1 | #if ( RWORDSIZE == 4 ) |
---|
2 | # define VREC vsrec |
---|
3 | # define VSQRT vssqrt |
---|
4 | #else |
---|
5 | # define VREC vrec |
---|
6 | # define VSQRT vsqrt |
---|
7 | #endif |
---|
8 | |
---|
9 | !Including inline expansion statistical function |
---|
10 | MODULE module_mp_wsm5 |
---|
11 | ! |
---|
12 | ! |
---|
13 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
---|
14 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
---|
15 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
---|
16 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
---|
17 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
18 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
19 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
20 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
21 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
---|
22 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
---|
23 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
---|
24 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 ! limited maximum value for slope parameter of rain |
---|
25 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
---|
26 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
---|
27 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
---|
28 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
---|
29 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
---|
30 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
31 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing |
---|
32 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing |
---|
33 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
---|
34 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency |
---|
35 | REAL, SAVE :: & |
---|
36 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, & |
---|
37 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
---|
38 | precr1,precr2,xmmax,roqimax,bvts1, & |
---|
39 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
---|
40 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & |
---|
41 | pidn0s,xlv1,pacrc, & |
---|
42 | rslopermax,rslopesmax,rslopegmax, & |
---|
43 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
44 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
45 | rsloper3max,rslopes3max,rslopeg3max |
---|
46 | ! |
---|
47 | ! Specifies code-inlining of fpvs function in WSM52D below. JM 20040507 |
---|
48 | ! |
---|
49 | CONTAINS |
---|
50 | !=================================================================== |
---|
51 | ! |
---|
52 | SUBROUTINE wsm5(th, q, qc, qr, qi, qs & |
---|
53 | ,den, pii, p, delz & |
---|
54 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
55 | ,ep1, ep2, qmin & |
---|
56 | ,XLS, XLV0, XLF0, den0, denr & |
---|
57 | ,cliq,cice,psat & |
---|
58 | ,rain, rainncv & |
---|
59 | ,snow, snowncv & |
---|
60 | ,sr & |
---|
61 | ,ids,ide, jds,jde, kds,kde & |
---|
62 | ,ims,ime, jms,jme, kms,kme & |
---|
63 | ,its,ite, jts,jte, kts,kte & |
---|
64 | ) |
---|
65 | #ifdef _OPENMP |
---|
66 | use omp_lib |
---|
67 | #endif |
---|
68 | !------------------------------------------------------------------- |
---|
69 | IMPLICIT NONE |
---|
70 | !------------------------------------------------------------------- |
---|
71 | ! |
---|
72 | ! This code is a 5-class mixed ice microphyiscs scheme (WSM5) of the WRF |
---|
73 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
---|
74 | ! number concentration is a function of temperature, and seperate assumption |
---|
75 | ! is developed, in which ice crystal number concentration is a function |
---|
76 | ! of ice amount. A theoretical background of the ice-microphysics and related |
---|
77 | ! processes in the WSMMPs are described in Hong et al. (2004). |
---|
78 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
---|
79 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
80 | ! |
---|
81 | ! WSM5 cloud scheme |
---|
82 | ! |
---|
83 | ! Coded by Song-You Hong (Yonsei Univ.) |
---|
84 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
---|
85 | ! Summer 2002 |
---|
86 | ! |
---|
87 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
---|
88 | ! Summer 2003 |
---|
89 | ! |
---|
90 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
91 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
---|
92 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
93 | ! |
---|
94 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
95 | ims,ime, jms,jme, kms,kme , & |
---|
96 | its,ite, jts,jte, kts,kte |
---|
97 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
98 | INTENT(INOUT) :: & |
---|
99 | th, & |
---|
100 | q, & |
---|
101 | qc, & |
---|
102 | qi, & |
---|
103 | qr, & |
---|
104 | qs |
---|
105 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
106 | INTENT(IN ) :: & |
---|
107 | den, & |
---|
108 | pii, & |
---|
109 | p, & |
---|
110 | delz |
---|
111 | REAL, INTENT(IN ) :: delt, & |
---|
112 | g, & |
---|
113 | rd, & |
---|
114 | rv, & |
---|
115 | t0c, & |
---|
116 | den0, & |
---|
117 | cpd, & |
---|
118 | cpv, & |
---|
119 | ep1, & |
---|
120 | ep2, & |
---|
121 | qmin, & |
---|
122 | XLS, & |
---|
123 | XLV0, & |
---|
124 | XLF0, & |
---|
125 | cliq, & |
---|
126 | cice, & |
---|
127 | psat, & |
---|
128 | denr |
---|
129 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
130 | INTENT(INOUT) :: rain, & |
---|
131 | rainncv, & |
---|
132 | sr |
---|
133 | |
---|
134 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
135 | INTENT(INOUT) :: snow, & |
---|
136 | snowncv |
---|
137 | |
---|
138 | ! LOCAL VAR |
---|
139 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
140 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci, qrs |
---|
141 | CHARACTER*256 :: emess |
---|
142 | INTEGER :: mkx_test |
---|
143 | INTEGER :: i,j,k |
---|
144 | |
---|
145 | #ifdef _ACCEL_PROF |
---|
146 | INTEGER :: l |
---|
147 | real*8 wsm3_t(8,256), wsm5_t(8,256), t1, t2 |
---|
148 | common /wsm_times/ wsm3_t(8,256), wsm5_t(8,256) |
---|
149 | #endif |
---|
150 | |
---|
151 | |
---|
152 | !------------------------------------------------------------------- |
---|
153 | |
---|
154 | #ifdef _ACCEL_PROF |
---|
155 | call cpu_time(t1) |
---|
156 | #endif |
---|
157 | |
---|
158 | #ifndef RUN_ON_GPU |
---|
159 | |
---|
160 | #ifdef _ACCEL |
---|
161 | |
---|
162 | ! Need to send th, pii, qc, qi, qr, qs |
---|
163 | ! Don't send t |
---|
164 | |
---|
165 | CALL wsm52D(th, pii, q, qc, qr, qi, qs & |
---|
166 | ,den & |
---|
167 | ,p, delz & |
---|
168 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
169 | ,ep1, ep2, qmin & |
---|
170 | ,XLS, XLV0, XLF0, den0, denr & |
---|
171 | ,cliq,cice,psat & |
---|
172 | ,rain,rainncv & |
---|
173 | ,sr & |
---|
174 | ,ids,ide, jds,jde, kds,kde & |
---|
175 | ,ims,ime, jms,jme, kms,kme & |
---|
176 | ,its,ite, jts,jte, kts,kte & |
---|
177 | ,snow,snowncv & |
---|
178 | ) |
---|
179 | |
---|
180 | #else |
---|
181 | |
---|
182 | DO j=jts,jte |
---|
183 | DO k=kts,kte |
---|
184 | DO i=its,ite |
---|
185 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
186 | qci(i,k,1) = qc(i,k,j) |
---|
187 | qci(i,k,2) = qi(i,k,j) |
---|
188 | qrs(i,k,1) = qr(i,k,j) |
---|
189 | qrs(i,k,2) = qs(i,k,j) |
---|
190 | ENDDO |
---|
191 | ENDDO |
---|
192 | |
---|
193 | ! Sending array starting locations of optional variables may cause |
---|
194 | ! troubles, so we explicitly change the call. |
---|
195 | |
---|
196 | CALL wsm52D(t, q(ims,kms,j), qci, qrs & |
---|
197 | ,den(ims,kms,j) & |
---|
198 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
199 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
200 | ,ep1, ep2, qmin & |
---|
201 | ,XLS, XLV0, XLF0, den0, denr & |
---|
202 | ,cliq,cice,psat & |
---|
203 | ,j & |
---|
204 | ,rain(ims,j),rainncv(ims,j) & |
---|
205 | ,sr(ims,j) & |
---|
206 | ,ids,ide, jds,jde, kds,kde & |
---|
207 | ,ims,ime, jms,jme, kms,kme & |
---|
208 | ,its,ite, jts,jte, kts,kte & |
---|
209 | ,snow,snowncv & |
---|
210 | ) |
---|
211 | |
---|
212 | DO K=kts,kte |
---|
213 | DO I=its,ite |
---|
214 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
215 | qc(i,k,j) = qci(i,k,1) |
---|
216 | qi(i,k,j) = qci(i,k,2) |
---|
217 | qr(i,k,j) = qrs(i,k,1) |
---|
218 | qs(i,k,j) = qrs(i,k,2) |
---|
219 | ENDDO |
---|
220 | ENDDO |
---|
221 | ENDDO |
---|
222 | #endif |
---|
223 | #else |
---|
224 | CALL get_wsm5_gpu_levels ( mkx_test ) |
---|
225 | IF ( mkx_test .LT. kte ) THEN |
---|
226 | WRITE(emess,*)'Number of levels compiled for GPU WSM5 too small. ', & |
---|
227 | mkx_test,' < ',kte |
---|
228 | CALL wrf_error_fatal(emess) |
---|
229 | ENDIF |
---|
230 | CALL wsm5_host ( & |
---|
231 | th(its:ite,kts:kte,jts:jte), pii(its:ite,kts:kte,jts:jte) & |
---|
232 | ,q(its:ite,kts:kte,jts:jte), qc(its:ite,kts:kte,jts:jte) & |
---|
233 | ,qi(its:ite,kts:kte,jts:jte), qr(its:ite,kts:kte,jts:jte) & |
---|
234 | ,qs(its:ite,kts:kte,jts:jte), den(its:ite,kts:kte,jts:jte) & |
---|
235 | ,p(its:ite,kts:kte,jts:jte), delz(its:ite,kts:kte,jts:jte) & |
---|
236 | ,delt & |
---|
237 | ,rain(its:ite,jts:jte),rainncv(its:ite,jts:jte) & |
---|
238 | ,snow(its:ite,jts:jte),snowncv(its:ite,jts:jte) & |
---|
239 | ,sr(its:ite,jts:jte) & |
---|
240 | ,its, ite, jts, jte, kts, kte & |
---|
241 | ,its, ite, jts, jte, kts, kte & |
---|
242 | ,its, ite, jts, jte, kts, kte & |
---|
243 | ) |
---|
244 | #endif |
---|
245 | |
---|
246 | |
---|
247 | #ifdef _ACCEL_PROF |
---|
248 | call cpu_time(t2) |
---|
249 | #ifdef _OPENMP |
---|
250 | l = omp_get_thread_num() + 1 |
---|
251 | #else |
---|
252 | l = 1 |
---|
253 | #endif |
---|
254 | wsm5_t(1,l) = wsm5_t(1,l) + (t2 - t1) |
---|
255 | #endif |
---|
256 | |
---|
257 | END SUBROUTINE wsm5 |
---|
258 | |
---|
259 | |
---|
260 | #ifdef _ACCEL |
---|
261 | |
---|
262 | !=================================================================== |
---|
263 | ! |
---|
264 | SUBROUTINE wsm52D(th, pii, q, qc, qr, qi, qqs, den, p, delz & |
---|
265 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
266 | ,ep1, ep2, qmin & |
---|
267 | ,XLS, XLV0, XLF0, den0, denr & |
---|
268 | ,cliq,cice,psat & |
---|
269 | ,rain,rainncv & |
---|
270 | ,sr & |
---|
271 | ,ids,ide, jds,jde, kds,kde & |
---|
272 | ,ims,ime, jms,jme, kms,kme & |
---|
273 | ,its,ite, jts,jte, kts,kte & |
---|
274 | ,snow,snowncv & |
---|
275 | ) |
---|
276 | !------------------------------------------------------------------- |
---|
277 | IMPLICIT NONE |
---|
278 | !------------------------------------------------------------------- |
---|
279 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
280 | ims,ime, jms,jme, kms,kme , & |
---|
281 | its,ite, jts,jte, kts,kte |
---|
282 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
283 | INTENT(INOUT) :: & |
---|
284 | th |
---|
285 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
286 | INTENT(IN) :: & |
---|
287 | pii |
---|
288 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
---|
289 | INTENT(INOUT) :: & |
---|
290 | qc, & |
---|
291 | qr, & |
---|
292 | qi, & |
---|
293 | qqs |
---|
294 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
---|
295 | INTENT(INOUT) :: & |
---|
296 | q |
---|
297 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
---|
298 | INTENT(IN ) :: & |
---|
299 | den, & |
---|
300 | p, & |
---|
301 | delz |
---|
302 | REAL, INTENT(IN ) :: delt, & |
---|
303 | g, & |
---|
304 | cpd, & |
---|
305 | cpv, & |
---|
306 | t0c, & |
---|
307 | den0, & |
---|
308 | rd, & |
---|
309 | rv, & |
---|
310 | ep1, & |
---|
311 | ep2, & |
---|
312 | qmin, & |
---|
313 | XLS, & |
---|
314 | XLV0, & |
---|
315 | XLF0, & |
---|
316 | cliq, & |
---|
317 | cice, & |
---|
318 | psat, & |
---|
319 | denr |
---|
320 | REAL, DIMENSION( ims:ime, jms:jme ), & |
---|
321 | INTENT(INOUT) :: rain, & |
---|
322 | rainncv, & |
---|
323 | sr |
---|
324 | |
---|
325 | REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, & |
---|
326 | INTENT(INOUT) :: snow, & |
---|
327 | snowncv |
---|
328 | |
---|
329 | ! LOCAL VAR |
---|
330 | REAL, DIMENSION( its:ite , kts:kte , 2) :: & |
---|
331 | rh, & |
---|
332 | qs, & |
---|
333 | rslope, & |
---|
334 | rslope2, & |
---|
335 | rslope3, & |
---|
336 | rslopeb, & |
---|
337 | falk, & |
---|
338 | fall, & |
---|
339 | work1 |
---|
340 | REAL, DIMENSION( its:ite , kts:kte, jts:jte ) :: & |
---|
341 | t |
---|
342 | REAL, DIMENSION( its:ite , kts:kte , 2 ) :: & |
---|
343 | qci, & |
---|
344 | qrs |
---|
345 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
346 | falkc, & |
---|
347 | fallc, & |
---|
348 | xl, & |
---|
349 | cpm, & |
---|
350 | denfac, & |
---|
351 | xni, & |
---|
352 | n0sfac, & |
---|
353 | work2, & |
---|
354 | work1c, & |
---|
355 | work2c |
---|
356 | |
---|
357 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
358 | pigen, & |
---|
359 | pidep, & |
---|
360 | psdep, & |
---|
361 | praut, & |
---|
362 | psaut, & |
---|
363 | prevp, & |
---|
364 | psevp, & |
---|
365 | pracw, & |
---|
366 | psacw, & |
---|
367 | psaci, & |
---|
368 | pcond, & |
---|
369 | psmlt |
---|
370 | INTEGER :: & |
---|
371 | mstep, & |
---|
372 | numdt |
---|
373 | REAL :: rmstep |
---|
374 | REAL dtcldden, rdelz, rdtcld |
---|
375 | LOGICAL :: flgcld |
---|
376 | |
---|
377 | #define WSM_NO_CONDITIONAL_IN_VECTOR |
---|
378 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
---|
379 | REAL :: xal, xbl |
---|
380 | #endif |
---|
381 | |
---|
382 | REAL :: pi, & |
---|
383 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
---|
384 | viscos, xka, venfac, conden, diffac, & |
---|
385 | x, y, z, a, b, c, d, e, & |
---|
386 | qdt, holdrr, holdrs, supcol, supcolt, pvt, & |
---|
387 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
---|
388 | vt2i,vt2s,acrfac, & |
---|
389 | qimax, diameter, xni0, roqi0, & |
---|
390 | fallsum, fallsum_qsi, xlwork2, factor, source, & |
---|
391 | value, xlf, pfrzdtc, pfrzdtr, supice, holdc, holdci |
---|
392 | ! variables for optimization |
---|
393 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
394 | REAL :: temp |
---|
395 | INTEGER :: i, j, k, & |
---|
396 | iprt, latd, lond, loop, loops, ifsat, n |
---|
397 | ! Temporaries used for inlining fpvs function |
---|
398 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
399 | REAL :: logtr |
---|
400 | ! |
---|
401 | !================================================================= |
---|
402 | ! compute internal functions |
---|
403 | ! |
---|
404 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
405 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
406 | !---------------------------------------------------------------- |
---|
407 | ! size distributions: (x=mixing ratio, y=air density): |
---|
408 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
409 | ! |
---|
410 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
411 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
412 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
413 | ! |
---|
414 | !---------------------------------------------------------------- |
---|
415 | ! diffus: diffusion coefficient of the water vapor |
---|
416 | ! viscos: kinematic viscosity(m2s-1) |
---|
417 | ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
418 | ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
419 | ! xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
420 | ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
421 | ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
422 | ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
423 | ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
424 | ! |
---|
425 | ! |
---|
426 | pi = 4. * atan(1.) |
---|
427 | ! |
---|
428 | !---------------------------------------------------------------- |
---|
429 | ! paddint 0 for negative values generated by dynamics |
---|
430 | ! |
---|
431 | |
---|
432 | ! |
---|
433 | ! Moved outside of accelerator region |
---|
434 | ! |
---|
435 | loops = max(nint(delt/dtcldcr),1) |
---|
436 | dtcld = delt/loops |
---|
437 | if(delt.le.dtcldcr) dtcld = delt |
---|
438 | ! |
---|
439 | |
---|
440 | !....!$acc local(t) & |
---|
441 | |
---|
442 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
443 | |
---|
444 | !$acc region & |
---|
445 | !$acc local(t) & |
---|
446 | !$acc copyin(delz(:,:,:),p(:,:,:),den(:,:,:),pii(:,:,:)) & |
---|
447 | !$acc copyout(snowncv(:,:),rainncv(:,:),sr(:,:)) & |
---|
448 | !$acc copy(qqs(:,:,:),qr(:,:,:),qi(:,:,:),qc(:,:,:)) & |
---|
449 | !$acc copy(th(:,:,:),q(:,:,:),snow(:,:),rain(:,:)) |
---|
450 | !$acc do & |
---|
451 | !$acc private(rh,qs,rslope,rslope2,rslope3,rslopeb,falk,fall) & |
---|
452 | !$acc private(work1,qci,qrs,falkc,fallc,xl,cpm,denfac,xni) & |
---|
453 | !$acc private(n0sfac,work2,work1c,work2c,pigen,pidep,psdep) & |
---|
454 | !$acc private(praut,psaut,prevp,psevp) & |
---|
