1 | #ifdef _ACCEL |
---|
2 | # include "module_mp_wsm3_accel.F" |
---|
3 | #else |
---|
4 | #if ( RWORDSIZE == 4 ) |
---|
5 | # define VREC vsrec |
---|
6 | # define VSQRT vssqrt |
---|
7 | #else |
---|
8 | # define VREC vrec |
---|
9 | # define VSQRT vsqrt |
---|
10 | #endif |
---|
11 | |
---|
12 | MODULE module_mp_wsm3 |
---|
13 | ! |
---|
14 | ! |
---|
15 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
---|
16 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
---|
17 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
---|
18 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
---|
19 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
20 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
21 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
22 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
23 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
---|
24 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
---|
25 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
---|
26 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 ! limited maximum value for slope parameter of rain |
---|
27 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
---|
28 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
---|
29 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
---|
30 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
---|
31 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
---|
32 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
33 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
---|
34 | REAL, SAVE :: & |
---|
35 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, & |
---|
36 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
---|
37 | precr1,precr2,xmmax,roqimax,bvts1, & |
---|
38 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
---|
39 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & |
---|
40 | pidn0s,xlv1,pi, & |
---|
41 | rslopermax,rslopesmax,rslopegmax, & |
---|
42 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
43 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
44 | rsloper3max,rslopes3max,rslopeg3max |
---|
45 | ! |
---|
46 | ! Specifies code-inlining of fpvs function in WSM32D below. JM 20040507 |
---|
47 | ! |
---|
48 | CONTAINS |
---|
49 | !=================================================================== |
---|
50 | ! |
---|
51 | SUBROUTINE wsm3(th, q, qci, qrs & |
---|
52 | , w, den, pii, p, delz & |
---|
53 | , delt,g, cpd, cpv, rd, rv, t0c & |
---|
54 | , ep1, ep2, qmin & |
---|
55 | , XLS, XLV0, XLF0, den0, denr & |
---|
56 | , cliq,cice,psat & |
---|
57 | , rain, rainncv & |
---|
58 | , snow, snowncv & |
---|
59 | , sr & |
---|
60 | , ids,ide, jds,jde, kds,kde & |
---|
61 | , ims,ime, jms,jme, kms,kme & |
---|
62 | , its,ite, jts,jte, kts,kte & |
---|
63 | ) |
---|
64 | !------------------------------------------------------------------- |
---|
65 | IMPLICIT NONE |
---|
66 | !------------------------------------------------------------------- |
---|
67 | ! |
---|
68 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
69 | ims,ime, jms,jme, kms,kme , & |
---|
70 | its,ite, jts,jte, kts,kte |
---|
71 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
72 | INTENT(INOUT) :: & |
---|
73 | th, & |
---|
74 | q, & |
---|
75 | qci, & |
---|
76 | qrs |
---|
77 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
78 | INTENT(IN ) :: w, & |
---|
79 | den, & |
---|
80 | pii, & |
---|
81 | p, & |
---|
82 | delz |
---|
83 | REAL, INTENT(IN ) :: delt, & |
---|
84 | g, & |
---|
85 | rd, & |
---|
86 | rv, & |
---|
87 | t0c, & |
---|
88 | den0, & |
---|
89 | cpd, & |
---|
90 | cpv, & |
---|
91 | ep1, & |
---|
92 | ep2, & |
---|
93 | qmin, & |
---|
94 | XLS, & |
---|
95 | XLV0, & |
---|
96 | XLF0, & |
---|
97 | cliq, & |
---|
98 | cice, & |
---|
99 | psat, & |
---|
100 | denr |
---|
101 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
102 | INTENT(INOUT) :: rain, & |
---|
103 | rainncv |
---|
104 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
105 | INTENT(INOUT) :: snow, & |
---|
106 | snowncv, & |
---|
107 | sr |
---|
108 | ! LOCAL VAR |
---|
109 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
110 | INTEGER :: i,j,k |
---|
111 | !------------------------------------------------------------------- |
---|
112 | DO j=jts,jte |
---|
113 | DO k=kts,kte |
---|
114 | DO i=its,ite |
---|
115 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
116 | ENDDO |
---|
117 | ENDDO |
---|
118 | CALL wsm32D(t, q(ims,kms,j), qci(ims,kms,j) & |
---|
119 | ,qrs(ims,kms,j),w(ims,kms,j), den(ims,kms,j) & |
---|
120 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
121 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
122 | ,ep1, ep2, qmin & |
---|
123 | ,XLS, XLV0, XLF0, den0, denr & |
---|
124 | ,cliq,cice,psat & |
---|
125 | ,j & |
---|
126 | ,rain(ims,j), rainncv(ims,j) & |
---|
127 | ,snow(ims,j),snowncv(ims,j) & |
---|
128 | ,sr(ims,j) & |
---|
129 | ,ids,ide, jds,jde, kds,kde & |
---|
130 | ,ims,ime, jms,jme, kms,kme & |
---|
131 | ,its,ite, jts,jte, kts,kte & |
---|
132 | ) |
---|
133 | DO K=kts,kte |
---|
134 | DO I=its,ite |
---|
135 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
136 | ENDDO |
---|
137 | ENDDO |
---|
138 | ENDDO |
---|
139 | END SUBROUTINE wsm3 |
---|
140 | !=================================================================== |
---|
141 | ! |
---|
142 | SUBROUTINE wsm32D(t, q & |
---|
143 | ,qci, qrs,w, den, p, delz & |
---|
144 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
145 | ,ep1, ep2, qmin & |
---|
146 | ,XLS, XLV0, XLF0, den0, denr & |
---|
147 | ,cliq,cice,psat & |
---|
148 | ,lat & |
---|
149 | ,rain, rainncv & |
---|
150 | ,snow,snowncv & |
---|
151 | ,sr & |
---|
152 | ,ids,ide, jds,jde, kds,kde & |
---|
153 | ,ims,ime, jms,jme, kms,kme & |
---|
154 | ,its,ite, jts,jte, kts,kte & |
---|
155 | ) |
---|
156 | !------------------------------------------------------------------- |
---|
157 | IMPLICIT NONE |
---|
158 | !------------------------------------------------------------------- |
---|
159 | ! |
---|
160 | ! This code is a 3-class simple ice microphyiscs scheme (WSM3) of the |
---|
161 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
---|
162 | ! number concentration is a function of temperature, and seperate assumption |
---|
163 | ! is developed, in which ice crystal number concentration is a function |
---|
164 | ! of ice amount. A theoretical background of the ice-microphysics and related |
---|
165 | ! processes in the WSMMPs are described in Hong et al. (2004). |
---|
166 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
---|
167 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
168 | ! |
---|
169 | ! WSM3 cloud scheme |
---|
170 | ! |
---|
171 | ! Developed by Song-You Hong (Yonsei Univ.), Jimy Dudhia (NCAR) |
---|
172 | ! and Shu-Hua Chen (UC Davis) |
