(6,nlev)=hs |
---|
590 | |
---|
591 | else ! Bottom<--->Top |
---|
592 | |
---|
593 | call hsinsflux (1,2,tlev(1),tgrd(ngrd),hs) |
---|
594 | |
---|
595 | hswalins(5,1)=hs |
---|
596 | |
---|
597 | call hsinsflux (1,2,tlev(nlev),trof(1),hs) |
---|
598 | |
---|
599 | hswalins(6,nlev)=hs |
---|
600 | |
---|
601 | end if |
---|
602 | |
---|
603 | |
---|
604 | !Calculation of the temperature for the different surfaces |
---|
605 | ! -------------------------------------------------------- |
---|
606 | |
---|
607 | ! Vertical walls |
---|
608 | |
---|
609 | swwal=1 |
---|
610 | do ilev=1,nlev |
---|
611 | do ivw=1,4 |
---|
612 | |
---|
613 | htot(1)=hswalins(ivw,ilev)+hrwalins(ivw,ilev) |
---|
614 | htot(2)=hswalout(ivw,ilev)+hrwalout(ivw,ilev) |
---|
615 | gswal(ivw,ilev)=htot(2) |
---|
616 | |
---|
617 | do iwal=1,nwal |
---|
618 | twal1D(iwal)=twal(ivw,iwal,ilev) |
---|
619 | end do |
---|
620 | |
---|
621 | call wall(swwal,nwal,dt,dzwal,kwal,cswal,htot,twal1D) |
---|
622 | |
---|
623 | do iwal=1,nwal |
---|
624 | twal(ivw,iwal,ilev)=twal1D(iwal) |
---|
625 | end do |
---|
626 | |
---|
627 | end do ! ivw |
---|
628 | end do ! ilev |
---|
629 | |
---|
630 | ! Windows |
---|
631 | |
---|
632 | do ilev=1,nlev |
---|
633 | do ivw=1,4 |
---|
634 | |
---|
635 | htot(1)=hswinins(ivw,ilev)+hrwinins(ivw,ilev) |
---|
636 | htot(2)=hswinout(ivw,ilev)+hrwinout(ivw,ilev) |
---|
637 | |
---|
638 | twin(ivw,ilev)=twin(ivw,ilev)+(dt/(cswin*thickwin))* & |
---|
639 | (htot(1)+htot(2)) |
---|
640 | |
---|
641 | end do ! ivw |
---|
642 | end do ! ilev |
---|
643 | |
---|
644 | ! Horizontal floors |
---|
645 | |
---|
646 | |
---|
647 | if (nlev.gt.1) then |
---|
648 | swwal=1 |
---|
649 | do ilev=1,nlev-1 |
---|
650 | |
---|
651 | htot(1)=hrwalins(6,ilev)+hswalins(6,ilev) |
---|
652 | htot(2)=hrwalins(5,ilev+1)+hswalins(5,ilev+1) |
---|
653 | |
---|
654 | do iflo=1,nflo |
---|
655 | tflo1D(iflo)=tflo(iflo,ilev) |
---|
656 | end do |
---|
657 | |
---|
658 | call wall(swwal,nflo,dt,dzflo,kflo,csflo,htot,tflo1D) |
---|
659 | |
---|
660 | do iflo=1,nflo |
---|
661 | tflo(iflo,ilev)=tflo1D(iflo) |
---|
662 | end do |
---|
663 | |
---|
664 | end do ! ilev |
---|
665 | end if |
---|
666 | |
---|
667 | |
---|
668 | ! Ground |
---|
669 | |
---|
670 | swwal=1 |
---|
671 | |
---|
672 | htot(1)=0. !Diriclet b.c. at the internal boundary |
---|
673 | htot(2)=hswalins(5,1)+hrwalins(5,1) |
---|
674 | |
---|
675 | do igrd=1,ngrd |
---|
676 | tgrd1D(igrd)=tgrd(igrd) |
---|
677 | end do |
---|
678 | |
---|
679 | call wall(swwal,ngrd,dt,dzgrd,kgrd,csgrd,htot,tgrd1D) |
---|
680 | |
---|
681 | do igrd=1,ngrd |
---|
682 | tgrd(igrd)=tgrd1D(igrd) |
---|
683 | end do |
---|
684 | |
---|
685 | |
---|
686 | ! Roof |
---|
687 | |
---|
688 | swwal=1 |
---|
689 | |
---|
690 | htot(1)=hswalins(6,nlev)+hrwalins(6,nlev) |
---|
691 | htot(2)=hsrof+hrrof |
---|
692 | gsrof=htot(2) |
---|
693 | |
---|
694 | do irof=1,nrof |
---|
695 | trof1D(irof)=trof(irof) |
---|
696 | end do |
---|
697 | |
---|
698 | call wall(swwal,nrof,dt,dzrof,krof,csrof,htot,trof1D) |
---|
699 | |
---|
700 | do irof=1,nrof |
---|
701 | trof(irof)=trof1D(irof) |
---|
702 | end do |
---|
703 | |
---|
704 | ! Calculation of the heat fluxes and of the temperature of the rooms |
---|
705 | ! ------------------------------------------------------------------ |
---|
706 | |
---|
707 | do ilev=1,nlev |
---|
708 | |
---|
709 | !Calculation of the heat generated by equipments and occupants |
---|
710 | |
---|
711 | call fluxeqocc(nhourday,bw,bl,perflo,hsesf,hsequip,hseqocc(ilev),hleqocc(ilev)) |
---|
712 | |
---|
713 | !Calculation of the heat generated by natural ventilation |
---|
714 | |
---|
715 | vollev=bw*bl*dzlev |
---|
716 | humdry=shumlev(ilev)/(1.-shumlev(ilev)) |
---|
717 | rhoint=(press(ilev))/(rair*(1.+0.61*humdry)*tlev(ilev)) |
---|
718 | cpint=cp*(1.+0.84*humdry) |
---|
719 | |
---|
720 | |
---|
721 | call fluxvent(cpint,rhoint,vollev,tlev(ilev),tout(ilev), & |
---|
722 | latent,humout(ilev),rhoout(ilev),shumlev(ilev),& |
---|
723 | beta,hsvent(ilev),hlvent(ilev)) |
---|
724 | |
---|
725 | !Calculation of the heat generated by conduction |
---|
726 | |
---|
727 | do iwal=1,6 |
---|
728 | hswalins1D(iwal)=hswalins(iwal,ilev) |
---|
729 | surwal1D(iwal)=surwal(iwal,ilev) |
---|
730 | end do |
---|
731 | |
---|
732 | do iwal=1,4 |
---|
733 | hswinins1D(iwal)=hswinins(iwal,ilev) |
---|
734 | end do |
---|
735 | |
---|
736 | call fluxcond(hswalins1D,hswinins1D,surwal1D,pwin,& |
---|
737 | hscond(ilev)) |
---|
738 | |
---|
739 | !Calculation of the heat generated inside the room |
---|
740 | |
---|
741 | call fluxroo(hseqocc(ilev),hleqocc(ilev),hsvent(ilev), & |
---|
742 | hlvent(ilev),hscond(ilev),hslev(ilev),hllev(ilev)) |
---|
743 | |
---|
744 | |
---|
745 | !Evolution of the temperature and of the specific humidity |
---|
746 | |
---|
747 | Qb=rhoint*cpint*vollev |
---|
748 | |
---|
749 | ! temperature regulation |
---|
750 | |
---|
751 | call regtemp(sw_cond,nhourday,dt,Qb,hslev(ilev), & |
---|
752 | tlev(ilev),timeon,timeoff,targtemp,gaptemp,hsneed(ilev)) |
---|
753 | |
---|
754 | ! humidity regulation |
---|
755 | |
---|
756 | call reghum(sw_cond,nhourday,dt,vollev,rhoint,latent, & |
---|
757 | hllev(ilev),shumlev(ilev),timeon,timeoff,& |
---|
758 | targhum,gaphum,hlneed(ilev)) |
---|
759 | ! |
---|
760 | !performance of the air conditioning system for the test |
---|
761 | ! |
---|
762 | |
---|
763 | call air_cond(hsneed(ilev),hlneed(ilev),dt, & |
---|
764 | hsout(ilev),hlout(ilev),consump(ilev), cop) |
---|
765 | |
---|
766 | tlev(ilev)=tlev(ilev)+(dt/Qb)*(hslev(ilev)-hsneed(ilev)) |
---|
767 | |
---|
768 | shumlev(ilev)=shumlev(ilev)+(dt/(vollev*rhoint*latent))* & |
---|
769 | (hllev(ilev)-hlneed(ilev)) |
---|
770 | |
---|
771 | end do !ilev |
---|
772 | |
---|
773 | call consump_total(nzcanm,nlev,consumpbuild,hsoutbuild, & |
---|
774 | hsout,consump) |
---|
775 | |
---|
776 | return |
---|
777 | end subroutine BEM |
---|
778 | |
---|
779 | !====6=8===============================================================72 |
---|
780 | !====6=8===============================================================72 |
---|
781 | |
---|
782 | subroutine wall(swwall,nz,dt,dz,k,cs,flux,temp) |
---|
783 | |
---|
784 | !______________________________________________________________________ |
---|
785 | |
---|
786 | !The aim of this subroutine is to solve the 1D heat fiffusion equation |
---|
787 | !for roof, walls and streets: |
---|
788 | ! |
---|
789 | ! dT/dt=d/dz[K*dT/dz] where: |
---|
790 | ! |
---|
791 | ! -T is the surface temperature(wall, street, roof) |
---|
792 | ! -Kz is the heat diffusivity inside the material. |
---|
793 | ! |
---|
794 | !The resolution is done implicitly with a FV discretisation along the |
---|
795 | !different layers of the material: |
---|
796 | |
---|
797 | ! ____________________________ |
---|
798 | ! n * |
---|
799 | ! * |
---|
800 | ! * |
---|
801 | ! ____________________________ |
---|
802 | ! i+2 |
---|
803 | ! I+1 |
---|
804 | ! ____________________________ |
---|
805 | ! i+1 |
---|
806 | ! I ==> [T(I,n+1)-T(I,n)]/DT= |
---|
807 | ! ____________________________ [F(i+1)-F(i)]/DZI |
---|
808 | ! i |
---|
809 | ! I-1 ==> A*T(n+1)=B where: |
---|
810 | ! ____________________________ |
---|
811 | ! i-1 * * A is a TRIDIAGONAL matrix. |
---|
812 | ! * * B=T(n)+S takes into account the sources. |
---|
813 | ! * |
---|
814 | ! 1 ____________________________ |
---|
815 | |
---|
816 | !________________________________________________________________ |
---|
817 | |
---|
818 | implicit none |
---|
819 | |
---|
820 | !Input: |
---|
821 | !----- |
---|
822 | integer nz !Number of layers inside the material |
---|
823 | real dt !Time step |
---|
824 | real dz(nz) !Layer sizes [m] |
---|
825 | real cs(nz) !Specific heat of the material [J/(m3.K)] |
---|
826 | real k(nz+1) !Thermal conductivity in each layers (face) [W/(m.K)] |
---|
827 | real flux(2) !Internal and external flux terms. |
---|
828 | |
---|
829 | !Input-Output: |
---|
830 | !------------- |
---|
831 | |
---|
832 | integer swwall !swich for the physical coefficients calculation |
---|
833 | real temp(nz) !Temperature at each layer |
---|
834 | |
---|
835 | !Local: |
---|
836 | !----- |
---|
837 | |
---|
