| 1 | !WRF:MODEL_LAYER:PHYSICS |
|---|
| 2 | ! |
|---|
| 3 | |
|---|
| 4 | MODULE module_mp_lin |
|---|
| 5 | |
|---|
| 6 | USE module_wrf_error |
|---|
| 7 | ! |
|---|
| 8 | REAL , PARAMETER, PRIVATE :: RH = 1.0 |
|---|
| 9 | ! REAL , PARAMETER, PRIVATE :: episp0 = 0.622*611.21 |
|---|
| 10 | REAL , PARAMETER, PRIVATE :: xnor = 8.0e6 |
|---|
| 11 | REAL , PARAMETER, PRIVATE :: xnos = 3.0e6 |
|---|
| 12 | |
|---|
| 13 | ! Lin |
|---|
| 14 | ! REAL , PARAMETER, PRIVATE :: xnog = 4.0e4 |
|---|
| 15 | ! REAL , PARAMETER, PRIVATE :: rhograul = 917. |
|---|
| 16 | |
|---|
| 17 | ! Hobbs |
|---|
| 18 | REAL , PARAMETER, PRIVATE :: xnog = 4.0e6 |
|---|
| 19 | REAL , PARAMETER, PRIVATE :: rhograul = 400. |
|---|
| 20 | |
|---|
| 21 | ! |
|---|
| 22 | REAL , PARAMETER, PRIVATE :: & |
|---|
| 23 | qi0 = 1.0e-3, ql0 = 7.0e-4, qs0 = 6.0E-4, & |
|---|
| 24 | xmi50 = 4.8e-10, xmi40 = 2.46e-10, & |
|---|
| 25 | constb = 0.8, constd = 0.25, & |
|---|
| 26 | o6 = 1./6., cdrag = 0.6, & |
|---|
| 27 | avisc = 1.49628e-6, adiffwv = 8.7602e-5, & |
|---|
| 28 | axka = 1.4132e3, di50 = 1.0e-4, xmi = 4.19e-13, & |
|---|
| 29 | cw = 4.187e3, vf1s = 0.78, vf2s = 0.31, & |
|---|
| 30 | xni0 = 1.0e-2, xmnin = 1.05e-18, bni = 0.5, & |
|---|
| 31 | ci = 2.093e3 |
|---|
| 32 | CONTAINS |
|---|
| 33 | |
|---|
| 34 | !------------------------------------------------------------------- |
|---|
| 35 | ! Lin et al., 1983, JAM, 1065-1092, and |
|---|
| 36 | ! Rutledge and Hobbs, 1984, JAS, 2949-2972 |
|---|
| 37 | ! May 2009 - Changes and corrections from P. Blossey (U. Washington) |
|---|
| 38 | !------------------------------------------------------------------- |
|---|
| 39 | SUBROUTINE lin_et_al(th & |
|---|
| 40 | ,qv, ql, qr & |
|---|
| 41 | ,qi, qs & |
|---|
| 42 | ,rho, pii, p & |
|---|
| 43 | ,dt_in & |
|---|
| 44 | ,z,ht, dz8w & |
|---|
| 45 | ,grav, cp, Rair, rvapor & |
|---|
| 46 | ,XLS, XLV, XLF, rhowater, rhosnow & |
|---|
| 47 | ,EP2,SVP1,SVP2,SVP3,SVPT0 & |
|---|
| 48 | , RAINNC, RAINNCV & |
|---|
| 49 | , SNOWNC, SNOWNCV & |
|---|
| 50 | , GRAUPELNC, GRAUPELNCV, SR & |
|---|
| 51 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 52 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 53 | ,its,ite, jts,jte, kts,kte & |
|---|
| 54 | ! Optional |
|---|
| 55 | ,qlsink, precr, preci, precs, precg & |
|---|
| 56 | , F_QG,F_QNDROP & |
|---|
| 57 | , qg, qndrop & |
|---|
| 58 | ) |
|---|
| 59 | !------------------------------------------------------------------- |
|---|
| 60 | IMPLICIT NONE |
|---|
| 61 | !------------------------------------------------------------------- |
|---|
| 62 | ! |
|---|
| 63 | ! Shuhua 12/17/99 |
|---|
| 64 | ! |
|---|
| 65 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 66 | ims,ime, jms,jme, kms,kme , & |
|---|
| 67 | its,ite, jts,jte, kts,kte |
|---|
| 68 | |
|---|
| 69 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 70 | INTENT(INOUT) :: & |
|---|
| 71 | th, & |
|---|
| 72 | qv, & |
|---|
| 73 | ql, & |
|---|
| 74 | qr |
|---|
| 75 | |
|---|
| 76 | ! |
|---|
| 77 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 78 | INTENT(IN ) :: & |
|---|
| 79 | rho, & |
|---|
| 80 | pii, & |
|---|
| 81 | p, & |
|---|
| 82 | dz8w |
|---|
| 83 | |
|---|
| 84 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 85 | INTENT(IN ) :: z |
|---|
| 86 | |
|---|
| 87 | |
|---|
| 88 | |
|---|
| 89 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN) :: ht |
|---|
| 90 | |
|---|
| 91 | REAL, INTENT(IN ) :: dt_in, & |
|---|
| 92 | grav, & |
|---|
| 93 | Rair, & |
|---|
| 94 | rvapor, & |
|---|
| 95 | cp, & |
|---|
| 96 | XLS, & |
|---|
| 97 | XLV, & |
|---|
| 98 | XLF, & |
|---|
| 99 | rhowater, & |
|---|
| 100 | rhosnow |
|---|
| 101 | |
|---|
| 102 | REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0 |
|---|
| 103 | |
|---|
| 104 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 105 | INTENT(INOUT) :: RAINNC, & |
|---|
| 106 | RAINNCV, & |
|---|
| 107 | SR |
|---|
| 108 | |
|---|
| 109 | ! Optional |
|---|
| 110 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 111 | OPTIONAL, & |
|---|
| 112 | INTENT(INOUT) :: SNOWNC, & |
|---|
| 113 | SNOWNCV, & |
|---|
| 114 | GRAUPELNC, & |
|---|
| 115 | GRAUPELNCV |
|---|
| 116 | |
|---|
| 117 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 118 | OPTIONAL, & |
|---|
| 119 | INTENT(INOUT) :: & |
|---|
| 120 | qi, & |
|---|
| 121 | qs, & |
|---|
| 122 | qg, & |
|---|
| 123 | qndrop |
|---|
| 124 | |
|---|
| 125 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 126 | OPTIONAL, INTENT(OUT ) :: & |
|---|
| 127 | qlsink, & ! cloud water conversion to rain (/s) |
|---|
| 128 | precr, & ! rain precipitation rate at all levels (kg/m2/s) |
|---|
| 129 | preci, & ! ice precipitation rate at all levels (kg/m2/s) |
|---|
| 130 | precs, & ! snow precipitation rate at all levels (kg/m2/s) |
|---|
| 131 | precg ! graupel precipitation rate at all levels (kg/m2/s) |
|---|
| 132 | |
|---|
| 133 | LOGICAL, INTENT(IN), OPTIONAL :: F_QG, F_QNDROP |
|---|
| 134 | |
|---|
| 135 | ! LOCAL VAR |
|---|
| 136 | |
|---|
| 137 | INTEGER :: min_q, max_q |
|---|
| 138 | |
|---|
| 139 | REAL, DIMENSION( its:ite , jts:jte ) & |
|---|
| 140 | :: rain, snow, graupel,ice |
|---|
| 141 | |
|---|
| 142 | REAL, DIMENSION( kts:kte ) :: qvz, qlz, qrz, & |
|---|
| 143 | qiz, qsz, qgz, & |
|---|
| 144 | thz, & |
|---|
| 145 | tothz, rhoz, & |
|---|
| 146 | orhoz, sqrhoz, & |
|---|
| 147 | prez, zz, & |
|---|
| 148 | precrz, preciz, precsz, precgz, & |
|---|
| 149 | qndropz, & |
|---|
| 150 | dzw, preclw |
|---|
| 151 | |
|---|
| 152 | LOGICAL :: flag_qg, flag_qndrop |
|---|
| 153 | ! |
|---|
| 154 | REAL :: dt, pptrain, pptsnow, pptgraul, rhoe_s, & |
|---|
| 155 | gindex, pptice |
|---|
| 156 | real :: qndropconst |
|---|
| 157 | |
|---|
| 158 | INTEGER :: i,j,k |
|---|
| 159 | ! |
|---|
| 160 | flag_qg = .false. |
|---|
| 161 | flag_qndrop = .false. |
|---|
| 162 | IF ( PRESENT ( f_qg ) ) flag_qg = f_qg |
|---|
| 163 | IF ( PRESENT ( f_qndrop ) ) flag_qndrop = f_qndrop |
|---|
| 164 | ! |
|---|
| 165 | dt=dt_in |
|---|
| 166 | rhoe_s=1.29 |
|---|
| 167 | qndropconst=100.e6 !sg |
|---|
| 168 | gindex=1.0 |
|---|
| 169 | |
|---|
| 170 | IF (.not.flag_qg) gindex=0. |
|---|
| 171 | |
|---|
| 172 | j_loop: DO j = jts, jte |
|---|
| 173 | i_loop: DO i = its, ite |
|---|
| 174 | ! |
|---|
| 175 | !- write data from 3-D to 1-D |
|---|
| 176 | ! |
|---|
| 177 | DO k = kts, kte |
|---|
| 178 | qvz(k)=qv(i,k,j) |
|---|
| 179 | qlz(k)=ql(i,k,j) |
|---|
| 180 | qrz(k)=qr(i,k,j) |
|---|
| 181 | thz(k)=th(i,k,j) |
|---|
| 182 | ! |
|---|
| 183 | rhoz(k)=rho(i,k,j) |
|---|
| 184 | orhoz(k)=1./rhoz(k) |
|---|
| 185 | prez(k)=p(i,k,j) |
|---|
| 186 | sqrhoz(k)=sqrt(rhoe_s*orhoz(k)) |
|---|
| 187 | tothz(k)=pii(i,k,j) |
|---|
| 188 | zz(k)=z(i,k,j) |
|---|
| 189 | dzw(k)=dz8w(i,k,j) |
|---|
| 190 | END DO |
|---|
| 191 | |
|---|
| 192 | IF (flag_qndrop .AND. PRESENT( qndrop )) THEN |
|---|
| 193 | DO k = kts, kte |
|---|
| 194 | qndropz(k)=qndrop(i,k,j) |
|---|
| 195 | ENDDO |
|---|
| 196 | ELSE |
|---|
| 197 | DO k = kts, kte |
|---|
| 198 | qndropz(k)=qndropconst |
|---|
| 199 | ENDDO |
|---|
| 200 | ENDIF |
|---|
| 201 | |
|---|
| 202 | DO k = kts, kte |
|---|
| 203 | qiz(k)=qi(i,k,j) |
|---|
| 204 | qsz(k)=qs(i,k,j) |
|---|
| 205 | ENDDO |
|---|
| 206 | |
|---|
| 207 | IF ( flag_qg .AND. PRESENT( qg ) ) THEN |
|---|
| 208 | DO k = kts, kte |
|---|
| 209 | qgz(k)=qg(i,k,j) |
|---|
| 210 | ENDDO |
|---|
| 211 | ELSE |
|---|
| 212 | DO k = kts, kte |
|---|
| 213 | qgz(k)=0. |
|---|
| 214 | ENDDO |
|---|
| 215 | ENDIF |
|---|
| 216 | ! |
|---|
| 217 | pptrain=0. |
|---|
| 218 | pptsnow=0. |
|---|
| 219 | pptgraul=0. |
|---|
| 220 | pptice=0. |
|---|
| 221 | CALL clphy1d( dt, qvz, qlz, qrz, qiz, qsz, qgz, & |
|---|
| 222 | qndropz,flag_qndrop, & |
|---|
| 223 | thz, tothz, rhoz, orhoz, sqrhoz, & |
|---|
| 224 | prez, zz, dzw, ht(I,J), preclw, & |
|---|
| 225 | precrz, preciz, precsz, precgz, & |
|---|
| 226 | pptrain, pptsnow, pptgraul, pptice, & |
|---|
| 227 | grav, cp, Rair, rvapor, gindex, & |
|---|
| 228 | XLS, XLV, XLF, rhowater, rhosnow, & |
|---|
| 229 | EP2,SVP1,SVP2,SVP3,SVPT0, & |
|---|
| 230 | kts, kte, i, j ) |
|---|
| 231 | |
|---|
| 232 | ! |
|---|
| 233 | ! Precipitation from cloud microphysics -- only for one time step |
|---|
| 234 | ! |
|---|
| 235 | ! unit is transferred from m to mm |
|---|
| 236 | |
|---|
| 237 | ! |
|---|
| 238 | rain(i,j)=pptrain |
|---|
| 239 | snow(i,j)=pptsnow |
|---|
| 240 | graupel(i,j)=pptgraul |
|---|
| 241 | ice(i,j)=pptice |
|---|
| 242 | sr(i,j)=(pptice+pptsnow+pptgraul)/(pptice+pptsnow+pptgraul+pptrain+1.e-12) |
|---|
| 243 | ! |
|---|
| 244 | RAINNCV(i,j)= pptrain + pptsnow + pptgraul + pptice |
|---|
| 245 | RAINNC(i,j)=RAINNC(i,j) + pptrain + pptsnow + pptgraul + pptice |
|---|
| 246 | IF(PRESENT(SNOWNCV))SNOWNCV(i,j)= pptsnow + pptice |
|---|
| 247 | IF(PRESENT(SNOWNC))SNOWNC(i,j)=SNOWNC(i,j) + pptsnow + pptice |
|---|
| 248 | IF(PRESENT(GRAUPELNCV))GRAUPELNCV(i,j)= pptgraul |
|---|
| 249 | IF(PRESENT(GRAUPELNC))GRAUPELNC(i,j)=GRAUPELNC(i,j) + pptgraul |
|---|
| 250 | |
|---|
| 251 | ! |
|---|
| 252 | !- update data from 1-D back to 3-D |
|---|
| 253 | ! |
|---|
| 254 | ! |
|---|
| 255 | IF ( present(qlsink) .and. present(precr) ) THEN !sg beg |
|---|
| 256 | DO k = kts, kte |
|---|
| 257 | if(ql(i,k,j)>1.e-20) then |
|---|
| 258 | qlsink(i,k,j)=-preclw(k)/ql(i,k,j) |
|---|
| 259 | else |
|---|
| 260 | qlsink(i,k,j)=0. |
|---|
| 261 | endif |
|---|
| 262 | precr(i,k,j)=precrz(k) |
|---|
| 263 | END DO |
|---|
| 264 | END IF !sg end |
|---|
| 265 | |
|---|
| 266 | DO k = kts, kte |
|---|
| 267 | qv(i,k,j)=qvz(k) |
|---|
| 268 | ql(i,k,j)=qlz(k) |
|---|
| 269 | qr(i,k,j)=qrz(k) |
|---|
| 270 | th(i,k,j)=thz(k) |
|---|
| 271 | END DO |
|---|
| 272 | ! |
|---|
| 273 | IF ( flag_qndrop .AND. PRESENT( qndrop ) ) THEN !sg beg |
|---|
| 274 | DO k = kts, kte |
|---|
| 275 | qndrop(i,k,j)=qndropz(k) |
|---|
| 276 | ENDDO |
|---|
| 277 | END IF !sg end |
|---|
| 278 | |
|---|
| 279 | DO k = kts, kte |
|---|