455 | !$acc private(pracw,psacw,psaci,pcond,psmlt) & |
---|
456 | !$acc parallel |
---|
457 | do j = jts, jte |
---|
458 | !$acc do & |
---|
459 | !$acc private(numdt,mstep) & |
---|
460 | !$acc kernel vector |
---|
461 | do i = its, ite |
---|
462 | do k = kts, kte |
---|
463 | t(i,k,j)=th(i,k,j)*pii(i,k,j) |
---|
464 | qci(i,k,1) = max(qc(i,k,j),0.0) |
---|
465 | qci(i,k,2) = max(qi(i,k,j),0.0) |
---|
466 | qrs(i,k,1) = max(qr(i,k,j),0.0) |
---|
467 | qrs(i,k,2) = max(qqs(i,k,j),0.0) |
---|
468 | enddo |
---|
469 | ! |
---|
470 | !---------------------------------------------------------------- |
---|
471 | ! latent heat for phase changes and heat capacity. neglect the |
---|
472 | ! changes during microphysical process calculation |
---|
473 | ! emanuel(1994) |
---|
474 | ! |
---|
475 | do k = kts, kte |
---|
476 | cpm(i,k) = cpmcal(q(i,k,j)) |
---|
477 | xl(i,k) = xlcal(t(i,k,j)) |
---|
478 | enddo |
---|
479 | ! |
---|
480 | !---------------------------------------------------------------- |
---|
481 | ! compute the minor time steps. |
---|
482 | ! |
---|
483 | ! loops = max(nint(delt/dtcldcr),1) |
---|
484 | ! dtcld = delt/loops |
---|
485 | ! if(delt.le.dtcldcr) dtcld = delt |
---|
486 | ! |
---|
487 | do loop = 1,loops |
---|
488 | ! |
---|
489 | !---------------------------------------------------------------- |
---|
490 | ! initialize the large scale variables |
---|
491 | ! |
---|
492 | mstep = 1 |
---|
493 | flgcld = .true. |
---|
494 | ! |
---|
495 | do k = kts, kte |
---|
496 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
---|
497 | enddo |
---|
498 | ! do k = kts, kte |
---|
499 | ! CALL VREC( tvec1(its), den(its,k,j), ite-its+1) |
---|
500 | ! do i = its, ite |
---|
501 | ! tvec1(i) = tvec1(i)*den0 |
---|
502 | ! enddo |
---|
503 | ! CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
504 | ! enddo |
---|
505 | ! |
---|
506 | ! Inline expansion for fpvs |
---|
507 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
508 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
509 | hsub = xls |
---|
510 | hvap = xlv0 |
---|
511 | cvap = cpv |
---|
512 | ttp=t0c+0.01 |
---|
513 | dldt=cvap-cliq |
---|
514 | xa=-dldt/rv |
---|
515 | xb=xa+hvap/(rv*ttp) |
---|
516 | dldti=cvap-cice |
---|
517 | xai=-dldti/rv |
---|
518 | xbi=xai+hsub/(rv*ttp) |
---|
519 | |
---|
520 | ! this is for compilers where the conditional inhibits vectorization |
---|
521 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
---|
522 | do k = kts, kte |
---|
523 | if(t(i,k,j).lt.ttp) then |
---|
524 | xal = xai |
---|
525 | xbl = xbi |
---|
526 | else |
---|
527 | xal = xa |
---|
528 | xbl = xb |
---|
529 | endif |
---|
530 | tr=ttp/t(i,k,j) |
---|
531 | logtr=log(tr) |
---|
532 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
533 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
---|
534 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
535 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
---|
536 | qs(i,k,2)=psat*exp(logtr*(xal)+xbl*(1.-tr)) |
---|
537 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
---|
538 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
539 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
---|
540 | enddo |
---|
541 | #else |
---|
542 | do k = kts, kte |
---|
543 | tr=ttp/t(i,k,j) |
---|
544 | logtr=log(tr) |
---|
545 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
546 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
---|
547 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
548 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
---|
549 | if(t(i,k,j).lt.ttp) then |
---|
550 | qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr)) |
---|
551 | else |
---|
552 | qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
553 | endif |
---|
554 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
---|
555 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
556 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
---|
557 | enddo |
---|
558 | #endif |
---|
559 | |
---|
560 | ! |
---|
561 | !---------------------------------------------------------------- |
---|
562 | ! initialize the variables for microphysical physics |
---|
563 | ! |
---|
564 | ! |
---|
565 | do k = kts, kte |
---|
566 | prevp(i,k) = 0. |
---|
567 | psdep(i,k) = 0. |
---|
568 | praut(i,k) = 0. |
---|
569 | psaut(i,k) = 0. |
---|
570 | pracw(i,k) = 0. |
---|
571 | psaci(i,k) = 0. |
---|
572 | psacw(i,k) = 0. |
---|
573 | pigen(i,k) = 0. |
---|
574 | pidep(i,k) = 0. |
---|
575 | pcond(i,k) = 0. |
---|
576 | psmlt(i,k) = 0. |
---|
577 | psevp(i,k) = 0. |
---|
578 | falk(i,k,1) = 0. |
---|
579 | falk(i,k,2) = 0. |
---|
580 | fall(i,k,1) = 0. |
---|
581 | fall(i,k,2) = 0. |
---|
582 | fallc(i,k) = 0. |
---|
583 | falkc(i,k) = 0. |
---|
584 | xni(i,k) = 1.e3 |
---|
585 | enddo |
---|
586 | ! |
---|
587 | !---------------------------------------------------------------- |
---|
588 | ! compute the fallout term: |
---|
589 | ! first, vertical terminal velosity for minor loops |
---|
590 | ! |
---|
591 | do k = kts, kte |
---|
592 | supcol = t0c-t(i,k,j) |
---|
593 | !--------------------------------------------------------------- |
---|
594 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
595 | !--------------------------------------------------------------- |
---|
596 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
597 | if(qrs(i,k,1).le.qcrmin)then |
---|
598 | rslope(i,k,1) = rslopermax |
---|
599 | rslopeb(i,k,1) = rsloperbmax |
---|
600 | rslope2(i,k,1) = rsloper2max |
---|
601 | rslope3(i,k,1) = rsloper3max |
---|
602 | else |
---|
603 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
---|
604 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
605 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
606 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
607 | endif |
---|
608 | if(qrs(i,k,2).le.qcrmin)then |
---|
609 | rslope(i,k,2) = rslopesmax |
---|
610 | rslopeb(i,k,2) = rslopesbmax |
---|
611 | rslope2(i,k,2) = rslopes2max |
---|
612 | rslope3(i,k,2) = rslopes3max |
---|
613 | else |
---|
614 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
---|
615 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
616 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
617 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
618 | endif |
---|
619 | !------------------------------------------------------------- |
---|
620 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
621 | !------------------------------------------------------------- |
---|
622 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
---|
623 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
624 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
---|
625 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
626 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
627 | enddo |
---|
628 | ! |
---|
629 | numdt = 1 |
---|
630 | do k = kte, kts, -1 |
---|
631 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k,j) |
---|
632 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k,j) |
---|
633 | numdt = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
---|
634 | if(numdt.ge.mstep) mstep = numdt |
---|
635 | enddo |
---|
636 | rmstep = 1./mstep |
---|
637 | ! |
---|
638 | do n = 1, mstep |
---|
639 | k = kte |
---|
640 | ! falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
641 | ! falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
---|
642 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
---|
643 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
---|
644 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
645 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
646 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k,j),0.) |
---|
647 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k,j),0.) |
---|
648 | dtcldden = dtcld/den(i,k,j) |
---|
649 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
---|
650 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
---|
651 | ! endif |
---|
652 | do k = kte-1, kts, -1 |
---|
653 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
---|
654 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
---|
655 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
656 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
657 | dtcldden = dtcld/den(i,k,j) |
---|
658 | rdelz = 1./delz(i,k,j) |
---|
659 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
660 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
---|
661 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
---|
662 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
---|
663 | enddo |
---|
664 | do k = kte, kts, -1 |
---|
665 | if(t(i,k,j).gt.t0c.and.qrs(i,k,2).gt.0.) then |
---|
666 | !---------------------------------------------------------------- |
---|
667 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
---|
668 | ! (T>T0: S->R) |
---|
669 | !---------------------------------------------------------------- |
---|
670 | xlf = xlf0 |
---|
671 | ! work2(i,k)= venfac(p(i,k),t(i,k,j),den(i,k,j)) |
---|
672 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
---|
673 | /((t(i,k,j))+120.)/(den(i,k,j)))/(8.794e-5 & |
---|
674 | *exp(log(t(i,k,j))*(1.81))/p(i,k,j)))) & |
---|
675 | *((.3333333)))/sqrt((1.496e-6*((t(i,k,j)) & |
---|
676 | *sqrt(t(i,k,j)))/((t(i,k,j))+120.)/(den(i,k,j)))) & |
---|
677 | *sqrt(sqrt(den0/(den(i,k,j))))) |
---|
678 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
679 | ! psmlt(i,k) = xka(t(i,k,j),den(i,k,j))/xlf*(t0c-t(i,k,j))*pi/2. & |
---|
680 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
681 | ! *work2(i,k)*coeres) |
---|
682 | psmlt(i,k) = (1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
---|
683 | /((t(i,k,j))+120.)/(den(i,k,j)) )*(den(i,k,j))) & |
---|
684 | /xlf*(t0c-t(i,k,j))*pi/2. & |
---|
685 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
686 | *work2(i,k)*coeres) |
---|
687 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep, & |
---|
688 | -qrs(i,k,2)/mstep),0.) |
---|
689 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
---|
690 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
---|
691 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*psmlt(i,k) |
---|
692 | endif |
---|
693 | enddo |
---|
694 | enddo |
---|
695 | |
---|
696 | |
---|
697 | !--------------------------------------------------------------- |
---|
698 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
699 | !--------------------------------------------------------------- |
---|
700 | mstep = 1 |
---|
701 | numdt = 1 |
---|
702 | do k = kte, kts, -1 |
---|
703 | if(qci(i,k,2).le.0.) then |
---|
704 | work2c(i,k) = 0. |
---|
705 | else |
---|
706 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
---|
707 | ! diameter = min(dicon * sqrt(xmi),dimax) |
---|
708 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
---|
709 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
710 | work2c(i,k) = work1c(i,k)/delz(i,k,j) |
---|
711 | endif |
---|
712 | numdt = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
713 | if(numdt.ge.mstep) mstep = numdt |
---|
714 | enddo |
---|
715 | ! |
---|
716 | do n = 1, mstep |
---|
717 | k = kte |
---|
718 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
---|
719 | holdc = falkc(i,k) |
---|
720 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
721 | holdci = qci(i,k,2) |
---|
722 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k,j),0.) |
---|
723 | ! endif |
---|
724 | do k = kte-1, kts, -1 |
---|
725 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
---|
726 | holdc = falkc(i,k) |
---|
727 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
728 | holdci = qci(i,k,2) |
---|
729 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
---|
730 | *delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
---|
731 | ! endif |
---|
732 | enddo |
---|
733 | enddo |
---|
734 | ! |
---|
735 | ! |
---|
736 | !---------------------------------------------------------------- |
---|
737 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
738 | ! |
---|
739 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
---|
740 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
---|
741 | rainncv(i,j) = 0. |
---|
742 | if(fallsum.gt.0.) then |
---|
743 | rainncv(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. |
---|
744 | rain(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. + rain(i,j) |
---|
745 | endif |
---|
746 | snowncv(i,j) = 0. |
---|
747 | if(fallsum_qsi.gt.0.) then |
---|
748 | snowncv(i,j) = fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. |
---|
749 | snow(i,j) = fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. + snow(i,j) |
---|
750 | endif |
---|
751 | sr(i,j) = 0. |
---|
752 | if(fallsum.gt.0.)sr(i,j)=fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. & |
---|
753 | /(rainncv(i,j)+1.e-12) |
---|
754 | ! |
---|
755 | !--------------------------------------------------------------- |
---|
756 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
---|
757 | ! (T>T0: I->C) |
---|
758 | !--------------------------------------------------------------- |
---|
759 | do k = kts, kte |
---|
760 | supcol = t0c-t(i,k,j) |
---|
761 | xlf = xls-xl(i,k) |
---|
762 | if(supcol.lt.0.) xlf = xlf0 |
---|
763 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
---|
764 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
---|
765 | t(i,k,j) = t(i,k,j) - xlf/cpm(i,k)*qci(i,k,2) |
---|
766 | qci(i,k,2) = 0. |
---|
767 | endif |
---|
768 | !--------------------------------------------------------------- |
---|
769 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
---|
770 | ! (T<-40C: C->I) |
---|
771 | !--------------------------------------------------------------- |
---|
772 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
---|
773 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
---|
774 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*qci(i,k,1) |
---|
775 | qci(i,k,1) = 0. |
---|
776 | endif |
---|
777 | !--------------------------------------------------------------- |
---|
778 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
---|
779 | ! (T0>T>-40C: C->I) |
---|
780 | !--------------------------------------------------------------- |
---|
781 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
---|
782 | supcolt=min(supcol,50.) |
---|
783 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
---|
784 | ! *den(i,k,j)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
---|
785 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
---|
786 | *den(i,k,j)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
---|
787 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
---|
788 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtc |
---|
789 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
---|
790 | endif |
---|
791 | !--------------------------------------------------------------- |
---|
792 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
---|
793 | ! (T<T0, R->S) |
---|
794 | !--------------------------------------------------------------- |
---|
795 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
---|
796 | supcolt=min(supcol,50.) |
---|
797 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k,j) & |
---|
798 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
---|
799 | ! qrs(i,k,1)) |
---|
800 | temp = rslope(i,k,1) |
---|
801 | temp = temp*temp*temp*temp*temp*temp*temp |
---|
802 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k,j) & |
---|
803 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
---|
804 | qrs(i,k,1)) |
---|
805 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
---|
806 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtr |
---|
807 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
---|
808 | endif |
---|
809 | enddo |
---|
810 | ! |
---|
811 | !---------------------------------------------------------------- |
---|
812 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
813 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
814 | ! work1: the thermodynamic term in the denominator associated with |
---|
815 | ! heat conduction and vapor diffusion |
---|
816 | ! (ry88, y93, h85) |
---|
817 | ! work2: parameter associated with the ventilation effects(y93) |
---|
818 | ! |
---|
819 | do k = kts, kte |
---|
820 | if(qrs(i,k,1).le.qcrmin)then |
---|
821 | rslope(i,k,1) = rslopermax |
---|
822 | rslopeb(i,k,1) = rsloperbmax |
---|
823 | rslope2(i,k,1) = rsloper2max |
---|
824 | rslope3(i,k,1) = rsloper3max |
---|
825 | else |
---|
826 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
---|
827 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k,j)))))) |
---|
828 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
829 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