838 | real a(-1:1,nz) ! a(-1,*) lower diagonal A(i,i-1) |
---|
839 | ! a(0,*) principal diagonal A(i,i) |
---|
840 | ! a(1,*) upper diagonal A(i,i+1). |
---|
841 | |
---|
842 | real b(nz) !Coefficients of the second term. |
---|
843 | real k1(20) |
---|
844 | real k2(20) |
---|
845 | real kc(20) |
---|
846 | save k1,k2,kc |
---|
847 | integer iz |
---|
848 | |
---|
849 | !________________________________________________________________ |
---|
850 | ! |
---|
851 | !Calculation of the coefficients |
---|
852 | |
---|
853 | if (swwall.eq.1) then |
---|
854 | |
---|
855 | if (nz.gt.20) then |
---|
856 | write(*,*) 'number of layers in the walls/roofs too big ',nz |
---|
857 | write(*,*) 'please decrease under of',20 |
---|
858 | stop |
---|
859 | endif |
---|
860 | |
---|
861 | call wall_coeff(nz,dt,dz,cs,k,k1,k2,kc) |
---|
862 | swwall=0 |
---|
863 | |
---|
864 | end if |
---|
865 | |
---|
866 | !Computation of the first value (iz=1) of A and B: |
---|
867 | |
---|
868 | a(-1,1)=0. |
---|
869 | a(0,1)=1+k2(1) |
---|
870 | a(1,1)=-k2(1) |
---|
871 | |
---|
872 | b(1)=temp(1)+flux(1)*kc(1) |
---|
873 | |
---|
874 | !! |
---|
875 | !!We can fixed the internal temperature |
---|
876 | !! |
---|
877 | !! a(-1,1)=0. |
---|
878 | !! a(0,1)=1 |
---|
879 | !! a(1,1)=0. |
---|
880 | !! |
---|
881 | !! b(1)=temp(1) |
---|
882 | !! |
---|
883 | !Computation of the internal values (iz=2,...,n-1) of A and B: |
---|
884 | |
---|
885 | do iz=2,nz-1 |
---|
886 | a(-1,iz)=-k1(iz) |
---|
887 | a(0,iz)=1+k1(iz)+k2(iz) |
---|
888 | a(1,iz)=-k2(iz) |
---|
889 | b(iz)=temp(iz) |
---|
890 | end do |
---|
891 | |
---|
892 | !Computation of the external value (iz=n) of A and B: |
---|
893 | |
---|
894 | a(-1,nz)=-k1(nz) |
---|
895 | a(0,nz)=1+k1(nz) |
---|
896 | a(1,nz)=0. |
---|
897 | |
---|
898 | b(nz)=temp(nz)+flux(2)*kc(nz) |
---|
899 | |
---|
900 | !Resolution of the system A*T(n+1)=B |
---|
901 | |
---|
902 | call tridia(nz,a,b,temp) |
---|
903 | |
---|
904 | return |
---|
905 | end subroutine wall |
---|
906 | |
---|
907 | !====6=8===============================================================72 |
---|
908 | !====6=8===============================================================72 |
---|
909 | |
---|
910 | subroutine wall_coeff(nz,dt,dz,cs,k,k1,k2,kc) |
---|
911 | |
---|
912 | implicit none |
---|
913 | |
---|
914 | !--------------------------------------------------------------------- |
---|
915 | !Input |
---|
916 | !----- |
---|
917 | integer nz !Number of layers inside the material |
---|
918 | real dt !Time step |
---|
919 | real dz(nz) !Layer sizes [m] |
---|
920 | real cs(nz) !Specific heat of the material [J/(m3.K)] |
---|
921 | real k(nz+1) !Thermal diffusivity in each layers (face) [W/(m.K)] |
---|
922 | |
---|
923 | |
---|
924 | !Input-Output |
---|
925 | !------------ |
---|
926 | |
---|
927 | real flux(2) !Internal and external flux terms. |
---|
928 | |
---|
929 | |
---|
930 | !Output |
---|
931 | !------ |
---|
932 | real k1(20) |
---|
933 | real k2(20) |
---|
934 | real kc(20) |
---|
935 | |
---|
936 | !Local |
---|
937 | !----- |
---|
938 | integer iz |
---|
939 | real kf(nz) |
---|
940 | |
---|
941 | !------------------------------------------------------------------ |
---|
942 | |
---|
943 | do iz=2,nz |
---|
944 | kc(iz)=dt/(dz(iz)*cs(iz)) |
---|
945 | kf(iz)=2*k(iz)/(dz(iz)+dz(iz-1)) |
---|
946 | end do |
---|
947 | |
---|
948 | kc(1)=dt/(dz(1)*cs(1)) |
---|
949 | kf(1)=2*k(1)/(dz(1)) |
---|
950 | |
---|
951 | do iz=1,nz |
---|
952 | k1(iz)=kc(iz)*kf(iz) |
---|
953 | end do |
---|
954 | |
---|
955 | do iz=1,nz-1 |
---|
956 | k2(iz)=kc(iz)*kf(iz+1)*cs(iz)/cs(iz+1) |
---|
957 | end do |
---|
958 | |
---|
959 | return |
---|
960 | end subroutine wall_coeff |
---|
961 | |
---|
962 | !====6=8===============================================================72 |
---|
963 | !====6=8===============================================================72 |
---|
964 | subroutine hsinsflux(swsurf,swwin,tin,tw,hsins) |
---|
965 | |
---|
966 | implicit none |
---|
967 | |
---|
968 | ! -------------------------------------------------------------------- |
---|
969 | ! This routine computes the internal sensible heat flux. |
---|
970 | ! The swsurf, makes rhe difference between a vertical and a |
---|
971 | ! horizontal surface. |
---|
972 | ! The values of the heat conduction coefficients hc are obtained from the book |
---|
973 | ! "Energy Simulation in Building Design". J.A. Clarke. |
---|
974 | ! Adam Hilger, Bristol, 362 pp. |
---|
975 | ! -------------------------------------------------------------------- |
---|
976 | !Input |
---|
977 | !---- |
---|
978 | integer swsurf !swich for the type of surface (horizontal/vertical) |
---|
979 | integer swwin !swich for the type of surface (window/wall) |
---|
980 | real tin !Inside temperature [K] |
---|
981 | real tw !Internal wall temperature [K] |
---|
982 | |
---|
983 | |
---|
984 | !Output |
---|
985 | !------ |
---|
986 | real hsins !internal sensible heat flux [W/m2] |
---|
987 | !Local |
---|
988 | !----- |
---|
989 | real hc !heat conduction coefficient [W/°C.m2] |
---|
990 | !-------------------------------------------------------------------- |
---|
991 | |
---|
992 | if (swsurf.eq.2) then !vertical surface |
---|
993 | if (swwin.eq.1) then |
---|
994 | hc=5.678*0.99 !window surface (smooth surface) |
---|
995 | else |
---|
996 | hc=5.678*1.09 !wall surface (rough surface) |
---|
997 | endif |
---|
998 | hsins=hc*(tin-tw) |
---|
999 | endif |
---|
1000 | |
---|
1001 | if (swsurf.eq.1) then !horizontal surface |
---|
1002 | if (swwin.eq.1) then |
---|
1003 | hc=5.678*0.99 !window surface (smooth surface) |
---|
1004 | else |
---|
1005 | hc=5.678*1.09 !wall surface (rough surface) |
---|
1006 | endif |
---|
1007 | hsins=hc*(tin-tw) |
---|
1008 | endif |
---|
1009 | |
---|
1010 | return |
---|
1011 | end subroutine hsinsflux |
---|
1012 | !====6=8===============================================================72 |
---|
1013 | !====6=8===============================================================72 |
---|
1014 | |
---|
1015 | subroutine int_rsrad(albwin,albwal,pwin,rswal,& |
---|
1016 | surwal,bw,bl,zw,rsint) |
---|
1017 | |
---|
1018 | ! ------------------------------------------------------------------ |
---|
1019 | implicit none |
---|
1020 | ! ------------------------------------------------------------------ |
---|
1021 | |
---|
1022 | !Input |
---|
1023 | !----- |
---|
1024 | real albwin !albedo of the windows |
---|
1025 | real albwal !albedo of the internal wall |
---|
1026 | real rswal(4) !incoming short wave radiation [W/m2] |
---|
1027 | real surwal(6) !surface of the indoor walls [m2] |
---|
1028 | real bw,bl !width of the walls [m] |
---|
1029 | real zw !height of the wall [m] |
---|
1030 | real pwin !window proportion |
---|
1031 | |
---|
1032 | !Output |
---|
1033 | !------ |
---|
1034 | real rsint(6) !internal walls short wave radiation [W/m2] |
---|
1035 | |
---|
1036 | !Local |
---|
1037 | !----- |
---|
1038 | real transmit !transmittance of the direct/diffused radiation |
---|
1039 | real rstr !solar radiation transmitted through the windows |
---|
1040 | real surtotwal !total indoor surface of the walls in the room |
---|
1041 | integer iw |
---|
1042 | real b(6) !second member for the system |
---|
1043 | real a(6,6) !matrix for the system |
---|
1044 | |
---|
1045 | !------------------------------------------------------------------- |
---|
1046 | |
---|
1047 | |
---|
1048 | ! Calculation of the solar radiation transmitted through windows |
---|
1049 | |
---|
1050 | rstr = 0. |
---|
1051 | do iw=1,4 |
---|
1052 | transmit=1.-albwin |
---|
1053 | rstr = rstr+(surwal(iw)*pwin)*(transmit*rswal(iw)) |
---|
1054 | enddo |
---|
1055 | |
---|
1056 | !We suppose that the radiation is spread isotropically within the |
---|
1057 | !room when it passes through the windows, so the flux [W/m²] in every |
---|
1058 | !wall is: |
---|
1059 | |
---|
1060 | surtotwal=0. |
---|
1061 | do iw=1,6 |
---|
1062 | surtotwal=surtotwal+surwal(iw) |
---|
1063 | enddo |
---|
1064 | |
---|
1065 | rstr=rstr/surtotwal |
---|
1066 | |
---|
1067 | !Computation of the short wave radiation reaching the internal walls |
---|
1068 | |
---|
1069 | call algebra_short(rstr,albwal,albwin,bw,bl,zw,pwin,a,b) |
---|
1070 | |