| 280 | qi(i,k,j)=qiz(k) |
|---|
| 281 | qs(i,k,j)=qsz(k) |
|---|
| 282 | ENDDO |
|---|
| 283 | |
|---|
| 284 | IF ( present(preci) ) THEN !sg beg |
|---|
| 285 | DO k = kts, kte |
|---|
| 286 | preci(i,k,j)=preciz(k) |
|---|
| 287 | ENDDO |
|---|
| 288 | END IF |
|---|
| 289 | |
|---|
| 290 | IF ( present(precs) ) THEN |
|---|
| 291 | DO k = kts, kte |
|---|
| 292 | precs(i,k,j)=precsz(k) |
|---|
| 293 | ENDDO |
|---|
| 294 | END IF !sg end |
|---|
| 295 | |
|---|
| 296 | IF ( flag_qg .AND. PRESENT( qg ) ) THEN |
|---|
| 297 | DO k = kts, kte |
|---|
| 298 | qg(i,k,j)=qgz(k) |
|---|
| 299 | ENDDO |
|---|
| 300 | |
|---|
| 301 | IF ( present(precg) ) THEN !sg beg |
|---|
| 302 | DO k = kts, kte |
|---|
| 303 | precg(i,k,j)=precgz(k) |
|---|
| 304 | ENDDO !sg end |
|---|
| 305 | END IF |
|---|
| 306 | ELSE !sg beg |
|---|
| 307 | IF ( present(precg) ) precg(i,:,j)=0. !sg end |
|---|
| 308 | ENDIF |
|---|
| 309 | ! |
|---|
| 310 | ENDDO i_loop |
|---|
| 311 | ENDDO j_loop |
|---|
| 312 | |
|---|
| 313 | END SUBROUTINE lin_et_al |
|---|
| 314 | |
|---|
| 315 | |
|---|
| 316 | !----------------------------------------------------------------------- |
|---|
| 317 | SUBROUTINE clphy1d(dt, qvz, qlz, qrz, qiz, qsz, qgz, & |
|---|
| 318 | qndropz,flag_qndrop, & |
|---|
| 319 | thz, tothz, rho, orho, sqrho, & |
|---|
| 320 | prez, zz, dzw, zsfc, preclw, & |
|---|
| 321 | precrz, preciz, precsz, precgz, & |
|---|
| 322 | pptrain, pptsnow, pptgraul, & |
|---|
| 323 | pptice, grav, cp, Rair, rvapor, gindex, & |
|---|
| 324 | XLS, XLV, XLF, rhowater, rhosnow, & |
|---|
| 325 | EP2,SVP1,SVP2,SVP3,SVPT0, & |
|---|
| 326 | kts, kte, i, j ) |
|---|
| 327 | !----------------------------------------------------------------------- |
|---|
| 328 | IMPLICIT NONE |
|---|
| 329 | !----------------------------------------------------------------------- |
|---|
| 330 | ! This program handles the vertical 1-D cloud micphysics |
|---|
| 331 | !----------------------------------------------------------------------- |
|---|
| 332 | ! avisc: constant in empirical formular for dynamic viscosity of air |
|---|
| 333 | ! =1.49628e-6 [kg/m/s] = 1.49628e-5 [g/cm/s] |
|---|
| 334 | ! adiffwv: constant in empirical formular for diffusivity of water |
|---|
| 335 | ! vapor in air |
|---|
| 336 | ! = 8.7602e-5 [kgm/s3] = 8.7602 [gcm/s3] |
|---|
| 337 | ! axka: constant in empirical formular for thermal conductivity of air |
|---|
| 338 | ! = 1.4132e3 [m2/s2/K] = 1.4132e7 [cm2/s2/K] |
|---|
| 339 | ! qi0: mixing ratio threshold for cloud ice aggregation [kg/kg] |
|---|
| 340 | ! xmi50: mass of a 50 micron ice crystal |
|---|
| 341 | ! = 4.8e-10 [kg] =4.8e-7 [g] |
|---|
| 342 | ! xmi40: mass of a 40 micron ice crystal |
|---|
| 343 | ! = 2.46e-10 [kg] = 2.46e-7 [g] |
|---|
| 344 | ! di50: diameter of a 50 micro (radius) ice crystal |
|---|
| 345 | ! =1.0e-4 [m] |
|---|
| 346 | ! xmi: mass of one cloud ice crystal |
|---|
| 347 | ! =4.19e-13 [kg] = 4.19e-10 [g] |
|---|
| 348 | ! oxmi=1.0/xmi |
|---|
| 349 | ! |
|---|
| 350 | ! xni0=1.0e-2 [m-3] The value given in Lin et al. is wrong.(see |
|---|
| 351 | ! Hsie et al.(1980) and Rutledge and Hobbs(1983) ) |
|---|
| 352 | ! bni=0.5 [K-1] |
|---|
| 353 | ! xmnin: mass of a natural ice nucleus |
|---|
| 354 | ! = 1.05e-18 [kg] = 1.05e-15 [g] This values is suggested by |
|---|
| 355 | ! Hsie et al. (1980) |
|---|
| 356 | ! = 1.0e-12 [kg] suggested by Rutlegde and Hobbs (1983) |
|---|
| 357 | ! rhowater: density of water=1.0 g/cm3=1000.0 kg/m3 |
|---|
| 358 | ! consta: constant in empirical formular for terminal |
|---|
| 359 | ! velocity of raindrop |
|---|
| 360 | ! =2115.0 [cm**(1-b)/s] = 2115.0*0.01**(1-b) [m**(1-b)/s] |
|---|
| 361 | ! constb: constant in empirical formular for terminal |
|---|
| 362 | ! velocity of raindrop |
|---|
| 363 | ! =0.8 |
|---|
| 364 | ! xnor: intercept parameter of the raindrop size distribution |
|---|
| 365 | ! = 0.08 cm-4 = 8.0e6 m-4 |
|---|
| 366 | ! araut: time sacle for autoconversion of cloud water to raindrops |
|---|
| 367 | ! =1.0e-3 [s-1] |
|---|
| 368 | ! ql0: mixing ratio threshold for cloud watercoalescence [kg/kg] |
|---|
| 369 | ! vf1r: ventilation factors for rain =0.78 |
|---|
| 370 | ! vf2r: ventilation factors for rain =0.31 |
|---|
| 371 | ! rhosnow: density of snow=0.1 g/cm3=100.0 kg/m3 |
|---|
| 372 | ! constc: constant in empirical formular for terminal |
|---|
| 373 | ! velocity of snow |
|---|
| 374 | ! =152.93 [cm**(1-d)/s] = 152.93*0.01**(1-d) [m**(1-d)/s] |
|---|
| 375 | ! constd: constant in empirical formular for terminal |
|---|
| 376 | ! velocity of snow |
|---|
| 377 | ! =0.25 |
|---|
| 378 | ! xnos: intercept parameter of the snowflake size distribution |
|---|
| 379 | ! vf1s: ventilation factors for snow =0.78 |
|---|
| 380 | ! vf2s: ventilation factors for snow =0.31 |
|---|
| 381 | ! |
|---|
| 382 | !---------------------------------------------------------------------- |
|---|
| 383 | |
|---|
| 384 | INTEGER, INTENT(IN ) :: kts, kte, i, j |
|---|
| 385 | |
|---|
| 386 | REAL, DIMENSION( kts:kte ), & |
|---|
| 387 | INTENT(INOUT) :: qvz, qlz, qrz, qiz, qsz, & |
|---|
| 388 | qndropz, & |
|---|
| 389 | qgz, thz |
|---|
| 390 | |
|---|
| 391 | REAL, DIMENSION( kts:kte ), & |
|---|
| 392 | INTENT(IN ) :: tothz, rho, orho, sqrho, & |
|---|
| 393 | prez, zz, dzw |
|---|
| 394 | |
|---|
| 395 | REAL, INTENT(IN ) :: dt, grav, cp, Rair, rvapor, & |
|---|
| 396 | XLS, XLV, XLF, rhowater, & |
|---|
| 397 | rhosnow,EP2,SVP1,SVP2,SVP3,SVPT0 |
|---|
| 398 | |
|---|
| 399 | REAL, DIMENSION( kts:kte ), INTENT(OUT) :: preclw, & |
|---|
| 400 | precrz, preciz, precsz, precgz |
|---|
| 401 | |
|---|
| 402 | REAL, INTENT(INOUT) :: pptrain, pptsnow, pptgraul, pptice |
|---|
| 403 | |
|---|
| 404 | REAL, INTENT(IN ) :: zsfc |
|---|
| 405 | logical, intent(in) :: flag_qndrop !sg |
|---|
| 406 | |
|---|
| 407 | ! local vars |
|---|
| 408 | |
|---|
| 409 | REAL :: obp4, bp3, bp5, bp6, odp4, & |
|---|
| 410 | dp3, dp5, dp5o2 |
|---|
| 411 | |
|---|
| 412 | |
|---|
| 413 | ! temperary vars |
|---|
| 414 | |
|---|
| 415 | REAL :: tmp, tmp0, tmp1, tmp2,tmp3, & |
|---|
| 416 | tmp4,delta2,delta3, delta4, & |
|---|
| 417 | tmpa,tmpb,tmpc,tmpd,alpha1, & |
|---|
| 418 | qic, abi,abr, abg, odtberg, & |
|---|
| 419 | vti50,eiw,eri,esi,esr, esw, & |
|---|
| 420 | erw,delrs,term0,term1,araut, & |
|---|
| 421 | constg2, vf1r, vf2r,alpha2, & |
|---|
| 422 | Ap, Bp, egw, egi, egs, egr, & |
|---|
| 423 | constg, gdelta4, g1sdelt4, & |
|---|
| 424 | factor, tmp_r, tmp_s,tmp_g, & |
|---|
| 425 | qlpqi, rsat, a1, a2, xnin |
|---|
| 426 | |
|---|
| 427 | INTEGER :: k |
|---|
| 428 | ! |
|---|
| 429 | REAL, DIMENSION( kts:kte ) :: oprez, tem, temcc, theiz, qswz, & |
|---|
| 430 | qsiz, qvoqswz, qvoqsiz, qvzodt, & |
|---|
| 431 | qlzodt, qizodt, qszodt, qrzodt, & |
|---|
| 432 | qgzodt |
|---|
| 433 | |
|---|
| 434 | REAL, DIMENSION( kts:kte ) :: psnow, psaut, psfw, psfi, praci, & |
|---|
| 435 | piacr, psaci, psacw, psdep, pssub, & |
|---|
| 436 | pracs, psacr, psmlt, psmltevp, & |
|---|
| 437 | prain, praut, pracw, prevp, pvapor, & |
|---|
| 438 | pclw, pladj, pcli, pimlt, pihom, & |
|---|
| 439 | pidw, piadj, pgraupel, pgaut, & |
|---|
| 440 | pgfr, pgacw, pgaci, pgacr, pgacs, & |
|---|
| 441 | pgacip,pgacrp,pgacsp,pgwet, pdry, & |
|---|
| 442 | pgsub, pgdep, pgmlt, pgmltevp, & |
|---|
| 443 | qschg, qgchg |
|---|
| 444 | ! |
|---|
| 445 | |
|---|
| 446 | REAL, DIMENSION( kts:kte ) :: qvsbar, rs0, viscmu, visc, diffwv, & |
|---|
| 447 | schmidt, xka |
|---|
| 448 | |
|---|
| 449 | REAL, DIMENSION( kts:kte ) :: vtr, vts, vtg, & |
|---|
| 450 | vtrold, vtsold, vtgold, vtiold, & |
|---|
| 451 | xlambdar, xlambdas, xlambdag, & |
|---|
| 452 | olambdar, olambdas, olambdag |
|---|
| 453 | |
|---|
| 454 | REAL :: episp0k, dtb, odtb, pi, pio4, & |
|---|
| 455 | pio6, oxLf, xLvocp, xLfocp, consta, & |
|---|
| 456 | constc, ocdrag, gambp4, gamdp4, & |
|---|
| 457 | gam4pt5, Cpor, oxmi, gambp3, gamdp3,& |
|---|
| 458 | gambp6, gam3pt5, gam2pt75, gambp5o2,& |
|---|
| 459 | gamdp5o2, cwoxlf, ocp, xni50, es |
|---|
| 460 | ! |
|---|
| 461 | REAL :: qvmin=1.e-20 |
|---|
| 462 | REAL :: gindex |
|---|
| 463 | REAL :: temc1,save1,save2,xni50mx |
|---|
| 464 | |
|---|
| 465 | ! for terminal velocity flux |
|---|
| 466 | |
|---|
| 467 | INTEGER :: min_q, max_q |
|---|
| 468 | REAL :: t_del_tv, del_tv, flux, fluxin, fluxout ,tmpqrz |
|---|
| 469 | LOGICAL :: notlast |
|---|
| 470 | ! |
|---|
| 471 | REAL :: tmp_tem, tmp_temcc !bloss |
|---|
| 472 | ! |
|---|
| 473 | real :: liqconc, dis, beta, kappa, p0, xc, capn,rhocgs |
|---|
| 474 | |
|---|
| 475 | !sg: begin |
|---|
| 476 | ! liqconc = liquid water content (g cm^-3) |
|---|
| 477 | ! capn = droplet number concentration (# cm^-3) |
|---|
| 478 | ! dis = relative dispersion (dimensionless) between 0.2 and 1. |
|---|
| 479 | ! Written by Yangang Liu based on Liu et al., GRL 32, 2005. |
|---|
| 480 | ! Autoconversion rate p = p0 * (threshold function) |
|---|
| 481 | ! p0 = "base" autoconversion rate (g cm^-3 s^-1) |
|---|
| 482 | ! kappa = constant in Long kernel = [kappa2 * (3/(4*pi*rhow))^3] in Liu papers |
|---|
| 483 | ! beta = Condensation rate constant = (beta6)^6 in Liu papers |
|---|
| 484 | ! xc = Normalized critical mass |
|---|
| 485 | ! *********************************************************** |
|---|
| 486 | if(flag_qndrop)then |
|---|
| 487 | dis = 0.5 ! droplet dispersion, set to 0.5 per SG 8-Nov-2006 |
|---|
| 488 | ! Give empirical constants |
|---|
| 489 | kappa=1.1d10 |
|---|
| 490 | ! Calculate Condensation rate constant |
|---|
| 491 | beta = (1.0d0+3.0d0*dis**2)*(1.0d0+4.0d0*dis**2)* & |
|---|
| 492 | (1.0d0+5.0d0*dis**2)/((1.0d0+dis**2)*(1.0d0+2.0d0*dis**2)) |
|---|
| 493 | endif |
|---|
| 494 | !sg: end |
|---|
| 495 | |
|---|
| 496 | dtb=dt |
|---|
| 497 | odtb=1./dtb |
|---|
| 498 | pi=acos(-1.) |
|---|
| 499 | pio4=acos(-1.)/4. |
|---|
| 500 | pio6=acos(-1.)/6. |
|---|
| 501 | ocp=1./cp |
|---|
| 502 | oxLf=1./xLf |
|---|
| 503 | xLvocp=xLv/cp |
|---|
| 504 | xLfocp=xLf/cp |