830 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
831 | endif |
---|
832 | if(qrs(i,k,2).le.qcrmin)then |
---|
833 | rslope(i,k,2) = rslopesmax |
---|
834 | rslopeb(i,k,2) = rslopesbmax |
---|
835 | rslope2(i,k,2) = rslopes2max |
---|
836 | rslope3(i,k,2) = rslopes3max |
---|
837 | else |
---|
838 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
---|
839 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2)) & |
---|
840 | *(den(i,k,j)))))) |
---|
841 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
842 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
843 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
844 | endif |
---|
845 | enddo |
---|
846 | ! |
---|
847 | do k = kts, kte |
---|
848 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,1)) |
---|
849 | work1(i,k,1) = ((((den(i,k,j))*(xl(i,k))*(xl(i,k)))*((t(i,k,j))+120.) & |
---|
850 | *(den(i,k,j)))/(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))& |
---|
851 | *(den(i,k,j))*(rv*(t(i,k,j))*(t(i,k,j))))) & |
---|
852 | + p(i,k,j)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k,j))*(1.81)))) |
---|
853 | ! work1(i,k,2) = diffac(xls,p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,2)) |
---|
854 | work1(i,k,2) = ((((den(i,k,j))*(xls)*(xls))*((t(i,k,j))+120.)*(den(i,k,j)))& |
---|
855 | /(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))*(den(i,k,j)) & |
---|
856 | *(rv*(t(i,k,j))*(t(i,k,j)))) & |
---|
857 | + p(i,k,j)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k,j))*(1.81))))) |
---|
858 | ! work2(i,k) = venfac(p(i,k,j),t(i,k,j),den(i,k,j)) |
---|
859 | work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k,j))*sqrt(t(i,k,j)))) & |
---|
860 | *p(i,k,j))/(((t(i,k,j))+120.)*den(i,k,j)*(8.794e-5 & |
---|
861 | *exp(log(t(i,k,j))*(1.81))))))*sqrt(sqrt(den0/(den(i,k,j))))) & |
---|
862 | /sqrt((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j)))) & |
---|
863 | /(((t(i,k,j))+120.)*den(i,k,j))) |
---|
864 | enddo |
---|
865 | ! |
---|
866 | !=============================================================== |
---|
867 | ! |
---|
868 | ! warm rain processes |
---|
869 | ! |
---|
870 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
871 | ! |
---|
872 | !=============================================================== |
---|
873 | ! |
---|
874 | do k = kts, kte |
---|
875 | supsat = max(q(i,k,j),qmin)-qs(i,k,1) |
---|
876 | satdt = supsat/dtcld |
---|
877 | !--------------------------------------------------------------- |
---|
878 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
879 | ! (C->R) |
---|
880 | !--------------------------------------------------------------- |
---|
881 | if(qci(i,k,1).gt.qc0) then |
---|
882 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
---|
883 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
---|
884 | endif |
---|
885 | !--------------------------------------------------------------- |
---|
886 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
---|
887 | ! (C->R) |
---|
888 | !--------------------------------------------------------------- |
---|
889 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
890 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
---|
891 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
892 | endif |
---|
893 | !--------------------------------------------------------------- |
---|
894 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
895 | ! (V->R or R->V) |
---|
896 | !--------------------------------------------------------------- |
---|
897 | if(qrs(i,k,1).gt.0.) then |
---|
898 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
---|
899 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
---|
900 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
---|
901 | if(prevp(i,k).lt.0.) then |
---|
902 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
---|
903 | prevp(i,k) = max(prevp(i,k),satdt/2) |
---|
904 | else |
---|
905 | prevp(i,k) = min(prevp(i,k),satdt/2) |
---|
906 | endif |
---|
907 | endif |
---|
908 | enddo |
---|
909 | ! |
---|
910 | !=============================================================== |
---|
911 | ! |
---|
912 | ! cold rain processes |
---|
913 | ! |
---|
914 | ! - follows the revised ice microphysics processes in HDC |
---|
915 | ! - the processes same as in RH83 and RH84 and LFO behave |
---|
916 | ! following ice crystal hapits defined in HDC, inclduing |
---|
917 | ! intercept parameter for snow (n0s), ice crystal number |
---|
918 | ! concentration (ni), ice nuclei number concentration |
---|
919 | ! (n0i), ice diameter (d) |
---|
920 | ! |
---|
921 | !=============================================================== |
---|
922 | ! |
---|
923 | rdtcld = 1./dtcld |
---|
924 | do k = kts, kte |
---|
925 | supcol = t0c-t(i,k,j) |
---|
926 | supsat = max(q(i,k,j),qmin)-qs(i,k,2) |
---|
927 | satdt = supsat/dtcld |
---|
928 | ifsat = 0 |
---|
929 | !------------------------------------------------------------- |
---|
930 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
931 | !------------------------------------------------------------- |
---|
932 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
---|
933 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
934 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
---|
935 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
936 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
937 | eacrs = exp(0.07*(-supcol)) |
---|
938 | ! |
---|
939 | if(supcol.gt.0) then |
---|
940 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
---|
941 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
---|
942 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
943 | vt2i = 1.49e4*diameter**1.31 |
---|
944 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
945 | !------------------------------------------------------------- |
---|
946 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
---|
947 | ! (T<T0: I->S) |
---|
948 | !------------------------------------------------------------- |
---|
949 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
---|
950 | +diameter**2*rslope(i,k,2) |
---|
951 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
---|
952 | *abs(vt2s-vt2i)*acrfac/4. |
---|
953 | endif |
---|
954 | endif |
---|
955 | !------------------------------------------------------------- |
---|
956 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
---|
957 | ! (T<T0: C->S, and T>=T0: C->R) |
---|
958 | !------------------------------------------------------------- |
---|
959 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
960 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
---|
961 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
---|
962 | ! ,qci(i,k,1)/dtcld) |
---|
963 | ,qci(i,k,1)*rdtcld) |
---|
964 | endif |
---|
965 | if(supcol .gt. 0) then |
---|
966 | !------------------------------------------------------------- |
---|
967 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
968 | ! (T<T0: V->I or I->V) |
---|
969 | !------------------------------------------------------------- |
---|
970 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
---|
971 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
---|
972 | diameter = dicon * sqrt(xmi) |
---|
973 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
---|
974 | supice = satdt-prevp(i,k) |
---|
975 | if(pidep(i,k).lt.0.) then |
---|
976 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
---|
977 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
---|
978 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
---|
979 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
---|
980 | else |
---|
981 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
---|
982 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
---|
983 | endif |
---|
984 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
985 | endif |
---|
986 | !------------------------------------------------------------- |
---|
987 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
988 | ! (V->S or S->V) |
---|
989 | !------------------------------------------------------------- |
---|
990 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
---|
991 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
992 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
---|
993 | *(precs1*rslope2(i,k,2)+precs2 & |
---|
994 | *work2(i,k)*coeres)/work1(i,k,2) |
---|
995 | supice = satdt-prevp(i,k)-pidep(i,k) |
---|
996 | if(psdep(i,k).lt.0.) then |
---|
997 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
---|
998 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
---|
999 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
---|
1000 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
---|
1001 | else |
---|
1002 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
---|
1003 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
---|
1004 | endif |
---|
1005 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
---|
1006 | ifsat = 1 |
---|
1007 | endif |
---|
1008 | !------------------------------------------------------------- |
---|
1009 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
---|
1010 | ! (T<T0: V->I) |
---|
1011 | !------------------------------------------------------------- |
---|
1012 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
1013 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
---|
1014 | xni0 = 1.e3*exp(0.1*supcol) |
---|
1015 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
1016 | pigen(i,k) = max(0.,(roqi0/den(i,k,j)-max(qci(i,k,2),0.)) & |
---|
1017 | ! /dtcld) |
---|
1018 | *rdtcld) |
---|
1019 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
---|
1020 | endif |
---|
1021 | ! |
---|
1022 | !------------------------------------------------------------- |
---|
1023 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
1024 | ! (T<T0: I->S) |
---|
1025 | !------------------------------------------------------------- |
---|
1026 | if(qci(i,k,2).gt.0.) then |
---|
1027 | qimax = roqimax/den(i,k,j) |
---|
1028 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
---|
1029 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
---|
1030 | endif |
---|
1031 | endif |
---|
1032 | !------------------------------------------------------------- |
---|
1033 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
---|
1034 | ! (T>T0: S->V) |
---|
1035 | !------------------------------------------------------------- |
---|
1036 | if(supcol.lt.0.) then |
---|
1037 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
---|
1038 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
---|
1039 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
---|
1040 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
---|
1041 | endif |
---|
1042 | enddo |
---|
1043 | ! |
---|
1044 | ! |
---|
1045 | !---------------------------------------------------------------- |
---|
1046 | ! check mass conservation of generation terms and feedback to the |
---|
1047 | ! large scale |
---|
1048 | ! |
---|
1049 | do k = kts, kte |
---|
1050 | if(t(i,k,j).le.t0c) then |
---|
1051 | ! |
---|
1052 | ! cloud water |
---|
1053 | ! |
---|
1054 | value = max(qmin,qci(i,k,1)) |
---|
1055 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
1056 | if (source.gt.value) then |
---|
1057 | factor = value/source |
---|
1058 | praut(i,k) = praut(i,k)*factor |
---|
1059 | pracw(i,k) = pracw(i,k)*factor |
---|
1060 | psacw(i,k) = psacw(i,k)*factor |
---|
1061 | endif |
---|
1062 | ! |
---|
1063 | ! cloud ice |
---|
1064 | ! |
---|
1065 | value = max(qmin,qci(i,k,2)) |
---|
1066 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
---|
1067 | if (source.gt.value) then |
---|
1068 | factor = value/source |
---|
1069 | psaut(i,k) = psaut(i,k)*factor |
---|
1070 | psaci(i,k) = psaci(i,k)*factor |
---|
1071 | pigen(i,k) = pigen(i,k)*factor |
---|
1072 | pidep(i,k) = pidep(i,k)*factor |
---|
1073 | endif |
---|
1074 | ! |
---|
1075 | ! rain |
---|
1076 | ! |
---|
1077 | ! |
---|
1078 | value = max(qmin,qrs(i,k,1)) |
---|
1079 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k))*dtcld |
---|
1080 | if (source.gt.value) then |
---|
1081 | factor = value/source |
---|
1082 | praut(i,k) = praut(i,k)*factor |
---|
1083 | pracw(i,k) = pracw(i,k)*factor |
---|
1084 | prevp(i,k) = prevp(i,k)*factor |
---|
1085 | endif |
---|
1086 | ! |
---|
1087 | ! snow |
---|
1088 | ! |
---|
1089 | value = max(qmin,qrs(i,k,2)) |
---|
1090 | source = (-psdep(i,k)-psaut(i,k)-psaci(i,k)-psacw(i,k))*dtcld |
---|
1091 | if (source.gt.value) then |
---|
1092 | factor = value/source |
---|
1093 | psdep(i,k) = psdep(i,k)*factor |
---|
1094 | psaut(i,k) = psaut(i,k)*factor |
---|
1095 | psaci(i,k) = psaci(i,k)*factor |
---|
1096 | psacw(i,k) = psacw(i,k)*factor |
---|
1097 | endif |
---|
1098 | ! |
---|
1099 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
---|
1100 | ! update |
---|
1101 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
---|
1102 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1103 | +psacw(i,k))*dtcld,0.) |
---|
1104 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1105 | +prevp(i,k))*dtcld,0.) |
---|
1106 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
---|
1107 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
---|
1108 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
---|
1109 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
---|
1110 | xlf = xls-xl(i,k) |
---|
1111 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
---|
1112 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
---|
1113 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
---|
1114 | else |
---|
1115 | ! |
---|
1116 | ! cloud water |
---|
1117 | ! |
---|
1118 | value = max(qmin,qci(i,k,1)) |
---|
1119 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
1120 | if (source.gt.value) then |
---|
1121 | factor = value/source |
---|
1122 | praut(i,k) = praut(i,k)*factor |
---|
1123 | pracw(i,k) = pracw(i,k)*factor |
---|
1124 | psacw(i,k) = psacw(i,k)*factor |
---|
1125 | endif |
---|
1126 | ! |
---|
1127 | ! rain |
---|
1128 | ! |
---|
1129 | value = max(qmin,qrs(i,k,1)) |
---|
1130 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k)-psacw(i,k))*dtcld |
---|
1131 | if (source.gt.value) then |
---|
1132 | factor = value/source |
---|
1133 | praut(i,k) = praut(i,k)*factor |
---|
1134 | pracw(i,k) = pracw(i,k)*factor |
---|
1135 | prevp(i,k) = prevp(i,k)*factor |
---|
1136 | psacw(i,k) = psacw(i,k)*factor |
---|
1137 | endif |
---|
1138 | ! |
---|
1139 | ! snow |
---|
1140 | ! |
---|
1141 | value = max(qcrmin,qrs(i,k,2)) |
---|
1142 | source=(-psevp(i,k))*dtcld |
---|
1143 | if (source.gt.value) then |
---|
1144 | factor = value/source |
---|
1145 | psevp(i,k) = psevp(i,k)*factor |
---|
1146 | endif |
---|
1147 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
---|
1148 | ! update |
---|
1149 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
---|
1150 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1151 | +psacw(i,k))*dtcld,0.) |
---|
1152 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1153 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
---|
1154 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
---|
1155 | xlf = xls-xl(i,k) |
---|
1156 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
---|
1157 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
---|
1158 | endif |
---|
1159 | enddo |
---|
1160 | ! |
---|
1161 | ! Inline expansion for fpvs |
---|
1162 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1163 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1164 | hsub = xls |
---|
1165 | hvap = xlv0 |
---|
1166 | cvap = cpv |
---|
1167 | ttp=t0c+0.01 |
---|
1168 | dldt=cvap-cliq |
---|
1169 | xa=-dldt/rv |
---|
1170 | xb=xa+hvap/(rv*ttp) |
---|
1171 | dldti=cvap-cice |
---|
1172 | xai=-dldti/rv |
---|
1173 | xbi=xai+hsub/(rv*ttp) |
---|
1174 | do k = kts, kte |
---|
1175 | tr=ttp/t(i,k,j) |
---|
1176 | logtr = log(tr) |
---|
1177 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
1178 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
---|
1179 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1180 | enddo |
---|
1181 | ! |
---|
1182 | !---------------------------------------------------------------- |
---|
1183 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
1184 | ! if there exists additional water vapor condensated/if |
---|
1185 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
1186 | ! |
---|
1187 | do k = kts, kte |
---|
1188 | ! work1(i,k,1) = conden(t(i,k,j),q(i,k,j),qs(i,k,1),xl(i,k),cpm(i,k)) |
---|
1189 | work1(i,k,1) = ((max(q(i,k,j),qmin)-(qs(i,k,1)))/(1.+(xl(i,k)) & |
---|
1190 | *(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1)) & |
---|
1191 | /((t(i,k,j))*(t(i,k,j))))) |
---|