---|
1071 | call gaussjbem(a,6,b,6) |
---|
1072 | |
---|
1073 | do iw=1,6 |
---|
1074 | rsint(iw)=b(iw) |
---|
1075 | enddo |
---|
1076 | |
---|
1077 | return |
---|
1078 | end subroutine int_rsrad |
---|
1079 | |
---|
1080 | !====6=8===============================================================72 |
---|
1081 | !====6=8===============================================================72 |
---|
1082 | |
---|
1083 | subroutine int_rlrad(emwal,emwin,sigma,twal_int,twin,& |
---|
1084 | pwin,bw,bl,zw,rlint) |
---|
1085 | |
---|
1086 | ! ------------------------------------------------------------------ |
---|
1087 | implicit none |
---|
1088 | ! ------------------------------------------------------------------ |
---|
1089 | |
---|
1090 | !Input |
---|
1091 | !----- |
---|
1092 | |
---|
1093 | real emwal !emissivity of the internal walls |
---|
1094 | real emwin !emissivity of the window |
---|
1095 | real sigma !Stefan-Boltzmann constant [W/m2.K4] |
---|
1096 | real twal_int(6)!temperature of the first internal layers of a room [K] |
---|
1097 | real twin(4) !temperature of the windows [K] |
---|
1098 | real bw !width of the wall |
---|
1099 | real bl !length of the wall |
---|
1100 | real zw !height of the wall |
---|
1101 | real pwin !window proportion |
---|
1102 | |
---|
1103 | !Output |
---|
1104 | !------ |
---|
1105 | |
---|
1106 | real rlint(6) !internal walls long wave radiation [W/m2] |
---|
1107 | |
---|
1108 | !Local |
---|
1109 | !------ |
---|
1110 | |
---|
1111 | real b(6) !second member vector for the system |
---|
1112 | real a(6,6) !matrix for the system |
---|
1113 | integer iw |
---|
1114 | !---------------------------------------------------------------- |
---|
1115 | |
---|
1116 | !Compute the long wave radiation reachs the internal walls |
---|
1117 | |
---|
1118 | call algebra_long(emwal,emwin,sigma,twal_int,twin,pwin,& |
---|
1119 | bw,bl,zw,a,b) |
---|
1120 | |
---|
1121 | call gaussjbem(a,6,b,6) |
---|
1122 | |
---|
1123 | do iw=1,6 |
---|
1124 | rlint(iw)=b(iw) |
---|
1125 | enddo |
---|
1126 | |
---|
1127 | return |
---|
1128 | end subroutine int_rlrad |
---|
1129 | |
---|
1130 | !====6=8===============================================================72 |
---|
1131 | !====6=8===============================================================72 |
---|
1132 | |
---|
1133 | subroutine algebra_short(rstr,albwal,albwin,aw,bw,zw,pwin,a,b) |
---|
1134 | |
---|
1135 | !-------------------------------------------------------------------- |
---|
1136 | !This routine calculates the algebraic system that will be solved for |
---|
1137 | !the computation of the total shortwave radiation that reachs every |
---|
1138 | !indoor wall in a floor. |
---|
1139 | !Write the matrix system ax=b to solve |
---|
1140 | ! |
---|
1141 | ! -Rs(1)+a(1,2)Rs(2)+.................+a(1,6)Rs(6)=-Rs=b(1) |
---|
1142 | !a(2,1)Rs(1)- Rs(2)+.................+a(2,6)Rs(6)=-Rs=b(2) |
---|
1143 | !a(3,1)Rs(1)+a(3,2)Rs(3)-Rs(3)+...........+a(3,6)Rs(6)=-Rs=b(3) |
---|
1144 | !a(4,1)Rs(1)+.................-Rs(4)+.....+a(4,6)Rs(6)=-Rs=b(4) |
---|
1145 | !a(5,1)Rs(1)+.......................-Rs(5)+a(5,6)Rs(6)=-Rs=b(5) |
---|
1146 | !a(6,1)Rs(1)+....................................-R(6)=-Rs=b(6) |
---|
1147 | ! |
---|
1148 | !This version suppose the albedo of the indoor walls is the same. |
---|
1149 | !-------------------------------------------------------------------- |
---|
1150 | implicit none |
---|
1151 | !-------------------------------------------------------------------- |
---|
1152 | |
---|
1153 | !Input |
---|
1154 | !----- |
---|
1155 | real rstr !solar radiation transmitted through the windows |
---|
1156 | real albwal !albedo of the internal walls |
---|
1157 | real albwin !albedo of the windows. |
---|
1158 | real bw !length of the wall |
---|
1159 | real aw !width of the wall |
---|
1160 | real zw !height of the wall |
---|
1161 | real fprl_int !view factor |
---|
1162 | real fnrm_int !view factor |
---|
1163 | real pwin !window proportion |
---|
1164 | !Output |
---|
1165 | !------ |
---|
1166 | real a(6,6) !Matrix for the system |
---|
1167 | real b(6) !Second member for the system |
---|
1168 | !Local |
---|
1169 | !----- |
---|
1170 | integer iw,jw |
---|
1171 | real albm !averaged albedo |
---|
1172 | !---------------------------------------------------------------- |
---|
1173 | |
---|
1174 | !Initialise the variables |
---|
1175 | |
---|
1176 | do iw=1,6 |
---|
1177 | b(iw)= 0. |
---|
1178 | do jw=1,6 |
---|
1179 | a(iw,jw)= 0. |
---|
1180 | enddo |
---|
1181 | enddo |
---|
1182 | |
---|
1183 | !Calculation of the second member b |
---|
1184 | |
---|
1185 | do iw=1,6 |
---|
1186 | b(iw)=-rstr |
---|
1187 | end do |
---|
1188 | |
---|
1189 | !Calculation of the averaged albedo |
---|
1190 | |
---|
1191 | albm=pwin*albwin+(1-pwin)*albwal |
---|
1192 | |
---|
1193 | !Calculation of the matrix a |
---|
1194 | |
---|
1195 | a(1,1)=-1. |
---|
1196 | |
---|
1197 | call fprl_ints(fprl_int,aw/bw,zw/bw) |
---|
1198 | |
---|
1199 | a(1,2)=albm*fprl_int |
---|
1200 | |
---|
1201 | call fnrm_ints(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw)) |
---|
1202 | |
---|
1203 | a(1,3)=albm*(bw/aw)*fnrm_int |
---|
1204 | |
---|
1205 | a(1,4)=a(1,3) |
---|
1206 | |
---|
1207 | call fnrm_ints(fnrm_int,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1208 | |
---|
1209 | a(1,5)=albwal*(bw/zw)*fnrm_int |
---|
1210 | |
---|
1211 | a(1,6)=a(1,5) |
---|
1212 | |
---|
1213 | |
---|
1214 | a(2,1)=a(1,2) |
---|
1215 | a(2,2)=-1. |
---|
1216 | a(2,3)=a(1,3) |
---|
1217 | a(2,4)=a(1,4) |
---|
1218 | a(2,5)=a(1,5) |
---|
1219 | a(2,6)=a(1,6) |
---|
1220 | |
---|
1221 | |
---|
1222 | call fnrm_ints(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw)) |
---|
1223 | |
---|
1224 | a(3,1)=albm*(aw/bw)*fnrm_int |
---|
1225 | a(3,2)=a(3,1) |
---|
1226 | a(3,3)=-1. |
---|
1227 | |
---|
1228 | call fprl_ints(fprl_int,zw/aw,bw/aw) |
---|
1229 | |
---|
1230 | a(3,4)=albm*fprl_int |
---|
1231 | |
---|
1232 | call fnrm_ints(fnrm_int,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1233 | |
---|
1234 | a(3,5)=albwal*(aw/zw)*fnrm_int |
---|
1235 | a(3,6)=a(3,5) |
---|
1236 | |
---|
1237 | |
---|
1238 | a(4,1)=a(3,1) |
---|
1239 | a(4,2)=a(3,2) |
---|
1240 | a(4,3)=a(3,4) |
---|
1241 | a(4,4)=-1. |
---|
1242 | a(4,5)=a(3,5) |
---|
1243 | a(4,6)=a(3,6) |
---|
1244 | |
---|
1245 | call fnrm_ints(fnrm_int,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1246 | |
---|
1247 | a(5,1)=albm*(zw/bw)*fnrm_int |
---|
1248 | |
---|
1249 | a(5,2)=a(5,1) |
---|
1250 | |
---|
1251 | call fnrm_ints(fnrm_int,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1252 | |
---|
1253 | a(5,3)=albm*(zw/aw)*fnrm_int |
---|
1254 | |
---|
1255 | a(5,4)=a(5,3) |
---|
1256 | a(5,5)=-1. |
---|
1257 | |
---|
1258 | call fprl_ints(fprl_int,aw/zw,bw/zw) |
---|
1259 | |
---|
1260 | a(5,6)=albwal*fprl_int |
---|
1261 | |
---|
1262 | |
---|
1263 | a(6,1)=a(5,1) |
---|
1264 | a(6,2)=a(5,2) |
---|
1265 | a(6,3)=a(5,3) |
---|
1266 | a(6,4)=a(5,4) |
---|
1267 | a(6,5)=a(5,6) |
---|
1268 | a(6,6)=-1. |
---|
1269 | |
---|
1270 | return |
---|
1271 | end subroutine algebra_short |
---|
1272 | |
---|
1273 | !====6=8===============================================================72 |
---|
1274 | !====6=8===============================================================72 |
---|
1275 | |
---|
1276 | subroutine algebra_long(emwal,emwin,sigma,twalint,twinint,& |
---|
1277 | pwin,aw,bw,zw,a,b) |
---|
1278 | |
---|
1279 | !-------------------------------------------------------------------- |
---|
1280 | !This routine computes the algebraic system that will be solved to |
---|
1281 | !compute the longwave radiation that reachs the indoor |
---|
1282 | !walls in a floor. |
---|
1283 | !Write the matrix system ax=b to solve |
---|
1284 | ! |
---|
1285 | !a(1,1)Rl(1)+.............................+Rl(6)=b(1) |
---|
1286 | !a(2,1)Rl(1)+.................+Rl(5)+a(2,6)Rl(6)=b(2) |
---|
1287 | !a(3,1)Rl(1)+.....+Rl(3)+...........+a(3,6)Rl(6)=b(3) |
---|
1288 | !a(4,1)Rl(1)+...........+Rl(4)+.....+a(4,6)Rl(6)=b(4) |
---|
1289 | ! Rl(1)+.......................+a(5,6)Rl(6)=b(5) |
---|
1290 | !a(6,1)Rl(1)+Rl(2)+.................+a(6,6)Rl(6)=b(6) |
---|
1291 | ! |
---|