---|
173 | ! Summer 2002 |
---|
174 | ! |
---|
175 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
---|
176 | ! Summer 2003 |
---|
177 | ! |
---|
178 | ! History : semi-lagrangian scheme sedimentation(JH), and clean up |
---|
179 | ! Hong, August 2009 |
---|
180 | ! |
---|
181 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
182 | ! Dudhia (D89, 1989) J. Atmos. Sci. |
---|
183 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
184 | ! Juang and Hong (JH, 2010) Mon. Wea. Rev. |
---|
185 | ! |
---|
186 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
---|
187 | ims,ime, jms,jme, kms,kme, & |
---|
188 | its,ite, jts,jte, kts,kte, & |
---|
189 | lat |
---|
190 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
191 | INTENT(INOUT) :: & |
---|
192 | t |
---|
193 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
194 | INTENT(INOUT) :: & |
---|
195 | q, & |
---|
196 | qci, & |
---|
197 | qrs |
---|
198 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
199 | INTENT(IN ) :: w, & |
---|
200 | den, & |
---|
201 | p, & |
---|
202 | delz |
---|
203 | REAL, INTENT(IN ) :: delt, & |
---|
204 | g, & |
---|
205 | cpd, & |
---|
206 | cpv, & |
---|
207 | t0c, & |
---|
208 | den0, & |
---|
209 | rd, & |
---|
210 | rv, & |
---|
211 | ep1, & |
---|
212 | ep2, & |
---|
213 | qmin, & |
---|
214 | XLS, & |
---|
215 | XLV0, & |
---|
216 | XLF0, & |
---|
217 | cliq, & |
---|
218 | cice, & |
---|
219 | psat, & |
---|
220 | denr |
---|
221 | REAL, DIMENSION( ims:ime ), & |
---|
222 | INTENT(INOUT) :: rain, & |
---|
223 | rainncv |
---|
224 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
225 | INTENT(INOUT) :: snow, & |
---|
226 | snowncv, & |
---|
227 | sr |
---|
228 | ! LOCAL VAR |
---|
229 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
230 | rh, & |
---|
231 | qs, & |
---|
232 | denfac, & |
---|
233 | rslope, & |
---|
234 | rslope2, & |
---|
235 | rslope3, & |
---|
236 | qrs_tmp, & |
---|
237 | den_tmp, & |
---|
238 | delz_tmp, & |
---|
239 | rslopeb |
---|
240 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
241 | pgen, & |
---|
242 | pisd, & |
---|
243 | paut, & |
---|
244 | pacr, & |
---|
245 | pres, & |
---|
246 | pcon |
---|
247 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
248 | fall, & |
---|
249 | falk, & |
---|
250 | xl, & |
---|
251 | cpm, & |
---|
252 | work1, & |
---|
253 | work2, & |
---|
254 | xni, & |
---|
255 | qs0, & |
---|
256 | denqci, & |
---|
257 | denqrs, & |
---|
258 | n0sfac, & |
---|
259 | falkc, & |
---|
260 | work1c, & |
---|
261 | work2c, & |
---|
262 | fallc |
---|
263 | REAL, DIMENSION( its:ite ) :: delqrs,& |
---|
264 | delqi |
---|
265 | REAL, DIMENSION(its:ite) :: tstepsnow |
---|
266 | INTEGER, DIMENSION( its:ite ) :: kwork1,& |
---|
267 | kwork2 |
---|
268 | INTEGER, DIMENSION( its:ite ) :: mstep, & |
---|
269 | numdt |
---|
270 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
271 | REAL :: & |
---|
272 | cpmcal, xlcal, diffus, & |
---|
273 | viscos, xka, venfac, conden, diffac, & |
---|
274 | x, y, z, a, b, c, d, e, & |
---|
275 | fallsum, fallsum_qsi, vt2i,vt2s,acrfac, & |
---|
276 | qdt, pvt, qik, delq, facq, qrsci, frzmlt, & |
---|
277 | snomlt, hold, holdrs, facqci, supcol, coeres, & |
---|
278 | supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & |
---|
279 | qimax, diameter, xni0, roqi0, supice,holdc, holdci |
---|
280 | INTEGER :: i, j, k, mstepmax, & |
---|
281 | iprt, latd, lond, loop, loops, ifsat, kk, n, idim, kdim |
---|
282 | ! Temporaries used for inlining fpvs function |
---|
283 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
284 | ! variables for optimization |
---|
285 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
286 | ! |
---|
287 | !================================================================= |
---|
288 | ! compute internal functions |
---|
289 | ! |
---|
290 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
291 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
292 | !---------------------------------------------------------------- |
---|
293 | ! diffus: diffusion coefficient of the water vapor |
---|
294 | ! viscos: kinematic viscosity(m2s-1) |
---|
295 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
296 | ! |
---|
297 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
298 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
299 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
300 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
301 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
302 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
303 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
304 | ! |
---|
305 | idim = ite-its+1 |
---|
306 | kdim = kte-kts+1 |
---|
307 | ! |
---|
308 | !---------------------------------------------------------------- |
---|
309 | ! paddint 0 for negative values generated by dynamics |
---|
310 | ! |
---|
311 | do k = kts, kte |
---|
312 | do i = its, ite |
---|
313 | qci(i,k) = max(qci(i,k),0.0) |
---|
314 | qrs(i,k) = max(qrs(i,k),0.0) |
---|
315 | enddo |
---|
316 | enddo |
---|
317 | ! |
---|
318 | !---------------------------------------------------------------- |
---|
319 | ! latent heat for phase changes and heat capacity. neglect the |
---|
320 | ! changes during microphysical process calculation |
---|
321 | ! emanuel(1994) |
---|
322 | ! |
---|
323 | do k = kts, kte |
---|
324 | do i = its, ite |
---|
325 | cpm(i,k) = cpmcal(q(i,k)) |
---|
326 | xl(i,k) = xlcal(t(i,k)) |
---|
327 | enddo |
---|
328 | enddo |
---|
329 | do k = kts, kte |
---|
330 | do i = its, ite |
---|
331 | delz_tmp(i,k) = delz(i,k) |
---|
332 | den_tmp(i,k) = den(i,k) |
---|
333 | enddo |
---|
334 | enddo |
---|
335 | ! |
---|
336 | !---------------------------------------------------------------- |
---|
337 | ! initialize the surface rain, snow |
---|
338 | ! |
---|
339 | do i = its, ite |
---|
340 | rainncv(i) = 0. |
---|
341 | if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0. |
---|
342 | sr(i) = 0. |
---|
343 | ! new local array to catch step snow |
---|
344 | tstepsnow(i) = 0. |
---|
345 | enddo |
---|
346 | ! |
---|
347 | !---------------------------------------------------------------- |
---|
348 | ! compute the minor time steps. |
---|
349 | ! |
---|
350 | loops = max(nint(delt/dtcldcr),1) |
---|
351 | dtcld = delt/loops |
---|
352 | if(delt.le.dtcldcr) dtcld = delt |
---|
353 | ! |
---|
354 | do loop = 1,loops |
---|
355 | ! |
---|
356 | !---------------------------------------------------------------- |
---|
357 | ! initialize the large scale variables |
---|
358 | ! |
---|
359 | do i = its, ite |
---|
360 | flgcld(i) = .true. |
---|
361 | enddo |
---|
362 | ! |
---|
363 | do k = kts, kte |
---|
364 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
365 | do i = its, ite |
---|
366 | tvec1(i) = tvec1(i)*den0 |
---|
367 | enddo |