1192 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
---|
1193 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k,j),0.)/dtcld) |
---|
1194 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
---|
1195 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
---|
1196 | q(i,k,j) = q(i,k,j)-pcond(i,k)*dtcld |
---|
1197 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
---|
1198 | t(i,k,j) = t(i,k,j)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
1199 | enddo |
---|
1200 | ! |
---|
1201 | ! |
---|
1202 | !---------------------------------------------------------------- |
---|
1203 | ! padding for small values |
---|
1204 | ! |
---|
1205 | do k = kts, kte |
---|
1206 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
---|
1207 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
---|
1208 | enddo |
---|
1209 | enddo ! big loops |
---|
1210 | |
---|
1211 | DO K=kts,kte |
---|
1212 | th(i,k,j)=t(i,k,j)/pii(i,k,j) |
---|
1213 | qc(i,k,j) = qci(i,k,1) |
---|
1214 | qi(i,k,j) = qci(i,k,2) |
---|
1215 | qr(i,k,j) = qrs(i,k,1) |
---|
1216 | qqs(i,k,j) = qrs(i,k,2) |
---|
1217 | ENDDO |
---|
1218 | |
---|
1219 | |
---|
1220 | |
---|
1221 | ENDDO ! i loop |
---|
1222 | enddo ! j loop |
---|
1223 | !$acc end region |
---|
1224 | |
---|
1225 | ELSE |
---|
1226 | |
---|
1227 | ! |
---|
1228 | ! Moved outside of accelerator region |
---|
1229 | ! |
---|
1230 | loops = max(nint(delt/dtcldcr),1) |
---|
1231 | dtcld = delt/loops |
---|
1232 | if(delt.le.dtcldcr) dtcld = delt |
---|
1233 | |
---|
1234 | !$acc region & |
---|
1235 | !$acc local(t) & |
---|
1236 | !$acc copyin(delz(:,:,:),p(:,:,:),den(:,:,:),pii(:,:,:)) & |
---|
1237 | !$acc copyout(rainncv(:,:),sr(:,:)) & |
---|
1238 | !$acc copy(qqs(:,:,:),qr(:,:,:),qi(:,:,:),qc(:,:,:)) & |
---|
1239 | !$acc copy(th(:,:,:),q(:,:,:),rain(:,:)) |
---|
1240 | !$acc do & |
---|
1241 | !$acc private(rh,qs,rslope,rslope2,rslope3,rslopeb,falk,fall) & |
---|
1242 | !$acc private(work1,qci,qrs,falkc,fallc,xl,cpm,denfac,xni) & |
---|
1243 | !$acc private(n0sfac,work2,work1c,work2c,pigen,pidep,psdep) & |
---|
1244 | !$acc private(praut,psaut,prevp,psevp) & |
---|
1245 | !$acc private(pracw,psacw,psaci,pcond,psmlt) & |
---|
1246 | !$acc parallel |
---|
1247 | do j = jts, jte |
---|
1248 | !$acc do & |
---|
1249 | !$acc private(numdt,mstep) & |
---|
1250 | !$acc kernel vector |
---|
1251 | do i = its, ite |
---|
1252 | do k = kts, kte |
---|
1253 | t(i,k,j)=th(i,k,j)*pii(i,k,j) |
---|
1254 | qci(i,k,1) = max(qc(i,k,j),0.0) |
---|
1255 | qci(i,k,2) = max(qi(i,k,j),0.0) |
---|
1256 | qrs(i,k,1) = max(qr(i,k,j),0.0) |
---|
1257 | qrs(i,k,2) = max(qqs(i,k,j),0.0) |
---|
1258 | enddo |
---|
1259 | ! |
---|
1260 | !---------------------------------------------------------------- |
---|
1261 | ! latent heat for phase changes and heat capacity. neglect the |
---|
1262 | ! changes during microphysical process calculation |
---|
1263 | ! emanuel(1994) |
---|
1264 | ! |
---|
1265 | do k = kts, kte |
---|
1266 | cpm(i,k) = cpmcal(q(i,k,j)) |
---|
1267 | xl(i,k) = xlcal(t(i,k,j)) |
---|
1268 | enddo |
---|
1269 | ! |
---|
1270 | !---------------------------------------------------------------- |
---|
1271 | ! compute the minor time steps. |
---|
1272 | ! |
---|
1273 | ! loops = max(nint(delt/dtcldcr),1) |
---|
1274 | ! dtcld = delt/loops |
---|
1275 | ! if(delt.le.dtcldcr) dtcld = delt |
---|
1276 | ! |
---|
1277 | do loop = 1,loops |
---|
1278 | ! |
---|
1279 | !---------------------------------------------------------------- |
---|
1280 | ! initialize the large scale variables |
---|
1281 | ! |
---|
1282 | mstep = 1 |
---|
1283 | flgcld = .true. |
---|
1284 | ! |
---|
1285 | do k = kts, kte |
---|
1286 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
---|
1287 | enddo |
---|
1288 | ! do k = kts, kte |
---|
1289 | ! CALL VREC( tvec1(its), den(its,k,j), ite-its+1) |
---|
1290 | ! do i = its, ite |
---|
1291 | ! tvec1(i) = tvec1(i)*den0 |
---|
1292 | ! enddo |
---|
1293 | ! CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
1294 | ! enddo |
---|
1295 | ! |
---|
1296 | ! Inline expansion for fpvs |
---|
1297 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1298 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1299 | hsub = xls |
---|
1300 | hvap = xlv0 |
---|
1301 | cvap = cpv |
---|
1302 | ttp=t0c+0.01 |
---|
1303 | dldt=cvap-cliq |
---|
1304 | xa=-dldt/rv |
---|
1305 | xb=xa+hvap/(rv*ttp) |
---|
1306 | dldti=cvap-cice |
---|
1307 | xai=-dldti/rv |
---|
1308 | xbi=xai+hsub/(rv*ttp) |
---|
1309 | |
---|
1310 | ! this is for compilers where the conditional inhibits vectorization |
---|
1311 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
---|
1312 | do k = kts, kte |
---|
1313 | if(t(i,k,j).lt.ttp) then |
---|
1314 | xal = xai |
---|
1315 | xbl = xbi |
---|
1316 | else |
---|
1317 | xal = xa |
---|
1318 | xbl = xb |
---|
1319 | endif |
---|
1320 | tr=ttp/t(i,k,j) |
---|
1321 | logtr=log(tr) |
---|
1322 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
1323 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
---|
1324 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1325 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
---|
1326 | qs(i,k,2)=psat*exp(logtr*(xal)+xbl*(1.-tr)) |
---|
1327 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
---|
1328 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
1329 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
---|
1330 | enddo |
---|
1331 | #else |
---|
1332 | do k = kts, kte |
---|
1333 | tr=ttp/t(i,k,j) |
---|
1334 | logtr=log(tr) |
---|
1335 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
1336 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
---|
1337 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1338 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
---|
1339 | if(t(i,k,j).lt.ttp) then |
---|
1340 | qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr)) |
---|
1341 | else |
---|
1342 | qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
1343 | endif |
---|
1344 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
---|
1345 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
1346 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
---|
1347 | enddo |
---|
1348 | #endif |
---|
1349 | ! |
---|
1350 | !---------------------------------------------------------------- |
---|
1351 | ! initialize the variables for microphysical physics |
---|
1352 | ! |
---|
1353 | ! |
---|
1354 | do k = kts, kte |
---|
1355 | prevp(i,k) = 0. |
---|
1356 | psdep(i,k) = 0. |
---|
1357 | praut(i,k) = 0. |
---|
1358 | psaut(i,k) = 0. |
---|
1359 | pracw(i,k) = 0. |
---|
1360 | psaci(i,k) = 0. |
---|
1361 | psacw(i,k) = 0. |
---|
1362 | pigen(i,k) = 0. |
---|
1363 | pidep(i,k) = 0. |
---|
1364 | pcond(i,k) = 0. |
---|
1365 | psmlt(i,k) = 0. |
---|
1366 | psevp(i,k) = 0. |
---|
1367 | falk(i,k,1) = 0. |
---|
1368 | falk(i,k,2) = 0. |
---|
1369 | fall(i,k,1) = 0. |
---|
1370 | fall(i,k,2) = 0. |
---|
1371 | fallc(i,k) = 0. |
---|
1372 | falkc(i,k) = 0. |
---|
1373 | xni(i,k) = 1.e3 |
---|
1374 | enddo |
---|
1375 | ! |
---|
1376 | !---------------------------------------------------------------- |
---|
1377 | ! compute the fallout term: |
---|
1378 | ! first, vertical terminal velosity for minor loops |
---|
1379 | ! |
---|
1380 | do k = kts, kte |
---|
1381 | supcol = t0c-t(i,k,j) |
---|
1382 | !--------------------------------------------------------------- |
---|
1383 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
1384 | !--------------------------------------------------------------- |
---|
1385 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
1386 | if(qrs(i,k,1).le.qcrmin)then |
---|
1387 | rslope(i,k,1) = rslopermax |
---|
1388 | rslopeb(i,k,1) = rsloperbmax |
---|
1389 | rslope2(i,k,1) = rsloper2max |
---|
1390 | rslope3(i,k,1) = rsloper3max |
---|
1391 | else |
---|
1392 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
---|
1393 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
1394 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
1395 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
1396 | endif |
---|
1397 | if(qrs(i,k,2).le.qcrmin)then |
---|
1398 | rslope(i,k,2) = rslopesmax |
---|
1399 | rslopeb(i,k,2) = rslopesbmax |
---|
1400 | rslope2(i,k,2) = rslopes2max |
---|
1401 | rslope3(i,k,2) = rslopes3max |
---|
1402 | else |
---|
1403 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
---|
1404 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
1405 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
1406 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
1407 | endif |
---|
1408 | !------------------------------------------------------------- |
---|
1409 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
1410 | !------------------------------------------------------------- |
---|
1411 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
---|
1412 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
1413 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
---|
1414 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
1415 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
1416 | enddo |
---|
1417 | ! |
---|
1418 | numdt = 1 |
---|
1419 | do k = kte, kts, -1 |
---|
1420 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k,j) |
---|
1421 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k,j) |
---|
1422 | numdt = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
---|
1423 | if(numdt.ge.mstep) mstep = numdt |
---|
1424 | enddo |
---|
1425 | rmstep = 1./mstep |
---|
1426 | ! |
---|
1427 | do n = 1, mstep |
---|
1428 | k = kte |
---|
1429 | ! falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
1430 | ! falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
---|
1431 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
---|
1432 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
---|
1433 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
1434 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
1435 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k,j),0.) |
---|
1436 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k,j),0.) |
---|
1437 | dtcldden = dtcld/den(i,k,j) |
---|
1438 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
---|
1439 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
---|
1440 | ! endif |
---|
1441 | do k = kte-1, kts, -1 |
---|
1442 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
---|
1443 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
---|
1444 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
1445 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
1446 | dtcldden = dtcld/den(i,k,j) |
---|
1447 | rdelz = 1./delz(i,k,j) |
---|
1448 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
1449 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
---|
1450 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
---|
1451 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
---|
1452 | enddo |
---|
1453 | do k = kte, kts, -1 |
---|
1454 | if(t(i,k,j).gt.t0c.and.qrs(i,k,2).gt.0.) then |
---|
1455 | !---------------------------------------------------------------- |
---|
1456 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
---|
1457 | ! (T>T0: S->R) |
---|
1458 | !---------------------------------------------------------------- |
---|
1459 | xlf = xlf0 |
---|
1460 | ! work2(i,k)= venfac(p(i,k),t(i,k,j),den(i,k,j)) |
---|
1461 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
---|
1462 | /((t(i,k,j))+120.)/(den(i,k,j)))/(8.794e-5 & |
---|
1463 | *exp(log(t(i,k,j))*(1.81))/p(i,k,j)))) & |
---|
1464 | *((.3333333)))/sqrt((1.496e-6*((t(i,k,j)) & |
---|
1465 | *sqrt(t(i,k,j)))/((t(i,k,j))+120.)/(den(i,k,j)))) & |
---|
1466 | *sqrt(sqrt(den0/(den(i,k,j))))) |
---|
1467 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
1468 | ! psmlt(i,k) = xka(t(i,k,j),den(i,k,j))/xlf*(t0c-t(i,k,j))*pi/2. & |
---|
1469 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
1470 | ! *work2(i,k)*coeres) |
---|
1471 | psmlt(i,k) = (1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
---|
1472 | /((t(i,k,j))+120.)/(den(i,k,j)) )*(den(i,k,j))) & |
---|
1473 | /xlf*(t0c-t(i,k,j))*pi/2. & |
---|
1474 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
1475 | *work2(i,k)*coeres) |
---|
1476 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep, & |
---|
1477 | -qrs(i,k,2)/mstep),0.) |
---|
1478 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
---|
1479 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
---|
1480 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*psmlt(i,k) |
---|
1481 | endif |
---|
1482 | enddo |
---|
1483 | enddo |
---|
1484 | !--------------------------------------------------------------- |
---|
1485 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
1486 | !--------------------------------------------------------------- |
---|
1487 | mstep = 1 |
---|
1488 | numdt = 1 |
---|
1489 | do k = kte, kts, -1 |
---|
1490 | if(qci(i,k,2).le.0.) then |
---|
1491 | work2c(i,k) = 0. |
---|
1492 | else |
---|
1493 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
---|
1494 | ! diameter = min(dicon * sqrt(xmi),dimax) |
---|
1495 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
---|
1496 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
1497 | work2c(i,k) = work1c(i,k)/delz(i,k,j) |
---|
1498 | endif |
---|
1499 | numdt = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
1500 | if(numdt.ge.mstep) mstep = numdt |
---|
1501 | enddo |
---|
1502 | ! |
---|
1503 | do n = 1, mstep |
---|
1504 | k = kte |
---|
1505 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
---|
1506 | holdc = falkc(i,k) |
---|
1507 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
1508 | holdci = qci(i,k,2) |
---|
1509 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k,j),0.) |
---|
1510 | do k = kte-1, kts, -1 |
---|
1511 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
---|
1512 | holdc = falkc(i,k) |
---|
1513 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
1514 | holdci = qci(i,k,2) |
---|
1515 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
---|
1516 | *delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
---|
1517 | enddo |
---|
1518 | enddo |
---|
1519 | ! |
---|
1520 | ! |
---|
1521 | !---------------------------------------------------------------- |
---|
1522 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
1523 | ! |
---|
1524 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
---|
1525 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
---|
1526 | rainncv(i,j) = 0. |
---|
1527 | if(fallsum.gt.0.) then |
---|
1528 | rainncv(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. |
---|
1529 | rain(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. + rain(i,j) |
---|
1530 | endif |
---|
1531 | sr(i,j) = 0. |
---|
1532 | if(fallsum.gt.0.)sr(i,j)=fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. & |
---|
1533 | /(rainncv(i,j)+1.e-12) |
---|
1534 | ! |
---|
1535 | !--------------------------------------------------------------- |
---|
1536 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
---|
1537 | ! (T>T0: I->C) |
---|
1538 | !--------------------------------------------------------------- |
---|
1539 | do k = kts, kte |
---|
1540 | supcol = t0c-t(i,k,j) |
---|
1541 | xlf = xls-xl(i,k) |
---|
1542 | if(supcol.lt.0.) xlf = xlf0 |
---|
1543 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
---|
1544 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
---|
1545 | t(i,k,j) = t(i,k,j) - xlf/cpm(i,k)*qci(i,k,2) |
---|
1546 | qci(i,k,2) = 0. |
---|
1547 | endif |
---|
1548 | !--------------------------------------------------------------- |
---|
1549 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
---|
1550 | ! (T<-40C: C->I) |
---|
1551 | !--------------------------------------------------------------- |
---|
1552 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
---|
1553 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
---|
1554 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*qci(i,k,1) |
---|
1555 | qci(i,k,1) = 0. |
---|
1556 | endif |
---|
1557 | !--------------------------------------------------------------- |
---|
1558 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
---|
1559 | ! (T0>T>-40C: C->I) |
---|
1560 | !--------------------------------------------------------------- |
---|
1561 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
---|
1562 | supcolt=min(supcol,50.) |
---|
1563 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
---|
1564 | ! *den(i,k,j)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
---|
1565 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
---|
1566 | *den(i,k,j)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
---|
1567 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
---|