|---|
| 505 | consta=2115.0*0.01**(1-constb) |
|---|
| 506 | constc=152.93*0.01**(1-constd) |
|---|
| 507 | ocdrag=1./Cdrag |
|---|
| 508 | ! episp0k=RH*episp0 |
|---|
| 509 | episp0k=RH*ep2*1000.*svp1 |
|---|
| 510 | ! |
|---|
| 511 | gambp4=ggamma(constb+4.) |
|---|
| 512 | gamdp4=ggamma(constd+4.) |
|---|
| 513 | gam4pt5=ggamma(4.5) |
|---|
| 514 | Cpor=cp/Rair |
|---|
| 515 | oxmi=1.0/xmi |
|---|
| 516 | gambp3=ggamma(constb+3.) |
|---|
| 517 | gamdp3=ggamma(constd+3.) |
|---|
| 518 | gambp6=ggamma(constb+6) |
|---|
| 519 | gam3pt5=ggamma(3.5) |
|---|
| 520 | gam2pt75=ggamma(2.75) |
|---|
| 521 | gambp5o2=ggamma((constb+5.)/2.) |
|---|
| 522 | gamdp5o2=ggamma((constd+5.)/2.) |
|---|
| 523 | cwoxlf=cw/xlf |
|---|
| 524 | delta2=0. |
|---|
| 525 | delta3=0. |
|---|
| 526 | delta4=0. |
|---|
| 527 | ! |
|---|
| 528 | !----------------------------------------------------------------------- |
|---|
| 529 | ! oprez 1./prez ( prez : pressure) |
|---|
| 530 | ! qsw saturated mixing ratio on water surface |
|---|
| 531 | ! qsi saturated mixing ratio on ice surface |
|---|
| 532 | ! episp0k RH*e*saturated pressure at 273.15 K |
|---|
| 533 | ! qvoqsw qv/qsw |
|---|
| 534 | ! qvoqsi qv/qsi |
|---|
| 535 | ! qvzodt qv/dt |
|---|
| 536 | ! qlzodt ql/dt |
|---|
| 537 | ! qizodt qi/dt |
|---|
| 538 | ! qszodt qs/dt |
|---|
| 539 | ! qrzodt qr/dt |
|---|
| 540 | ! qgzodt qg/dt |
|---|
| 541 | ! |
|---|
| 542 | ! temcc temperature in dregee C |
|---|
| 543 | ! |
|---|
| 544 | |
|---|
| 545 | obp4=1.0/(constb+4.0) |
|---|
| 546 | bp3=constb+3.0 |
|---|
| 547 | bp5=constb+5.0 |
|---|
| 548 | bp6=constb+6.0 |
|---|
| 549 | odp4=1.0/(constd+4.0) |
|---|
| 550 | dp3=constd+3.0 |
|---|
| 551 | dp5=constd+5.0 |
|---|
| 552 | dp5o2=0.5*(constd+5.0) |
|---|
| 553 | ! |
|---|
| 554 | do k=kts,kte |
|---|
| 555 | oprez(k)=1./prez(k) |
|---|
| 556 | enddo |
|---|
| 557 | |
|---|
| 558 | do k=kts,kte |
|---|
| 559 | qlz(k)=amax1( 0.0,qlz(k) ) |
|---|
| 560 | qiz(k)=amax1( 0.0,qiz(k) ) |
|---|
| 561 | qvz(k)=amax1( qvmin,qvz(k) ) |
|---|
| 562 | qsz(k)=amax1( 0.0,qsz(k) ) |
|---|
| 563 | qrz(k)=amax1( 0.0,qrz(k) ) |
|---|
| 564 | qgz(k)=amax1( 0.0,qgz(k) ) |
|---|
| 565 | qndropz(k)=amax1( 0.0,qndropz(k) ) !sg |
|---|
| 566 | ! |
|---|
| 567 | tem(k)=thz(k)*tothz(k) |
|---|
| 568 | temcc(k)=tem(k)-273.15 |
|---|
| 569 | ! |
|---|
| 570 | ! qswz(k)=episp0k*oprez(k)* & |
|---|
| 571 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 572 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 573 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 574 | if (tem(k) .lt. 273.15 ) then |
|---|
| 575 | ! qsiz(k)=episp0k*oprez(k)* & |
|---|
| 576 | ! exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 577 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 578 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 579 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
|---|
| 580 | else |
|---|
| 581 | qsiz(k)=qswz(k) |
|---|
| 582 | endif |
|---|
| 583 | ! |
|---|
| 584 | qvoqswz(k)=qvz(k)/qswz(k) |
|---|
| 585 | qvoqsiz(k)=qvz(k)/qsiz(k) |
|---|
| 586 | |
|---|
| 587 | theiz(k)=thz(k)+(xlvocp*qvz(k)-xlfocp*qiz(k))/tothz(k) |
|---|
| 588 | enddo |
|---|
| 589 | |
|---|
| 590 | |
|---|
| 591 | ! |
|---|
| 592 | ! |
|---|
| 593 | !----------------------------------------------------------------------- |
|---|
| 594 | ! In this simple stable cloud parameterization scheme, only five |
|---|
| 595 | ! forms of water substance (water vapor, cloud water, cloud ice, |
|---|
| 596 | ! rain and snow are considered. The prognostic variables are total |
|---|
| 597 | ! water (qp),cloud water (ql), and cloud ice (qi). Rain and snow are |
|---|
| 598 | ! diagnosed following Nagata and Ogura, 1991, MWR, 1309-1337. Eq (A7). |
|---|
| 599 | ! the micro physics are based on (1) Hsie et al.,1980, JAM, 950-977 ; |
|---|
| 600 | ! (2) Lin et al., 1983, JAM, 1065-1092 ; (3) Rutledge and Hobbs, 1983, |
|---|
| 601 | ! JAS, 1185-1206 ; (4) Rutledge and Hobbs, 1984, JAS, 2949-2972. |
|---|
| 602 | !----------------------------------------------------------------------- |
|---|
| 603 | ! |
|---|
| 604 | ! rhowater: density of water=1.0 g/cm3=1000.0 kg/m3 |
|---|
| 605 | ! rhosnow: density of snow=0.1 g/cm3=100.0 kg/m3 |
|---|
| 606 | ! xnor: intercept parameter of the raindrop size distribution |
|---|
| 607 | ! = 0.08 cm-4 = 8.0e6 m-4 |
|---|
| 608 | ! xnos: intercept parameter of the snowflake size distribution |
|---|
| 609 | ! = 0.03 cm-4 = 3.0e6 m-4 |
|---|
| 610 | ! xnog: intercept parameter of the graupel size distribution |
|---|
| 611 | ! = 4.0e-4 cm-4 = 4.0e4 m-4 |
|---|
| 612 | ! consta: constant in empirical formular for terminal |
|---|
| 613 | ! velocity of raindrop |
|---|
| 614 | ! =2115.0 [cm**(1-b)/s] = 2115.0*0.01**(1-b) [m**(1-b)/s] |
|---|
| 615 | ! constb: constant in empirical formular for terminal |
|---|
| 616 | ! velocity of raindrop |
|---|
| 617 | ! =0.8 |
|---|
| 618 | ! constc: constant in empirical formular for terminal |
|---|
| 619 | ! velocity of snow |
|---|
| 620 | ! =152.93 [cm**(1-d)/s] = 152.93*0.01**(1-d) [m**(1-d)/s] |
|---|
| 621 | ! constd: constant in empirical formular for terminal |
|---|
| 622 | ! velocity of snow |
|---|
| 623 | ! =0.25 |
|---|
| 624 | ! avisc: constant in empirical formular for dynamic viscosity of air |
|---|
| 625 | ! =1.49628e-6 [kg/m/s] = 1.49628e-5 [g/cm/s] |
|---|
| 626 | ! adiffwv: constant in empirical formular for diffusivity of water |
|---|
| 627 | ! vapor in air |
|---|
| 628 | ! = 8.7602e-5 [kgm/s3] = 8.7602 [gcm/s3] |
|---|
| 629 | ! axka: constant in empirical formular for thermal conductivity of air |
|---|
| 630 | ! = 1.4132e3 [m2/s2/K] = 1.4132e7 [cm2/s2/K] |
|---|
| 631 | ! qi0: mixing ratio threshold for cloud ice aggregation [kg/kg] |
|---|
| 632 | ! = 1.0e-3 g/g = 1.0e-3 kg/gk |
|---|
| 633 | ! ql0: mixing ratio threshold for cloud watercoalescence [kg/kg] |
|---|
| 634 | ! = 2.0e-3 g/g = 2.0e-3 kg/gk |
|---|
| 635 | ! qs0: mixing ratio threshold for snow aggregation |
|---|
| 636 | ! = 6.0e-4 g/g = 6.0e-4 kg/gk |
|---|
| 637 | ! xmi50: mass of a 50 micron ice crystal |
|---|
| 638 | ! = 4.8e-10 [kg] =4.8e-7 [g] |
|---|
| 639 | ! xmi40: mass of a 40 micron ice crystal |
|---|
| 640 | ! = 2.46e-10 [kg] = 2.46e-7 [g] |
|---|
| 641 | ! di50: diameter of a 50 micro (radius) ice crystal |
|---|
| 642 | ! =1.0e-4 [m] |
|---|
| 643 | ! xmi: mass of one cloud ice crystal |
|---|
| 644 | ! =4.19e-13 [kg] = 4.19e-10 [g] |
|---|
| 645 | ! oxmi=1.0/xmi |
|---|
| 646 | ! |
|---|
| 647 | |
|---|
| 648 | |
|---|
| 649 | ! if gindex=1.0 include graupel |
|---|
| 650 | ! if gindex=0. no graupel |
|---|
| 651 | ! |
|---|
| 652 | ! |
|---|
| 653 | do k=kts,kte |
|---|
| 654 | psnow(k)=0.0 |
|---|
| 655 | psaut(k)=0.0 |
|---|
| 656 | psfw(k)=0.0 |
|---|
| 657 | psfi(k)=0.0 |
|---|
| 658 | praci(k)=0.0 |
|---|
| 659 | piacr(k)=0.0 |
|---|
| 660 | psaci(k)=0.0 |
|---|
| 661 | psacw(k)=0.0 |
|---|
| 662 | psdep(k)=0.0 |
|---|
| 663 | pssub(k)=0.0 |
|---|
| 664 | pracs(k)=0.0 |
|---|
| 665 | psacr(k)=0.0 |
|---|
| 666 | psmlt(k)=0.0 |
|---|
| 667 | psmltevp(k)=0.0 |
|---|
| 668 | ! |
|---|
| 669 | prain(k)=0.0 |
|---|
| 670 | praut(k)=0.0 |
|---|
| 671 | pracw(k)=0.0 |
|---|
| 672 | prevp(k)=0.0 |
|---|
| 673 | ! |
|---|
| 674 | pvapor(k)=0.0 |
|---|
| 675 | ! |
|---|
| 676 | pclw(k)=0.0 |
|---|
| 677 | preclw(k)=0.0 !sg |
|---|
| 678 | pladj(k)=0.0 |
|---|
| 679 | ! |
|---|
| 680 | pcli(k)=0.0 |
|---|
| 681 | pimlt(k)=0.0 |
|---|
| 682 | pihom(k)=0.0 |
|---|
| 683 | pidw(k)=0.0 |
|---|
| 684 | piadj(k)=0.0 |
|---|
| 685 | enddo |
|---|
| 686 | |
|---|
| 687 | ! |
|---|
| 688 | !!! graupel |
|---|
| 689 | ! |
|---|
| 690 | do k=kts,kte |
|---|
| 691 | pgraupel(k)=0.0 |
|---|
| 692 | pgaut(k)=0.0 |
|---|
| 693 | pgfr(k)=0.0 |
|---|
| 694 | pgacw(k)=0.0 |
|---|
| 695 | pgaci(k)=0.0 |
|---|
| 696 | pgacr(k)=0.0 |
|---|
| 697 | pgacs(k)=0.0 |
|---|
| 698 | pgacip(k)=0.0 |
|---|
| 699 | pgacrP(k)=0.0 |
|---|
| 700 | pgacsp(k)=0.0 |
|---|
| 701 | pgwet(k)=0.0 |
|---|
| 702 | pdry(k)=0.0 |
|---|
| 703 | pgsub(k)=0.0 |
|---|
| 704 | pgdep(k)=0.0 |
|---|
| 705 | pgmlt(k)=0.0 |
|---|
| 706 | pgmltevp(k)=0.0 |
|---|
| 707 | qschg(k)=0. |
|---|
| 708 | qgchg(k)=0. |
|---|
| 709 | enddo |
|---|
| 710 | ! |
|---|
| 711 | ! |
|---|
| 712 | ! Set rs0=episp0*oprez(k) |
|---|
| 713 | ! episp0=e*saturated pressure at 273.15 K |
|---|
| 714 | ! e = 0.622 |
|---|
| 715 | ! |
|---|
| 716 | DO k=kts,kte |
|---|
| 717 | rs0(k)=ep2*1000.*svp1/(prez(k)-1000.*svp1) |
|---|
| 718 | END DO |
|---|
| 719 | ! |
|---|
| 720 | !*********************************************************************** |
|---|
| 721 | ! Calculate precipitation fluxes due to terminal velocities. |
|---|
| 722 | !*********************************************************************** |
|---|
| 723 | ! |
|---|
| 724 | !- Calculate termianl velocity (vt?) of precipitation q?z |
|---|
| 725 | !- Find maximum vt? to determine the small delta t |
|---|
| 726 | ! |
|---|
| 727 | !-- rain |
|---|
| 728 | ! |
|---|
| 729 | t_del_tv=0. |
|---|
| 730 | del_tv=dtb |
|---|
| 731 | notlast=.true. |
|---|
| 732 | DO while (notlast) |
|---|
| 733 | ! |
|---|
| 734 | min_q=kte |
|---|
| 735 | max_q=kts-1 |
|---|
| 736 | ! |
|---|
| 737 | do k=kts,kte-1 |
|---|
| 738 | if (qrz(k) .gt. 1.0e-8) then |
|---|
| 739 | min_q=min0(min_q,k) |
|---|
| 740 | max_q=max0(max_q,k) |
|---|
| 741 | tmp1=sqrt(pi*rhowater*xnor/rho(k)/qrz(k)) |
|---|
| 742 | tmp1=sqrt(tmp1) |
|---|
| 743 | vtrold(k)=o6*consta*gambp4*sqrho(k)/tmp1**constb |
|---|
| 744 | if (k .eq. 1) then |
|---|
| 745 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtrold(k)) |
|---|
| 746 | else |
|---|
| 747 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtrold(k)) |
|---|
| 748 | endif |
|---|
| 749 | else |
|---|
| 750 | vtrold(k)=0. |
|---|
| 751 | endif |
|---|
| 752 | enddo |
|---|
| 753 | |
|---|
| 754 | if (max_q .ge. min_q) then |
|---|
| 755 | ! |
|---|
| 756 | !- Check if the summation of the small delta t >= big delta t |
|---|