---|
368 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
369 | enddo |
---|
370 | ! |
---|
371 | ! Inline expansion for fpvs |
---|
372 | ! qs(i,k) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
373 | ! qs0(i,k) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
374 | cvap = cpv |
---|
375 | hvap=xlv0 |
---|
376 | hsub=xls |
---|
377 | ttp=t0c+0.01 |
---|
378 | dldt=cvap-cliq |
---|
379 | xa=-dldt/rv |
---|
380 | xb=xa+hvap/(rv*ttp) |
---|
381 | dldti=cvap-cice |
---|
382 | xai=-dldti/rv |
---|
383 | xbi=xai+hsub/(rv*ttp) |
---|
384 | do k = kts, kte |
---|
385 | do i = its, ite |
---|
386 | tr=ttp/t(i,k) |
---|
387 | if(t(i,k).lt.ttp) then |
---|
388 | qs(i,k) =psat*(exp(log(tr)*(xai)))*exp(xbi*(1.-tr)) |
---|
389 | else |
---|
390 | qs(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
391 | endif |
---|
392 | qs0(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
393 | qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) |
---|
394 | qs(i,k) = min(qs(i,k),0.99*p(i,k)) |
---|
395 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
396 | qs(i,k) = max(qs(i,k),qmin) |
---|
397 | rh(i,k) = max(q(i,k) / qs(i,k),qmin) |
---|
398 | enddo |
---|
399 | enddo |
---|
400 | ! |
---|
401 | !---------------------------------------------------------------- |
---|
402 | ! initialize the variables for microphysical physics |
---|
403 | ! |
---|
404 | ! |
---|
405 | do k = kts, kte |
---|
406 | do i = its, ite |
---|
407 | pres(i,k) = 0. |
---|
408 | paut(i,k) = 0. |
---|
409 | pacr(i,k) = 0. |
---|
410 | pgen(i,k) = 0. |
---|
411 | pisd(i,k) = 0. |
---|
412 | pcon(i,k) = 0. |
---|
413 | fall(i,k) = 0. |
---|
414 | falk(i,k) = 0. |
---|
415 | fallc(i,k) = 0. |
---|
416 | falkc(i,k) = 0. |
---|
417 | xni(i,k) = 1.e3 |
---|
418 | enddo |
---|
419 | enddo |
---|
420 | !------------------------------------------------------------- |
---|
421 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
422 | !------------------------------------------------------------- |
---|
423 | do k = kts, kte |
---|
424 | do i = its, ite |
---|
425 | xni(i,k) = min(max(5.38e7 & |
---|
426 | *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
427 | enddo |
---|
428 | enddo |
---|
429 | ! |
---|
430 | !---------------------------------------------------------------- |
---|
431 | ! compute the fallout term: |
---|
432 | ! first, vertical terminal velosity for minor loops |
---|
433 | !--------------------------------------------------------------- |
---|
434 | do k = kts, kte |
---|
435 | do i = its, ite |
---|
436 | qrs_tmp(i,k) = qrs(i,k) |
---|
437 | enddo |
---|
438 | enddo |
---|
439 | call slope_wsm3(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
440 | work1,its,ite,kts,kte) |
---|
441 | ! |
---|
442 | ! |
---|
443 | ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) |
---|
444 | ! |
---|
445 | do k = kte, kts, -1 |
---|
446 | do i = its, ite |
---|
447 | denqrs(i,k) = den(i,k)*qrs(i,k) |
---|
448 | enddo |
---|
449 | enddo |
---|
450 | call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1,denqrs, & |
---|
451 | delqrs,dtcld,1,1) |
---|
452 | do k = kts, kte |
---|
453 | do i = its, ite |
---|
454 | qrs(i,k) = max(denqrs(i,k)/den(i,k),0.) |
---|
455 | fall(i,k) = denqrs(i,k)*work1(i,k)/delz(i,k) |
---|
456 | enddo |
---|
457 | enddo |
---|
458 | do i = its, ite |
---|
459 | fall(i,1) = delqrs(i)/delz(i,1)/dtcld |
---|
460 | enddo |
---|
461 | !--------------------------------------------------------------- |
---|
462 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
463 | !--------------------------------------------------------------- |
---|
464 | do k = kte, kts, -1 |
---|
465 | do i = its, ite |
---|
466 | if(t(i,k).lt.t0c.and.qci(i,k).gt.0.) then |
---|
467 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
468 | diameter = max(dicon * sqrt(xmi), 1.e-25) |
---|
469 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
470 | else |
---|
471 | work1c(i,k) = 0. |
---|
472 | endif |
---|
473 | enddo |
---|
474 | enddo |
---|
475 | ! |
---|
476 | ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) |
---|
477 | ! |
---|
478 | do k = kte, kts, -1 |
---|
479 | do i = its, ite |
---|
480 | denqci(i,k) = den(i,k)*qci(i,k) |
---|
481 | enddo |
---|
482 | enddo |
---|
483 | call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci, & |
---|
484 | delqi,dtcld,1,0) |
---|
485 | do k = kts, kte |
---|
486 | do i = its, ite |
---|
487 | qci(i,k) = max(denqci(i,k)/den(i,k),0.) |
---|
488 | enddo |
---|
489 | enddo |
---|
490 | do i = its, ite |
---|
491 | fallc(i,1) = delqi(i)/delz(i,1)/dtcld |
---|
492 | enddo |
---|
493 | ! |
---|
494 | !---------------------------------------------------------------- |
---|
495 | ! compute the freezing/melting term. [D89 B16-B17] |
---|
496 | ! freezing occurs one layer above the melting level |
---|
497 | ! |
---|
498 | do i = its, ite |
---|
499 | mstep(i) = 0 |
---|
500 | enddo |
---|
501 | do k = kts, kte |
---|
502 | ! |
---|
503 | do i = its, ite |
---|
504 | if(t(i,k).ge.t0c) then |
---|
505 | mstep(i) = k |
---|
506 | endif |
---|
507 | enddo |
---|
508 | enddo |
---|
509 | ! |
---|
510 | do i = its, ite |
---|
511 | kwork2(i) = mstep(i) |
---|
512 | kwork1(i) = mstep(i) |
---|
513 | if(mstep(i).ne.0) then |
---|
514 | if (w(i,mstep(i)).gt.0.) then |
---|
515 | kwork1(i) = mstep(i) + 1 |
---|
516 | endif |
---|
517 | endif |
---|
518 | enddo |
---|
519 | ! |
---|
520 | do i = its, ite |
---|
521 | k = kwork1(i) |
---|
522 | kk = kwork2(i) |
---|
523 | if(k*kk.ge.1) then |
---|
524 | qrsci = qrs(i,k) + qci(i,k) |
---|
525 | if(qrsci.gt.0..or.fall(i,kk).gt.0.) then |
---|
526 | frzmlt = min(max(-w(i,k)*qrsci/delz(i,k),-qrsci/dtcld), & |
---|
527 | qrsci/dtcld) |
---|
528 | snomlt = min(max(fall(i,kk)/den(i,kk),-qrs(i,k)/dtcld), & |
---|
529 | qrs(i,k)/dtcld) |
---|
530 | if(k.eq.kk) then |
---|
531 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld |
---|
532 | else |
---|
533 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*frzmlt*dtcld |
---|
534 | t(i,kk) = t(i,kk) - xlf0/cpm(i,kk)*snomlt*dtcld |
---|
535 | endif |
---|
536 | endif |
---|
537 | endif |
---|
538 | enddo |
---|
539 | ! |
---|
540 | !---------------------------------------------------------------- |
---|
541 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
542 | ! |
---|
543 | do i = its, ite |
---|
544 | fallsum = fall(i,1) |
---|
545 | fallsum_qsi = 0. |
---|
546 | if((t0c-t(i,1)).gt.0) then |
---|
547 | fallsum = fallsum+fallc(i,1) |
---|
548 | fallsum_qsi = fall(i,1)+fallc(i,1) |
---|
549 | endif |
---|
550 | if(fallsum.gt.0.) then |
---|
551 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rainncv(i) |
---|
552 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) |
---|
553 | endif |
---|
554 | if(fallsum_qsi.gt.0.) then |
---|
555 | tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