1568 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtc |
---|
1569 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
---|
1570 | endif |
---|
1571 | !--------------------------------------------------------------- |
---|
1572 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
---|
1573 | ! (T<T0, R->S) |
---|
1574 | !--------------------------------------------------------------- |
---|
1575 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
---|
1576 | supcolt=min(supcol,50.) |
---|
1577 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k,j) & |
---|
1578 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
---|
1579 | ! qrs(i,k,1)) |
---|
1580 | temp = rslope(i,k,1) |
---|
1581 | temp = temp*temp*temp*temp*temp*temp*temp |
---|
1582 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k,j) & |
---|
1583 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
---|
1584 | qrs(i,k,1)) |
---|
1585 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
---|
1586 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtr |
---|
1587 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
---|
1588 | endif |
---|
1589 | enddo |
---|
1590 | ! |
---|
1591 | !---------------------------------------------------------------- |
---|
1592 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
1593 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
1594 | ! work1: the thermodynamic term in the denominator associated with |
---|
1595 | ! heat conduction and vapor diffusion |
---|
1596 | ! (ry88, y93, h85) |
---|
1597 | ! work2: parameter associated with the ventilation effects(y93) |
---|
1598 | ! |
---|
1599 | do k = kts, kte |
---|
1600 | if(qrs(i,k,1).le.qcrmin)then |
---|
1601 | rslope(i,k,1) = rslopermax |
---|
1602 | rslopeb(i,k,1) = rsloperbmax |
---|
1603 | rslope2(i,k,1) = rsloper2max |
---|
1604 | rslope3(i,k,1) = rsloper3max |
---|
1605 | else |
---|
1606 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
---|
1607 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k,j)))))) |
---|
1608 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
1609 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
1610 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
1611 | endif |
---|
1612 | if(qrs(i,k,2).le.qcrmin)then |
---|
1613 | rslope(i,k,2) = rslopesmax |
---|
1614 | rslopeb(i,k,2) = rslopesbmax |
---|
1615 | rslope2(i,k,2) = rslopes2max |
---|
1616 | rslope3(i,k,2) = rslopes3max |
---|
1617 | else |
---|
1618 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
---|
1619 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2)) & |
---|
1620 | *(den(i,k,j)))))) |
---|
1621 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
1622 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
1623 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
1624 | endif |
---|
1625 | enddo |
---|
1626 | ! |
---|
1627 | do k = kts, kte |
---|
1628 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,1)) |
---|
1629 | work1(i,k,1) = ((((den(i,k,j))*(xl(i,k))*(xl(i,k)))*((t(i,k,j))+120.) & |
---|
1630 | *(den(i,k,j)))/(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))& |
---|
1631 | *(den(i,k,j))*(rv*(t(i,k,j))*(t(i,k,j))))) & |
---|
1632 | + p(i,k,j)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k,j))*(1.81)))) |
---|
1633 | ! work1(i,k,2) = diffac(xls,p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,2)) |
---|
1634 | work1(i,k,2) = ((((den(i,k,j))*(xls)*(xls))*((t(i,k,j))+120.)*(den(i,k,j)))& |
---|
1635 | /(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))*(den(i,k,j)) & |
---|
1636 | *(rv*(t(i,k,j))*(t(i,k,j)))) & |
---|
1637 | + p(i,k,j)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k,j))*(1.81))))) |
---|
1638 | ! work2(i,k) = venfac(p(i,k,j),t(i,k,j),den(i,k,j)) |
---|
1639 | work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k,j))*sqrt(t(i,k,j)))) & |
---|
1640 | *p(i,k,j))/(((t(i,k,j))+120.)*den(i,k,j)*(8.794e-5 & |
---|
1641 | *exp(log(t(i,k,j))*(1.81))))))*sqrt(sqrt(den0/(den(i,k,j))))) & |
---|
1642 | /sqrt((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j)))) & |
---|
1643 | /(((t(i,k,j))+120.)*den(i,k,j))) |
---|
1644 | enddo |
---|
1645 | ! |
---|
1646 | !=============================================================== |
---|
1647 | ! |
---|
1648 | ! warm rain processes |
---|
1649 | ! |
---|
1650 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
1651 | ! |
---|
1652 | !=============================================================== |
---|
1653 | ! |
---|
1654 | do k = kts, kte |
---|
1655 | supsat = max(q(i,k,j),qmin)-qs(i,k,1) |
---|
1656 | satdt = supsat/dtcld |
---|
1657 | !--------------------------------------------------------------- |
---|
1658 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
1659 | ! (C->R) |
---|
1660 | !--------------------------------------------------------------- |
---|
1661 | if(qci(i,k,1).gt.qc0) then |
---|
1662 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
---|
1663 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
---|
1664 | endif |
---|
1665 | !--------------------------------------------------------------- |
---|
1666 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
---|
1667 | ! (C->R) |
---|
1668 | !--------------------------------------------------------------- |
---|
1669 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
1670 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
---|
1671 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
1672 | endif |
---|
1673 | !--------------------------------------------------------------- |
---|
1674 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
1675 | ! (V->R or R->V) |
---|
1676 | !--------------------------------------------------------------- |
---|
1677 | if(qrs(i,k,1).gt.0.) then |
---|
1678 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
---|
1679 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
---|
1680 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
---|
1681 | if(prevp(i,k).lt.0.) then |
---|
1682 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
---|
1683 | prevp(i,k) = max(prevp(i,k),satdt/2) |
---|
1684 | else |
---|
1685 | prevp(i,k) = min(prevp(i,k),satdt/2) |
---|
1686 | endif |
---|
1687 | endif |
---|
1688 | enddo |
---|
1689 | ! |
---|
1690 | !=============================================================== |
---|
1691 | ! |
---|
1692 | ! cold rain processes |
---|
1693 | ! |
---|
1694 | ! - follows the revised ice microphysics processes in HDC |
---|
1695 | ! - the processes same as in RH83 and RH84 and LFO behave |
---|
1696 | ! following ice crystal hapits defined in HDC, inclduing |
---|
1697 | ! intercept parameter for snow (n0s), ice crystal number |
---|
1698 | ! concentration (ni), ice nuclei number concentration |
---|
1699 | ! (n0i), ice diameter (d) |
---|
1700 | ! |
---|
1701 | !=============================================================== |
---|
1702 | ! |
---|
1703 | rdtcld = 1./dtcld |
---|
1704 | do k = kts, kte |
---|
1705 | supcol = t0c-t(i,k,j) |
---|
1706 | supsat = max(q(i,k,j),qmin)-qs(i,k,2) |
---|
1707 | satdt = supsat/dtcld |
---|
1708 | ifsat = 0 |
---|
1709 | !------------------------------------------------------------- |
---|
1710 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
1711 | !------------------------------------------------------------- |
---|
1712 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
---|
1713 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
1714 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
---|
1715 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
1716 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
1717 | eacrs = exp(0.07*(-supcol)) |
---|
1718 | ! |
---|
1719 | if(supcol.gt.0) then |
---|
1720 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
---|
1721 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
---|
1722 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
1723 | vt2i = 1.49e4*diameter**1.31 |
---|
1724 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
1725 | !------------------------------------------------------------- |
---|
1726 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
---|
1727 | ! (T<T0: I->S) |
---|
1728 | !------------------------------------------------------------- |
---|
1729 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
---|
1730 | +diameter**2*rslope(i,k,2) |
---|
1731 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
---|
1732 | *abs(vt2s-vt2i)*acrfac/4. |
---|
1733 | endif |
---|
1734 | endif |
---|
1735 | !------------------------------------------------------------- |
---|
1736 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
---|
1737 | ! (T<T0: C->S, and T>=T0: C->R) |
---|
1738 | !------------------------------------------------------------- |
---|
1739 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
1740 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
---|
1741 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
---|
1742 | ! ,qci(i,k,1)/dtcld) |
---|
1743 | ,qci(i,k,1)*rdtcld) |
---|
1744 | endif |
---|
1745 | if(supcol .gt. 0) then |
---|
1746 | !------------------------------------------------------------- |
---|
1747 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
1748 | ! (T<T0: V->I or I->V) |
---|
1749 | !------------------------------------------------------------- |
---|
1750 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
---|
1751 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
---|
1752 | diameter = dicon * sqrt(xmi) |
---|
1753 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
---|
1754 | supice = satdt-prevp(i,k) |
---|
1755 | if(pidep(i,k).lt.0.) then |
---|
1756 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
---|
1757 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
---|
1758 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
---|
1759 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
---|
1760 | else |
---|
1761 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
---|
1762 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
---|
1763 | endif |
---|
1764 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
1765 | endif |
---|
1766 | !------------------------------------------------------------- |
---|
1767 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
1768 | ! (V->S or S->V) |
---|
1769 | !------------------------------------------------------------- |
---|
1770 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
---|
1771 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
1772 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
---|
1773 | *(precs1*rslope2(i,k,2)+precs2 & |
---|
1774 | *work2(i,k)*coeres)/work1(i,k,2) |
---|
1775 | supice = satdt-prevp(i,k)-pidep(i,k) |
---|
1776 | if(psdep(i,k).lt.0.) then |
---|
1777 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
---|
1778 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
---|
1779 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
---|
1780 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
---|
1781 | else |
---|
1782 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
---|
1783 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
---|
1784 | endif |
---|
1785 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
---|
1786 | ifsat = 1 |
---|
1787 | endif |
---|
1788 | !------------------------------------------------------------- |
---|
1789 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
---|
1790 | ! (T<T0: V->I) |
---|
1791 | !------------------------------------------------------------- |
---|
1792 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
1793 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
---|
1794 | xni0 = 1.e3*exp(0.1*supcol) |
---|
1795 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
1796 | pigen(i,k) = max(0.,(roqi0/den(i,k,j)-max(qci(i,k,2),0.)) & |
---|
1797 | ! /dtcld) |
---|
1798 | *rdtcld) |
---|
1799 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
---|
1800 | endif |
---|
1801 | ! |
---|
1802 | !------------------------------------------------------------- |
---|
1803 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
1804 | ! (T<T0: I->S) |
---|
1805 | !------------------------------------------------------------- |
---|
1806 | if(qci(i,k,2).gt.0.) then |
---|
1807 | qimax = roqimax/den(i,k,j) |
---|
1808 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
---|
1809 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
---|
1810 | endif |
---|
1811 | endif |
---|
1812 | !------------------------------------------------------------- |
---|
1813 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
---|
1814 | ! (T>T0: S->V) |
---|
1815 | !------------------------------------------------------------- |
---|
1816 | if(supcol.lt.0.) then |
---|
1817 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
---|
1818 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
---|
1819 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
---|
1820 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
---|
1821 | endif |
---|
1822 | enddo |
---|
1823 | ! |
---|
1824 | ! |
---|
1825 | !---------------------------------------------------------------- |
---|
1826 | ! check mass conservation of generation terms and feedback to the |
---|
1827 | ! large scale |
---|
1828 | ! |
---|
1829 | do k = kts, kte |
---|
1830 | if(t(i,k,j).le.t0c) then |
---|
1831 | ! |
---|
1832 | ! cloud water |
---|
1833 | ! |
---|
1834 | value = max(qmin,qci(i,k,1)) |
---|
1835 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
1836 | if (source.gt.value) then |
---|
1837 | factor = value/source |
---|
1838 | praut(i,k) = praut(i,k)*factor |
---|
1839 | pracw(i,k) = pracw(i,k)*factor |
---|
1840 | psacw(i,k) = psacw(i,k)*factor |
---|
1841 | endif |
---|
1842 | ! |
---|
1843 | ! cloud ice |
---|
1844 | ! |
---|
1845 | value = max(qmin,qci(i,k,2)) |
---|
1846 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
---|
1847 | if (source.gt.value) then |
---|
1848 | factor = value/source |
---|
1849 | psaut(i,k) = psaut(i,k)*factor |
---|
1850 | psaci(i,k) = psaci(i,k)*factor |
---|
1851 | pigen(i,k) = pigen(i,k)*factor |
---|
1852 | pidep(i,k) = pidep(i,k)*factor |
---|
1853 | endif |
---|
1854 | ! |
---|
1855 | ! rain |
---|
1856 | ! |
---|
1857 | ! |
---|
1858 | value = max(qmin,qrs(i,k,1)) |
---|
1859 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k))*dtcld |
---|
1860 | if (source.gt.value) then |
---|
1861 | factor = value/source |
---|
1862 | praut(i,k) = praut(i,k)*factor |
---|
1863 | pracw(i,k) = pracw(i,k)*factor |
---|
1864 | prevp(i,k) = prevp(i,k)*factor |
---|
1865 | endif |
---|
1866 | ! |
---|
1867 | ! snow |
---|
1868 | ! |
---|
1869 | value = max(qmin,qrs(i,k,2)) |
---|
1870 | source = (-psdep(i,k)-psaut(i,k)-psaci(i,k)-psacw(i,k))*dtcld |
---|
1871 | if (source.gt.value) then |
---|
1872 | factor = value/source |
---|
1873 | psdep(i,k) = psdep(i,k)*factor |
---|
1874 | psaut(i,k) = psaut(i,k)*factor |
---|
1875 | psaci(i,k) = psaci(i,k)*factor |
---|
1876 | psacw(i,k) = psacw(i,k)*factor |
---|
1877 | endif |
---|
1878 | ! |
---|
1879 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
---|
1880 | ! update |
---|
1881 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
---|
1882 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1883 | +psacw(i,k))*dtcld,0.) |
---|
1884 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1885 | +prevp(i,k))*dtcld,0.) |
---|
1886 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
---|
1887 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
---|
1888 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
---|
1889 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
---|
1890 | xlf = xls-xl(i,k) |
---|
1891 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
---|
1892 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
---|
1893 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
---|
1894 | else |
---|
1895 | ! |
---|
1896 | ! cloud water |
---|
1897 | ! |
---|
1898 | value = max(qmin,qci(i,k,1)) |
---|
1899 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
1900 | if (source.gt.value) then |
---|
1901 | factor = value/source |
---|
1902 | praut(i,k) = praut(i,k)*factor |
---|
1903 | pracw(i,k) = pracw(i,k)*factor |
---|
1904 | psacw(i,k) = psacw(i,k)*factor |
---|
1905 | endif |
---|
1906 | ! |
---|
1907 | ! rain |
---|
1908 | ! |
---|
1909 | value = max(qmin,qrs(i,k,1)) |
---|
1910 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k)-psacw(i,k))*dtcld |
---|
1911 | if (source.gt.value) then |
---|
1912 | factor = value/source |
---|
1913 | praut(i,k) = praut(i,k)*factor |
---|
1914 | pracw(i,k) = pracw(i,k)*factor |
---|
1915 | prevp(i,k) = prevp(i,k)*factor |
---|
1916 | psacw(i,k) = psacw(i,k)*factor |