| 757 | ! (t_del_tv) (del_tv) (dtb) |
|---|
| 758 | |
|---|
| 759 | t_del_tv=t_del_tv+del_tv |
|---|
| 760 | ! |
|---|
| 761 | if ( t_del_tv .ge. dtb ) then |
|---|
| 762 | notlast=.false. |
|---|
| 763 | del_tv=dtb+del_tv-t_del_tv |
|---|
| 764 | endif |
|---|
| 765 | ! |
|---|
| 766 | fluxin=0. |
|---|
| 767 | do k=max_q,min_q,-1 |
|---|
| 768 | fluxout=rho(k)*vtrold(k)*qrz(k) |
|---|
| 769 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
|---|
| 770 | tmpqrz=qrz(k) |
|---|
| 771 | qrz(k)=qrz(k)+del_tv*flux |
|---|
| 772 | fluxin=fluxout |
|---|
| 773 | enddo |
|---|
| 774 | if (min_q .eq. 1) then |
|---|
| 775 | pptrain=pptrain+fluxin*del_tv |
|---|
| 776 | else |
|---|
| 777 | qrz(min_q-1)=qrz(min_q-1)+del_tv* & |
|---|
| 778 | fluxin/rho(min_q-1)/dzw(min_q-1) |
|---|
| 779 | endif |
|---|
| 780 | ! |
|---|
| 781 | else |
|---|
| 782 | notlast=.false. |
|---|
| 783 | endif |
|---|
| 784 | ENDDO |
|---|
| 785 | |
|---|
| 786 | ! |
|---|
| 787 | !-- snow |
|---|
| 788 | ! |
|---|
| 789 | t_del_tv=0. |
|---|
| 790 | del_tv=dtb |
|---|
| 791 | notlast=.true. |
|---|
| 792 | |
|---|
| 793 | DO while (notlast) |
|---|
| 794 | ! |
|---|
| 795 | min_q=kte |
|---|
| 796 | max_q=kts-1 |
|---|
| 797 | ! |
|---|
| 798 | do k=kts,kte-1 |
|---|
| 799 | if (qsz(k) .gt. 1.0e-8) then |
|---|
| 800 | min_q=min0(min_q,k) |
|---|
| 801 | max_q=max0(max_q,k) |
|---|
| 802 | tmp1=sqrt(pi*rhosnow*xnos/rho(k)/qsz(k)) |
|---|
| 803 | tmp1=sqrt(tmp1) |
|---|
| 804 | vtsold(k)=o6*constc*gamdp4*sqrho(k)/tmp1**constd |
|---|
| 805 | if (k .eq. 1) then |
|---|
| 806 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtsold(k)) |
|---|
| 807 | else |
|---|
| 808 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtsold(k)) |
|---|
| 809 | endif |
|---|
| 810 | else |
|---|
| 811 | vtsold(k)=0. |
|---|
| 812 | endif |
|---|
| 813 | enddo |
|---|
| 814 | |
|---|
| 815 | if (max_q .ge. min_q) then |
|---|
| 816 | ! |
|---|
| 817 | ! |
|---|
| 818 | !- Check if the summation of the small delta t >= big delta t |
|---|
| 819 | ! (t_del_tv) (del_tv) (dtb) |
|---|
| 820 | |
|---|
| 821 | t_del_tv=t_del_tv+del_tv |
|---|
| 822 | |
|---|
| 823 | if ( t_del_tv .ge. dtb ) then |
|---|
| 824 | notlast=.false. |
|---|
| 825 | del_tv=dtb+del_tv-t_del_tv |
|---|
| 826 | endif |
|---|
| 827 | ! |
|---|
| 828 | fluxin=0. |
|---|
| 829 | do k=max_q,min_q,-1 |
|---|
| 830 | fluxout=rho(k)*vtsold(k)*qsz(k) |
|---|
| 831 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
|---|
| 832 | qsz(k)=qsz(k)+del_tv*flux |
|---|
| 833 | qsz(k)=amax1(0.,qsz(k)) |
|---|
| 834 | fluxin=fluxout |
|---|
| 835 | enddo |
|---|
| 836 | if (min_q .eq. 1) then |
|---|
| 837 | pptsnow=pptsnow+fluxin*del_tv |
|---|
| 838 | else |
|---|
| 839 | qsz(min_q-1)=qsz(min_q-1)+del_tv* & |
|---|
| 840 | fluxin/rho(min_q-1)/dzw(min_q-1) |
|---|
| 841 | endif |
|---|
| 842 | ! |
|---|
| 843 | else |
|---|
| 844 | notlast=.false. |
|---|
| 845 | endif |
|---|
| 846 | |
|---|
| 847 | ENDDO |
|---|
| 848 | ! |
|---|
| 849 | !-- grauupel |
|---|
| 850 | ! |
|---|
| 851 | t_del_tv=0. |
|---|
| 852 | del_tv=dtb |
|---|
| 853 | notlast=.true. |
|---|
| 854 | ! |
|---|
| 855 | DO while (notlast) |
|---|
| 856 | ! |
|---|
| 857 | min_q=kte |
|---|
| 858 | max_q=kts-1 |
|---|
| 859 | ! |
|---|
| 860 | do k=kts,kte-1 |
|---|
| 861 | if (qgz(k) .gt. 1.0e-8) then |
|---|
| 862 | min_q=min0(min_q,k) |
|---|
| 863 | max_q=max0(max_q,k) |
|---|
| 864 | tmp1=sqrt(pi*rhograul*xnog/rho(k)/qgz(k)) |
|---|
| 865 | tmp1=sqrt(tmp1) |
|---|
| 866 | term0=sqrt(4.*grav*rhograul*0.33334/rho(k)/cdrag) |
|---|
| 867 | vtgold(k)=o6*gam4pt5*term0*sqrt(1./tmp1) |
|---|
| 868 | if (k .eq. 1) then |
|---|
| 869 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtgold(k)) |
|---|
| 870 | else |
|---|
| 871 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtgold(k)) |
|---|
| 872 | endif |
|---|
| 873 | else |
|---|
| 874 | vtgold(k)=0. |
|---|
| 875 | endif |
|---|
| 876 | enddo |
|---|
| 877 | |
|---|
| 878 | if (max_q .ge. min_q) then |
|---|
| 879 | ! |
|---|
| 880 | ! |
|---|
| 881 | !- Check if the summation of the small delta t >= big delta t |
|---|
| 882 | ! (t_del_tv) (del_tv) (dtb) |
|---|
| 883 | |
|---|
| 884 | t_del_tv=t_del_tv+del_tv |
|---|
| 885 | |
|---|
| 886 | if ( t_del_tv .ge. dtb ) then |
|---|
| 887 | notlast=.false. |
|---|
| 888 | del_tv=dtb+del_tv-t_del_tv |
|---|
| 889 | endif |
|---|
| 890 | |
|---|
| 891 | ! |
|---|
| 892 | fluxin=0. |
|---|
| 893 | do k=max_q,min_q,-1 |
|---|
| 894 | fluxout=rho(k)*vtgold(k)*qgz(k) |
|---|
| 895 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
|---|
| 896 | qgz(k)=qgz(k)+del_tv*flux |
|---|
| 897 | qgz(k)=amax1(0.,qgz(k)) |
|---|
| 898 | fluxin=fluxout |
|---|
| 899 | enddo |
|---|
| 900 | if (min_q .eq. 1) then |
|---|
| 901 | pptgraul=pptgraul+fluxin*del_tv |
|---|
| 902 | else |
|---|
| 903 | qgz(min_q-1)=qgz(min_q-1)+del_tv* & |
|---|
| 904 | fluxin/rho(min_q-1)/dzw(min_q-1) |
|---|
| 905 | endif |
|---|
| 906 | ! |
|---|
| 907 | else |
|---|
| 908 | notlast=.false. |
|---|
| 909 | endif |
|---|
| 910 | ! |
|---|
| 911 | ENDDO |
|---|
| 912 | |
|---|
| 913 | ! |
|---|
| 914 | !-- cloud ice (03/21/02) follow Vaughan T.J. Phillips at GFDL |
|---|
| 915 | ! |
|---|
| 916 | t_del_tv=0. |
|---|
| 917 | del_tv=dtb |
|---|
| 918 | notlast=.true. |
|---|
| 919 | ! |
|---|
| 920 | DO while (notlast) |
|---|
| 921 | ! |
|---|
| 922 | min_q=kte |
|---|
| 923 | max_q=kts-1 |
|---|
| 924 | ! |
|---|
| 925 | do k=kts,kte-1 |
|---|
| 926 | if (qiz(k) .gt. 1.0e-8) then |
|---|
| 927 | min_q=min0(min_q,k) |
|---|
| 928 | max_q=max0(max_q,k) |
|---|
| 929 | vtiold(k)= 3.29 * (rho(k)* qiz(k))** 0.16 ! Heymsfield and Donner |
|---|
| 930 | if (k .eq. 1) then |
|---|
| 931 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtiold(k)) |
|---|
| 932 | else |
|---|
| 933 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtiold(k)) |
|---|
| 934 | endif |
|---|
| 935 | else |
|---|
| 936 | vtiold(k)=0. |
|---|
| 937 | endif |
|---|
| 938 | enddo |
|---|
| 939 | |
|---|
| 940 | if (max_q .ge. min_q) then |
|---|
| 941 | ! |
|---|
| 942 | ! |
|---|
| 943 | !- Check if the summation of the small delta t >= big delta t |
|---|
| 944 | ! (t_del_tv) (del_tv) (dtb) |
|---|
| 945 | |
|---|
| 946 | t_del_tv=t_del_tv+del_tv |
|---|
| 947 | |
|---|
| 948 | if ( t_del_tv .ge. dtb ) then |
|---|
| 949 | notlast=.false. |
|---|
| 950 | del_tv=dtb+del_tv-t_del_tv |
|---|
| 951 | endif |
|---|
| 952 | |
|---|
| 953 | fluxin=0. |
|---|
| 954 | do k=max_q,min_q,-1 |
|---|
| 955 | fluxout=rho(k)*vtiold(k)*qiz(k) |
|---|
| 956 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
|---|
| 957 | qiz(k)=qiz(k)+del_tv*flux |
|---|
| 958 | qiz(k)=amax1(0.,qiz(k)) |
|---|
| 959 | fluxin=fluxout |
|---|
| 960 | enddo |
|---|
| 961 | if (min_q .eq. 1) then |
|---|
| 962 | pptice=pptice+fluxin*del_tv |
|---|
| 963 | else |
|---|
| 964 | qiz(min_q-1)=qiz(min_q-1)+del_tv* & |
|---|
| 965 | fluxin/rho(min_q-1)/dzw(min_q-1) |
|---|
| 966 | endif |
|---|
| 967 | ! |
|---|
| 968 | else |
|---|
| 969 | notlast=.false. |
|---|
| 970 | endif |
|---|
| 971 | ! |
|---|
| 972 | ENDDO |
|---|
| 973 | do k=kts,kte-1 !sg beg |
|---|
| 974 | precrz(k)=rho(k)*vtrold(k)*qrz(k) |
|---|
| 975 | preciz(k)=rho(k)*vtiold(k)*qiz(k) |
|---|
| 976 | precsz(k)=rho(k)*vtsold(k)*qsz(k) |
|---|
| 977 | precgz(k)=rho(k)*vtgold(k)*qgz(k) |
|---|
| 978 | enddo !sg end |
|---|
| 979 | precrz(kte)=0. !wig - top level never set for vtXold vars |
|---|
| 980 | preciz(kte)=0. !wig |
|---|
| 981 | precsz(kte)=0. !wig |
|---|
| 982 | precgz(kte)=0. !wig |
|---|
| 983 | |
|---|
| 984 | |
|---|
| 985 | ! Microphysics processes |
|---|
| 986 | ! |
|---|
| 987 | DO 2000 k=kts,kte |
|---|
| 988 | ! |
|---|
| 989 | qvzodt(k)=amax1( 0.0,odtb*qvz(k) ) |
|---|
| 990 | qlzodt(k)=amax1( 0.0,odtb*qlz(k) ) |
|---|
| 991 | qizodt(k)=amax1( 0.0,odtb*qiz(k) ) |
|---|
| 992 | qszodt(k)=amax1( 0.0,odtb*qsz(k) ) |
|---|
| 993 | qrzodt(k)=amax1( 0.0,odtb*qrz(k) ) |
|---|
| 994 | qgzodt(k)=amax1( 0.0,odtb*qgz(k) ) |
|---|
| 995 | !*********************************************************************** |
|---|
| 996 | !***** diagnose mixing ratios (qrz,qsz), terminal ***** |
|---|
| 997 | !***** velocities (vtr,vts), and slope parameters in size ***** |
|---|
| 998 | !***** distribution(xlambdar,xlambdas) of rain and snow ***** |
|---|
| 999 | !***** follows Nagata and Ogura, 1991, MWR, 1309-1337. Eq (A7) ***** |
|---|
| 1000 | !*********************************************************************** |
|---|
| 1001 | ! |
|---|
| 1002 | !**** assuming no cloud water can exist in the top two levels due to |
|---|
| 1003 | !**** radiation consideration |
|---|
| 1004 | ! |
|---|
| 1005 | !! if |
|---|
| 1006 | !! unsaturated, |
|---|
| 1007 | !! no cloud water, rain, ice, snow and graupel |
|---|
| 1008 | !! then |
|---|
| 1009 | !! skip these processes and jump to line 2000 |
|---|
| 1010 | ! |
|---|
| 1011 | ! |
|---|
| 1012 | tmp=qiz(k)+qlz(k)+qsz(k)+qrz(k)+qgz(k)*gindex |
|---|
| 1013 | if( qvz(k)+qlz(k)+qiz(k) .lt. qsiz(k) & |
|---|
| 1014 | .and. tmp .eq. 0.0 ) go to 2000 |
|---|
| 1015 | |
|---|
| 1016 | !! calculate terminal velocity of rain |
|---|
| 1017 | ! |
|---|
| 1018 | if (qrz(k) .gt. 1.0e-8) then |
|---|
| 1019 | tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) |
|---|
| 1020 | xlambdar(k)=sqrt(tmp1) |
|---|
| 1021 | olambdar(k)=1.0/xlambdar(k) |
|---|
| 1022 | vtrold(k)=o6*consta*gambp4*sqrho(k)*olambdar(k)**constb |
|---|
| 1023 | else |
|---|
| 1024 | vtrold(k)=0. |
|---|
| 1025 | olambdar(k)=0. |
|---|
| 1026 | endif |
|---|
| 1027 | ! |
|---|
| 1028 | ! if (qrz(k) .gt. 1.0e-12) then |
|---|
| 1029 | if (qrz(k) .gt. 1.0e-8) then |
|---|
| 1030 | tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) |
|---|
| 1031 | xlambdar(k)=sqrt(tmp1) |
|---|
| 1032 | olambdar(k)=1.0/xlambdar(k) |
|---|
| 1033 | vtr(k)=o6*consta*gambp4*sqrho(k)*olambdar(k)**constb |
|---|
| 1034 | else |
|---|
| 1035 | vtr(k)=0. |
|---|
| 1036 | olambdar(k)=0. |
|---|
| 1037 | endif |
|---|
| 1038 | ! |
|---|