1292 | !-------------------------------------------------------------------- |
---|
1293 | implicit none |
---|
1294 | |
---|
1295 | !-------------------------------------------------------------------- |
---|
1296 | |
---|
1297 | !Input |
---|
1298 | !----- |
---|
1299 | |
---|
1300 | real pwin !window proportion |
---|
1301 | real emwal !emissivity of the internal walls |
---|
1302 | real emwin !emissivity of the window |
---|
1303 | real sigma !Stefan-Boltzmann constant [W/m2.K4] |
---|
1304 | real twalint(6) !temperature of the first internal layers of a room [K] |
---|
1305 | real twinint(4) !temperature of the windows [K] |
---|
1306 | real aw !width of the wall |
---|
1307 | real bw !length of the wall |
---|
1308 | real zw !height of the wall |
---|
1309 | real fprl_int !view factor |
---|
1310 | real fnrm_int !view factor |
---|
1311 | real fnrm_intx !view factor |
---|
1312 | real fnrm_inty !view factor |
---|
1313 | |
---|
1314 | !Output |
---|
1315 | !------ |
---|
1316 | real b(6) !second member vector for the system |
---|
1317 | real a(6,6) !matrix for the system |
---|
1318 | !Local |
---|
1319 | !----- |
---|
1320 | integer iw,jw |
---|
1321 | real b_wall(6) |
---|
1322 | real b_wind(6) |
---|
1323 | real emwal_av !averadge emissivity of the wall |
---|
1324 | real emwin_av !averadge emissivity of the window |
---|
1325 | real em_av !averadge emissivity |
---|
1326 | real twal_int(6) !twalint |
---|
1327 | real twin(4) !twinint |
---|
1328 | !------------------------------------------------------------------ |
---|
1329 | |
---|
1330 | !Initialise the variables |
---|
1331 | !------------------------- |
---|
1332 | |
---|
1333 | do iw=1,6 |
---|
1334 | b(iw)= 0. |
---|
1335 | b_wall(iw)=0. |
---|
1336 | b_wind(iw)=0. |
---|
1337 | do jw=1,6 |
---|
1338 | a(iw,jw)= 0. |
---|
1339 | enddo |
---|
1340 | enddo |
---|
1341 | |
---|
1342 | do iw=1,6 |
---|
1343 | twal_int(iw)=twalint(iw) |
---|
1344 | enddo |
---|
1345 | |
---|
1346 | do iw=1,4 |
---|
1347 | twin(iw)=twinint(iw) |
---|
1348 | enddo |
---|
1349 | |
---|
1350 | !Calculation of the averadge emissivities |
---|
1351 | !----------------------------------------- |
---|
1352 | |
---|
1353 | emwal_av=(1-pwin)*emwal |
---|
1354 | emwin_av=pwin*emwin |
---|
1355 | em_av=emwal_av+emwin_av |
---|
1356 | |
---|
1357 | !Calculation of the second term for the walls |
---|
1358 | !------------------------------------------- |
---|
1359 | |
---|
1360 | call fprl_ints(fprl_int,aw/zw,bw/zw) |
---|
1361 | call fnrm_ints(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1362 | call fnrm_ints(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1363 | |
---|
1364 | b_wall(1)=(emwal*sigma*(twal_int(5)**4)* & |
---|
1365 | fprl_int)+ & |
---|
1366 | (sigma*(emwal_av*(twal_int(3)**4)+ & |
---|
1367 | emwal_av*(twal_int(4)**4))* & |
---|
1368 | (zw/aw)*fnrm_intx)+ & |
---|
1369 | (sigma*(emwal_av*(twal_int(1)**4)+ & |
---|
1370 | emwal_av*(twal_int(2)**4))* & |
---|
1371 | (zw/bw)*fnrm_inty) |
---|
1372 | |
---|
1373 | call fprl_ints(fprl_int,aw/zw,bw/zw) |
---|
1374 | call fnrm_ints(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1375 | call fnrm_ints(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1376 | |
---|
1377 | b_wall(2)=(emwal*sigma*(twal_int(6)**4)* & |
---|
1378 | fprl_int)+ & |
---|
1379 | (sigma*(emwal_av*(twal_int(3)**4)+ & |
---|
1380 | emwal_av*(twal_int(4)**4))* & |
---|
1381 | (zw/aw)*fnrm_intx)+ & |
---|
1382 | (sigma*(emwal_av*(twal_int(1)**4)+ & |
---|
1383 | emwal_av*(twal_int(2)**4))* & |
---|
1384 | (zw/bw)*fnrm_inty) |
---|
1385 | |
---|
1386 | call fprl_ints(fprl_int,zw/aw,bw/aw) |
---|
1387 | call fnrm_ints(fnrm_intx,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw)) |
---|
1388 | call fnrm_ints(fnrm_inty,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1389 | |
---|
1390 | b_wall(3)=(emwal_av*sigma*(twal_int(4)**4)* & |
---|
1391 | fprl_int)+ & |
---|
1392 | (sigma*(emwal_av*(twal_int(2)**4)+ & |
---|
1393 | emwal_av*(twal_int(1)**4))* & |
---|
1394 | (aw/bw)*fnrm_intx)+ & |
---|
1395 | (sigma*(emwal*(twal_int(5)**4)+ & |
---|
1396 | emwal*(twal_int(6)**4))* & |
---|
1397 | (aw/zw)*fnrm_inty) |
---|
1398 | |
---|
1399 | call fprl_ints(fprl_int,zw/aw,bw/aw) |
---|
1400 | call fnrm_ints(fnrm_intx,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw)) |
---|
1401 | call fnrm_ints(fnrm_inty,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1402 | |
---|
1403 | b_wall(4)=(emwal_av*sigma*(twal_int(3)**4)* & |
---|
1404 | fprl_int)+ & |
---|
1405 | (sigma*(emwal_av*(twal_int(2)**4)+ & |
---|
1406 | emwal_av*(twal_int(1)**4))* & |
---|
1407 | (aw/bw)*fnrm_intx)+ & |
---|
1408 | (sigma*(emwal*(twal_int(5)**4)+ & |
---|
1409 | emwal*(twal_int(6)**4))* & |
---|
1410 | (aw/zw)*fnrm_inty) |
---|
1411 | |
---|
1412 | call fprl_ints(fprl_int,aw/bw,zw/bw) |
---|
1413 | call fnrm_ints(fnrm_intx,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw)) |
---|
1414 | call fnrm_ints(fnrm_inty,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1415 | |
---|
1416 | b_wall(5)=(emwal_av*sigma*(twal_int(2)**4)* & |
---|
1417 | fprl_int)+ & |
---|
1418 | (sigma*(emwal_av*(twal_int(3)**4)+ & |
---|
1419 | emwal_av*(twal_int(4)**4))* & |
---|
1420 | (bw/aw)*fnrm_intx)+ & |
---|
1421 | (sigma*(emwal*(twal_int(5)**4)+ & |
---|
1422 | emwal*(twal_int(6)**4))* & |
---|
1423 | (bw/zw)*fnrm_inty) |
---|
1424 | |
---|
1425 | call fprl_ints(fprl_int,aw/bw,zw/bw) |
---|
1426 | call fnrm_ints(fnrm_intx,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw)) |
---|
1427 | call fnrm_ints(fnrm_inty,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1428 | |
---|
1429 | b_wall(6)=(emwal_av*sigma*(twal_int(1)**4)* & |
---|
1430 | fprl_int)+ & |
---|
1431 | (sigma*(emwal_av*(twal_int(3)**4)+ & |
---|
1432 | emwal_av*(twal_int(4)**4))* & |
---|
1433 | (bw/aw)*fnrm_intx)+ & |
---|
1434 | (sigma*(emwal*(twal_int(5)**4)+ & |
---|
1435 | emwal*(twal_int(6)**4))* & |
---|
1436 | (bw/zw)*fnrm_inty) |
---|
1437 | |
---|
1438 | !Calculation of the second term for the windows |
---|
1439 | !--------------------------------------------- |
---|
1440 | call fnrm_ints(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1441 | call fnrm_ints(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1442 | |
---|
1443 | b_wind(1)=(sigma*(emwin_av*(twin(3)**4)+ & |
---|
1444 | emwin_av*(twin(4)**4))* & |
---|
1445 | (zw/aw)*fnrm_intx)+ & |
---|
1446 | (sigma*(emwin_av*(twin(1)**4)+ & |
---|
1447 | emwin_av*(twin(2)**4))* & |
---|
1448 | (zw/bw)*fnrm_inty) |
---|
1449 | |
---|
1450 | call fnrm_ints(fnrm_intx,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1451 | call fnrm_ints(fnrm_inty,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1452 | |
---|
1453 | b_wind(2)=(sigma*(emwin_av*(twin(3)**4)+ & |
---|
1454 | emwin_av*(twin(4)**4))* & |
---|
1455 | (zw/aw)*fnrm_intx)+ & |
---|
1456 | (sigma*(emwin_av*(twin(1)**4)+ & |
---|
1457 | emwin_av*(twin(2)**4))* & |
---|
1458 | (zw/bw)*fnrm_inty) |
---|
1459 | |
---|
1460 | call fprl_ints(fprl_int,zw/aw,bw/aw) |
---|
1461 | call fnrm_ints(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw)) |
---|
1462 | |
---|
1463 | b_wind(3)=emwin_av*sigma*(twin(4)**4)* & |
---|
1464 | fprl_int+(sigma*(emwin_av* & |
---|
1465 | (twin(2)**4)+emwin_av*(twin(1)**4))* & |
---|
1466 | (aw/bw)*fnrm_int) |
---|
1467 | |
---|
1468 | call fprl_ints(fprl_int,zw/aw,bw/aw) |
---|
1469 | call fnrm_ints(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw)) |
---|
1470 | |
---|
1471 | b_wind(4)=emwin_av*sigma*(twin(3)**4)* & |
---|
1472 | fprl_int+(sigma*(emwin_av* & |
---|
1473 | (twin(2)**4)+emwin_av*(twin(1)**4))* & |
---|
1474 | (aw/bw)*fnrm_int) |
---|
1475 | |
---|
1476 | call fprl_ints(fprl_int,aw/bw,zw/bw) |
---|
1477 | call fnrm_ints(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw)) |
---|
1478 | |
---|
1479 | b_wind(5)=emwin_av*sigma*(twin(2)**4)* & |
---|
1480 | fprl_int+(sigma*(emwin_av* & |
---|
1481 | (twin(3)**4)+emwin_av*(twin(4)**4))* & |
---|
1482 | (bw/aw)*fnrm_int) |
---|
1483 | |
---|
1484 | call fprl_ints(fprl_int,aw/bw,zw/bw) |
---|
1485 | call fnrm_ints(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw)) |
---|
1486 | |
---|
1487 | b_wind(6)=emwin_av*sigma*(twin(1)**4)* & |
---|
1488 | fprl_int+(sigma*(emwin_av* & |
---|