---|
1917 | endif |
---|
1918 | ! |
---|
1919 | ! snow |
---|
1920 | ! |
---|
1921 | value = max(qcrmin,qrs(i,k,2)) |
---|
1922 | source=(-psevp(i,k))*dtcld |
---|
1923 | if (source.gt.value) then |
---|
1924 | factor = value/source |
---|
1925 | psevp(i,k) = psevp(i,k)*factor |
---|
1926 | endif |
---|
1927 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
---|
1928 | ! update |
---|
1929 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
---|
1930 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1931 | +psacw(i,k))*dtcld,0.) |
---|
1932 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1933 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
---|
1934 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
---|
1935 | xlf = xls-xl(i,k) |
---|
1936 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
---|
1937 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
---|
1938 | endif |
---|
1939 | enddo |
---|
1940 | ! |
---|
1941 | ! Inline expansion for fpvs |
---|
1942 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1943 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1944 | hsub = xls |
---|
1945 | hvap = xlv0 |
---|
1946 | cvap = cpv |
---|
1947 | ttp=t0c+0.01 |
---|
1948 | dldt=cvap-cliq |
---|
1949 | xa=-dldt/rv |
---|
1950 | xb=xa+hvap/(rv*ttp) |
---|
1951 | dldti=cvap-cice |
---|
1952 | xai=-dldti/rv |
---|
1953 | xbi=xai+hsub/(rv*ttp) |
---|
1954 | do k = kts, kte |
---|
1955 | tr=ttp/t(i,k,j) |
---|
1956 | logtr = log(tr) |
---|
1957 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
1958 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
---|
1959 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1960 | enddo |
---|
1961 | ! |
---|
1962 | !---------------------------------------------------------------- |
---|
1963 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
1964 | ! if there exists additional water vapor condensated/if |
---|
1965 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
1966 | ! |
---|
1967 | do k = kts, kte |
---|
1968 | ! work1(i,k,1) = conden(t(i,k,j),q(i,k,j),qs(i,k,1),xl(i,k),cpm(i,k)) |
---|
1969 | work1(i,k,1) = ((max(q(i,k,j),qmin)-(qs(i,k,1)))/(1.+(xl(i,k)) & |
---|
1970 | *(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1)) & |
---|
1971 | /((t(i,k,j))*(t(i,k,j))))) |
---|
1972 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
---|
1973 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k,j),0.)/dtcld) |
---|
1974 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
---|
1975 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
---|
1976 | q(i,k,j) = q(i,k,j)-pcond(i,k)*dtcld |
---|
1977 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
---|
1978 | t(i,k,j) = t(i,k,j)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
1979 | enddo |
---|
1980 | ! |
---|
1981 | ! |
---|
1982 | !---------------------------------------------------------------- |
---|
1983 | ! padding for small values |
---|
1984 | ! |
---|
1985 | do k = kts, kte |
---|
1986 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
---|
1987 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
---|
1988 | enddo |
---|
1989 | enddo ! big loops |
---|
1990 | |
---|
1991 | DO K=kts,kte |
---|
1992 | th(i,k,j)=t(i,k,j)/pii(i,k,j) |
---|
1993 | qc(i,k,j) = qci(i,k,1) |
---|
1994 | qi(i,k,j) = qci(i,k,2) |
---|
1995 | qr(i,k,j) = qrs(i,k,1) |
---|
1996 | qqs(i,k,j) = qrs(i,k,2) |
---|
1997 | ENDDO |
---|
1998 | |
---|
1999 | ENDDO ! i loop |
---|
2000 | enddo ! j loop |
---|
2001 | !$acc end region |
---|
2002 | |
---|
2003 | ENDIF |
---|
2004 | |
---|
2005 | END SUBROUTINE wsm52d |
---|
2006 | |
---|
2007 | |
---|
2008 | #else |
---|
2009 | |
---|
2010 | !=================================================================== |
---|
2011 | ! |
---|
2012 | SUBROUTINE wsm52D(t, q, qci, qrs, den, p, delz & |
---|
2013 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
2014 | ,ep1, ep2, qmin & |
---|
2015 | ,XLS, XLV0, XLF0, den0, denr & |
---|
2016 | ,cliq,cice,psat & |
---|
2017 | ,lat & |
---|
2018 | ,rain,rainncv & |
---|
2019 | ,sr & |
---|
2020 | ,ids,ide, jds,jde, kds,kde & |
---|
2021 | ,ims,ime, jms,jme, kms,kme & |
---|
2022 | ,its,ite, jts,jte, kts,kte & |
---|
2023 | ,snow,snowncv & |
---|
2024 | ) |
---|
2025 | !------------------------------------------------------------------- |
---|
2026 | IMPLICIT NONE |
---|
2027 | !------------------------------------------------------------------- |
---|
2028 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
2029 | ims,ime, jms,jme, kms,kme , & |
---|
2030 | its,ite, jts,jte, kts,kte, & |
---|
2031 | lat |
---|
2032 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
2033 | INTENT(INOUT) :: & |
---|
2034 | t |
---|
2035 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
---|
2036 | INTENT(INOUT) :: & |
---|
2037 | qci, & |
---|
2038 | qrs |
---|
2039 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
2040 | INTENT(INOUT) :: & |
---|
2041 | q |
---|
2042 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
2043 | INTENT(IN ) :: & |
---|
2044 | den, & |
---|
2045 | p, & |
---|
2046 | delz |
---|
2047 | REAL, INTENT(IN ) :: delt, & |
---|
2048 | g, & |
---|
2049 | cpd, & |
---|
2050 | cpv, & |
---|
2051 | t0c, & |
---|
2052 | den0, & |
---|
2053 | rd, & |
---|
2054 | rv, & |
---|
2055 | ep1, & |
---|
2056 | ep2, & |
---|
2057 | qmin, & |
---|
2058 | XLS, & |
---|
2059 | XLV0, & |
---|
2060 | XLF0, & |
---|
2061 | cliq, & |
---|
2062 | cice, & |
---|
2063 | psat, & |
---|
2064 | denr |
---|
2065 | REAL, DIMENSION( ims:ime ), & |
---|
2066 | INTENT(INOUT) :: rain, & |
---|
2067 | rainncv, & |
---|
2068 | sr |
---|
2069 | |
---|
2070 | REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, & |
---|
2071 | INTENT(INOUT) :: snow, & |
---|
2072 | snowncv |
---|
2073 | |
---|
2074 | ! LOCAL VAR |
---|
2075 | REAL, DIMENSION( its:ite , kts:kte , 2) :: & |
---|
2076 | rh, & |
---|
2077 | qs, & |
---|
2078 | rslope, & |
---|
2079 | rslope2, & |
---|
2080 | rslope3, & |
---|
2081 | rslopeb, & |
---|
2082 | falk, & |
---|
2083 | fall, & |
---|
2084 | work1 |
---|
2085 | |
---|
2086 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
2087 | falkc, & |
---|
2088 | fallc, & |
---|
2089 | xl, & |
---|
2090 | cpm, & |
---|
2091 | denfac, & |
---|
2092 | xni, & |
---|
2093 | n0sfac, & |
---|
2094 | work2, & |
---|
2095 | work1c, & |
---|
2096 | work2c |
---|
2097 | |
---|
2098 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
2099 | pigen, & |
---|
2100 | pidep, & |
---|
2101 | psdep, & |
---|
2102 | praut, & |
---|
2103 | psaut, & |
---|
2104 | prevp, & |
---|
2105 | psevp, & |
---|
2106 | pracw, & |
---|
2107 | psacw, & |
---|
2108 | psaci, & |
---|
2109 | pcond, & |
---|
2110 | psmlt |
---|
2111 | INTEGER, DIMENSION( its:ite ) :: & |
---|
2112 | mstep, & |
---|
2113 | numdt |
---|
2114 | REAL, DIMENSION(its:ite) :: rmstep |
---|
2115 | REAL dtcldden, rdelz, rdtcld |
---|
2116 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
2117 | |
---|
2118 | #define WSM_NO_CONDITIONAL_IN_VECTOR |
---|
2119 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
---|
2120 | REAL, DIMENSION(its:ite) :: xal, xbl |
---|
2121 | #endif |
---|
2122 | |
---|
2123 | REAL :: pi, & |
---|
2124 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
---|
2125 | viscos, xka, venfac, conden, diffac, & |
---|
2126 | x, y, z, a, b, c, d, e, & |
---|
2127 | qdt, holdrr, holdrs, supcol, supcolt, pvt, & |
---|
2128 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
---|
2129 | vt2i,vt2s,acrfac, & |
---|
2130 | qimax, diameter, xni0, roqi0, & |
---|
2131 | fallsum, fallsum_qsi, xlwork2, factor, source, & |
---|
2132 | value, xlf, pfrzdtc, pfrzdtr, supice, holdc, holdci |
---|
2133 | ! variables for optimization |
---|
2134 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
2135 | REAL :: temp |
---|
2136 | INTEGER :: i, j, k, mstepmax, & |
---|
2137 | iprt, latd, lond, loop, loops, ifsat, n |
---|
2138 | ! Temporaries used for inlining fpvs function |
---|
2139 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
2140 | REAL :: logtr |
---|
2141 | ! |
---|
2142 | !================================================================= |
---|
2143 | ! compute internal functions |
---|
2144 | ! |
---|
2145 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
2146 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
2147 | !---------------------------------------------------------------- |
---|
2148 | ! size distributions: (x=mixing ratio, y=air density): |
---|
2149 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
2150 | ! |
---|
2151 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
2152 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
2153 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
2154 | ! |
---|
2155 | !---------------------------------------------------------------- |
---|
2156 | ! diffus: diffusion coefficient of the water vapor |
---|
2157 | ! viscos: kinematic viscosity(m2s-1) |
---|
2158 | ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
2159 | ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
2160 | ! xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
2161 | ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
2162 | ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
2163 | ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
2164 | ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
2165 | ! |
---|
2166 | ! |
---|
2167 | pi = 4. * atan(1.) |
---|
2168 | ! |
---|
2169 | !---------------------------------------------------------------- |
---|
2170 | ! paddint 0 for negative values generated by dynamics |
---|
2171 | ! |
---|
2172 | do k = kts, kte |
---|
2173 | do i = its, ite |
---|
2174 | qci(i,k,1) = max(qci(i,k,1),0.0) |
---|
2175 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
---|
2176 | qci(i,k,2) = max(qci(i,k,2),0.0) |
---|
2177 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
---|
2178 | enddo |
---|
2179 | enddo |
---|
2180 | ! |
---|
2181 | !---------------------------------------------------------------- |
---|
2182 | ! latent heat for phase changes and heat capacity. neglect the |
---|
2183 | ! changes during microphysical process calculation |
---|
2184 | ! emanuel(1994) |
---|
2185 | ! |
---|
2186 | do k = kts, kte |
---|
2187 | do i = its, ite |
---|
2188 | cpm(i,k) = cpmcal(q(i,k)) |
---|
2189 | xl(i,k) = xlcal(t(i,k)) |
---|
2190 | enddo |
---|
2191 | enddo |
---|
2192 | ! |
---|
2193 | !---------------------------------------------------------------- |
---|
2194 | ! compute the minor time steps. |
---|
2195 | ! |
---|
2196 | loops = max(nint(delt/dtcldcr),1) |
---|
2197 | dtcld = delt/loops |
---|
2198 | if(delt.le.dtcldcr) dtcld = delt |
---|
2199 | ! |
---|
2200 | do loop = 1,loops |
---|
2201 | ! |
---|
2202 | !---------------------------------------------------------------- |
---|
2203 | ! initialize the large scale variables |
---|
2204 | ! |
---|
2205 | do i = its, ite |
---|
2206 | mstep(i) = 1 |
---|
2207 | flgcld(i) = .true. |
---|
2208 | enddo |
---|
2209 | ! |
---|
2210 | ! do k = kts, kte |
---|
2211 | ! do i = its, ite |
---|
2212 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
---|
2213 | ! enddo |
---|
2214 | ! enddo |
---|
2215 | do k = kts, kte |
---|
2216 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
2217 | do i = its, ite |
---|
2218 | tvec1(i) = tvec1(i)*den0 |
---|
2219 | enddo |
---|
2220 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
2221 | enddo |
---|
2222 | ! |
---|
2223 | ! Inline expansion for fpvs |
---|
2224 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
2225 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
2226 | hsub = xls |
---|
2227 | hvap = xlv0 |
---|
2228 | cvap = cpv |
---|
2229 | ttp=t0c+0.01 |
---|
2230 | dldt=cvap-cliq |
---|
2231 | xa=-dldt/rv |
---|
2232 | xb=xa+hvap/(rv*ttp) |
---|
2233 | dldti=cvap-cice |
---|
2234 | xai=-dldti/rv |
---|
2235 | xbi=xai+hsub/(rv*ttp) |
---|
2236 | |
---|
2237 | ! this is for compilers where the conditional inhibits vectorization |
---|
2238 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
---|
2239 | do k = kts, kte |
---|
2240 | do i = its, ite |
---|
2241 | if(t(i,k).lt.ttp) then |
---|
2242 | xal(i) = xai |
---|
2243 | xbl(i) = xbi |
---|
2244 | else |
---|
2245 | xal(i) = xa |
---|
2246 | xbl(i) = xb |
---|
2247 | endif |
---|
2248 | enddo |
---|
2249 | do i = its, ite |
---|
2250 | tr=ttp/t(i,k) |
---|
2251 | logtr=log(tr) |
---|
2252 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
2253 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
2254 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
2255 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
2256 | qs(i,k,2)=psat*exp(logtr*(xal(i))+xbl(i)*(1.-tr)) |
---|
2257 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
2258 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
2259 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
---|
2260 | enddo |
---|
2261 | enddo |
---|
2262 | #else |
---|
2263 | do k = kts, kte |
---|
2264 | do i = its, ite |
---|
2265 | tr=ttp/t(i,k) |
---|
2266 | logtr=log(tr) |
---|
2267 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
2268 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
2269 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
2270 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
2271 | if(t(i,k).lt.ttp) then |
---|
2272 | qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr)) |
---|
2273 | else |
---|
2274 | qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
2275 | endif |
---|
2276 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
2277 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
2278 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
---|
2279 | enddo |
---|
2280 | enddo |
---|
2281 | #endif |
---|
2282 | ! |
---|
2283 | !---------------------------------------------------------------- |
---|
2284 | ! initialize the variables for microphysical physics |
---|
2285 | ! |
---|
2286 | ! |
---|
2287 | do k = kts, kte |
---|
2288 | do i = its, ite |
---|
2289 | prevp(i,k) = 0. |
---|
2290 | psdep(i,k) = 0. |
---|
2291 | praut(i,k) = 0. |
---|
2292 | psaut(i,k) = 0. |
---|
2293 | pracw(i,k) = 0. |
---|
2294 | psaci(i,k) = 0. |
---|
2295 | psacw(i,k) = 0. |
---|
2296 | pigen(i,k) = 0. |
---|
2297 | pidep(i,k) = 0. |
---|
2298 | pcond(i,k) = 0. |
---|
2299 | psmlt(i,k) = 0. |
---|
2300 | psevp(i,k) = 0. |
---|
2301 | falk(i,k,1) = 0. |
---|
2302 | falk(i,k,2) = 0. |
---|
2303 | fall(i,k,1) = 0. |
---|
2304 | fall(i,k,2) = 0. |
---|
2305 | fallc(i,k) = 0. |
---|
2306 | falkc(i,k) = 0. |
---|
2307 | xni(i,k) = 1.e3 |
---|
2308 | enddo |
---|
2309 | enddo |
---|
2310 | ! |
---|
2311 | !---------------------------------------------------------------- |
---|
2312 | ! compute the fallout term: |
---|
2313 | ! first, vertical terminal velosity for minor loops |
---|
2314 | ! |
---|
2315 | do k = kts, kte |
---|
2316 | do i = its, ite |
---|
2317 | supcol = t0c-t(i,k) |
---|
2318 | !--------------------------------------------------------------- |
---|
2319 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
2320 | !--------------------------------------------------------------- |
---|
2321 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
2322 | if(qrs(i,k,1).le.qcrmin)then |
---|
2323 | rslope(i,k,1) = rslopermax |
---|
2324 | rslopeb(i,k,1) = rsloperbmax |
---|
2325 | rslope2(i,k,1) = rsloper2max |
---|
2326 | rslope3(i,k,1) = rsloper3max |
---|
2327 | else |
---|
2328 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
---|
2329 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
2330 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
2331 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
2332 | endif |
---|
2333 | if(qrs(i,k,2).le.qcrmin)then |
---|
2334 | rslope(i,k,2) = rslopesmax |
---|
2335 | rslopeb(i,k,2) = rslopesbmax |
---|
2336 | rslope2(i,k,2) = rslopes2max |
---|
2337 | rslope3(i,k,2) = rslopes3max |
---|
2338 | else |
---|
2339 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
2340 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
2341 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
2342 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
2343 | endif |
---|
2344 | !------------------------------------------------------------- |
---|
2345 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
2346 | !------------------------------------------------------------- |
---|
2347 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
2348 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
2349 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
2350 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
2351 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
2352 | enddo |
---|