| 1039 | !! calculate terminal velocity of snow |
|---|
| 1040 | ! |
|---|
| 1041 | if (qsz(k) .gt. 1.0e-8) then |
|---|
| 1042 | tmp1=sqrt(pi*rhosnow*xnos*orho(k)/qsz(k)) |
|---|
| 1043 | xlambdas(k)=sqrt(tmp1) |
|---|
| 1044 | olambdas(k)=1.0/xlambdas(k) |
|---|
| 1045 | vtsold(k)=o6*constc*gamdp4*sqrho(k)*olambdas(k)**constd |
|---|
| 1046 | else |
|---|
| 1047 | vtsold(k)=0. |
|---|
| 1048 | olambdas(k)=0. |
|---|
| 1049 | endif |
|---|
| 1050 | ! |
|---|
| 1051 | ! if (qsz(k) .gt. 1.0e-12) then |
|---|
| 1052 | if (qsz(k) .gt. 1.0e-8) then |
|---|
| 1053 | tmp1=sqrt(pi*rhosnow*xnos*orho(k)/qsz(k)) |
|---|
| 1054 | xlambdas(k)=sqrt(tmp1) |
|---|
| 1055 | olambdas(k)=1.0/xlambdas(k) |
|---|
| 1056 | vts(k)=o6*constc*gamdp4*sqrho(k)*olambdas(k)**constd |
|---|
| 1057 | else |
|---|
| 1058 | vts(k)=0. |
|---|
| 1059 | olambdas(k)=0. |
|---|
| 1060 | endif |
|---|
| 1061 | ! |
|---|
| 1062 | !! calculate terminal velocity of graupel |
|---|
| 1063 | ! |
|---|
| 1064 | if (qgz(k) .gt. 1.0e-8) then |
|---|
| 1065 | tmp1=sqrt( pi*rhograul*xnog*orho(k)/qgz(k)) |
|---|
| 1066 | xlambdag(k)=sqrt(tmp1) |
|---|
| 1067 | olambdag(k)=1.0/xlambdag(k) |
|---|
| 1068 | term0=sqrt(4.*grav*rhograul*0.33334*orho(k)*ocdrag) |
|---|
| 1069 | vtgold(k)=o6*gam4pt5*term0*sqrt(olambdag(k)) |
|---|
| 1070 | else |
|---|
| 1071 | vtgold(k)=0. |
|---|
| 1072 | olambdag(k)=0. |
|---|
| 1073 | endif |
|---|
| 1074 | ! |
|---|
| 1075 | ! if (qgz(k) .gt. 1.0e-12) then |
|---|
| 1076 | if (qgz(k) .gt. 1.0e-8) then |
|---|
| 1077 | tmp1=sqrt( pi*rhograul*xnog*orho(k)/qgz(k)) |
|---|
| 1078 | xlambdag(k)=sqrt(tmp1) |
|---|
| 1079 | olambdag(k)=1.0/xlambdag(k) |
|---|
| 1080 | term0=sqrt(4.*grav*rhograul*0.33334*orho(k)*ocdrag) |
|---|
| 1081 | vtg(k)=o6*gam4pt5*term0*sqrt(olambdag(k)) |
|---|
| 1082 | else |
|---|
| 1083 | vtg(k)=0. |
|---|
| 1084 | olambdag(k)=0. |
|---|
| 1085 | endif |
|---|
| 1086 | ! |
|---|
| 1087 | !*********************************************************************** |
|---|
| 1088 | !***** compute viscosity,difusivity,thermal conductivity, and ****** |
|---|
| 1089 | !***** Schmidt number ****** |
|---|
| 1090 | !*********************************************************************** |
|---|
| 1091 | !c------------------------------------------------------------------ |
|---|
| 1092 | !c viscmu: dynamic viscosity of air kg/m/s |
|---|
| 1093 | !c visc: kinematic viscosity of air = viscmu/rho (m2/s) |
|---|
| 1094 | !c avisc=1.49628e-6 kg/m/s=1.49628e-5 g/cm/s |
|---|
| 1095 | !c viscmu=1.718e-5 kg/m/s in RH |
|---|
| 1096 | !c diffwv: Diffusivity of water vapor in air |
|---|
| 1097 | !c adiffwv = 8.7602e-5 (8.794e-5 in MM5) kgm/s3 |
|---|
| 1098 | !c = 8.7602 (8.794 in MM5) gcm/s3 |
|---|
| 1099 | !c diffwv(k)=2.26e-5 m2/s |
|---|
| 1100 | !c schmidt: Schmidt number=visc/diffwv |
|---|
| 1101 | !c xka: thermal conductivity of air J/m/s/K (Kgm/s3/K) |
|---|
| 1102 | !c xka(k)=2.43e-2 J/m/s/K in RH |
|---|
| 1103 | !c axka=1.4132e3 (1.414e3 in MM5) m2/s2/k = 1.4132e7 cm2/s2/k |
|---|
| 1104 | !c------------------------------------------------------------------ |
|---|
| 1105 | |
|---|
| 1106 | viscmu(k)=avisc*tem(k)**1.5/(tem(k)+120.0) |
|---|
| 1107 | visc(k)=viscmu(k)*orho(k) |
|---|
| 1108 | diffwv(k)=adiffwv*tem(k)**1.81*oprez(k) |
|---|
| 1109 | schmidt(k)=visc(k)/diffwv(k) |
|---|
| 1110 | xka(k)=axka*viscmu(k) |
|---|
| 1111 | |
|---|
| 1112 | if (tem(k) .lt. 273.15) then |
|---|
| 1113 | |
|---|
| 1114 | ! |
|---|
| 1115 | !*********************************************************************** |
|---|
| 1116 | !********* snow production processes for T < 0 C ********** |
|---|
| 1117 | !*********************************************************************** |
|---|
| 1118 | !c |
|---|
| 1119 | !c (1) ICE CRYSTAL AGGREGATION TO SNOW (Psaut): Lin (21) |
|---|
| 1120 | !c! psaut=alpha1*(qi-qi0) |
|---|
| 1121 | !c! alpha1=1.0e-3*exp(0.025*(T-T0)) |
|---|
| 1122 | !c |
|---|
| 1123 | ! alpha1=1.0e-3*exp( 0.025*temcc(k) ) |
|---|
| 1124 | |
|---|
| 1125 | alpha1=1.0e-3*exp( 0.025*temcc(k) ) |
|---|
| 1126 | ! |
|---|
| 1127 | if(temcc(k) .lt. -20.0) then |
|---|
| 1128 | tmp1=-7.6+4.0*exp( -0.2443e-3*(abs(temcc(k))-20)**2.455 ) |
|---|
| 1129 | qic=1.0e-3*exp(tmp1)*orho(k) |
|---|
| 1130 | else |
|---|
| 1131 | qic=qi0 |
|---|
| 1132 | end if |
|---|
| 1133 | !testing |
|---|
| 1134 | ! tmp1=amax1( 0.0,alpha1*(qiz(k)-qic) ) |
|---|
| 1135 | ! psaut(k)=amin1( tmp1,qizodt(k) ) |
|---|
| 1136 | |
|---|
| 1137 | tmp1=odtb*(qiz(k)-qic)*(1.0-exp(-alpha1*dtb)) |
|---|
| 1138 | psaut(k)=amax1( 0.0,tmp1 ) |
|---|
| 1139 | |
|---|
| 1140 | !c |
|---|
| 1141 | !c (2) BERGERON PROCESS TRANSFER OF CLOUD WATER TO SNOW (Psfw) |
|---|
| 1142 | !c this process only considered when -31 C < T < 0 C |
|---|
| 1143 | !c Lin (33) and Hsie (17) |
|---|
| 1144 | !c |
|---|
| 1145 | !c! |
|---|
| 1146 | !c! parama1 and parama2 functions must be user supplied |
|---|
| 1147 | !c! |
|---|
| 1148 | |
|---|
| 1149 | ! testing |
|---|
| 1150 | if( qlz(k) .gt. 1.0e-10 ) then |
|---|
| 1151 | temc1=amax1(-30.99,temcc(k)) |
|---|
| 1152 | ! print*,'temc1',temc1,qlz(k) |
|---|
| 1153 | a1=parama1( temc1 ) |
|---|
| 1154 | a2=parama2( temc1 ) |
|---|
| 1155 | tmp1=1.0-a2 |
|---|
| 1156 | !! change unit from cgs to mks |
|---|
| 1157 | a1=a1*0.001**tmp1 |
|---|
| 1158 | !c! dtberg is the time needed for a crystal to grow from 40 to 50 um |
|---|
| 1159 | !c ! odtberg=1.0/dtberg |
|---|
| 1160 | odtberg=(a1*tmp1)/(xmi50**tmp1-xmi40**tmp1) |
|---|
| 1161 | ! |
|---|
| 1162 | !c! compute terminal velocity of a 50 micron ice cystal |
|---|
| 1163 | ! |
|---|
| 1164 | vti50=constc*di50**constd*sqrho(k) |
|---|
| 1165 | ! |
|---|
| 1166 | eiw=1.0 |
|---|
| 1167 | save1=a1*xmi50**a2 |
|---|
| 1168 | save2=0.25*pi*eiw*rho(k)*di50*di50*vti50 |
|---|
| 1169 | ! |
|---|
| 1170 | tmp2=( save1 + save2*qlz(k) ) |
|---|
| 1171 | ! |
|---|
| 1172 | !! maximum number of 50 micron crystals limited by the amount |
|---|
| 1173 | !! of supercool water |
|---|
| 1174 | ! |
|---|
| 1175 | xni50mx=qlzodt(k)/tmp2 |
|---|
| 1176 | ! |
|---|
| 1177 | !! number of 50 micron crystals produced |
|---|
| 1178 | ! |
|---|
| 1179 | ! |
|---|
| 1180 | xni50=qiz(k)*( 1.0-exp(-dtb*odtberg) )/xmi50 |
|---|
| 1181 | xni50=amin1(xni50,xni50mx) |
|---|
| 1182 | ! |
|---|
| 1183 | tmp3=odtb*tmp2/save2*( 1.0-exp(-save2*xni50*dtb) ) |
|---|
| 1184 | psfw(k)=amin1( tmp3,qlzodt(k) ) |
|---|
| 1185 | !testing |
|---|
| 1186 | ! psfw(k)=0. |
|---|
| 1187 | |
|---|
| 1188 | !0915 if( temcc(k).gt.-30.99 ) then |
|---|
| 1189 | !0915 a1=parama1( temcc(k) ) |
|---|
| 1190 | !0915 a2=parama2( temcc(k) ) |
|---|
| 1191 | !0915 tmp1=1.0-a2 |
|---|
| 1192 | !! change unit from cgs to mks |
|---|
| 1193 | !0915 a1=a1*0.001**tmp1 |
|---|
| 1194 | |
|---|
| 1195 | !c! dtberg is the time needed for a crystal to grow from 40 to 50 um |
|---|
| 1196 | !c! odtberg=1.0/dtberg |
|---|
| 1197 | !0915 odtberg=(a1*tmp1)/(xmi50**tmp1-xmi40**tmp1) |
|---|
| 1198 | |
|---|
| 1199 | !c! number of 50 micron crystals produced |
|---|
| 1200 | !0915 xni50=qiz(k)*dtb*odtberg/xmi50 |
|---|
| 1201 | |
|---|
| 1202 | !c! need to calculate the terminal velocity of a 50 micron |
|---|
| 1203 | !c! ice cystal |
|---|
| 1204 | !0915 vti50=constc*di50**constd*sqrho(k) |
|---|
| 1205 | !0915 eiw=1.0 |
|---|
| 1206 | !0915 tmp2=xni50*( a1*xmi50**a2 + & |
|---|
| 1207 | !0915 0.25*qlz(k)*pi*eiw*rho(k)*di50*di50*vti50 ) |
|---|
| 1208 | !0915 psfw(k)=amin1( tmp2,qlzodt(k) ) |
|---|
| 1209 | !0915 psfw(k)=0. |
|---|
| 1210 | !c |
|---|
| 1211 | !c (3) REDUCTION OF CLOUD ICE BY BERGERON PROCESS (Psfi): Lin (34) |
|---|
| 1212 | !c this process only considered when -31 C < T < 0 C |
|---|
| 1213 | !c |
|---|
| 1214 | tmp1=xni50*xmi50-psfw(k) |
|---|
| 1215 | psfi(k)=amin1(tmp1,qizodt(k)) |
|---|
| 1216 | ! testing |
|---|
| 1217 | ! psfi(k)=0. |
|---|
| 1218 | end if |
|---|
| 1219 | ! |
|---|
| 1220 | |
|---|
| 1221 | !0915 tmp1=qiz(k)*odtberg |
|---|
| 1222 | !0915 psfi(k)=amin1(tmp1,qizodt(k)) |
|---|
| 1223 | ! testing |
|---|
| 1224 | !0915 psfi(k)=0. |
|---|
| 1225 | !0915 end if |
|---|
| 1226 | ! |
|---|
| 1227 | if(qrz(k) .le. 0.0) go to 1000 |
|---|
| 1228 | ! |
|---|
| 1229 | ! Processes (4) and (5) only need when qrz > 0.0 |
|---|
| 1230 | ! |
|---|
| 1231 | !c |
|---|
| 1232 | !c (4) CLOUD ICE ACCRETION BY RAIN (Praci): Lin (25) |
|---|
| 1233 | !c may produce snow or graupel |
|---|
| 1234 | !c |
|---|
| 1235 | eri=1.0 |
|---|
| 1236 | !0915 tmp1=qiz(k)*pio4*eri*xnor*consta*sqrho(k) |
|---|
| 1237 | !0915 tmp2=tmp1*gambp3*olambdar(k)**bp3 |
|---|
| 1238 | !0915 praci(k)=amin1( tmp2,qizodt(k) ) |
|---|
| 1239 | |
|---|
| 1240 | save1=pio4*eri*xnor*consta*sqrho(k) |
|---|
| 1241 | tmp1=save1*gambp3*olambdar(k)**bp3 |
|---|
| 1242 | praci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 1243 | |
|---|
| 1244 | !c |
|---|
| 1245 | !c (5) RAIN ACCRETION BY CLOUD ICE (Piacr): Lin (26) |
|---|
| 1246 | !c |
|---|
| 1247 | !0915 tmp2=tmp1*rho(k)*pio6*rhowater*gambp6*oxmi* & |
|---|
| 1248 | !0915 olambdar(k)**bp6 |
|---|
| 1249 | !0915 piacr(k)=amin1( tmp2,qrzodt(k) ) |
|---|
| 1250 | |
|---|
| 1251 | tmp2=qiz(k)*save1*rho(k)*pio6*rhowater*gambp6*oxmi* & |
|---|
| 1252 | olambdar(k)**bp6 |
|---|
| 1253 | piacr(k)=amin1( tmp2,qrzodt(k) ) |
|---|
| 1254 | |
|---|
| 1255 | ! |
|---|
| 1256 | 1000 continue |
|---|
| 1257 | ! |
|---|
| 1258 | if(qsz(k) .le. 0.0) go to 1200 |
|---|
| 1259 | ! |
|---|
| 1260 | ! Compute the following processes only when qsz > 0.0 |
|---|
| 1261 | ! |
|---|
| 1262 | !c |
|---|
| 1263 | !c (6) ICE CRYSTAL ACCRETION BY SNOW (Psaci): Lin (22) |
|---|
| 1264 | !c |
|---|
| 1265 | esi=exp( 0.025*temcc(k) ) |
|---|
| 1266 | save1=pio4*xnos*constc*gamdp3*sqrho(k)* & |
|---|
| 1267 | olambdas(k)**dp3 |
|---|
| 1268 | tmp1=esi*save1 |
|---|
| 1269 | psaci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 1270 | |
|---|
| 1271 | !0915 tmp1=pio4*xnos*constc*gamdp3*sqrho(k)* & |
|---|
| 1272 | !0915 olambdas(k)**dp3 |
|---|
| 1273 | !0915 tmp2=qiz(k)*esi*tmp1 |