1489 | (twin(3)**4)+emwin_av*(twin(4)**4))* & |
---|
1490 | (bw/aw)*fnrm_int) |
---|
1491 | |
---|
1492 | !Calculation of the total b term |
---|
1493 | !------------------------------- |
---|
1494 | |
---|
1495 | do iw=1,6 |
---|
1496 | b(iw)=b_wall(iw)+b_wind(iw) |
---|
1497 | end do |
---|
1498 | |
---|
1499 | |
---|
1500 | !Calculation of the matrix of the system |
---|
1501 | !---------------------------------------- |
---|
1502 | |
---|
1503 | call fnrm_ints(fnrm_int,bw/aw,zw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1504 | |
---|
1505 | a(1,1)=(em_av-1.)*(zw/bw)*fnrm_int |
---|
1506 | |
---|
1507 | a(1,2)=a(1,1) |
---|
1508 | |
---|
1509 | call fnrm_ints(fnrm_int,aw/bw,zw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1510 | |
---|
1511 | a(1,3)=(em_av-1.)*(zw/aw)*fnrm_int |
---|
1512 | |
---|
1513 | a(1,4)=a(1,3) |
---|
1514 | |
---|
1515 | call fprl_ints(fprl_int,aw/zw,bw/zw) |
---|
1516 | |
---|
1517 | a(1,5)=(emwal-1.)*fprl_int |
---|
1518 | a(1,6)=1. |
---|
1519 | |
---|
1520 | a(2,1)=a(1,1) |
---|
1521 | a(2,2)=a(1,2) |
---|
1522 | a(2,3)=a(1,3) |
---|
1523 | a(2,4)=a(1,4) |
---|
1524 | a(2,5)=1. |
---|
1525 | a(2,6)=a(1,5) |
---|
1526 | |
---|
1527 | call fnrm_ints(fnrm_int,bw/zw,aw/zw,(bw*bw+aw*aw)/(zw*zw)) |
---|
1528 | |
---|
1529 | a(3,1)=(em_av-1.)*(aw/bw)*fnrm_int |
---|
1530 | |
---|
1531 | a(3,2)=a(3,1) |
---|
1532 | a(3,3)=1. |
---|
1533 | |
---|
1534 | call fprl_ints(fprl_int,zw/aw,bw/aw) |
---|
1535 | |
---|
1536 | a(3,4)=(em_av-1.)*fprl_int |
---|
1537 | |
---|
1538 | call fnrm_ints(fnrm_int,zw/bw,aw/bw,(aw*aw+zw*zw)/(bw*bw)) |
---|
1539 | |
---|
1540 | a(3,5)=(emwal-1.)*(aw/zw)*fnrm_int |
---|
1541 | |
---|
1542 | a(3,6)=a(3,5) |
---|
1543 | |
---|
1544 | a(4,1)=a(3,1) |
---|
1545 | a(4,2)=a(3,2) |
---|
1546 | a(4,3)=a(3,4) |
---|
1547 | a(4,4)=1. |
---|
1548 | a(4,5)=a(3,5) |
---|
1549 | a(4,6)=a(3,6) |
---|
1550 | |
---|
1551 | a(5,1)=1. |
---|
1552 | |
---|
1553 | call fprl_ints(fprl_int,aw/bw,zw/bw) |
---|
1554 | |
---|
1555 | a(5,2)=(em_av-1.)*fprl_int |
---|
1556 | |
---|
1557 | call fnrm_ints(fnrm_int,aw/zw,bw/zw,(aw*aw+bw*bw)/(zw*zw)) |
---|
1558 | |
---|
1559 | a(5,3)=(em_av-1.)*(bw/aw)*fnrm_int |
---|
1560 | |
---|
1561 | a(5,4)=a(5,3) |
---|
1562 | |
---|
1563 | call fnrm_ints(fnrm_int,zw/aw,bw/aw,(bw*bw+zw*zw)/(aw*aw)) |
---|
1564 | |
---|
1565 | a(5,5)=(emwal-1.)*(bw/zw)*fnrm_int |
---|
1566 | |
---|
1567 | a(5,6)=a(5,5) |
---|
1568 | |
---|
1569 | a(6,1)=a(5,2) |
---|
1570 | a(6,2)=1. |
---|
1571 | a(6,3)=a(5,3) |
---|
1572 | a(6,4)=a(5,4) |
---|
1573 | a(6,5)=a(5,5) |
---|
1574 | a(6,6)=a(6,5) |
---|
1575 | |
---|
1576 | return |
---|
1577 | end subroutine algebra_long |
---|
1578 | |
---|
1579 | !====6=8===============================================================72 |
---|
1580 | !====6=8===============================================================72 |
---|
1581 | |
---|
1582 | |
---|
1583 | subroutine fluxroo(hseqocc,hleqocc,hsvent,hlvent, & |
---|
1584 | hscond,hslev,hllev) |
---|
1585 | |
---|
1586 | !----------------------------------------------------------------------- |
---|
1587 | !This routine calculates the heat flux generated inside the room |
---|
1588 | !and the heat ejected to the atmosphere. |
---|
1589 | !---------------------------------------------------------------------- |
---|
1590 | |
---|
1591 | implicit none |
---|
1592 | |
---|
1593 | !----------------------------------------------------------------------- |
---|
1594 | |
---|
1595 | !Input |
---|
1596 | !----- |
---|
1597 | real hseqocc !sensible heat generated by equipments and occupants [W] |
---|
1598 | real hleqocc !latent heat generated by occupants [W] |
---|
1599 | real hsvent !sensible heat generated by natural ventilation [W] |
---|
1600 | real hlvent !latent heat generated by natural ventilation [W] |
---|
1601 | real hscond !sensible heat generated by wall conduction |
---|
1602 | |
---|
1603 | !Output |
---|
1604 | !------ |
---|
1605 | real hslev !sensible heat flux generated inside the room [W] |
---|
1606 | real hllev !latent heat flux generatd inside the room |
---|
1607 | |
---|
1608 | |
---|
1609 | !Calculation of the total sensible heat generated inside the room |
---|
1610 | |
---|
1611 | hslev=hseqocc+hsvent+hscond |
---|
1612 | |
---|
1613 | !Calculation of the total latent heat generated inside the room |
---|
1614 | |
---|
1615 | hllev=hleqocc+hlvent |
---|
1616 | |
---|
1617 | return |
---|
1618 | end subroutine fluxroo |
---|
1619 | |
---|
1620 | !====6=8===============================================================72 |
---|
1621 | !====6=8===============================================================72 |
---|
1622 | |
---|
1623 | subroutine phirat(nhourday,rocc) |
---|
1624 | |
---|
1625 | !---------------------------------------------------------------------- |
---|
1626 | !This routine calculates the occupation ratio of a floor |
---|
1627 | !By now we suppose a constant value |
---|
1628 | !---------------------------------------------------------------------- |
---|
1629 | |
---|
1630 | implicit none |
---|
1631 | |
---|
1632 | !Input |
---|
1633 | !----- |
---|
1634 | |
---|
1635 | real nhourday ! number of hours from midnight (local time) |
---|
1636 | |
---|
1637 | !Output |
---|
1638 | !------ |
---|
1639 | real rocc !value between 0 and 1 |
---|
1640 | |
---|
1641 | !!TEST |
---|
1642 | rocc=1. |
---|
1643 | |
---|
1644 | return |
---|
1645 | end subroutine phirat |
---|
1646 | |
---|
1647 | !====6=8===============================================================72 |
---|
1648 | !====6=8===============================================================72 |
---|
1649 | |
---|
1650 | subroutine phiequ(nhourday,hsesf,hsequip,hsequ) |
---|
1651 | |
---|
1652 | !---------------------------------------------------------------------- |
---|
1653 | !This routine calculates the sensible heat gain from equipments |
---|
1654 | !---------------------------------------------------------------------- |
---|
1655 | implicit none |
---|
1656 | !Input |
---|
1657 | !----- |
---|
1658 | |
---|
1659 | real nhourday ! number of hours from midnight, Local time |
---|
1660 | real, intent(in) :: hsesf |
---|
1661 | real, intent(in), dimension(24) :: hsequip |
---|
1662 | |
---|
1663 | !Output |
---|
1664 | !------ |
---|
1665 | real hsequ !sensible heat gain from equipment [Wm¯2] |
---|
1666 | |
---|
1667 | !--------------------------------------------------------------------- |
---|
1668 | |
---|
1669 | hsequ = hsequip(int(nhourday)+1) * hsesf |
---|
1670 | |
---|
1671 | end subroutine phiequ |
---|
1672 | !====6=8===============================================================72 |
---|
1673 | !====6=8===============================================================72 |
---|
1674 | |
---|
1675 | subroutine fluxeqocc(nhourday,bw,bl,perflo,hsesf,hsequip,hseqocc,hleqocc) |
---|
1676 | |
---|
1677 | implicit none |
---|
1678 | |
---|
1679 | !--------------------------------------------------------------------- |
---|
1680 | !This routine calculates the sensible and the latent heat flux |
---|
1681 | !generated by equipments and occupants |
---|
1682 | !--------------------------------------------------------------------- |
---|
1683 | |
---|
1684 | !Input |
---|
1685 | !----- |
---|
1686 | real bw !Room width [m] |
---|
1687 | real bl !Room lengzh [m] |
---|
1688 | real nhourday !number of hours from the beginning of the day |
---|
1689 | real, intent(in) :: perflo ! Peak number of occupants per unit floor area |
---|
1690 | real, intent(in) :: hsesf |
---|
1691 | real, intent(in), dimension(24) :: hsequip |
---|
1692 | |
---|
1693 | !Output |
---|
1694 | !------ |
---|
1695 | real hseqocc !sensible heat generated by equipments and occupants [W] |
---|
1696 | real hleqocc !latent heat generated by occupants [W] |
---|
1697 | !Local |
---|
1698 | !----- |
---|
1699 | real Af !Air conditioned floor area [m2] |
---|
1700 | real rocc !Occupation ratio of the floor [0,1] |
---|
1701 | real hsequ !Heat generated from equipments |
---|
1702 | |
---|
1703 | real hsocc !Sensible heat generated by a person [W/Person] |
---|
1704 | !Source Boundary Layer Climates,page 195 (book) |
---|
1705 | parameter (hsocc=160.) |
---|
1706 | |
---|
1707 | real hlocc !Latent heat generated by a person [W/Person] |