---|
556 | +tstepsnow(i) |
---|
557 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
558 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i) |
---|
559 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
560 | ENDIF |
---|
561 | endif |
---|
562 | ! if(fallsum.gt.0.) sr(i) = snowncv(i)/(rainncv(i)+1.e-12) |
---|
563 | if(fallsum.gt.0.) sr(i) = tstepsnow(i)/(rainncv(i)+1.e-12) |
---|
564 | enddo |
---|
565 | ! |
---|
566 | !---------------------------------------------------------------- |
---|
567 | ! update the slope parameters for microphysics computation |
---|
568 | ! |
---|
569 | do k = kts, kte |
---|
570 | do i = its, ite |
---|
571 | qrs_tmp(i,k) = qrs(i,k) |
---|
572 | enddo |
---|
573 | enddo |
---|
574 | call slope_wsm3(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
575 | work1,its,ite,kts,kte) |
---|
576 | ! |
---|
577 | ! work1: the thermodynamic term in the denominator associated with |
---|
578 | ! heat conduction and vapor diffusion |
---|
579 | ! work2: parameter associated with the ventilation effects(y93) |
---|
580 | ! |
---|
581 | do k = kts, kte |
---|
582 | do i = its, ite |
---|
583 | if(t(i,k).ge.t0c) then |
---|
584 | work1(i,k) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
585 | else |
---|
586 | work1(i,k) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
587 | endif |
---|
588 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
589 | enddo |
---|
590 | enddo |
---|
591 | ! |
---|
592 | do k = kts, kte |
---|
593 | do i = its, ite |
---|
594 | supsat = max(q(i,k),qmin)-qs(i,k) |
---|
595 | satdt = supsat/dtcld |
---|
596 | if(t(i,k).ge.t0c) then |
---|
597 | ! |
---|
598 | !=============================================================== |
---|
599 | ! |
---|
600 | ! warm rain processes |
---|
601 | ! |
---|
602 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
603 | ! |
---|
604 | !=============================================================== |
---|
605 | !--------------------------------------------------------------- |
---|
606 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
607 | ! (C->R) |
---|
608 | !--------------------------------------------------------------- |
---|
609 | if(qci(i,k).gt.qc0) then |
---|
610 | ! paut(i,k) = qck1*qci(i,k)**(7./3.) |
---|
611 | paut(i,k) = qck1*exp(log(qci(i,k))*((7./3.))) |
---|
612 | paut(i,k) = min(paut(i,k),qci(i,k)/dtcld) |
---|
613 | endif |
---|
614 | !--------------------------------------------------------------- |
---|
615 | ! pracw: accretion of cloud water by rain [HL A40] [D89 B15] |
---|
616 | ! (C->R) |
---|
617 | !--------------------------------------------------------------- |
---|
618 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
619 | pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & |
---|
620 | *qci(i,k)*denfac(i,k),qci(i,k)/dtcld) |
---|
621 | endif |
---|
622 | !--------------------------------------------------------------- |
---|
623 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
624 | ! (V->R or R->V) |
---|
625 | !--------------------------------------------------------------- |
---|
626 | if(qrs(i,k).gt.0.) then |
---|
627 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
628 | pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & |
---|
629 | +precr2*work2(i,k)*coeres)/work1(i,k) |
---|
630 | if(pres(i,k).lt.0.) then |
---|
631 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
632 | pres(i,k) = max(pres(i,k),satdt/2) |
---|
633 | else |
---|
634 | pres(i,k) = min(pres(i,k),satdt/2) |
---|
635 | endif |
---|
636 | endif |
---|
637 | else |
---|
638 | ! |
---|
639 | !=============================================================== |
---|
640 | ! |
---|
641 | ! cold rain processes |
---|
642 | ! |
---|
643 | ! - follows the revised ice microphysics processes in HDC |
---|
644 | ! - the processes same as in RH83 and LFO behave |
---|
645 | ! following ice crystal hapits defined in HDC, inclduing |
---|
646 | ! intercept parameter for snow (n0s), ice crystal number |
---|
647 | ! concentration (ni), ice nuclei number concentration |
---|
648 | ! (n0i), ice diameter (d) |
---|
649 | ! |
---|
650 | !=============================================================== |
---|
651 | ! |
---|
652 | supcol = t0c-t(i,k) |
---|
653 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
654 | ifsat = 0 |
---|
655 | !------------------------------------------------------------- |
---|
656 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
657 | !------------------------------------------------------------- |
---|
658 | xni(i,k) = min(max(5.38e7 & |
---|
659 | *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
660 | eacrs = exp(0.07*(-supcol)) |
---|
661 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
662 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
663 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
664 | vt2i = 1.49e4*diameter**1.31 |
---|
665 | vt2s = pvts*rslopeb(i,k)*denfac(i,k) |
---|
666 | !------------------------------------------------------------- |
---|
667 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
---|
668 | ! (T<T0: I->R) |
---|
669 | !------------------------------------------------------------- |
---|
670 | acrfac = 2.*rslope3(i,k)+2.*diameter*rslope2(i,k) & |
---|
671 | +diameter**2*rslope(i,k) |
---|
672 | pacr(i,k) = min(pi*qci(i,k)*eacrs*n0s*n0sfac(i,k) & |
---|
673 | *abs(vt2s-vt2i)*acrfac/4.,qci(i,k)/dtcld) |
---|
674 | endif |
---|
675 | !------------------------------------------------------------- |
---|
676 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
677 | ! (T<T0: V->I or I->V) |
---|
678 | !------------------------------------------------------------- |
---|
679 | if(qci(i,k).gt.0.) then |
---|
680 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
681 | diameter = dicon * sqrt(xmi) |
---|
682 | pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.)/work1(i,k) |
---|
683 | if(pisd(i,k).lt.0.) then |
---|
684 | pisd(i,k) = max(pisd(i,k),satdt/2) |
---|
685 | pisd(i,k) = max(pisd(i,k),-qci(i,k)/dtcld) |
---|
686 | else |
---|
687 | pisd(i,k) = min(pisd(i,k),satdt/2) |
---|
688 | endif |
---|
689 | if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
690 | endif |
---|
691 | !------------------------------------------------------------- |
---|
692 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
693 | ! (V->S or S->V) |
---|
694 | !------------------------------------------------------------- |
---|
695 | if(qrs(i,k).gt.0..and.ifsat.ne.1) then |
---|
696 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
697 | pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & |
---|
698 | +precs2*work2(i,k)*coeres)/work1(i,k) |
---|
699 | supice = satdt-pisd(i,k) |
---|
700 | if(pres(i,k).lt.0.) then |
---|
701 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