2353 | enddo |
---|
2354 | ! |
---|
2355 | mstepmax = 1 |
---|
2356 | numdt = 1 |
---|
2357 | do k = kte, kts, -1 |
---|
2358 | do i = its, ite |
---|
2359 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k) |
---|
2360 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k) |
---|
2361 | numdt(i) = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
---|
2362 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
2363 | enddo |
---|
2364 | enddo |
---|
2365 | do i = its, ite |
---|
2366 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
2367 | rmstep(i) = 1./mstep(i) |
---|
2368 | enddo |
---|
2369 | ! |
---|
2370 | do n = 1, mstepmax |
---|
2371 | k = kte |
---|
2372 | do i = its, ite |
---|
2373 | if(n.le.mstep(i)) then |
---|
2374 | ! falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
2375 | ! falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
---|
2376 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
---|
2377 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
---|
2378 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
2379 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
2380 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
---|
2381 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k),0.) |
---|
2382 | dtcldden = dtcld/den(i,k) |
---|
2383 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
---|
2384 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
---|
2385 | endif |
---|
2386 | enddo |
---|
2387 | do k = kte-1, kts, -1 |
---|
2388 | do i = its, ite |
---|
2389 | if(n.le.mstep(i)) then |
---|
2390 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
---|
2391 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
---|
2392 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
2393 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
---|
2394 | dtcldden = dtcld/den(i,k) |
---|
2395 | rdelz = 1./delz(i,k) |
---|
2396 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
2397 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
---|
2398 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
---|
2399 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
---|
2400 | endif |
---|
2401 | enddo |
---|
2402 | enddo |
---|
2403 | do k = kte, kts, -1 |
---|
2404 | do i = its, ite |
---|
2405 | if(n.le.mstep(i)) then |
---|
2406 | if(t(i,k).gt.t0c.and.qrs(i,k,2).gt.0.) then |
---|
2407 | !---------------------------------------------------------------- |
---|
2408 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
---|
2409 | ! (T>T0: S->R) |
---|
2410 | !---------------------------------------------------------------- |
---|
2411 | xlf = xlf0 |
---|
2412 | ! work2(i,k)= venfac(p(i,k),t(i,k),den(i,k)) |
---|
2413 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k))*sqrt(t(i,k))) & |
---|
2414 | /((t(i,k))+120.)/(den(i,k)))/(8.794e-5 & |
---|
2415 | *exp(log(t(i,k))*(1.81))/p(i,k)))) & |
---|
2416 | *((.3333333)))/sqrt((1.496e-6*((t(i,k)) & |
---|
2417 | *sqrt(t(i,k)))/((t(i,k))+120.)/(den(i,k)))) & |
---|
2418 | *sqrt(sqrt(den0/(den(i,k))))) |
---|
2419 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
2420 | ! psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
---|
2421 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
2422 | ! *work2(i,k)*coeres) |
---|
2423 | psmlt(i,k) = (1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))) & |
---|
2424 | /((t(i,k))+120.)/(den(i,k)) )*(den(i,k))) & |
---|
2425 | /xlf*(t0c-t(i,k))*pi/2. & |
---|
2426 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
---|
2427 | *work2(i,k)*coeres) |
---|
2428 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i), & |
---|
2429 | -qrs(i,k,2)/mstep(i)),0.) |
---|
2430 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
---|
2431 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
---|
2432 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
---|
2433 | endif |
---|
2434 | endif |
---|
2435 | enddo |
---|
2436 | enddo |
---|
2437 | enddo |
---|
2438 | !--------------------------------------------------------------- |
---|
2439 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
2440 | !--------------------------------------------------------------- |
---|
2441 | mstepmax = 1 |
---|
2442 | mstep = 1 |
---|
2443 | numdt = 1 |
---|
2444 | do k = kte, kts, -1 |
---|
2445 | do i = its, ite |
---|
2446 | if(qci(i,k,2).le.0.) then |
---|
2447 | work2c(i,k) = 0. |
---|
2448 | else |
---|
2449 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
2450 | ! diameter = min(dicon * sqrt(xmi),dimax) |
---|
2451 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
---|
2452 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
2453 | work2c(i,k) = work1c(i,k)/delz(i,k) |
---|
2454 | endif |
---|
2455 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
2456 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
2457 | enddo |
---|
2458 | enddo |
---|
2459 | do i = its, ite |
---|
2460 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
2461 | enddo |
---|
2462 | ! |
---|
2463 | do n = 1, mstepmax |
---|
2464 | k = kte |
---|
2465 | do i = its, ite |
---|
2466 | if(n.le.mstep(i)) then |
---|
2467 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
---|
2468 | holdc = falkc(i,k) |
---|
2469 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
2470 | holdci = qci(i,k,2) |
---|
2471 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k),0.) |
---|
2472 | endif |
---|
2473 | enddo |
---|
2474 | do k = kte-1, kts, -1 |
---|
2475 | do i = its, ite |
---|
2476 | if(n.le.mstep(i)) then |
---|
2477 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
---|
2478 | holdc = falkc(i,k) |
---|
2479 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
2480 | holdci = qci(i,k,2) |
---|
2481 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
---|
2482 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
2483 | endif |
---|
2484 | enddo |
---|
2485 | enddo |
---|
2486 | enddo |
---|
2487 | ! |
---|
2488 | ! |
---|
2489 | !---------------------------------------------------------------- |
---|
2490 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
2491 | ! |
---|
2492 | do i = its, ite |
---|
2493 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
---|
2494 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
---|
2495 | rainncv(i) = 0. |
---|
2496 | if(fallsum.gt.0.) then |
---|
2497 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
---|
2498 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) |
---|
2499 | endif |
---|
2500 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
2501 | snowncv(i,lat) = 0. |
---|
2502 | if(fallsum_qsi.gt.0.) then |
---|
2503 | snowncv(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
---|
2504 | snow(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i,lat) |
---|
2505 | endif |
---|
2506 | ENDIF |
---|
2507 | sr(i) = 0. |
---|
2508 | if(fallsum.gt.0.)sr(i)=fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
---|
2509 | /(rainncv(i)+1.e-12) |
---|
2510 | enddo |
---|
2511 | ! |
---|
2512 | !--------------------------------------------------------------- |
---|
2513 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
---|
2514 | ! (T>T0: I->C) |
---|
2515 | !--------------------------------------------------------------- |
---|
2516 | do k = kts, kte |
---|
2517 | do i = its, ite |
---|
2518 | supcol = t0c-t(i,k) |
---|
2519 | xlf = xls-xl(i,k) |
---|
2520 | if(supcol.lt.0.) xlf = xlf0 |
---|
2521 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
---|
2522 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
---|
2523 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
---|
2524 | qci(i,k,2) = 0. |
---|
2525 | endif |
---|
2526 | !--------------------------------------------------------------- |
---|
2527 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
---|
2528 | ! (T<-40C: C->I) |
---|
2529 | !--------------------------------------------------------------- |
---|
2530 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
---|
2531 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
---|
2532 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
---|
2533 | qci(i,k,1) = 0. |
---|
2534 | endif |
---|
2535 | !--------------------------------------------------------------- |
---|
2536 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
---|
2537 | ! (T0>T>-40C: C->I) |
---|
2538 | !--------------------------------------------------------------- |
---|
2539 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
---|
2540 | supcolt=min(supcol,50.) |
---|
2541 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
---|
2542 | ! *den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
---|
2543 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
---|
2544 | *den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
---|
2545 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
---|
2546 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
---|
2547 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
---|
2548 | endif |
---|
2549 | !--------------------------------------------------------------- |
---|
2550 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
---|
2551 | ! (T<T0, R->S) |
---|
2552 | !--------------------------------------------------------------- |
---|
2553 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
---|
2554 | supcolt=min(supcol,50.) |
---|
2555 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k) & |
---|
2556 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
---|
2557 | ! qrs(i,k,1)) |
---|
2558 | temp = rslope(i,k,1) |
---|
2559 | temp = temp*temp*temp*temp*temp*temp*temp |
---|
2560 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k) & |
---|
2561 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
---|
2562 | qrs(i,k,1)) |
---|
2563 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
---|
2564 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
---|
2565 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
---|
2566 | endif |
---|
2567 | enddo |
---|
2568 | enddo |
---|
2569 | ! |
---|
2570 | !---------------------------------------------------------------- |
---|
2571 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
2572 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
2573 | ! work1: the thermodynamic term in the denominator associated with |
---|
2574 | ! heat conduction and vapor diffusion |
---|
2575 | ! (ry88, y93, h85) |
---|
2576 | ! work2: parameter associated with the ventilation effects(y93) |
---|
2577 | ! |
---|
2578 | do k = kts, kte |
---|
2579 | do i = its, ite |
---|
2580 | if(qrs(i,k,1).le.qcrmin)then |
---|
2581 | rslope(i,k,1) = rslopermax |
---|
2582 | rslopeb(i,k,1) = rsloperbmax |
---|
2583 | rslope2(i,k,1) = rsloper2max |
---|
2584 | rslope3(i,k,1) = rsloper3max |
---|
2585 | else |
---|
2586 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
---|
2587 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k)))))) |
---|
2588 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
---|
2589 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
2590 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
2591 | endif |
---|
2592 | if(qrs(i,k,2).le.qcrmin)then |
---|
2593 | rslope(i,k,2) = rslopesmax |
---|
2594 | rslopeb(i,k,2) = rslopesbmax |
---|
2595 | rslope2(i,k,2) = rslopes2max |
---|
2596 | rslope3(i,k,2) = rslopes3max |
---|
2597 | else |
---|
2598 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
2599 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2)) & |
---|
2600 | *(den(i,k)))))) |
---|
2601 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
---|
2602 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
2603 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
2604 | endif |
---|
2605 | enddo |
---|
2606 | enddo |
---|
2607 | ! |
---|
2608 | do k = kts, kte |
---|
2609 | do i = its, ite |
---|
2610 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
---|
2611 | work1(i,k,1) = ((((den(i,k))*(xl(i,k))*(xl(i,k)))*((t(i,k))+120.) & |
---|
2612 | *(den(i,k)))/(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))& |
---|
2613 | *(den(i,k))*(rv*(t(i,k))*(t(i,k))))) & |
---|
2614 | + p(i,k)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k))*(1.81)))) |
---|
2615 | ! work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
---|
2616 | work1(i,k,2) = ((((den(i,k))*(xls)*(xls))*((t(i,k))+120.)*(den(i,k)))& |
---|
2617 | /(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))*(den(i,k)) & |
---|
2618 | *(rv*(t(i,k))*(t(i,k)))) & |
---|
2619 | + p(i,k)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k))*(1.81))))) |
---|
2620 | ! work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
2621 | work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) & |
---|
2622 | *p(i,k))/(((t(i,k))+120.)*den(i,k)*(8.794e-5 & |
---|
2623 | *exp(log(t(i,k))*(1.81))))))*sqrt(sqrt(den0/(den(i,k))))) & |
---|
2624 | /sqrt((1.496e-6*((t(i,k))*sqrt(t(i,k)))) & |
---|
2625 | /(((t(i,k))+120.)*den(i,k))) |
---|
2626 | enddo |
---|
2627 | enddo |
---|
2628 | ! |
---|
2629 | !=============================================================== |
---|
2630 | ! |
---|
2631 | ! warm rain processes |
---|
2632 | ! |
---|
2633 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
2634 | ! |
---|
2635 | !=============================================================== |
---|
2636 | ! |
---|
2637 | do k = kts, kte |
---|
2638 | do i = its, ite |
---|
2639 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
---|
2640 | satdt = supsat/dtcld |
---|
2641 | !--------------------------------------------------------------- |
---|
2642 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
2643 | ! (C->R) |
---|
2644 | !--------------------------------------------------------------- |
---|
2645 | if(qci(i,k,1).gt.qc0) then |
---|
2646 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
---|
2647 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
---|
2648 | endif |
---|
2649 | !--------------------------------------------------------------- |
---|
2650 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
---|
2651 | ! (C->R) |
---|
2652 | !--------------------------------------------------------------- |
---|
2653 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
2654 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
---|
2655 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
2656 | endif |
---|
2657 | !--------------------------------------------------------------- |
---|
2658 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
2659 | ! (V->R or R->V) |
---|
2660 | !--------------------------------------------------------------- |
---|
2661 | if(qrs(i,k,1).gt.0.) then |
---|
2662 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
---|
2663 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
---|
2664 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
---|
2665 | if(prevp(i,k).lt.0.) then |
---|
2666 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
---|
2667 | prevp(i,k) = max(prevp(i,k),satdt/2) |
---|
2668 | else |
---|
2669 | prevp(i,k) = min(prevp(i,k),satdt/2) |
---|
2670 | endif |
---|
2671 | endif |
---|
2672 | enddo |
---|
2673 | enddo |
---|
2674 | ! |
---|
2675 | !=============================================================== |
---|
2676 | ! |
---|
2677 | ! cold rain processes |
---|
2678 | ! |
---|
2679 | ! - follows the revised ice microphysics processes in HDC |
---|
2680 | ! - the processes same as in RH83 and RH84 and LFO behave |
---|
2681 | ! following ice crystal hapits defined in HDC, inclduing |
---|
2682 | ! intercept parameter for snow (n0s), ice crystal number |
---|
2683 | ! concentration (ni), ice nuclei number concentration |
---|
2684 | ! (n0i), ice diameter (d) |
---|
2685 | ! |
---|
2686 | !=============================================================== |
---|
2687 | ! |
---|
2688 | rdtcld = 1./dtcld |
---|
2689 | do k = kts, kte |
---|
2690 | do i = its, ite |
---|
2691 | supcol = t0c-t(i,k) |
---|
2692 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
---|
2693 | satdt = supsat/dtcld |
---|
2694 | ifsat = 0 |
---|
2695 | !------------------------------------------------------------- |
---|
2696 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
2697 | !------------------------------------------------------------- |
---|
2698 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
2699 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
2700 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
2701 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
2702 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
2703 | eacrs = exp(0.07*(-supcol)) |
---|
2704 | ! |
---|
2705 | if(supcol.gt.0) then |
---|
2706 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
---|
2707 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