---|
1708 | !Source Boundary Layer Climates,page 225 (book) |
---|
1709 | parameter (hlocc=1.96e6/86400.) |
---|
1710 | |
---|
1711 | !------------------------------------------------------------------ |
---|
1712 | ! Sensible heat flux |
---|
1713 | ! ------------------ |
---|
1714 | |
---|
1715 | Af=bw*bl |
---|
1716 | |
---|
1717 | call phirat(nhourday,rocc) |
---|
1718 | |
---|
1719 | call phiequ(nhourday,hsesf,hsequip,hsequ) |
---|
1720 | |
---|
1721 | hseqocc=Af*rocc*perflo*hsocc+Af*hsequ |
---|
1722 | |
---|
1723 | ! |
---|
1724 | ! Latent heat |
---|
1725 | ! ----------- |
---|
1726 | ! |
---|
1727 | |
---|
1728 | hleqocc=Af*rocc*perflo*hlocc |
---|
1729 | |
---|
1730 | return |
---|
1731 | end subroutine fluxeqocc |
---|
1732 | |
---|
1733 | !====6=8===============================================================72 |
---|
1734 | !====6=8===============================================================72 |
---|
1735 | |
---|
1736 | subroutine fluxvent(cpint,rhoint,vollev,tlev,tout,latent,& |
---|
1737 | humout,rhoout,humlev,beta,hsvent,hlvent) |
---|
1738 | |
---|
1739 | implicit none |
---|
1740 | |
---|
1741 | !--------------------------------------------------------------------- |
---|
1742 | !This routine calculates the sensible and the latent heat flux |
---|
1743 | !generated by natural ventilation |
---|
1744 | !--------------------------------------------------------------------- |
---|
1745 | |
---|
1746 | !Input |
---|
1747 | !----- |
---|
1748 | real cpint !specific heat of the indoor air [J/kg.K] |
---|
1749 | real rhoint !density of the indoor air [Kg/m3] |
---|
1750 | real vollev !volume of the room [m3] |
---|
1751 | real tlev !Room temperature [K] |
---|
1752 | real tout !outside air temperature [K] |
---|
1753 | real latent !latent heat of evaporation [J/Kg] |
---|
1754 | real humout !outside absolute humidity [Kgwater/Kgair] |
---|
1755 | real rhoout !air density [kg/m3] |
---|
1756 | real humlev !Specific humidity of the indoor air [Kgwater/Kgair] |
---|
1757 | real, intent(in) :: beta!Thermal efficiency of the heat exchanger |
---|
1758 | |
---|
1759 | !Output |
---|
1760 | !------ |
---|
1761 | real hsvent !sensible heat generated by natural ventilation [W] |
---|
1762 | real hlvent !latent heat generated by natural ventilation [W] |
---|
1763 | |
---|
1764 | !Local |
---|
1765 | !----- |
---|
1766 | |
---|
1767 | !---------------------------------------------------------------------- |
---|
1768 | |
---|
1769 | ! Sensible heat flux |
---|
1770 | ! ------------------ |
---|
1771 | |
---|
1772 | hsvent=(1.-beta)*cpint*rhoint*(vollev/3600.)* & |
---|
1773 | (tout-tlev) |
---|
1774 | |
---|
1775 | ! Latent heat flux |
---|
1776 | ! ---------------- |
---|
1777 | |
---|
1778 | hlvent=(1.-beta)*latent*rhoint*(vollev/3600.)* & |
---|
1779 | (humout-humlev) |
---|
1780 | |
---|
1781 | |
---|
1782 | return |
---|
1783 | end subroutine fluxvent |
---|
1784 | |
---|
1785 | !====6=8===============================================================72 |
---|
1786 | !====6=8===============================================================72 |
---|
1787 | |
---|
1788 | subroutine fluxcond(hswalins,hswinins,surwal,pwin,hscond) |
---|
1789 | |
---|
1790 | implicit none |
---|
1791 | |
---|
1792 | !--------------------------------------------------------------------- |
---|
1793 | !This routine calculates the sensible heat flux generated by |
---|
1794 | !wall conduction. |
---|
1795 | !--------------------------------------------------------------------- |
---|
1796 | |
---|
1797 | !Input |
---|
1798 | !----- |
---|
1799 | real hswalins(6) !sensible heat at the internal layers of the wall [W/m2] |
---|
1800 | real hswinins(4) !internal window sensible heat flux [W/m2] |
---|
1801 | real surwal(6) !surfaces of the room walls [m2] |
---|
1802 | real pwin !window proportion |
---|
1803 | |
---|
1804 | |
---|
1805 | !Output |
---|
1806 | !------ |
---|
1807 | |
---|
1808 | real hscond !sensible heat generated by wall conduction [W] |
---|
1809 | |
---|
1810 | !Local |
---|
1811 | !----- |
---|
1812 | |
---|
1813 | integer ivw |
---|
1814 | |
---|
1815 | !---------------------------------------------------------------------- |
---|
1816 | |
---|
1817 | hscond=0. |
---|
1818 | |
---|
1819 | do ivw=1,4 |
---|
1820 | hscond=hscond+surwal(ivw)*(1-pwin)*hswalins(ivw)+ & |
---|
1821 | surwal(ivw)*pwin*hswinins(ivw) |
---|
1822 | end do |
---|
1823 | |
---|
1824 | do ivw=5,6 |
---|
1825 | hscond=hscond+surwal(ivw)*hswalins(ivw) |
---|
1826 | end do |
---|
1827 | ! |
---|
1828 | !Finally we must change the sign in hscond to be proportional |
---|
1829 | !to the difference (Twall-Tindoor). |
---|
1830 | ! |
---|
1831 | hscond=(-1)*hscond |
---|
1832 | |
---|
1833 | return |
---|
1834 | end subroutine fluxcond |
---|
1835 | |
---|
1836 | !====6=8===============================================================72 |
---|
1837 | !====6=8===============================================================72 |
---|
1838 | |
---|
1839 | subroutine regtemp(swcond,nhourday,dt,Qb,hsroo, & |
---|
1840 | tlev,timeon,timeoff,targtemp,gaptemp,hsneed) |
---|
1841 | |
---|
1842 | implicit none |
---|
1843 | |
---|
1844 | !--------------------------------------------------------------------- |
---|
1845 | !This routine calculates the sensible heat fluxes, |
---|
1846 | !after anthropogenic regulation (air conditioning) |
---|
1847 | !--------------------------------------------------------------------- |
---|
1848 | |
---|
1849 | !Input: |
---|
1850 | !-----. |
---|
1851 | integer swcond !swich air conditioning |
---|
1852 | real nhourday !number of hours from the beginning of the day real |
---|
1853 | real dt !time step [s] |
---|
1854 | real Qb !overall heat capacity of the indoor air [J/K] |
---|
1855 | real hsroo !sensible heat flux generated inside the room [W] |
---|
1856 | real tlev !room air temperature [K] |
---|
1857 | real, intent(in) :: timeon ! Initial local time of A/C systems |
---|
1858 | real, intent(in) :: timeoff ! Ending local time of A/C systems |
---|
1859 | real, intent(in) :: targtemp! Target temperature of A/C systems |
---|
1860 | real, intent(in) :: gaptemp ! Comfort range of indoor temperature |
---|
1861 | |
---|
1862 | |
---|
1863 | !Local: |
---|
1864 | !-----. |
---|
1865 | |
---|
1866 | real templev !hipotetical room air temperature [K] |
---|
1867 | real alpha !variable to control the heating/cooling of |
---|
1868 | !the air conditining system |
---|
1869 | !Output: |
---|
1870 | !-----. |
---|
1871 | real hsneed !sensible heat extracted to the indoor air [W] |
---|
1872 | !--------------------------------------------------------------------- |
---|
1873 | !initialize variables |
---|
1874 | !--------------------- |
---|
1875 | templev = 0. |
---|
1876 | alpha = 0. |
---|
1877 | |
---|
1878 | if (swcond.eq.0) then ! there is not air conditioning in the floor |
---|
1879 | hsneed = 0. |
---|
1880 | goto 100 |
---|
1881 | else |
---|
1882 | if ((nhourday.ge.timeon).and.(nhourday.le.timeoff)) then |
---|
1883 | templev=tlev+(dt/Qb)*hsroo |
---|
1884 | goto 200 |
---|
1885 | else |
---|
1886 | hsneed = 0. ! air conditioning is switched off |
---|
1887 | goto 100 |
---|
1888 | endif |
---|
1889 | endif |
---|
1890 | |
---|
1891 | 200 continue |
---|
1892 | |
---|
1893 | if (abs(templev-targtemp).le.gaptemp) then |
---|
1894 | hsneed = 0. |
---|
1895 | else |
---|
1896 | if (templev.gt.(targtemp+gaptemp)) then |
---|
1897 | hsneed=hsroo-(Qb/dt)*(targtemp+gaptemp-tlev) |
---|
1898 | alpha=(abs(hsneed-hsroo)/Qb) |
---|
1899 | if (alpha.gt.temp_rat) then |
---|
1900 | hsneed=hsroo+temp_rat*Qb |
---|
1901 | goto 100 |
---|
1902 | else |
---|
1903 | goto 100 |
---|
1904 | endif |
---|
1905 | else |
---|
1906 | hsneed=hsroo-(Qb/dt)*(targtemp-gaptemp-tlev) |
---|
1907 | alpha=(abs(hsneed-hsroo)/Qb) |
---|
1908 | if (alpha.gt.temp_rat) then |
---|
1909 | hsneed=hsroo-temp_rat*Qb |
---|
1910 | goto 100 |
---|
1911 | else |
---|
1912 | goto 100 |
---|
1913 | endif |
---|
1914 | endif |
---|
1915 | endif |
---|
1916 | |
---|
1917 | 100 continue |
---|
1918 | return |
---|
1919 | end subroutine regtemp |
---|
1920 | |
---|
1921 | !====6=8==============================================================72 |
---|