702 | pres(i,k) = max(max(pres(i,k),satdt/2),supice) |
---|
703 | else |
---|
704 | pres(i,k) = min(min(pres(i,k),satdt/2),supice) |
---|
705 | endif |
---|
706 | if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
707 | endif |
---|
708 | !------------------------------------------------------------- |
---|
709 | ! pigen: generation(nucleation) of ice from vapor [HDC 7-8] |
---|
710 | ! (T<T0: V->I) |
---|
711 | !------------------------------------------------------------- |
---|
712 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
713 | supice = satdt-pisd(i,k)-pres(i,k) |
---|
714 | xni0 = 1.e3*exp(0.1*supcol) |
---|
715 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
716 | pgen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k),0.))/dtcld) |
---|
717 | pgen(i,k) = min(min(pgen(i,k),satdt),supice) |
---|
718 | endif |
---|
719 | !------------------------------------------------------------- |
---|
720 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
721 | ! (T<T0: I->S) |
---|
722 | !------------------------------------------------------------- |
---|
723 | if(qci(i,k).gt.0.) then |
---|
724 | qimax = roqimax/den(i,k) |
---|
725 | paut(i,k) = max(0.,(qci(i,k)-qimax)/dtcld) |
---|
726 | endif |
---|
727 | endif |
---|
728 | enddo |
---|
729 | enddo |
---|
730 | ! |
---|
731 | !---------------------------------------------------------------- |
---|
732 | ! check mass conservation of generation terms and feedback to the |
---|
733 | ! large scale |
---|
734 | ! |
---|
735 | do k = kts, kte |
---|
736 | do i = its, ite |
---|
737 | qciik = max(qmin,qci(i,k)) |
---|
738 | delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld |
---|
739 | if(delqci.ge.qciik) then |
---|
740 | facqci = qciik/delqci |
---|
741 | paut(i,k) = paut(i,k)*facqci |
---|
742 | pacr(i,k) = pacr(i,k)*facqci |
---|
743 | pgen(i,k) = pgen(i,k)*facqci |
---|
744 | pisd(i,k) = pisd(i,k)*facqci |
---|
745 | endif |
---|
746 | qik = max(qmin,q(i,k)) |
---|
747 | delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld |
---|
748 | if(delq.ge.qik) then |
---|
749 | facq = qik/delq |
---|
750 | pres(i,k) = pres(i,k)*facq |
---|
751 | pgen(i,k) = pgen(i,k)*facq |
---|
752 | pisd(i,k) = pisd(i,k)*facq |
---|
753 | endif |
---|
754 | work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) |
---|
755 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
756 | qci(i,k) = max(qci(i,k)-(paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k)) & |
---|
757 | *dtcld,0.) |
---|
758 | qrs(i,k) = max(qrs(i,k)+(paut(i,k)+pacr(i,k)+pres(i,k))*dtcld,0.) |
---|
759 | if(t(i,k).lt.t0c) then |
---|
760 | t(i,k) = t(i,k)-xls*work2(i,k)/cpm(i,k)*dtcld |
---|
761 | else |
---|
762 | t(i,k) = t(i,k)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld |
---|
763 | endif |
---|
764 | enddo |
---|
765 | enddo |
---|
766 | ! |
---|
767 | cvap = cpv |
---|
768 | hvap = xlv0 |
---|
769 | hsub = xls |
---|
770 | ttp=t0c+0.01 |
---|
771 | dldt=cvap-cliq |
---|
772 | xa=-dldt/rv |
---|
773 | xb=xa+hvap/(rv*ttp) |
---|
774 | dldti=cvap-cice |
---|
775 | xai=-dldti/rv |
---|
776 | xbi=xai+hsub/(rv*ttp) |
---|
777 | do k = kts, kte |
---|
778 | do i = its, ite |
---|
779 | tr=ttp/t(i,k) |
---|
780 | qs(i,k)=psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
781 | qs(i,k) = min(qs(i,k),0.99*p(i,k)) |
---|
782 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
783 | qs(i,k) = max(qs(i,k),qmin) |
---|
784 | denfac(i,k) = sqrt(den0/den(i,k)) |
---|
785 | enddo |
---|
786 | enddo |
---|
787 | ! |
---|
788 | !---------------------------------------------------------------- |
---|
789 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
790 | ! if there exists additional water vapor condensated/if |
---|
791 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
792 | ! |
---|
793 | do k = kts, kte |
---|
794 | do i = its, ite |
---|
795 | work1(i,k) = conden(t(i,k),q(i,k),qs(i,k),xl(i,k),cpm(i,k)) |
---|
796 | work2(i,k) = qci(i,k)+work1(i,k) |
---|
797 | pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k),0.))/dtcld |
---|
798 | if(qci(i,k).gt.0..and.work1(i,k).lt.0.and.t(i,k).gt.t0c) & |
---|
799 | pcon(i,k) = max(work1(i,k),-qci(i,k))/dtcld |
---|
800 | q(i,k) = q(i,k)-pcon(i,k)*dtcld |
---|
801 | qci(i,k) = max(qci(i,k)+pcon(i,k)*dtcld,0.) |
---|
802 | t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
803 | enddo |
---|
804 | enddo |
---|
805 | ! |
---|
806 | !---------------------------------------------------------------- |
---|
807 | ! padding for small values |
---|
808 | ! |
---|
809 | do k = kts, kte |
---|
810 | do i = its, ite |
---|
811 | if(qci(i,k).le.qmin) qci(i,k) = 0.0 |
---|
812 | if(qrs(i,k).le.qcrmin) qrs(i,k) = 0.0 |
---|
813 | enddo |
---|
814 | enddo |
---|
815 | ! |
---|
816 | enddo ! big loops |
---|
817 | END SUBROUTINE wsm32D |
---|
818 | ! ................................................................... |
---|
819 | REAL FUNCTION rgmma(x) |
---|
820 | !------------------------------------------------------------------- |
---|
821 | IMPLICIT NONE |
---|
822 | !------------------------------------------------------------------- |
---|
823 | ! rgmma function: use infinite product form |
---|
824 | REAL :: euler |
---|
825 | PARAMETER (euler=0.577215664901532) |
---|
826 | REAL :: x, y |
---|
827 | INTEGER :: i |
---|
828 | if(x.eq.1.)then |
---|
829 | rgmma=0. |
---|
830 | else |
---|
831 | rgmma=x*exp(euler*x) |
---|
832 | do i=1,10000 |
---|
833 | y=float(i) |
---|
834 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
835 | enddo |
---|
836 | rgmma=1./rgmma |
---|
837 | endif |
---|
838 | END FUNCTION rgmma |
---|
839 | ! |
---|
840 | !-------------------------------------------------------------------------- |
---|
841 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
842 | !-------------------------------------------------------------------------- |
---|
843 | IMPLICIT NONE |
---|
844 | !-------------------------------------------------------------------------- |
---|
845 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
846 | xai,xbi,ttp,tr |
---|
847 | INTEGER ice |
---|
848 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
849 | ttp=t0c+0.01 |
---|
850 | dldt=cvap-cliq |
---|
851 | xa=-dldt/rv |
---|
852 | xb=xa+hvap/(rv*ttp) |
---|
853 | dldti=cvap-cice |
---|
854 | xai=-dldti/rv |
---|
855 | xbi=xai+hsub/(rv*ttp) |
---|
856 | tr=ttp/t |
---|
857 | if(t.lt.ttp.and.ice.eq.1) then |
---|
858 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
859 | else |
---|
860 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
861 | endif |
---|
862 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
863 | END FUNCTION fpvs |
---|
864 | !------------------------------------------------------------------- |
---|
865 | SUBROUTINE wsm3init(den0,denr,dens,cl,cpv,allowed_to_read) |
---|