2708 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
2709 | vt2i = 1.49e4*diameter**1.31 |
---|
2710 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
2711 | !------------------------------------------------------------- |
---|
2712 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
---|
2713 | ! (T<T0: I->S) |
---|
2714 | !------------------------------------------------------------- |
---|
2715 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
---|
2716 | +diameter**2*rslope(i,k,2) |
---|
2717 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
---|
2718 | *abs(vt2s-vt2i)*acrfac/4. |
---|
2719 | endif |
---|
2720 | endif |
---|
2721 | !------------------------------------------------------------- |
---|
2722 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
---|
2723 | ! (T<T0: C->S, and T>=T0: C->R) |
---|
2724 | !------------------------------------------------------------- |
---|
2725 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
---|
2726 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
---|
2727 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
---|
2728 | ! ,qci(i,k,1)/dtcld) |
---|
2729 | ,qci(i,k,1)*rdtcld) |
---|
2730 | endif |
---|
2731 | if(supcol .gt. 0) then |
---|
2732 | !------------------------------------------------------------- |
---|
2733 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
2734 | ! (T<T0: V->I or I->V) |
---|
2735 | !------------------------------------------------------------- |
---|
2736 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
---|
2737 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
2738 | diameter = dicon * sqrt(xmi) |
---|
2739 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
---|
2740 | supice = satdt-prevp(i,k) |
---|
2741 | if(pidep(i,k).lt.0.) then |
---|
2742 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
---|
2743 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
---|
2744 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
---|
2745 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
---|
2746 | else |
---|
2747 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
---|
2748 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
---|
2749 | endif |
---|
2750 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
2751 | endif |
---|
2752 | !------------------------------------------------------------- |
---|
2753 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
2754 | ! (V->S or S->V) |
---|
2755 | !------------------------------------------------------------- |
---|
2756 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
---|
2757 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
2758 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
---|
2759 | *(precs1*rslope2(i,k,2)+precs2 & |
---|
2760 | *work2(i,k)*coeres)/work1(i,k,2) |
---|
2761 | supice = satdt-prevp(i,k)-pidep(i,k) |
---|
2762 | if(psdep(i,k).lt.0.) then |
---|
2763 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
---|
2764 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
---|
2765 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
---|
2766 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
---|
2767 | else |
---|
2768 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
---|
2769 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
---|
2770 | endif |
---|
2771 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
---|
2772 | ifsat = 1 |
---|
2773 | endif |
---|
2774 | !------------------------------------------------------------- |
---|
2775 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
---|
2776 | ! (T<T0: V->I) |
---|
2777 | !------------------------------------------------------------- |
---|
2778 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
2779 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
---|
2780 | xni0 = 1.e3*exp(0.1*supcol) |
---|
2781 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
2782 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.)) & |
---|
2783 | ! /dtcld) |
---|
2784 | *rdtcld) |
---|
2785 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
---|
2786 | endif |
---|
2787 | ! |
---|
2788 | !------------------------------------------------------------- |
---|
2789 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
2790 | ! (T<T0: I->S) |
---|
2791 | !------------------------------------------------------------- |
---|
2792 | if(qci(i,k,2).gt.0.) then |
---|
2793 | qimax = roqimax/den(i,k) |
---|
2794 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
---|
2795 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
---|
2796 | endif |
---|
2797 | endif |
---|
2798 | !------------------------------------------------------------- |
---|
2799 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
---|
2800 | ! (T>T0: S->V) |
---|
2801 | !------------------------------------------------------------- |
---|
2802 | if(supcol.lt.0.) then |
---|
2803 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
---|
2804 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
---|
2805 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
---|
2806 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
---|
2807 | endif |
---|
2808 | enddo |
---|
2809 | enddo |
---|
2810 | ! |
---|
2811 | ! |
---|
2812 | !---------------------------------------------------------------- |
---|
2813 | ! check mass conservation of generation terms and feedback to the |
---|
2814 | ! large scale |
---|
2815 | ! |
---|
2816 | do k = kts, kte |
---|
2817 | do i = its, ite |
---|
2818 | if(t(i,k).le.t0c) then |
---|
2819 | ! |
---|
2820 | ! cloud water |
---|
2821 | ! |
---|
2822 | value = max(qmin,qci(i,k,1)) |
---|
2823 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
2824 | if (source.gt.value) then |
---|
2825 | factor = value/source |
---|
2826 | praut(i,k) = praut(i,k)*factor |
---|
2827 | pracw(i,k) = pracw(i,k)*factor |
---|
2828 | psacw(i,k) = psacw(i,k)*factor |
---|
2829 | endif |
---|
2830 | ! |
---|
2831 | ! cloud ice |
---|
2832 | ! |
---|
2833 | value = max(qmin,qci(i,k,2)) |
---|
2834 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
---|
2835 | if (source.gt.value) then |
---|
2836 | factor = value/source |
---|
2837 | psaut(i,k) = psaut(i,k)*factor |
---|
2838 | psaci(i,k) = psaci(i,k)*factor |
---|
2839 | pigen(i,k) = pigen(i,k)*factor |
---|
2840 | pidep(i,k) = pidep(i,k)*factor |
---|
2841 | endif |
---|
2842 | ! |
---|
2843 | ! rain |
---|
2844 | ! |
---|
2845 | ! |
---|
2846 | value = max(qmin,qrs(i,k,1)) |
---|
2847 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k))*dtcld |
---|
2848 | if (source.gt.value) then |
---|
2849 | factor = value/source |
---|
2850 | praut(i,k) = praut(i,k)*factor |
---|
2851 | pracw(i,k) = pracw(i,k)*factor |
---|
2852 | prevp(i,k) = prevp(i,k)*factor |
---|
2853 | endif |
---|
2854 | ! |
---|
2855 | ! snow |
---|
2856 | ! |
---|
2857 | value = max(qmin,qrs(i,k,2)) |
---|
2858 | source = (-psdep(i,k)-psaut(i,k)-psaci(i,k)-psacw(i,k))*dtcld |
---|
2859 | if (source.gt.value) then |
---|
2860 | factor = value/source |
---|
2861 | psdep(i,k) = psdep(i,k)*factor |
---|
2862 | psaut(i,k) = psaut(i,k)*factor |
---|
2863 | psaci(i,k) = psaci(i,k)*factor |
---|
2864 | psacw(i,k) = psacw(i,k)*factor |
---|
2865 | endif |
---|
2866 | ! |
---|
2867 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
---|
2868 | ! update |
---|
2869 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
2870 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
2871 | +psacw(i,k))*dtcld,0.) |
---|
2872 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
2873 | +prevp(i,k))*dtcld,0.) |
---|
2874 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
---|
2875 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
---|
2876 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
---|
2877 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
---|
2878 | xlf = xls-xl(i,k) |
---|
2879 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
---|
2880 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
---|
2881 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
2882 | else |
---|
2883 | ! |
---|
2884 | ! cloud water |
---|
2885 | ! |
---|
2886 | value = max(qmin,qci(i,k,1)) |
---|
2887 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
---|
2888 | if (source.gt.value) then |
---|
2889 | factor = value/source |
---|
2890 | praut(i,k) = praut(i,k)*factor |
---|
2891 | pracw(i,k) = pracw(i,k)*factor |
---|
2892 | psacw(i,k) = psacw(i,k)*factor |
---|
2893 | endif |
---|
2894 | ! |
---|
2895 | ! rain |
---|
2896 | ! |
---|
2897 | value = max(qmin,qrs(i,k,1)) |
---|
2898 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k)-psacw(i,k))*dtcld |
---|
2899 | if (source.gt.value) then |
---|
2900 | factor = value/source |
---|
2901 | praut(i,k) = praut(i,k)*factor |
---|
2902 | pracw(i,k) = pracw(i,k)*factor |
---|
2903 | prevp(i,k) = prevp(i,k)*factor |
---|
2904 | psacw(i,k) = psacw(i,k)*factor |
---|
2905 | endif |
---|
2906 | ! |
---|
2907 | ! snow |
---|
2908 | ! |
---|
2909 | value = max(qcrmin,qrs(i,k,2)) |
---|
2910 | source=(-psevp(i,k))*dtcld |
---|
2911 | if (source.gt.value) then |
---|
2912 | factor = value/source |
---|
2913 | psevp(i,k) = psevp(i,k)*factor |
---|
2914 | endif |
---|
2915 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
---|
2916 | ! update |
---|
2917 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
2918 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
2919 | +psacw(i,k))*dtcld,0.) |
---|
2920 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
2921 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
---|
2922 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
---|
2923 | xlf = xls-xl(i,k) |
---|
2924 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
---|
2925 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
2926 | endif |
---|
2927 | enddo |
---|
2928 | enddo |
---|
2929 | ! |
---|
2930 | ! Inline expansion for fpvs |
---|
2931 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
2932 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
2933 | hsub = xls |
---|
2934 | hvap = xlv0 |
---|
2935 | cvap = cpv |
---|
2936 | ttp=t0c+0.01 |
---|
2937 | dldt=cvap-cliq |
---|
2938 | xa=-dldt/rv |
---|
2939 | xb=xa+hvap/(rv*ttp) |
---|
2940 | dldti=cvap-cice |
---|
2941 | xai=-dldti/rv |
---|
2942 | xbi=xai+hsub/(rv*ttp) |
---|
2943 | do k = kts, kte |
---|
2944 | do i = its, ite |
---|
2945 | tr=ttp/t(i,k) |
---|
2946 | logtr = log(tr) |
---|
2947 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
---|
2948 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
2949 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
2950 | enddo |
---|
2951 | enddo |
---|
2952 | ! |
---|
2953 | !---------------------------------------------------------------- |
---|
2954 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
2955 | ! if there exists additional water vapor condensated/if |
---|
2956 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
2957 | ! |
---|
2958 | do k = kts, kte |
---|
2959 | do i = its, ite |
---|
2960 | ! work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
---|
2961 | work1(i,k,1) = ((max(q(i,k),qmin)-(qs(i,k,1)))/(1.+(xl(i,k)) & |
---|
2962 | *(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1)) & |
---|
2963 | /((t(i,k))*(t(i,k))))) |
---|
2964 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
---|
2965 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
---|
2966 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
---|
2967 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
---|
2968 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
---|
2969 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
---|
2970 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
2971 | enddo |
---|
2972 | enddo |
---|
2973 | ! |
---|
2974 | ! |
---|
2975 | !---------------------------------------------------------------- |
---|
2976 | ! padding for small values |
---|
2977 | ! |
---|
2978 | do k = kts, kte |
---|
2979 | do i = its, ite |
---|
2980 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
---|
2981 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
---|
2982 | enddo |
---|
2983 | enddo |
---|
2984 | enddo ! big loops |
---|
2985 | END SUBROUTINE wsm52d |
---|
2986 | |
---|
2987 | #endif |
---|
2988 | |
---|
2989 | ! ................................................................... |
---|
2990 | REAL FUNCTION rgmma(x) |
---|
2991 | !------------------------------------------------------------------- |
---|
2992 | IMPLICIT NONE |
---|
2993 | !------------------------------------------------------------------- |
---|
2994 | ! rgmma function: use infinite product form |
---|
2995 | REAL :: euler |
---|
2996 | PARAMETER (euler=0.577215664901532) |
---|
2997 | REAL :: x, y |
---|
2998 | INTEGER :: i |
---|
2999 | if(x.eq.1.)then |
---|
3000 | rgmma=0. |
---|
3001 | else |
---|
3002 | rgmma=x*exp(euler*x) |
---|
3003 | do i=1,10000 |
---|
3004 | y=float(i) |
---|
3005 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
3006 | enddo |
---|
3007 | rgmma=1./rgmma |
---|
3008 | endif |
---|
3009 | END FUNCTION rgmma |
---|
3010 | ! |
---|
3011 | !-------------------------------------------------------------------------- |
---|
3012 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
3013 | !-------------------------------------------------------------------------- |
---|
3014 | IMPLICIT NONE |
---|
3015 | !-------------------------------------------------------------------------- |
---|
3016 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
3017 | xai,xbi,ttp,tr |
---|
3018 | INTEGER ice |
---|
3019 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
3020 | ttp=t0c+0.01 |
---|
3021 | dldt=cvap-cliq |
---|
3022 | xa=-dldt/rv |
---|
3023 | xb=xa+hvap/(rv*ttp) |
---|
3024 | dldti=cvap-cice |
---|
3025 | xai=-dldti/rv |
---|
3026 | xbi=xai+hsub/(rv*ttp) |
---|
3027 | tr=ttp/t |
---|
3028 | if(t.lt.ttp.and.ice.eq.1) then |
---|
3029 | fpvs=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
3030 | else |
---|
3031 | fpvs=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
3032 | endif |
---|
3033 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
3034 | END FUNCTION fpvs |
---|
3035 | !------------------------------------------------------------------- |
---|
3036 | SUBROUTINE wsm5init(den0,denr,dens,cl,cpv,allowed_to_read) |
---|
3037 | !------------------------------------------------------------------- |
---|
3038 | IMPLICIT NONE |
---|
3039 | !------------------------------------------------------------------- |
---|
3040 | !.... constants which may not be tunable |
---|
3041 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
---|
3042 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
3043 | REAL :: pi |
---|
3044 | ! |
---|
3045 | pi = 4.*atan(1.) |
---|
3046 | xlv1 = cl-cpv |
---|
3047 | ! |
---|
3048 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
3049 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
3050 | ! |
---|
3051 | bvtr1 = 1.+bvtr |
---|
3052 | bvtr2 = 2.5+.5*bvtr |
---|
3053 | bvtr3 = 3.+bvtr |
---|
3054 | bvtr4 = 4.+bvtr |
---|
3055 | g1pbr = rgmma(bvtr1) |
---|
3056 | g3pbr = rgmma(bvtr3) |
---|
3057 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
3058 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
---|
3059 | pvtr = avtr*g4pbr/6. |
---|
3060 | eacrr = 1.0 |
---|
3061 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
3062 | precr1 = 2.*pi*n0r*.78 |
---|
3063 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
---|
3064 | xmmax = (dimax/dicon)**2 |
---|
3065 | roqimax = 2.08e22*dimax**8 |
---|
3066 | ! |
---|
3067 | bvts1 = 1.+bvts |
---|
3068 | bvts2 = 2.5+.5*bvts |
---|
3069 | bvts3 = 3.+bvts |
---|
3070 | bvts4 = 4.+bvts |
---|
3071 | g1pbs = rgmma(bvts1) !.8875 |
---|
3072 | g3pbs = rgmma(bvts3) |
---|
3073 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
3074 | g5pbso2 = rgmma(bvts2) |
---|
3075 | pvts = avts*g4pbs/6. |
---|
3076 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
3077 | precs1 = 4.*n0s*.65 |
---|
3078 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
3079 | pidn0r = pi*denr*n0r |
---|
3080 | pidn0s = pi*dens*n0s |
---|
3081 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
---|
3082 | ! |
---|
3083 | rslopermax = 1./lamdarmax |
---|
3084 | rslopesmax = 1./lamdasmax |
---|
3085 | rsloperbmax = rslopermax ** bvtr |
---|
3086 | rslopesbmax = rslopesmax ** bvts |
---|
3087 | rsloper2max = rslopermax * rslopermax |
---|
3088 | rslopes2max = rslopesmax * rslopesmax |
---|
3089 | rsloper3max = rsloper2max * rslopermax |
---|
3090 | rslopes3max = rslopes2max * rslopesmax |
---|
3091 | ! |
---|
3092 | END SUBROUTINE wsm5init |
---|
3093 | END MODULE module_mp_wsm5 |
---|