|---|
| 1274 | !0915 psaci(k)=amin1( tmp2,qizodt(k) ) |
|---|
| 1275 | !c |
|---|
| 1276 | !c (7) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) |
|---|
| 1277 | !c |
|---|
| 1278 | esw=1.0 |
|---|
| 1279 | tmp1=esw*save1 |
|---|
| 1280 | psacw(k)=qlzodt(K)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 1281 | |
|---|
| 1282 | !0915 tmp2=qlz(k)*esw*tmp1 |
|---|
| 1283 | !0915 psacw(k)=amin1( tmp2,qlzodt(k) ) |
|---|
| 1284 | !c |
|---|
| 1285 | !c (8) DEPOSITION/SUBLIMATION OF SNOW (Psdep/Pssub): Lin (31) |
|---|
| 1286 | !c includes consideration of ventilation effect |
|---|
| 1287 | !c |
|---|
| 1288 | !c abi=2*pi*(Si-1)/rho/(A"+B") |
|---|
| 1289 | !c |
|---|
| 1290 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 1291 | tmpb=xls*xls*rho(k)*qsiz(k)*diffwv(k) |
|---|
| 1292 | tmpc=tmpa*qsiz(k)*diffwv(k) |
|---|
| 1293 | abi=2.0*pi*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) |
|---|
| 1294 | ! |
|---|
| 1295 | !c vf1s,vf2s=ventilation factors for snow |
|---|
| 1296 | !c vf1s=0.78,vf2s=0.31 in LIN |
|---|
| 1297 | ! |
|---|
| 1298 | tmp1=constc*sqrho(k)*olambdas(k)**dp5/visc(k) |
|---|
| 1299 | tmp2=abi*xnos*( vf1s*olambdas(k)*olambdas(k)+ & |
|---|
| 1300 | vf2s*schmidt(k)**0.33334*gamdp5o2*sqrt(tmp1) ) |
|---|
| 1301 | tmp3=odtb*( qvz(k)-qsiz(k) ) |
|---|
| 1302 | ! |
|---|
| 1303 | !bloss: BEGIN |
|---|
| 1304 | !the old implementation would give the wrong results if olambdas(k) ==0 |
|---|
| 1305 | !which can lead to positive pssub, i.e. tmp2=0 but tmp3> 0 |
|---|
| 1306 | ! if( tmp2 .le. 0.0) then |
|---|
| 1307 | if( tmp3 .le. 0.0) then |
|---|
| 1308 | tmp2=amax1( tmp2,tmp3) |
|---|
| 1309 | pssub(k)=amin1(0.,amax1( tmp2,-qszodt(k) )) |
|---|
| 1310 | !bloss: END |
|---|
| 1311 | psdep(k)=0.0 |
|---|
| 1312 | else |
|---|
| 1313 | psdep(k)=amin1( tmp2,tmp3 ) |
|---|
| 1314 | pssub(k)=0.0 |
|---|
| 1315 | end if |
|---|
| 1316 | |
|---|
| 1317 | !0915 psdep(k)=amax1(0.0,tmp2) |
|---|
| 1318 | !0915 pssub(k)=amin1(0.0,tmp2) |
|---|
| 1319 | !0915 pssub(k)=amax1( pssub(k),-qszodt(k) ) |
|---|
| 1320 | ! |
|---|
| 1321 | if(qrz(k) .le. 0.0) go to 1200 |
|---|
| 1322 | ! |
|---|
| 1323 | ! Compute processes (9) and (10) only when qsz > 0.0 and qrz > 0.0 |
|---|
| 1324 | ! |
|---|
| 1325 | !c |
|---|
| 1326 | !c (9) ACCRETION OF SNOW BY RAIN (Pracs): Lin (27) |
|---|
| 1327 | !c |
|---|
| 1328 | esr=1.0 |
|---|
| 1329 | tmpa=olambdar(k)*olambdar(k) |
|---|
| 1330 | tmpb=olambdas(k)*olambdas(k) |
|---|
| 1331 | tmpc=olambdar(k)*olambdas(k) |
|---|
| 1332 | tmp1=pi*pi*esr*xnor*xnos*abs( vtr(k)-vts(k) )*orho(k) |
|---|
| 1333 | tmp2=tmpb*tmpb*olambdar(k)*(5.0*tmpb+2.0*tmpc+0.5*tmpa) |
|---|
| 1334 | tmp3=tmp1*rhosnow*tmp2 |
|---|
| 1335 | pracs(k)=amin1( tmp3,qszodt(k) ) |
|---|
| 1336 | !c |
|---|
| 1337 | !c (10) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) |
|---|
| 1338 | !c |
|---|
| 1339 | tmp3=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 1340 | tmp4=tmp1*rhowater*tmp3 |
|---|
| 1341 | psacr(k)=amin1( tmp4,qrzodt(k) ) |
|---|
| 1342 | ! |
|---|
| 1343 | 1200 continue |
|---|
| 1344 | ! |
|---|
| 1345 | else |
|---|
| 1346 | ! |
|---|
| 1347 | !*********************************************************************** |
|---|
| 1348 | !********* snow production processes for T > 0 C ********** |
|---|
| 1349 | !*********************************************************************** |
|---|
| 1350 | ! |
|---|
| 1351 | if (qsz(k) .le. 0.0) go to 1400 |
|---|
| 1352 | !c |
|---|
| 1353 | !c (1) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) |
|---|
| 1354 | !c |
|---|
| 1355 | esw=1.0 |
|---|
| 1356 | |
|---|
| 1357 | tmp1=esw*pio4*xnos*constc*gamdp3*sqrho(k)* & |
|---|
| 1358 | olambdas(k)**dp3 |
|---|
| 1359 | psacw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 1360 | |
|---|
| 1361 | !0915 tmp1=pio4*xnos*constc*gamdp3*sqrho(k)* & |
|---|
| 1362 | !0915 olambdas(k)**dp3 |
|---|
| 1363 | !0915 tmp2=qlz(k)*esw*tmp1 |
|---|
| 1364 | !0915 psacw(k)=amin1( tmp2,qlzodt(k) ) |
|---|
| 1365 | !c |
|---|
| 1366 | !c (2) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) |
|---|
| 1367 | !c |
|---|
| 1368 | esr=1.0 |
|---|
| 1369 | tmpa=olambdar(k)*olambdar(k) |
|---|
| 1370 | tmpb=olambdas(k)*olambdas(k) |
|---|
| 1371 | tmpc=olambdar(k)*olambdas(k) |
|---|
| 1372 | tmp1=pi*pi*esr*xnor*xnos*abs( vtr(k)-vts(k) )*orho(k) |
|---|
| 1373 | tmp2=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 1374 | tmp3=tmp1*rhowater*tmp2 |
|---|
| 1375 | psacr(k)=amin1( tmp3,qrzodt(k) ) |
|---|
| 1376 | !c |
|---|
| 1377 | !c (3) MELTING OF SNOW (Psmlt): Lin (32) |
|---|
| 1378 | !c Psmlt is negative value |
|---|
| 1379 | ! |
|---|
| 1380 | delrs=rs0(k)-qvz(k) |
|---|
| 1381 | term1=2.0*pi*orho(k)*( xlv*diffwv(k)*rho(k)*delrs- & |
|---|
| 1382 | xka(k)*temcc(k) ) |
|---|
| 1383 | tmp1=constc*sqrho(k)*olambdas(k)**dp5/visc(k) |
|---|
| 1384 | tmp2=xnos*( vf1s*olambdas(k)*olambdas(k)+ & |
|---|
| 1385 | vf2s*schmidt(k)**0.33334*gamdp5o2*sqrt(tmp1) ) |
|---|
| 1386 | tmp3=term1*oxlf*tmp2-cwoxlf*temcc(k)*( psacw(k)+psacr(k) ) |
|---|
| 1387 | tmp4=amin1(0.0,tmp3) |
|---|
| 1388 | psmlt(k)=amax1( tmp4,-qszodt(k) ) |
|---|
| 1389 | !c |
|---|
| 1390 | !c (4) EVAPORATION OF MELTING SNOW (Psmltevp): HR (A27) |
|---|
| 1391 | !c but use Lin et al. coefficience |
|---|
| 1392 | !c Psmltevp is a negative value |
|---|
| 1393 | !c |
|---|
| 1394 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 1395 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
|---|
| 1396 | tmpc=tmpa*qswz(k)*diffwv(k) |
|---|
| 1397 | tmpd=amin1( 0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb ) |
|---|
| 1398 | |
|---|
| 1399 | ! abr=2.0*pi*(qvoqswz(k)-1.0)*tmpc/(tmpa+tmpb) |
|---|
| 1400 | |
|---|
| 1401 | abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
|---|
| 1402 | ! |
|---|
| 1403 | !**** allow evaporation to occur when RH less than 90% |
|---|
| 1404 | !**** here not using 100% because the evaporation cooling |
|---|
| 1405 | !**** of temperature is not taking into account yet; hence, |
|---|
| 1406 | !**** the qsw value is a little bit larger. This will avoid |
|---|
| 1407 | !**** evaporation can generate cloud. |
|---|
| 1408 | ! |
|---|
| 1409 | !c vf1s,vf2s=ventilation factors for snow |
|---|
| 1410 | !c vf1s=0.78,vf2s=0.31 in LIN |
|---|
| 1411 | ! |
|---|
| 1412 | tmp1=constc*sqrho(k)*olambdas(k)**dp5/visc(k) |
|---|
| 1413 | tmp2=abr*xnos*( vf1s*olambdas(k)*olambdas(k)+ & |
|---|
| 1414 | vf2s*schmidt(k)**0.33334*gamdp5o2*sqrt(tmp1) ) |
|---|
| 1415 | tmp3=amin1(0.0,tmp2) |
|---|
| 1416 | tmp3=amax1( tmp3,tmpd ) |
|---|
| 1417 | psmltevp(k)=amax1( tmp3,-qszodt(k) ) |
|---|
| 1418 | 1400 continue |
|---|
| 1419 | ! |
|---|
| 1420 | end if |
|---|
| 1421 | |
|---|
| 1422 | !*********************************************************************** |
|---|
| 1423 | !********* rain production processes ********** |
|---|
| 1424 | !*********************************************************************** |
|---|
| 1425 | ! |
|---|
| 1426 | !c |
|---|
| 1427 | !c (1) AUTOCONVERSION OF RAIN (Praut): RH |
|---|
| 1428 | !sg: begin |
|---|
| 1429 | if(flag_qndrop)then |
|---|
| 1430 | if( qndropz(k) >= 1. ) then |
|---|
| 1431 | ! Liu et al. autoconversion scheme |
|---|
| 1432 | rhocgs=rho(k)*1.e-3 |
|---|
| 1433 | liqconc=rhocgs*qlz(k) ! (kg/kg) to (g/cm3) |
|---|
| 1434 | capn=1.0e-3*rhocgs*qndropz(k) ! (#/kg) to (#/cm3) |
|---|
| 1435 | ! rate function |
|---|
| 1436 | if(liqconc.gt.1.e-10)then |
|---|
| 1437 | p0=(kappa*beta/capn)*(liqconc*liqconc*liqconc) |
|---|
| 1438 | xc=9.7d-17*capn*sqrt(capn)/(liqconc*liqconc) |
|---|
| 1439 | ! Calculate autoconversion rate (g/g/s) |
|---|
| 1440 | if(xc.lt.10.)then |
|---|
| 1441 | praut(k)=(p0/rhocgs) * ( 0.5d0*(xc*xc+2*xc+2.0d0)* & |
|---|
| 1442 | (1.0d0+xc)*exp(-2.0d0*xc) ) |
|---|
| 1443 | endif |
|---|
| 1444 | endif |
|---|
| 1445 | endif |
|---|
| 1446 | else |
|---|
| 1447 | !sg: end |
|---|
| 1448 | !c araut=afa*rho |
|---|
| 1449 | !c afa=0.001 Rate coefficient for autoconvergence |
|---|
| 1450 | !c |
|---|
| 1451 | !c araut=1.0e-3 |
|---|
| 1452 | !c |
|---|
| 1453 | araut=0.001 |
|---|
| 1454 | !testing |
|---|
| 1455 | ! tmp1=amax1( 0.0,araut*(qlz(k)-ql0) ) |
|---|
| 1456 | ! praut(k)=amin1( tmp1,qlzodt(k) ) |
|---|
| 1457 | tmp1=odtb*(qlz(k)-ql0)*( 1.0-exp(-araut*dtb) ) |
|---|
| 1458 | praut(k)=amax1( 0.0,tmp1 ) |
|---|
| 1459 | endif !sg |
|---|
| 1460 | |
|---|
| 1461 | !c |
|---|
| 1462 | !c (2) ACCRETION OF CLOUD WATER BY RAIN (Pracw): Lin (51) |
|---|
| 1463 | !c |
|---|
| 1464 | erw=1.0 |
|---|
| 1465 | ! tmp1=qlz(k)*pio4*erw*xnor*consta*sqrho(k) |
|---|
| 1466 | ! tmp2=tmp1*gambp3*olambdar(k)**bp3 |
|---|
| 1467 | ! pracw(k)=amin1( tmp2,qlzodt(k) ) |
|---|
| 1468 | |
|---|
| 1469 | tmp1=pio4*erw*xnor*consta*sqrho(k)* & |
|---|
| 1470 | gambp3*olambdar(k)**bp3 |
|---|
| 1471 | pracw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) |
|---|
| 1472 | |
|---|
| 1473 | !c |
|---|
| 1474 | !c (3) EVAPORATION OF RAIN (Prevp): Lin (52) |
|---|
| 1475 | !c Prevp is negative value |
|---|
| 1476 | !c |
|---|
| 1477 | !c Sw=qvoqsw : saturation ratio |
|---|
| 1478 | !c |
|---|
| 1479 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 1480 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
|---|
| 1481 | tmpc=tmpa*qswz(k)*diffwv(k) |
|---|
| 1482 | !bloss: BEGIN |
|---|
| 1483 | ! tmpd=amin1(0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb) |
|---|
| 1484 | |
|---|
| 1485 | ! set max allowed evaporation to 90% of the amount that |
|---|
| 1486 | ! would induce saturation wrt liquid in a single step. |
|---|
| 1487 | tmpd = qswz(k)*xlv/(rvapor*tem(k)**2) ! d(qsat_liq)/dT |
|---|
| 1488 | tmpd = min( 0., 0.9*odtb*(qvz(k) + qlz(k) - qswz(k)) & |
|---|
| 1489 | / (1. + xlvocp * tmpd) ) |
|---|
| 1490 | |
|---|
| 1491 | abr=2.0*pi*(qvoqswz(k)-1.0)*tmpc/(tmpa+tmpb) |
|---|
| 1492 | |
|---|
| 1493 | ! abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
|---|
| 1494 | !bloss: END |
|---|
| 1495 | ! |
|---|
| 1496 | !c vf1r,vf2r=ventilation factors for rain |