866 | !------------------------------------------------------------------- |
---|
867 | IMPLICIT NONE |
---|
868 | !------------------------------------------------------------------- |
---|
869 | !.... constants which may not be tunable |
---|
870 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
---|
871 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
872 | ! |
---|
873 | pi = 4.*atan(1.) |
---|
874 | xlv1 = cl-cpv |
---|
875 | ! |
---|
876 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
877 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
878 | ! |
---|
879 | bvtr1 = 1.+bvtr |
---|
880 | bvtr2 = 2.5+.5*bvtr |
---|
881 | bvtr3 = 3.+bvtr |
---|
882 | bvtr4 = 4.+bvtr |
---|
883 | g1pbr = rgmma(bvtr1) |
---|
884 | g3pbr = rgmma(bvtr3) |
---|
885 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
886 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
---|
887 | pvtr = avtr*g4pbr/6. |
---|
888 | eacrr = 1.0 |
---|
889 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
890 | precr1 = 2.*pi*n0r*.78 |
---|
891 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
---|
892 | xmmax = (dimax/dicon)**2 |
---|
893 | roqimax = 2.08e22*dimax**8 |
---|
894 | ! |
---|
895 | bvts1 = 1.+bvts |
---|
896 | bvts2 = 2.5+.5*bvts |
---|
897 | bvts3 = 3.+bvts |
---|
898 | bvts4 = 4.+bvts |
---|
899 | g1pbs = rgmma(bvts1) !.8875 |
---|
900 | g3pbs = rgmma(bvts3) |
---|
901 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
902 | g5pbso2 = rgmma(bvts2) |
---|
903 | pvts = avts*g4pbs/6. |
---|
904 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
905 | precs1 = 4.*n0s*.65 |
---|
906 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
907 | pidn0r = pi*denr*n0r |
---|
908 | pidn0s = pi*dens*n0s |
---|
909 | ! |
---|
910 | rslopermax = 1./lamdarmax |
---|
911 | rslopesmax = 1./lamdasmax |
---|
912 | rsloperbmax = rslopermax ** bvtr |
---|
913 | rslopesbmax = rslopesmax ** bvts |
---|
914 | rsloper2max = rslopermax * rslopermax |
---|
915 | rslopes2max = rslopesmax * rslopesmax |
---|
916 | rsloper3max = rsloper2max * rslopermax |
---|
917 | rslopes3max = rslopes2max * rslopesmax |
---|
918 | ! |
---|
919 | END SUBROUTINE wsm3init |
---|
920 | ! |
---|
921 | subroutine slope_wsm3(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3,vt,its,ite,kts,kte) |
---|
922 | IMPLICIT NONE |
---|
923 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
924 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
925 | qrs, & |
---|
926 | den, & |
---|
927 | denfac, & |
---|
928 | t, & |
---|
929 | rslope, & |
---|
930 | rslopeb, & |
---|
931 | rslope2, & |
---|
932 | rslope3, & |
---|
933 | vt |
---|
934 | REAL, PARAMETER :: t0c = 273.15 |
---|
935 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
936 | n0sfac |
---|
937 | REAL :: lamdar,lamdas,x, y, z, supcol, pvt |
---|
938 | integer :: i, j, k |
---|
939 | !---------------------------------------------------------------- |
---|
940 | ! size distributions: (x=mixing ratio, y=air density): |
---|
941 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
942 | ! |
---|
943 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
944 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
945 | ! |
---|
946 | do k = kts, kte |
---|
947 | do i = its, ite |
---|
948 | if(t(i,k).ge.t0c) then |
---|
949 | pvt = pvtr |
---|
950 | if(qrs(i,k).le.qcrmin)then |
---|
951 | rslope(i,k) = rslopermax |
---|
952 | rslopeb(i,k) = rsloperbmax |
---|
953 | rslope2(i,k) = rsloper2max |
---|
954 | rslope3(i,k) = rsloper3max |
---|
955 | else |
---|
956 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
---|
957 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
---|
958 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
959 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
960 | endif |
---|
961 | else |
---|
962 | supcol = t0c-t(i,k) |
---|
963 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
964 | pvt = pvts |
---|
965 | if(qrs(i,k).le.qcrmin)then |
---|
966 | rslope(i,k) = rslopesmax |
---|
967 | rslopeb(i,k) = rslopesbmax |
---|
968 | rslope2(i,k) = rslopes2max |
---|
969 | rslope3(i,k) = rslopes3max |
---|
970 | else |
---|
971 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
972 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
---|
973 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
974 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
975 | endif |
---|
976 | endif |
---|
977 | vt(i,k) = pvt*rslopeb(i,k)*denfac(i,k) |
---|
978 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
---|
979 | enddo |
---|
980 | enddo |
---|
981 | END subroutine slope_wsm3 |
---|
982 | !------------------------------------------------------------------- |
---|
983 | SUBROUTINE nislfv_rain_pcm(im,km,denl,denfacl,tkl,dzl,wwl,rql,precip,dt,id,iter) |
---|
984 | !------------------------------------------------------------------- |
---|
985 | ! |
---|
986 | ! for non-iteration semi-Lagrangain forward advection for cloud |
---|
987 | ! with mass conservation and positive definite advection |
---|
988 | ! 2nd order interpolation with monotonic piecewise linear method |
---|
989 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
---|
990 | ! |
---|
991 | ! dzl depth of model layer in meter |
---|
992 | ! wwl terminal velocity at model layer m/s |
---|
993 | ! rql cloud density*mixing ration |
---|
994 | ! precip precipitation |
---|
995 | ! dt time step |
---|
996 | ! id kind of precip: 0 test case; 1 raindrop |
---|
997 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
---|
998 | ! 0 : use departure wind for advection |
---|
999 | ! 1 : use mean wind for advection |
---|
1000 | ! > 1 : use mean wind after iter-1 iterations |
---|
1001 | ! |
---|
1002 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
---|
1003 | ! implemented by song-you hong |
---|
1004 | ! |
---|
1005 | implicit none |
---|
1006 | integer im,km,id |
---|
1007 | real dt |
---|
1008 | real dzl(im,km),wwl(im,km),rql(im,km),precip(im) |
---|
1009 | real denl(im,km),denfacl(im,km),tkl(im,km) |
---|
1010 | ! |
---|
1011 | integer i,k,n,m,kk,kb,kt,iter |
---|
1012 | real tl,tl2,qql,dql,qqd |
---|
1013 | real th,th2,qqh,dqh |
---|
1014 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
---|
1015 | real zsumt,qsumt,zsumb,qsumb |
---|
1016 | real allold, allnew, zz, dzamin, cflmax, decfl |
---|
1017 | real dz(km), ww(km), qq(km), wd(km), wa(km), was(km) |
---|
1018 | real den(km), denfac(km), tk(km) |
---|
1019 | real wi(km+1), zi(km+1), za(km+1) |
---|
1020 | real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
---|
1021 | real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) |
---|
1022 | ! |
---|
1023 | precip(:) = 0.0 |
---|
1024 | ! |
---|
1025 | i_loop : do i=1,im |
---|
1026 | ! ----------------------------------- |
---|
1027 | dz(:) = dzl(i,:) |
---|
1028 | qq(:) = rql(i,:) |
---|