1922 | !====6=8==============================================================72 |
---|
1923 | |
---|
1924 | subroutine reghum(swcond,nhourday,dt,volroo,rhoint,latent, & |
---|
1925 | hlroo,shumroo,timeon,timeoff,targhum,gaphum,hlneed) |
---|
1926 | |
---|
1927 | implicit none |
---|
1928 | |
---|
1929 | !--------------------------------------------------------------------- |
---|
1930 | !This routine calculates the latent heat fluxes, |
---|
1931 | !after anthropogenic regulation (air conditioning) |
---|
1932 | !--------------------------------------------------------------------- |
---|
1933 | |
---|
1934 | !Input: |
---|
1935 | !-----. |
---|
1936 | integer swcond !swich air conditioning |
---|
1937 | real nhourday !number of hours from the beginning of the day real[h] |
---|
1938 | real dt !time step [s] |
---|
1939 | real volroo !volume of the room [m3] |
---|
1940 | real rhoint !density of the internal air [Kg/m3] |
---|
1941 | real latent !latent heat of evaporation [J/Kg] |
---|
1942 | real hlroo !latent heat flux generated inside the room [W] |
---|
1943 | real shumroo !specific humidity of the indoor air [kg/kg] |
---|
1944 | real, intent(in) :: timeon ! Initial local time of A/C systems |
---|
1945 | real, intent(in) :: timeoff ! Ending local time of A/C systems |
---|
1946 | real, intent(in) :: targhum ! Target humidity of the A/C systems |
---|
1947 | real, intent(in) :: gaphum ! comfort range of the specific humidity |
---|
1948 | |
---|
1949 | !Local: |
---|
1950 | !-----. |
---|
1951 | |
---|
1952 | real humlev !hipotetical specific humidity of the indoor [kg/kg] |
---|
1953 | real betha !variable to control the drying/moistening of |
---|
1954 | !the air conditioning system |
---|
1955 | !Output: |
---|
1956 | !-----. |
---|
1957 | real hlneed !latent heat extracted to the indoor air [W] |
---|
1958 | !------------------------------------------------------------------------ |
---|
1959 | !initialize variables |
---|
1960 | !--------------------- |
---|
1961 | humlev = 0. |
---|
1962 | betha = 0. |
---|
1963 | |
---|
1964 | if (swcond.eq.0) then ! there is not air conditioning in the floor |
---|
1965 | hlneed = 0. |
---|
1966 | goto 100 |
---|
1967 | else |
---|
1968 | if ((nhourday.ge.timeon).and.(nhourday.le.timeoff)) then |
---|
1969 | humlev=shumroo+(dt/(latent*rhoint*volroo))*hlroo |
---|
1970 | goto 200 |
---|
1971 | else |
---|
1972 | hlneed = 0. ! air conditioning is switched off |
---|
1973 | goto 100 |
---|
1974 | endif |
---|
1975 | endif |
---|
1976 | |
---|
1977 | 200 continue |
---|
1978 | |
---|
1979 | if (abs(humlev-targhum).le.gaphum) then |
---|
1980 | hlneed = 0. |
---|
1981 | else |
---|
1982 | if (humlev.gt.(targhum+gaphum)) then |
---|
1983 | hlneed=hlroo-((latent*rhoint*volroo)/dt)* & |
---|
1984 | (targhum+gaphum-shumroo) |
---|
1985 | betha=abs(hlneed-hlroo)/(latent*rhoint*volroo) |
---|
1986 | if (betha.gt.hum_rat) then |
---|
1987 | hlneed=hlroo+hum_rat*(latent*rhoint*volroo) |
---|
1988 | goto 100 |
---|
1989 | else |
---|
1990 | goto 100 |
---|
1991 | endif |
---|
1992 | else |
---|
1993 | hlneed=hlroo-((latent*rhoint*volroo)/dt)* & |
---|
1994 | (targhum-gaphum-shumroo) |
---|
1995 | betha=abs(hlneed-hlroo)/(latent*rhoint*volroo) |
---|
1996 | if (betha.gt.hum_rat) then |
---|
1997 | hlneed=hlroo-hum_rat*(latent*rhoint*volroo) |
---|
1998 | goto 100 |
---|
1999 | else |
---|
2000 | goto 100 |
---|
2001 | endif |
---|
2002 | endif |
---|
2003 | endif |
---|
2004 | |
---|
2005 | 100 continue |
---|
2006 | return |
---|
2007 | end subroutine reghum |
---|
2008 | |
---|
2009 | !====6=8==============================================================72 |
---|
2010 | !====6=8==============================================================72 |
---|
2011 | |
---|
2012 | subroutine air_cond(hsneed,hlneed,dt,hsout,hlout,consump,cop) |
---|
2013 | |
---|
2014 | implicit none |
---|
2015 | |
---|
2016 | ! |
---|
2017 | !Performance of the air conditioning system |
---|
2018 | ! |
---|
2019 | !INPUT/OUTPUT VARIABLES |
---|
2020 | real, intent(in) :: cop |
---|
2021 | ! |
---|
2022 | !INPUT/OUTPUT VARIABLES |
---|
2023 | ! |
---|
2024 | real hsneed !sensible heat that is necessary for cooling/heating |
---|
2025 | !the indoor air temperature [W] |
---|
2026 | real hlneed !latent heat that is necessary for controling |
---|
2027 | !the humidity of the indoor air [W] |
---|
2028 | real dt !time step [s] |
---|
2029 | ! |
---|
2030 | !OUTPUT VARIABLES |
---|
2031 | ! |
---|
2032 | real hsout !sensible heat pumped out into the atmosphere [W] |
---|
2033 | real hlout !latent heat pumped out into the atmosphere [W] |
---|
2034 | real consump !Electrical consumption of the air conditioning system [W] |
---|
2035 | |
---|
2036 | |
---|
2037 | ! |
---|
2038 | !Performance of the air conditioning system |
---|
2039 | ! |
---|
2040 | if (hsneed.gt.0) then ! air conditioning is cooling |
---|
2041 | ! and the heat is pumped out into the atmosphere |
---|
2042 | hsout=(1/cop)*(abs(hsneed)+abs(hlneed))+hsneed |
---|
2043 | hlout=hlneed |
---|
2044 | consump=(1./cop)*(abs(hsneed)+abs(hlneed)) |
---|
2045 | !! hsout=0. |
---|
2046 | !! hlout=0. |
---|
2047 | |
---|
2048 | else if(hsneed.eq.0.) then !air conditioning is not working to regulate the indoor temperature |
---|
2049 | hlneed=0. !no humidity regulation is considered |
---|
2050 | hsout=0. !no output into the atmosphere (sensible heat) |
---|
2051 | hlout=0. !no output into the atmosphere (latent heat) |
---|
2052 | consump=0. !no electrical consumption |
---|
2053 | |
---|
2054 | else !! hsneed < 0. !air conditioning is heating |
---|
2055 | hlneed=0. !no humidity regulation is considered |
---|
2056 | hlout=0. !no output into the atmosphere (latent heat) |
---|
2057 | consump=(1./cop)*(abs(hsneed)+abs(hlneed)) |
---|
2058 | ! |
---|
2059 | !!We have two possibilities |
---|
2060 | ! |
---|
2061 | !! hsout=(1./cop)*(abs(hsneed)+abs(hlneed)) !output into the atmosphere |
---|
2062 | hsout=0. !no output into the atmosphere |
---|
2063 | end if |
---|
2064 | |
---|
2065 | return |
---|
2066 | end subroutine air_cond |
---|
2067 | |
---|
2068 | !====6=8==============================================================72 |
---|
2069 | !====6=8==============================================================72 |
---|
2070 | |
---|
2071 | subroutine consump_total(nzcanm,nlev,consumpbuild,hsoutbuild, & |
---|
2072 | hsout,consump) |
---|
2073 | |
---|
2074 | implicit none |
---|
2075 | |
---|
2076 | !----------------------------------------------------------------------- |
---|
2077 | !Compute the total consumption in kWh/s (1kWh=3.6e+6 J) and sensible heat |
---|
2078 | !ejected into the atmosphere per building |
---|
2079 | !------------------------------------------------------------------------ |
---|
2080 | ! |
---|
2081 | !INPUT VARIABLES |
---|
2082 | ! |
---|
2083 | ! |
---|
2084 | integer nzcanm !Maximum number of vertical levels in the urban grid |
---|
2085 | real hsout(nzcanm) !sensible heat emitted outside the room [W] |
---|
2086 | real consump(nzcanm) !Electricity consumption for the a.c. in each floor[W] |
---|
2087 | ! |
---|
2088 | !OUTPUT VARIABLES |
---|
2089 | ! |
---|
2090 | real consumpbuild !Energetic consumption for the entire building[kWh/s] |
---|
2091 | real hsoutbuild !Total sensible heat ejected into the atmosphere |
---|
2092 | !by the air conditioning systems per building [W] |
---|
2093 | ! |
---|
2094 | !LOCAL VARIABLES |
---|
2095 | ! |
---|
2096 | integer ilev |
---|
2097 | |
---|
2098 | ! |
---|
2099 | !INPUT VARIABLES |
---|
2100 | ! |
---|
2101 | integer nlev |
---|
2102 | |
---|
2103 | ! |
---|
2104 | !INITIALIZE VARIABLES |
---|
2105 | ! |
---|
2106 | consumpbuild=0. |
---|
2107 | hsoutbuild=0. |
---|
2108 | ! |
---|
2109 | do ilev=1,nlev |
---|
2110 | consumpbuild=consumpbuild+consump(ilev) |
---|
2111 | hsoutbuild=hsoutbuild+hsout(ilev) |
---|
2112 | enddo !ilev |
---|
2113 | |
---|
2114 | consumpbuild=consumpbuild/(3.6e+06) |
---|
2115 | |
---|
2116 | return |
---|
2117 | end subroutine consump_total |
---|
2118 | !====6=8==============================================================72 |
---|
2119 | !====6=8==============================================================72 |
---|
2120 | subroutine tridia(n,a,b,x) |
---|
2121 | |