|---|
| 1497 | !c vf1r=0.78,vf2r=0.31 in RH, LIN and MM5 |
|---|
| 1498 | ! |
|---|
| 1499 | vf1r=0.78 |
|---|
| 1500 | vf2r=0.31 |
|---|
| 1501 | tmp1=consta*sqrho(k)*olambdar(k)**bp5/visc(k) |
|---|
| 1502 | tmp2=abr*xnor*( vf1r*olambdar(k)*olambdar(k)+ & |
|---|
| 1503 | vf2r*schmidt(k)**0.33334*gambp5o2*sqrt(tmp1) ) |
|---|
| 1504 | tmp3=amin1( 0.0,tmp2 ) |
|---|
| 1505 | tmp3=amax1( tmp3,tmpd ) |
|---|
| 1506 | prevp(k)=amax1( tmp3,-qrzodt(k) ) |
|---|
| 1507 | |
|---|
| 1508 | ! |
|---|
| 1509 | ! if(iout .gt. 0) write(20,*)'tmp1,tmp2,tmp3=',tmp1,tmp2,tmp3 |
|---|
| 1510 | ! if(iout .gt. 0) write(20,*)'qlz,qiz,qrz=',qlz(k),qiz(k),qrz(k) |
|---|
| 1511 | ! if(iout .gt. 0) write(20,*)'tem,qsz,qvz=',tem(k),qsz(k),qvz(k) |
|---|
| 1512 | |
|---|
| 1513 | |
|---|
| 1514 | |
|---|
| 1515 | ! if (gindex .eq. 0.) goto 900 |
|---|
| 1516 | ! |
|---|
| 1517 | if (tem(k) .lt. 273.15) then |
|---|
| 1518 | ! |
|---|
| 1519 | ! |
|---|
| 1520 | !-- graupel |
|---|
| 1521 | !*********************************************************************** |
|---|
| 1522 | !********* graupel production processes for T < 0 C ********** |
|---|
| 1523 | !*********************************************************************** |
|---|
| 1524 | !c |
|---|
| 1525 | !c (1) AUTOCONVERSION OF SNOW TO FORM GRAUPEL (Pgaut): Lin (37) |
|---|
| 1526 | !c pgaut=alpha2*(qsz-qs0) |
|---|
| 1527 | !c qs0=6.0E-4 |
|---|
| 1528 | !c alpha2=1.0e-3*exp(0.09*temcc(k)) Lin (38) |
|---|
| 1529 | ! |
|---|
| 1530 | alpha2=1.0e-3*exp(0.09*temcc(k)) |
|---|
| 1531 | ! |
|---|
| 1532 | |
|---|
| 1533 | ! testing |
|---|
| 1534 | ! tmp1=alpha2*(qsz(k)-qs0) |
|---|
| 1535 | ! tmp1=amax1(0.0,tmp1) |
|---|
| 1536 | ! pgaut(k)=amin1( tmp1,qszodt(k) ) |
|---|
| 1537 | |
|---|
| 1538 | tmp1=odtb*(qsz(k)-qs0)*(1.0-exp(-alpha2*dtb)) |
|---|
| 1539 | pgaut(k)=amax1( 0.0,tmp1 ) |
|---|
| 1540 | |
|---|
| 1541 | !c |
|---|
| 1542 | !c (2) FREEZING OF RAIN TO FORM GRAUPEL (Pgfr): Lin (45) |
|---|
| 1543 | !c positive value |
|---|
| 1544 | !c Constant in Bigg freezing Aplume=Ap=0.66 /k |
|---|
| 1545 | !c Constant in raindrop freezing equ. Bplume=Bp=100./m/m/m/s |
|---|
| 1546 | ! |
|---|
| 1547 | |
|---|
| 1548 | if (qrz(k) .gt. 1.e-8 ) then |
|---|
| 1549 | Bp=100. |
|---|
| 1550 | Ap=0.66 |
|---|
| 1551 | tmp1=olambdar(k)*olambdar(k)*olambdar(k) |
|---|
| 1552 | tmp2=20.*pi*pi*Bp*xnor*rhowater*orho(k)* & |
|---|
| 1553 | (exp(-Ap*temcc(k))-1.0)*tmp1*tmp1*olambdar(k) |
|---|
| 1554 | Pgfr(k)=amin1( tmp2,qrzodt(k) ) |
|---|
| 1555 | else |
|---|
| 1556 | Pgfr(k)=0 |
|---|
| 1557 | endif |
|---|
| 1558 | |
|---|
| 1559 | !c |
|---|
| 1560 | !c if (qgz(k) = 0.0) skip the other step below about graupel |
|---|
| 1561 | !c |
|---|
| 1562 | if (qgz(k) .eq. 0.0) goto 4000 |
|---|
| 1563 | |
|---|
| 1564 | !c |
|---|
| 1565 | !c Comparing Pgwet(wet process) and Pdry(dry process), |
|---|
| 1566 | !c we will pick up the small one. |
|---|
| 1567 | !c |
|---|
| 1568 | |
|---|
| 1569 | !c --------------- |
|---|
| 1570 | !c | dry processes | |
|---|
| 1571 | !c --------------- |
|---|
| 1572 | !c |
|---|
| 1573 | !c (3) ACCRETION OF CLOUD WATER BY GRAUPEL (Pgacw): Lin (40) |
|---|
| 1574 | !c egw=1.0 |
|---|
| 1575 | !c Cdrag=0.6 drag coefficients for hairstone |
|---|
| 1576 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
|---|
| 1577 | !c |
|---|
| 1578 | egw=1.0 |
|---|
| 1579 | constg=sqrt(4.*grav*rhograul*0.33334*orho(k)*oCdrag) |
|---|
| 1580 | tmp1=pio4*xnog*gam3pt5*constg*olambdag(k)**3.5 |
|---|
| 1581 | tmp2=qlz(k)*egw*tmp1 |
|---|
| 1582 | Pgacw(k)=amin1( tmp2,qlzodt(k) ) |
|---|
| 1583 | !c |
|---|
| 1584 | !c (4) ACCRETION OF ICE CRYSTAL BY GRAUPEL (Pgaci): Lin (41) |
|---|
| 1585 | !c egi=1. for wet growth |
|---|
| 1586 | !c egi=0.1 for dry growth |
|---|
| 1587 | !c |
|---|
| 1588 | egi=0.1 |
|---|
| 1589 | tmp2=qiz(k)*egi*tmp1 |
|---|
| 1590 | pgaci(k)=amin1( tmp2,qizodt(k) ) |
|---|
| 1591 | |
|---|
| 1592 | |
|---|
| 1593 | !c |
|---|
| 1594 | !c (5) ACCRETION OF SNOW BY GRAUPEL (Pgacs) : Lin (29) |
|---|
| 1595 | !c Compute processes (6) only when qsz > 0.0 and qgz > 0.0 |
|---|
| 1596 | !c |
|---|
| 1597 | egs=exp(0.09*temcc(k)) |
|---|
| 1598 | tmpa=olambdas(k)*olambdas(k) |
|---|
| 1599 | tmpb=olambdag(k)*olambdag(k) |
|---|
| 1600 | tmpc=olambdas(k)*olambdag(k) |
|---|
| 1601 | tmp1=pi*pi*xnos*xnog*abs( vts(k)-vtg(k) )*orho(k) |
|---|
| 1602 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 1603 | tmp3=tmp1*egs*rhosnow*tmp2 |
|---|
| 1604 | Pgacs(k)=amin1( tmp3,qszodt(k) ) |
|---|
| 1605 | |
|---|
| 1606 | |
|---|
| 1607 | !c |
|---|
| 1608 | !c (6) ACCRETION OF RAIN BY GRAUPEL (Pgacr): Lin (42) |
|---|
| 1609 | !c Compute processes (6) only when qrz > 0.0 and qgz > 0.0 |
|---|
| 1610 | !c egr=1. |
|---|
| 1611 | !c |
|---|
| 1612 | egr=1. |
|---|
| 1613 | tmpa=olambdar(k)*olambdar(k) |
|---|
| 1614 | tmpb=olambdag(k)*olambdag(k) |
|---|
| 1615 | tmpc=olambdar(k)*olambdag(k) |
|---|
| 1616 | tmp1=pi*pi*xnor*xnog*abs( vtr(k)-vtg(k) )*orho(k) |
|---|
| 1617 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 1618 | tmp3=tmp1*egr*rhowater*tmp2 |
|---|
| 1619 | pgacr(k)=amin1( tmp3,qrzodt(k) ) |
|---|
| 1620 | |
|---|
| 1621 | !c |
|---|
| 1622 | !c (7) Calculate total dry process effect Pdry(k) |
|---|
| 1623 | !c |
|---|
| 1624 | Pdry(k)=Pgacw(k)+pgaci(k)+Pgacs(k)+pgacr(k) |
|---|
| 1625 | |
|---|
| 1626 | !c --------------- |
|---|
| 1627 | !c | wet processes | |
|---|
| 1628 | !c --------------- |
|---|
| 1629 | !c |
|---|
| 1630 | !c (3) ACCRETION OF ICE CRYSTAL BY GRAUPEL (Pgacip): Lin (41) |
|---|
| 1631 | !c egi=1. for wet growth |
|---|
| 1632 | !c egi=0.1 for dry growth |
|---|
| 1633 | !c |
|---|
| 1634 | tmp2=10.*pgaci(k) |
|---|
| 1635 | pgacip(k)=amin1( tmp2,qizodt(k) ) |
|---|
| 1636 | |
|---|
| 1637 | !c |
|---|
| 1638 | !c (4) ACCRETION OF SNOW BY GRAUPEL ((Pgacsp) : Lin (29) |
|---|
| 1639 | !c Compute processes (6) only when qsz > 0.0 and qgz > 0.0 |
|---|
| 1640 | !c egs=exp(0.09*(tem(k)-273.15)) when T < 273.15 k |
|---|
| 1641 | !c |
|---|
| 1642 | tmp3=Pgacs(k)*1.0/egs |
|---|
| 1643 | Pgacsp(k)=amin1( tmp3,qszodt(k) ) |
|---|
| 1644 | |
|---|
| 1645 | !c |
|---|
| 1646 | !c (5) WET GROWTH OF GRAUPEL (Pgwet) : Lin (43) |
|---|
| 1647 | !c may involve Pgacs or Pgaci and |
|---|
| 1648 | !c must include PPgacw or Pgacr, or both. |
|---|
| 1649 | !c ( The amount of Pgacw which is not able |
|---|
| 1650 | !c to freeze is shed to rain. ) |
|---|
| 1651 | IF(temcc(k).gt.-40.)THEN |
|---|
| 1652 | |
|---|
| 1653 | term0=constg*olambdag(k)**5.5/visc(k) |
|---|
| 1654 | |
|---|
| 1655 | !c |
|---|
| 1656 | !c vf1s,vf2s=ventilation factors for graupel |
|---|
| 1657 | !c vf1s=0.78,vf2s=0.31 in LIN |
|---|
| 1658 | !c Cdrag=0.6 drag coefficient for hairstone |
|---|
| 1659 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
|---|
| 1660 | !c vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
|---|
| 1661 | |
|---|
| 1662 | delrs=rs0(k)-qvz(k) |
|---|
| 1663 | tmp0=1./(xlf+cw*temcc(k)) |
|---|
| 1664 | tmp1=2.*pi*xnog*(rho(k)*xlv*diffwv(k)*delrs-xka(k)* & |
|---|
| 1665 | temcc(k))*orho(k)*tmp0 |
|---|
| 1666 | constg2=vf1s*olambdag(k)*olambdag(k)+ & |
|---|
| 1667 | vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
|---|
| 1668 | tmp3=tmp1*constg2+(Pgacip(k)+Pgacsp(k))* & |
|---|
| 1669 | (1-Ci*temcc(k)*tmp0) |
|---|
| 1670 | tmp3=amax1(0.0,tmp3) |
|---|
| 1671 | Pgwet(k)=amin1(tmp3,qlzodt(k)+qszodt(k)+qizodt(k) ) !bloss |
|---|
| 1672 | |
|---|
| 1673 | !c |
|---|
| 1674 | !c Comparing Pgwet(wet process) and Pdry(dry process), |
|---|
| 1675 | !c we will apply the small one. |
|---|
| 1676 | !c if dry processes then delta4=1.0 |
|---|
| 1677 | !c if wet processes then delta4=0.0 |
|---|
| 1678 | ! |
|---|
| 1679 | if ( Pdry(k) .lt. Pgwet(k) ) then |
|---|
| 1680 | delta4=1.0 |
|---|
| 1681 | else |
|---|
| 1682 | delta4=0.0 |
|---|
| 1683 | endif |
|---|
| 1684 | ELSE |
|---|
| 1685 | delta4=1.0 |
|---|
| 1686 | ENDIF |
|---|
| 1687 | |
|---|
| 1688 | !c |
|---|
| 1689 | !c |
|---|
| 1690 | !c (6) Pgacrp(k)=Pgwet(k)-Pgacw(k)-Pgacip(k)-Pgacsp(k) |
|---|
| 1691 | !c if Pgacrp(k) > 0. then some of the rain is frozen to hail |
|---|
| 1692 | !c if Pgacrp(k) < 0. then some of the cloud water collected |
|---|
| 1693 | !c by the hail is unable to freeze and is |
|---|
| 1694 | !c shed as rain. |
|---|
| 1695 | !c |
|---|
| 1696 | Pgacrp(k)=Pgwet(k)-Pgacw(k)-Pgacip(k)-Pgacsp(k) |
|---|
| 1697 | |
|---|
| 1698 | !c |
|---|
| 1699 | !c (8) DEPOSITION/SUBLIMATION OF GRAUPEL (Pgdep/Pgsub): Lin (46) |
|---|
| 1700 | !c includes ventilation effect |
|---|
| 1701 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
|---|
| 1702 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
|---|
| 1703 | !c vf2s*schmidt(k)**0.33334*gam2pt75*constg |
|---|
| 1704 | !c |
|---|
| 1705 | !c abg=2*pi*(Si-1)/rho/(A"+B") |
|---|
| 1706 | !c |
|---|
| 1707 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 1708 | tmpb=xls*xls*rho(k)*qsiz(k)*diffwv(k) |
|---|
| 1709 | tmpc=tmpa*qsiz(k)*diffwv(k) |
|---|
| 1710 | abg=2.0*pi*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) |
|---|
| 1711 | !c |
|---|
| 1712 | !c vf1s,vf2s=ventilation factors for graupel |
|---|
| 1713 | !c vf1s=0.78,vf2s=0.31 in LIN |
|---|
| 1714 | !c Cdrag=0.6 drag coefficient for hairstone |
|---|
| 1715 | !c |
|---|
| 1716 | term0=constg*olambdag(k)**5.5/visc(k) |
|---|
| 1717 | constg2=vf1s*olambdag(k)*olambdag(k)+ & |
|---|
| 1718 | vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
|---|
| 1719 | tmp2=abg*xnog*constg2 |
|---|
| 1720 | pgdep(k)=amax1(0.0,tmp2) |
|---|
| 1721 | pgsub(k)=amin1(0.0,tmp2) |
|---|
| 1722 | pgsub(k)=amax1( pgsub(k),-qgzodt(k) ) |
|---|
| 1723 | |
|---|
| 1724 | 4000 continue |
|---|
| 1725 | else |
|---|
| 1726 | ! |
|---|
| 1727 | !*********************************************************************** |
|---|
| 1728 | !********* graupel production processes for T > 0 C ********** |
|---|
| 1729 | !*********************************************************************** |
|---|