1029 | ww(:) = wwl(i,:) |
---|
1030 | den(:) = denl(i,:) |
---|
1031 | denfac(:) = denfacl(i,:) |
---|
1032 | tk(:) = tkl(i,:) |
---|
1033 | ! skip for no precipitation for all layers |
---|
1034 | allold = 0.0 |
---|
1035 | do k=1,km |
---|
1036 | allold = allold + qq(k) |
---|
1037 | enddo |
---|
1038 | if(allold.le.0.0) then |
---|
1039 | cycle i_loop |
---|
1040 | endif |
---|
1041 | ! |
---|
1042 | ! compute interface values |
---|
1043 | zi(1)=0.0 |
---|
1044 | do k=1,km |
---|
1045 | zi(k+1) = zi(k)+dz(k) |
---|
1046 | enddo |
---|
1047 | ! |
---|
1048 | ! save departure wind |
---|
1049 | wd(:) = ww(:) |
---|
1050 | n=1 |
---|
1051 | 100 continue |
---|
1052 | ! pcm is 1st order, we should use 2nd order wi |
---|
1053 | ! 2nd order interpolation to get wi |
---|
1054 | wi(1) = ww(1) |
---|
1055 | do k=2,km |
---|
1056 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
---|
1057 | enddo |
---|
1058 | wi(km+1) = ww(km) |
---|
1059 | ! |
---|
1060 | ! terminate of top of raingroup |
---|
1061 | do k=2,km |
---|
1062 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
---|
1063 | enddo |
---|
1064 | ! |
---|
1065 | ! diffusivity of wi |
---|
1066 | con1 = 0.05 |
---|
1067 | do k=km,1,-1 |
---|
1068 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
---|
1069 | if( decfl .gt. con1 ) then |
---|
1070 | wi(k) = wi(k+1) - con1*dz(k)/dt |
---|
1071 | endif |
---|
1072 | enddo |
---|
1073 | ! compute arrival point |
---|
1074 | do k=1,km+1 |
---|
1075 | za(k) = zi(k) - wi(k)*dt |
---|
1076 | enddo |
---|
1077 | ! |
---|
1078 | do k=1,km |
---|
1079 | dza(k) = za(k+1)-za(k) |
---|
1080 | enddo |
---|
1081 | dza(km+1) = zi(km+1) - za(km+1) |
---|
1082 | ! |
---|
1083 | ! computer deformation at arrival point |
---|
1084 | do k=1,km |
---|
1085 | qa(k) = qq(k)*dz(k)/dza(k) |
---|
1086 | qr(k) = qa(k)/den(k) |
---|
1087 | enddo |
---|
1088 | qa(km+1) = 0.0 |
---|
1089 | ! call maxmin(km,1,qa,' arrival points ') |
---|
1090 | ! |
---|
1091 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
---|
1092 | ! then back to use mean terminal velocity |
---|
1093 | if( n.le.iter ) then |
---|
1094 | call slope_wsm3(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
---|
1095 | if( n.eq.2 ) wa(1:km) = 0.5*(wa(1:km)+was(1:km)) |
---|
1096 | do k=1,km |
---|
1097 | !#ifdef DEBUG |
---|
1098 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) |
---|
1099 | !#endif |
---|
1100 | ! mean wind is average of departure and new arrival winds |
---|
1101 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
---|
1102 | enddo |
---|
1103 | was(:) = wa(:) |
---|
1104 | n=n+1 |
---|
1105 | go to 100 |
---|
1106 | endif |
---|
1107 | ! |
---|
1108 | ! |
---|
1109 | ! interpolation to regular point |
---|
1110 | qn = 0.0 |
---|
1111 | kb=1 |
---|
1112 | kt=1 |
---|
1113 | intp : do k=1,km |
---|
1114 | kb=max(kb-1,1) |
---|
1115 | kt=max(kt-1,1) |
---|
1116 | ! find kb and kt |
---|
1117 | if( zi(k).ge.za(km+1) ) then |
---|
1118 | exit intp |
---|
1119 | else |
---|
1120 | find_kb : do kk=kb,km |
---|
1121 | if( zi(k).le.za(kk+1) ) then |
---|
1122 | kb = kk |
---|
1123 | exit find_kb |
---|
1124 | else |
---|
1125 | cycle find_kb |
---|
1126 | endif |
---|
1127 | enddo find_kb |
---|
1128 | find_kt : do kk=kt,km |
---|
1129 | if( zi(k+1).le.za(kk) ) then |
---|
1130 | kt = kk |
---|
1131 | exit find_kt |
---|
1132 | else |
---|
1133 | cycle find_kt |
---|
1134 | endif |
---|
1135 | enddo find_kt |
---|
1136 | ! compute q with piecewise constant method |
---|
1137 | if( kt-kb.eq.1 ) then |
---|
1138 | qn(k) = qa(kb) |
---|
1139 | else if( kt-kb.ge.2 ) then |
---|
1140 | zsumb = za(kb+1)-zi(k) |
---|
1141 | qsumb = qa(kb) * zsumb |
---|
1142 | zsumt = zi(k+1)-za(kt-1) |
---|
1143 | qsumt = qa(kt-1) * zsumt |
---|
1144 | qsum = 0.0 |
---|
1145 | zsum = 0.0 |
---|
1146 | if( kt-kb.ge.3 ) then |
---|
1147 | do m=kb+1,kt-2 |
---|
1148 | qsum = qsum + qa(m) * dza(m) |
---|
1149 | zsum = zsum + dza(m) |
---|
1150 | enddo |
---|
1151 | endif |
---|
1152 | qn(k) = (qsumb+qsum+qsumt)/(zsumb+zsum+zsumt) |
---|
1153 | endif |
---|
1154 | cycle intp |
---|
1155 | endif |
---|
1156 | ! |
---|
1157 | enddo intp |
---|
1158 | ! |
---|
1159 | ! rain out |
---|
1160 | sum_precip: do k=1,km |
---|
1161 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
---|
1162 | precip(i) = precip(i) + qa(k)*dza(k) |
---|
1163 | cycle sum_precip |
---|
1164 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
---|
1165 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
---|
1166 | exit sum_precip |
---|
1167 | endif |
---|
1168 | exit sum_precip |
---|
1169 | enddo sum_precip |
---|
1170 | ! |
---|
1171 | ! replace the new values |
---|
1172 | rql(i,:) = qn(:) |
---|
1173 | ! |
---|
1174 | ! ---------------------------------- |
---|
1175 | enddo i_loop |
---|
1176 | ! |
---|
1177 | END SUBROUTINE nislfv_rain_pcm |
---|
1178 | !------------------------------------------------------------------- |
---|
1179 | SUBROUTINE nislfv_rain_plm(im,km,denl,denfacl,tkl,dzl,wwl,rql,precip,dt,id,iter) |
---|
1180 | !------------------------------------------------------------------- |
---|
1181 | ! |
---|
1182 | ! for non-iteration semi-Lagrangain forward advection for cloud |
---|
1183 | ! with mass conservation and positive definite advection |
---|
1184 | ! 2nd order interpolation with monotonic piecewise linear method |
---|
1185 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
---|
1186 | ! |
---|
1187 | ! dzl depth of model layer in meter |
---|
1188 | ! wwl terminal velocity at model layer m/s |
---|
1189 | ! rql cloud density*mixing ration |
---|
1190 | ! precip precipitation |
---|
1191 | ! dt time step |
---|
1192 | ! id kind of precip: 0 test case; 1 raindrop |
---|
1193 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
---|
1194 | ! 0 : use departure wind for advection |
---|
1195 | ! 1 : use mean wind for advection |
---|
1196 | ! > 1 : use mean wind after iter-1 iterations |
---|
1197 | ! |
---|
1198 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
---|
1199 | ! implemented by song-you hong |
---|
1200 | ! |
---|
1201 | implicit none |
---|
1202 | integer im,km,id |
---|
1203 | real dt |
---|
1204 | real dzl(im,km),wwl(im,km),rql(im,km),precip(im) |
---|
1205 | real denl(im,km),denfacl(im,km),tkl(im,km) |
---|
1206 | ! |
---|
1207 | integer i,k,n,m,kk,kb,kt,iter |
---|
1208 | real tl,tl2,qql,dql,qqd |
---|
1209 | real th,th2,qqh,dqh |
---|
1210 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
---|
1211 | real allold, allnew, zz, dzamin, cflmax, decfl |
---|
1212 | real dz(km), ww(km), qq(km), wd(km), wa(km), was(km) |
---|
1213 | real den(km), denfac(km), tk(km) |
---|
1214 | real wi(km+1), zi(km+1), za(km+1) |
---|
1215 | real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
---|
1216 | real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) |