---|
2122 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2123 | ! + by A. Clappier, EPFL, CH 1015 Lausanne + |
---|
2124 | ! + phone: ++41-(0)21-693-61-60 + |
---|
2125 | ! + email:alain.clappier@epfl.ch + |
---|
2126 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2127 | |
---|
2128 | ! ---------------------------------------------------------------------- |
---|
2129 | ! Resolution of a * x = b where a is a tridiagonal matrix |
---|
2130 | ! |
---|
2131 | ! ---------------------------------------------------------------------- |
---|
2132 | |
---|
2133 | implicit none |
---|
2134 | |
---|
2135 | ! Input |
---|
2136 | integer n |
---|
2137 | real a(-1:1,n) ! a(-1,*) lower diagonal A(i,i-1) |
---|
2138 | ! a(0,*) principal diagonal A(i,i) |
---|
2139 | ! a(1,*) upper diagonal A(i,i+1) |
---|
2140 | real b(n) |
---|
2141 | |
---|
2142 | ! Output |
---|
2143 | real x(n) |
---|
2144 | |
---|
2145 | ! Local |
---|
2146 | integer i |
---|
2147 | |
---|
2148 | ! ---------------------------------------------------------------------- |
---|
2149 | |
---|
2150 | do i=n-1,1,-1 |
---|
2151 | b(i)=b(i)-a(1,i)*b(i+1)/a(0,i+1) |
---|
2152 | a(0,i)=a(0,i)-a(1,i)*a(-1,i+1)/a(0,i+1) |
---|
2153 | enddo |
---|
2154 | |
---|
2155 | do i=2,n |
---|
2156 | b(i)=b(i)-a(-1,i)*b(i-1)/a(0,i-1) |
---|
2157 | enddo |
---|
2158 | |
---|
2159 | do i=1,n |
---|
2160 | x(i)=b(i)/a(0,i) |
---|
2161 | enddo |
---|
2162 | |
---|
2163 | return |
---|
2164 | end subroutine tridia |
---|
2165 | !====6=8===============================================================72 |
---|
2166 | !====6=8===============================================================72 |
---|
2167 | |
---|
2168 | subroutine gaussjbem(a,n,b,np) |
---|
2169 | |
---|
2170 | ! ---------------------------------------------------------------------- |
---|
2171 | ! This routine solve a linear system of n equations of the form |
---|
2172 | ! A X = B |
---|
2173 | ! where A is a matrix a(i,j) |
---|
2174 | ! B a vector and X the solution |
---|
2175 | ! In output b is replaced by the solution |
---|
2176 | ! ---------------------------------------------------------------------- |
---|
2177 | |
---|
2178 | implicit none |
---|
2179 | |
---|
2180 | ! ---------------------------------------------------------------------- |
---|
2181 | ! INPUT: |
---|
2182 | ! ---------------------------------------------------------------------- |
---|
2183 | integer np |
---|
2184 | real a(np,np) |
---|
2185 | |
---|
2186 | ! ---------------------------------------------------------------------- |
---|
2187 | ! OUTPUT: |
---|
2188 | ! ---------------------------------------------------------------------- |
---|
2189 | real b(np) |
---|
2190 | |
---|
2191 | ! ---------------------------------------------------------------------- |
---|
2192 | ! LOCAL: |
---|
2193 | ! ---------------------------------------------------------------------- |
---|
2194 | integer nmax |
---|
2195 | parameter (nmax=150) |
---|
2196 | |
---|
2197 | real big,dum |
---|
2198 | integer i,icol,irow |
---|
2199 | integer j,k,l,ll,n |
---|
2200 | integer ipiv(nmax) |
---|
2201 | real pivinv |
---|
2202 | |
---|
2203 | ! ---------------------------------------------------------------------- |
---|
2204 | ! END VARIABLES DEFINITIONS |
---|
2205 | ! ---------------------------------------------------------------------- |
---|
2206 | |
---|
2207 | do j=1,n |
---|
2208 | ipiv(j)=0. |
---|
2209 | enddo |
---|
2210 | |
---|
2211 | do i=1,n |
---|
2212 | big=0. |
---|
2213 | do j=1,n |
---|
2214 | if(ipiv(j).ne.1)then |
---|
2215 | do k=1,n |
---|
2216 | if(ipiv(k).eq.0)then |
---|
2217 | if(abs(a(j,k)).ge.big)then |
---|
2218 | big=abs(a(j,k)) |
---|
2219 | irow=j |
---|
2220 | icol=k |
---|
2221 | endif |
---|
2222 | elseif(ipiv(k).gt.1)then |
---|
2223 | pause 'singular matrix in gaussjbem' |
---|
2224 | endif |
---|
2225 | enddo |
---|
2226 | endif |
---|
2227 | enddo |
---|
2228 | |
---|
2229 | ipiv(icol)=ipiv(icol)+1 |
---|
2230 | |
---|
2231 | if(irow.ne.icol)then |
---|
2232 | do l=1,n |
---|
2233 | dum=a(irow,l) |
---|
2234 | a(irow,l)=a(icol,l) |
---|
2235 | a(icol,l)=dum |
---|
2236 | enddo |
---|
2237 | |
---|
2238 | dum=b(irow) |
---|
2239 | b(irow)=b(icol) |
---|
2240 | b(icol)=dum |
---|
2241 | |
---|
2242 | endif |
---|
2243 | |
---|
2244 | if(a(icol,icol).eq.0)pause 'singular matrix in gaussjbem' |
---|
2245 | |
---|
2246 | pivinv=1./a(icol,icol) |
---|
2247 | a(icol,icol)=1 |
---|
2248 | |
---|
2249 | do l=1,n |
---|
2250 | a(icol,l)=a(icol,l)*pivinv |
---|
2251 | enddo |
---|
2252 | |
---|
2253 | b(icol)=b(icol)*pivinv |
---|
2254 | |
---|
2255 | do ll=1,n |
---|
2256 | if(ll.ne.icol)then |
---|
2257 | dum=a(ll,icol) |
---|
2258 | a(ll,icol)=0. |
---|
2259 | do l=1,n |
---|
2260 | a(ll,l)=a(ll,l)-a(icol,l)*dum |
---|
2261 | enddo |
---|
2262 | |
---|
2263 | b(ll)=b(ll)-b(icol)*dum |
---|
2264 | |
---|
2265 | endif |
---|
2266 | enddo |
---|
2267 | enddo |
---|
2268 | |
---|
2269 | return |
---|
2270 | end subroutine gaussjbem |
---|
2271 | |
---|
2272 | !====6=8===============================================================72 |
---|
2273 | !====6=8===============================================================72 |
---|
2274 | |
---|
2275 | subroutine radfluxs(radflux,alb,rs,em,rl,sigma,twal) |
---|
2276 | |
---|
2277 | implicit none |
---|
2278 | !------------------------------------------------------------------- |
---|
2279 | !This function calculates the radiative fluxe at a surface |
---|
2280 | !------------------------------------------------------------------- |
---|
2281 | |
---|
2282 | |
---|
2283 | real alb !albedo of the surface |
---|
2284 | real rs !shor wave radiation |
---|
2285 | real em !emissivity of the surface |
---|
2286 | real rl !lon wave radiation |
---|
2287 | real sigma !parameter (wall is not black body) [W/m2.K4] |
---|
2288 | real twal !wall temperature [K] |
---|
2289 | real radflux |
---|
2290 | |
---|
2291 | radflux=(1.-alb)*rs+em*rl-em*sigma*twal**4 |
---|
2292 | |
---|
2293 | return |
---|
2294 | end subroutine radfluxs |
---|
2295 | |
---|
2296 | !====6=8==============================================================72 |
---|
2297 | !====6=8==============================================================72 |
---|
2298 | ! |
---|
2299 | ! we define the view factors fprl and fnrm, which are the angle |
---|
2300 | ! factors between two equal and parallel planes, fprl, and two |
---|
2301 | ! equal and orthogonal planes, fnrm, respectively |
---|
2302 | ! |
---|
2303 | subroutine fprl_ints(fprl_int,vx,vy) |
---|
2304 | |
---|
2305 | implicit none |
---|
2306 | |
---|
2307 | real vx,vy |
---|
2308 | real fprl_int |
---|
2309 | |
---|
2310 | fprl_int=(2./(3.141592653*vx*vy))* & |
---|
2311 | (log(sqrt((1.+vx*vx)*(1.+vy*vy)/(1.+vx*vx+vy*vy)))+ & |
---|
2312 | (vy*sqrt(1.+vx*vx)*atan(vy/sqrt(1.+vx*vx)))+ & |
---|
2313 | (vx*sqrt(1.+vy*vy)*atan(vx/sqrt(1.+vy*vy)))- & |
---|
2314 | vy*atan(vy)-vx*atan(vx)) |
---|
2315 | |
---|
2316 | return |
---|
2317 | end subroutine fprl_ints |
---|
2318 | |
---|
2319 | !====6=8==============================================================72 |
---|
2320 | !====6=8==============================================================72 |
---|
2321 | ! |
---|
2322 | ! we define the view factors fprl and fnrm, which are the angle |
---|
2323 | ! factors between two equal and parallel planes, fprl, and two |
---|
2324 | ! equal and orthogonal planes, fnrm, respectively |
---|
2325 | ! |
---|
2326 | |
---|
2327 | subroutine fnrm_ints(fnrm_int,wx,wy,wz) |
---|
2328 | |
---|
2329 | implicit none |
---|
2330 | |
---|
2331 | real wx,wy,wz |
---|
2332 | real fnrm_int |
---|
2333 | |
---|
2334 | fnrm_int=(1./(3.141592653*wy))*(wy*atan(1./wy)+wx*atan(1./wx)- & |
---|
2335 | (sqrt(wz)*atan(1./sqrt(wz)))+ & |
---|
2336 | (1./4.)*(log((1.+wx*wx)*(1.+wy*wy)/(1.+wz))+ & |
---|
2337 | wy*wy*log(wy*wy*(1.+wz)/(wz*(1.+wy*wy)))+ & |
---|
2338 | wx*wx*log(wx*wx*(1.+wz)/(wz*(1.+wx*wx))))) |
---|
2339 | |
---|
2340 | return |
---|
2341 | end subroutine fnrm_ints |
---|
2342 | |
---|
2343 | !====6=8==============================================================72 |
---|
2344 | !====6=8==============================================================72 |
---|
2345 | END MODULE module_sf_bem |
---|