---|
1217 | ! |
---|
1218 | precip(:) = 0.0 |
---|
1219 | ! |
---|
1220 | i_loop : do i=1,im |
---|
1221 | ! ----------------------------------- |
---|
1222 | dz(:) = dzl(i,:) |
---|
1223 | qq(:) = rql(i,:) |
---|
1224 | ww(:) = wwl(i,:) |
---|
1225 | den(:) = denl(i,:) |
---|
1226 | denfac(:) = denfacl(i,:) |
---|
1227 | tk(:) = tkl(i,:) |
---|
1228 | ! skip for no precipitation for all layers |
---|
1229 | allold = 0.0 |
---|
1230 | do k=1,km |
---|
1231 | allold = allold + qq(k) |
---|
1232 | enddo |
---|
1233 | if(allold.le.0.0) then |
---|
1234 | cycle i_loop |
---|
1235 | endif |
---|
1236 | ! |
---|
1237 | ! compute interface values |
---|
1238 | zi(1)=0.0 |
---|
1239 | do k=1,km |
---|
1240 | zi(k+1) = zi(k)+dz(k) |
---|
1241 | enddo |
---|
1242 | ! |
---|
1243 | ! save departure wind |
---|
1244 | wd(:) = ww(:) |
---|
1245 | n=1 |
---|
1246 | 100 continue |
---|
1247 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
---|
1248 | ! 2nd order interpolation to get wi |
---|
1249 | wi(1) = ww(1) |
---|
1250 | wi(km+1) = ww(km) |
---|
1251 | do k=2,km |
---|
1252 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
---|
1253 | enddo |
---|
1254 | ! 3rd order interpolation to get wi |
---|
1255 | fa1 = 9./16. |
---|
1256 | fa2 = 1./16. |
---|
1257 | wi(1) = ww(1) |
---|
1258 | wi(2) = 0.5*(ww(2)+ww(1)) |
---|
1259 | do k=3,km-1 |
---|
1260 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
---|
1261 | enddo |
---|
1262 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
---|
1263 | wi(km+1) = ww(km) |
---|
1264 | ! |
---|
1265 | ! terminate of top of raingroup |
---|
1266 | do k=2,km |
---|
1267 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
---|
1268 | enddo |
---|
1269 | ! |
---|
1270 | ! diffusivity of wi |
---|
1271 | con1 = 0.05 |
---|
1272 | do k=km,1,-1 |
---|
1273 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
---|
1274 | if( decfl .gt. con1 ) then |
---|
1275 | wi(k) = wi(k+1) - con1*dz(k)/dt |
---|
1276 | endif |
---|
1277 | enddo |
---|
1278 | ! compute arrival point |
---|
1279 | do k=1,km+1 |
---|
1280 | za(k) = zi(k) - wi(k)*dt |
---|
1281 | enddo |
---|
1282 | ! |
---|
1283 | do k=1,km |
---|
1284 | dza(k) = za(k+1)-za(k) |
---|
1285 | enddo |
---|
1286 | dza(km+1) = zi(km+1) - za(km+1) |
---|
1287 | ! |
---|
1288 | ! computer deformation at arrival point |
---|
1289 | do k=1,km |
---|
1290 | qa(k) = qq(k)*dz(k)/dza(k) |
---|
1291 | qr(k) = qa(k)/den(k) |
---|
1292 | enddo |
---|
1293 | qa(km+1) = 0.0 |
---|
1294 | ! call maxmin(km,1,qa,' arrival points ') |
---|
1295 | ! |
---|
1296 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
---|
1297 | ! then back to use mean terminal velocity |
---|
1298 | if( n.le.iter ) then |
---|
1299 | call slope_wsm3(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
---|
1300 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
---|
1301 | do k=1,km |
---|
1302 | !#ifdef DEBUG |
---|
1303 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) |
---|
1304 | !#endif |
---|
1305 | ! mean wind is average of departure and new arrival winds |
---|
1306 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
---|
1307 | enddo |
---|
1308 | was(:) = wa(:) |
---|
1309 | n=n+1 |
---|
1310 | go to 100 |
---|
1311 | endif |
---|
1312 | ! |
---|
1313 | ! estimate values at arrival cell interface with monotone |
---|
1314 | do k=2,km |
---|
1315 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
---|
1316 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
---|
1317 | if( dip*dim.le.0.0 ) then |
---|
1318 | qmi(k)=qa(k) |
---|
1319 | qpi(k)=qa(k) |
---|
1320 | else |
---|
1321 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
---|
1322 | qmi(k)=2.0*qa(k)-qpi(k) |
---|
1323 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
---|
1324 | qpi(k) = qa(k) |
---|
1325 | qmi(k) = qa(k) |
---|
1326 | endif |
---|
1327 | endif |
---|
1328 | enddo |
---|
1329 | qpi(1)=qa(1) |
---|
1330 | qmi(1)=qa(1) |
---|
1331 | qmi(km+1)=qa(km+1) |
---|
1332 | qpi(km+1)=qa(km+1) |
---|
1333 | ! |
---|
1334 | ! interpolation to regular point |
---|
1335 | qn = 0.0 |
---|
1336 | kb=1 |
---|
1337 | kt=1 |
---|
1338 | intp : do k=1,km |
---|
1339 | kb=max(kb-1,1) |
---|
1340 | kt=max(kt-1,1) |
---|
1341 | ! find kb and kt |
---|
1342 | if( zi(k).ge.za(km+1) ) then |
---|
1343 | exit intp |
---|
1344 | else |
---|
1345 | find_kb : do kk=kb,km |
---|
1346 | if( zi(k).le.za(kk+1) ) then |
---|
1347 | kb = kk |
---|
1348 | exit find_kb |
---|
1349 | else |
---|
1350 | cycle find_kb |
---|
1351 | endif |
---|
1352 | enddo find_kb |
---|
1353 | find_kt : do kk=kt,km |
---|
1354 | if( zi(k+1).le.za(kk) ) then |
---|
1355 | kt = kk |
---|
1356 | exit find_kt |
---|
1357 | else |
---|
1358 | cycle find_kt |
---|
1359 | endif |
---|
1360 | enddo find_kt |
---|
1361 | kt = kt - 1 |
---|
1362 | ! compute q with piecewise constant method |
---|
1363 | if( kt.eq.kb ) then |
---|
1364 | tl=(zi(k)-za(kb))/dza(kb) |
---|
1365 | th=(zi(k+1)-za(kb))/dza(kb) |
---|
1366 | tl2=tl*tl |
---|
1367 | th2=th*th |
---|
1368 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
1369 | qqh=qqd*th2+qmi(kb)*th |
---|
1370 | qql=qqd*tl2+qmi(kb)*tl |
---|
1371 | qn(k) = (qqh-qql)/(th-tl) |
---|
1372 | else if( kt.gt.kb ) then |
---|
1373 | tl=(zi(k)-za(kb))/dza(kb) |
---|
1374 | tl2=tl*tl |
---|
1375 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
1376 | qql=qqd*tl2+qmi(kb)*tl |
---|
1377 | dql = qa(kb)-qql |
---|
1378 | zsum = (1.-tl)*dza(kb) |
---|
1379 | qsum = dql*dza(kb) |
---|
1380 | if( kt-kb.gt.1 ) then |
---|
1381 | do m=kb+1,kt-1 |
---|
1382 | zsum = zsum + dza(m) |
---|
1383 | qsum = qsum + qa(m) * dza(m) |
---|
1384 | enddo |
---|
1385 | endif |
---|
1386 | th=(zi(k+1)-za(kt))/dza(kt) |
---|
1387 | th2=th*th |
---|
1388 | qqd=0.5*(qpi(kt)-qmi(kt)) |
---|
1389 | dqh=qqd*th2+qmi(kt)*th |
---|
1390 | zsum = zsum + th*dza(kt) |
---|
1391 | qsum = qsum + dqh*dza(kt) |
---|
1392 | qn(k) = qsum/zsum |
---|
1393 | endif |
---|
1394 | cycle intp |
---|
1395 | endif |
---|
1396 | ! |
---|
1397 | enddo intp |
---|
1398 | ! |
---|
1399 | ! rain out |
---|
1400 | sum_precip: do k=1,km |
---|
1401 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
---|
1402 | precip(i) = precip(i) + qa(k)*dza(k) |
---|
1403 | cycle sum_precip |
---|
1404 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
---|
1405 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
---|
1406 | exit sum_precip |
---|
1407 | endif |
---|
1408 | exit sum_precip |
---|
1409 | enddo sum_precip |
---|
1410 | ! |
---|
1411 | ! replace the new values |
---|
1412 | rql(i,:) = qn(:) |
---|
1413 | ! |
---|
1414 | ! ---------------------------------- |
---|
1415 | enddo i_loop |
---|
1416 | ! |
---|
1417 | END SUBROUTINE nislfv_rain_plm |
---|
1418 | ! |
---|
1419 | END MODULE module_mp_wsm3 |
---|
1420 | #endif |
---|