| 1730 | ! |
|---|
| 1731 | !c |
|---|
| 1732 | !c (1) ACCRETION OF CLOUD WATER BY GRAUPEL (Pgacw): Lin (40) |
|---|
| 1733 | !c egw=1.0 |
|---|
| 1734 | !c Cdrag=0.6 drag coefficients for hairstone |
|---|
| 1735 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
|---|
| 1736 | |
|---|
| 1737 | egw=1.0 |
|---|
| 1738 | constg=sqrt(4.*grav*rhograul*0.33334*orho(k)*oCdrag) |
|---|
| 1739 | tmp1=pio4*xnog*gam3pt5*constg*olambdag(k)**3.5 |
|---|
| 1740 | tmp2=qlz(k)*egw*tmp1 |
|---|
| 1741 | Pgacw(k)=amin1( tmp2,qlzodt(k) ) |
|---|
| 1742 | |
|---|
| 1743 | !c |
|---|
| 1744 | !c (2) ACCRETION OF RAIN BY GRAUPEL (Pgacr): Lin (42) |
|---|
| 1745 | !c Compute processes (5) only when qrz > 0.0 and qgz > 0.0 |
|---|
| 1746 | !c egr=1. |
|---|
| 1747 | !c |
|---|
| 1748 | egr=1. |
|---|
| 1749 | tmpa=olambdar(k)*olambdar(k) |
|---|
| 1750 | tmpb=olambdag(k)*olambdag(k) |
|---|
| 1751 | tmpc=olambdar(k)*olambdag(k) |
|---|
| 1752 | tmp1=pi*pi*xnor*xnog*abs( vtr(k)-vtg(k) )*orho(k) |
|---|
| 1753 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 1754 | tmp3=tmp1*egr*rhowater*tmp2 |
|---|
| 1755 | pgacr(k)=amin1( tmp3,qrzodt(k) ) |
|---|
| 1756 | |
|---|
| 1757 | |
|---|
| 1758 | !c |
|---|
| 1759 | !c (3) GRAUPEL MELTING TO FORM RAIN (Pgmlt): Lin (47) |
|---|
| 1760 | !c Pgmlt is negative value |
|---|
| 1761 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
|---|
| 1762 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
|---|
| 1763 | !c vf2s*schmidt(k)**0.33334*gam2pt75*constg |
|---|
| 1764 | !c Cdrag=0.6 drag coefficients for hairstone |
|---|
| 1765 | ! |
|---|
| 1766 | delrs=rs0(k)-qvz(k) |
|---|
| 1767 | term1=2.0*pi*orho(k)*( xlv*diffwv(k)*rho(k)*delrs- & |
|---|
| 1768 | xka(k)*temcc(k) ) |
|---|
| 1769 | term0=sqrt(4.*grav*rhograul*0.33334*orho(k)*ocdrag) & |
|---|
| 1770 | *olambdag(k)**5.5/visc(k) |
|---|
| 1771 | |
|---|
| 1772 | constg2=vf1s*olambdag(k)*olambdag(k)+ & |
|---|
| 1773 | vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
|---|
| 1774 | tmp2=xnog*constg2 |
|---|
| 1775 | tmp3=term1*oxlf*tmp2-cwoxlf*temcc(k)*( pgacw(k)+pgacr(k) ) |
|---|
| 1776 | tmp4=amin1(0.0,tmp3) |
|---|
| 1777 | pgmlt(k)=amax1( tmp4,-qgzodt(k) ) |
|---|
| 1778 | |
|---|
| 1779 | |
|---|
| 1780 | !c |
|---|
| 1781 | !c (4) EVAPORATION OF MELTING GRAUPEL (Pgmltevp) : HR (A19) |
|---|
| 1782 | !c but use Lin et al. coefficience |
|---|
| 1783 | !c Pgmltevp is a negative value |
|---|
| 1784 | !c abg=2.0*pi*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) |
|---|
| 1785 | !c |
|---|
| 1786 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
|---|
| 1787 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
|---|
| 1788 | tmpc=tmpa*qswz(k)*diffwv(k) |
|---|
| 1789 | tmpd=amin1( 0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb ) |
|---|
| 1790 | |
|---|
| 1791 | !c |
|---|
| 1792 | !c abg=2*pi*(Si-1)/rho/(A"+B") |
|---|
| 1793 | !c |
|---|
| 1794 | abg=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
|---|
| 1795 | ! |
|---|
| 1796 | !**** allow evaporation to occur when RH less than 90% |
|---|
| 1797 | !**** here not using 100% because the evaporation cooling |
|---|
| 1798 | !**** of temperature is not taking into account yet; hence, |
|---|
| 1799 | !**** the qgw value is a little bit larger. This will avoid |
|---|
| 1800 | !**** evaporation can generate cloud. |
|---|
| 1801 | ! |
|---|
| 1802 | !c vf1s,vf2s=ventilation factors for snow |
|---|
| 1803 | !c vf1s=0.78,vf2s=0.31 in LIN |
|---|
| 1804 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
|---|
| 1805 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
|---|
| 1806 | !c vf2s*schmidt(k)**0.33334*gam2pt75*constg |
|---|
| 1807 | ! |
|---|
| 1808 | tmp2=abg*xnog*constg2 |
|---|
| 1809 | tmp3=amin1(0.0,tmp2) |
|---|
| 1810 | tmp3=amax1( tmp3,tmpd ) |
|---|
| 1811 | pgmltevp(k)=amax1( tmp3,-qgzodt(k) ) |
|---|
| 1812 | |
|---|
| 1813 | !c |
|---|
| 1814 | !c (5) ACCRETION OF SNOW BY GRAUPEL (Pgacs) : Lin (29) |
|---|
| 1815 | !c Compute processes (3) only when qsz > 0.0 and qgz > 0.0 |
|---|
| 1816 | !c egs=1.0 |
|---|
| 1817 | !c |
|---|
| 1818 | egs=1. |
|---|
| 1819 | tmpa=olambdas(k)*olambdas(k) |
|---|
| 1820 | tmpb=olambdag(k)*olambdag(k) |
|---|
| 1821 | tmpc=olambdas(k)*olambdag(k) |
|---|
| 1822 | tmp1=pi*pi*xnos*xnog*abs( vts(k)-vtg(k) )*orho(k) |
|---|
| 1823 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
|---|
| 1824 | tmp3=tmp1*egs*rhosnow*tmp2 |
|---|
| 1825 | Pgacs(k)=amin1( tmp3,qszodt(k) ) |
|---|
| 1826 | |
|---|
| 1827 | endif |
|---|
| 1828 | |
|---|
| 1829 | |
|---|
| 1830 | ! |
|---|
| 1831 | 900 continue |
|---|
| 1832 | |
|---|
| 1833 | !cc |
|---|
| 1834 | !c |
|---|
| 1835 | !c********************************************************************** |
|---|
| 1836 | !c***** combine all processes together and avoid negative ***** |
|---|
| 1837 | !c***** water substances |
|---|
| 1838 | !*********************************************************************** |
|---|
| 1839 | !c |
|---|
| 1840 | if ( temcc(k) .lt. 0.0) then |
|---|
| 1841 | !,delta4,1.-delta4 |
|---|
| 1842 | !c |
|---|
| 1843 | !c gdelta4=gindex*delta4 |
|---|
| 1844 | !c g1sdelt4=gindex*(1.-delta4) |
|---|
| 1845 | !c |
|---|
| 1846 | gdelta4=gindex*delta4 |
|---|
| 1847 | g1sdelt4=gindex*(1.-delta4) |
|---|
| 1848 | !c |
|---|
| 1849 | !c combined water vapor depletions |
|---|
| 1850 | !c |
|---|
| 1851 | !cc graupel |
|---|
| 1852 | tmp=psdep(k)+pgdep(k)*gindex |
|---|
| 1853 | if ( tmp .gt. qvzodt(k) ) then |
|---|
| 1854 | factor=qvzodt(k)/tmp |
|---|
| 1855 | psdep(k)=psdep(k)*factor |
|---|
| 1856 | pgdep(k)=pgdep(k)*factor*gindex |
|---|
| 1857 | end if |
|---|
| 1858 | !c |
|---|
| 1859 | !c combined cloud water depletions |
|---|
| 1860 | !c |
|---|
| 1861 | tmp=praut(k)+psacw(k)+psfw(k)+pracw(k)+gindex*Pgacw(k) |
|---|
| 1862 | if ( tmp .gt. qlzodt(k) ) then |
|---|
| 1863 | factor=qlzodt(k)/tmp |
|---|
| 1864 | praut(k)=praut(k)*factor |
|---|
| 1865 | psacw(k)=psacw(k)*factor |
|---|
| 1866 | psfw(k)=psfw(k)*factor |
|---|
| 1867 | pracw(k)=pracw(k)*factor |
|---|
| 1868 | !cc graupel |
|---|
| 1869 | Pgacw(k)=Pgacw(k)*factor*gindex |
|---|
| 1870 | end if |
|---|
| 1871 | !c |
|---|
| 1872 | !c combined cloud ice depletions |
|---|
| 1873 | !c |
|---|
| 1874 | tmp=psaut(k)+psaci(k)+praci(k)+psfi(k)+Pgaci(k)*gdelta4 & |
|---|
| 1875 | +Pgacip(k)*g1sdelt4 |
|---|
| 1876 | if (tmp .gt. qizodt(k) ) then |
|---|
| 1877 | factor=qizodt(k)/tmp |
|---|
| 1878 | psaut(k)=psaut(k)*factor |
|---|
| 1879 | psaci(k)=psaci(k)*factor |
|---|
| 1880 | praci(k)=praci(k)*factor |
|---|
| 1881 | psfi(k)=psfi(k)*factor |
|---|
| 1882 | !cc graupel |
|---|
| 1883 | Pgaci(k)=Pgaci(k)*factor*gdelta4 |
|---|
| 1884 | Pgacip(k)=Pgacip(k)*factor*g1sdelt4 |
|---|
| 1885 | endif |
|---|
| 1886 | !c |
|---|
| 1887 | !c combined all rain processes |
|---|
| 1888 | !c |
|---|
| 1889 | tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k) & |
|---|
| 1890 | +Pgfr(k)*gindex+Pgacr(k)*gdelta4 & |
|---|
| 1891 | +Pgacrp(k)*g1sdelt4 |
|---|
| 1892 | if (tmp_r .gt. qrzodt(k) ) then |
|---|
| 1893 | factor=qrzodt(k)/tmp_r |
|---|
| 1894 | piacr(k)=piacr(k)*factor |
|---|
| 1895 | psacr(k)=psacr(k)*factor |
|---|
| 1896 | prevp(k)=prevp(k)*factor |
|---|
| 1897 | !cc graupel |
|---|
| 1898 | Pgfr(k)=Pgfr(k)*factor*gindex |
|---|
| 1899 | Pgacr(k)=Pgacr(k)*factor*gdelta4 |
|---|
| 1900 | Pgacrp(k)=Pgacrp(k)*factor*g1sdelt4 |
|---|
| 1901 | endif |
|---|
| 1902 | |
|---|
| 1903 | !c |
|---|
| 1904 | !c if qrz < 1.0E-4 and qsz < 1.0E-4 then delta2=1. |
|---|
| 1905 | !c (all Pracs and Psacr become to snow) |
|---|
| 1906 | !c if qrz >= 1.0E-4 or qsz >= 1.0E-4 then delta2=0. |
|---|
| 1907 | !c (all Pracs and Psacr become to graupel) |
|---|
| 1908 | !c |
|---|
| 1909 | if (qrz(k) .lt. 1.0E-4 .and. qsz(k) .lt. 1.0E-4) then |
|---|
| 1910 | delta2=1.0 |
|---|
| 1911 | else |
|---|
| 1912 | delta2=0.0 |
|---|
| 1913 | endif |
|---|
| 1914 | ! |
|---|
| 1915 | !cc graupel |
|---|
| 1916 | |
|---|
| 1917 | !c |
|---|
| 1918 | !c if qrz(k) < 1.0e-4 then delta3=1. means praci(k) --> qs |
|---|
| 1919 | !c piacr(k) --> qs |
|---|
| 1920 | !c if qrz(k) > 1.0e-4 then delta3=0. means praci(k) --> qg |
|---|
| 1921 | !c piacr(k) --> qg : Lin (20) |
|---|
| 1922 | |
|---|
| 1923 | if (qrz(k) .lt. 1.0e-4) then |
|---|
| 1924 | delta3=1.0 |
|---|
| 1925 | else |
|---|
| 1926 | delta3=0.0 |
|---|
| 1927 | endif |
|---|
| 1928 | ! |
|---|
| 1929 | !c |
|---|
| 1930 | !c if gindex = 0.(no graupel) then delta2=1.0 |
|---|
| 1931 | !c delta3=1.0 |
|---|
| 1932 | !c |
|---|
| 1933 | if (gindex .eq. 0.) then |
|---|
| 1934 | delta2=1.0 |
|---|
| 1935 | delta3=1.0 |
|---|
| 1936 | endif |
|---|
| 1937 | ! |
|---|
| 1938 | !c |
|---|
| 1939 | !c combined all snow processes |
|---|
| 1940 | !c |
|---|
| 1941 | tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+ & |
|---|
| 1942 | psfi(k)+praci(k)*delta3+piacr(k)*delta3+ & |
|---|
| 1943 | psdep(k))+Pgaut(k)*gindex+Pgacs(k)*gdelta4+ & |
|---|
| 1944 | Pgacsp(k)*g1sdelt4+Pracs(k)*(1.-delta2)- & |
|---|
| 1945 | Psacr(k)*delta2 |
|---|
| 1946 | if ( tmp_s .gt. qszodt(k) ) then |
|---|
| 1947 | factor=qszodt(k)/tmp_s |
|---|
| 1948 | pssub(k)=pssub(k)*factor |
|---|
| 1949 | Pracs(k)=Pracs(k)*factor |
|---|
| 1950 | !cc graupel |
|---|
| 1951 | Pgaut(k)=Pgaut(k)*factor*gindex |
|---|
| 1952 | Pgacs(k)=Pgacs(k)*factor*gdelta4 |
|---|
| 1953 | Pgacsp(k)=Pgacsp(k)*factor*g1sdelt4 |
|---|
| 1954 | endif |
|---|
| 1955 | |
|---|
| 1956 | !cc graupel |
|---|
| 1957 | ! |
|---|
| 1958 | |
|---|
| 1959 | ! if (gindex .eq. 0.) goto 998 |
|---|
| 1960 | !c |
|---|
| 1961 | !c combined all graupel processes |
|---|
| 1962 | !c |
|---|
| 1963 | if(delta4.lt.0.5) then |
|---|
| 1964 | !Re-define pgwet to account for limiting of pgacrp, |
|---|
| 1965 | ! pgacip, pgacw and pgacsp above |
|---|
| 1966 | pgwet(k) = pgacrp(k) + pgacw(k) + pgacip(k) + pgacsp(k) |
|---|
| 1967 | end if |
|---|
| 1968 | tmp_g=-pgaut(k)-pgfr(k)-Pgacw(k)*delta4-Pgaci(k)*delta4 & |
|---|
| 1969 | -Pgacr(k)*delta4-Pgacs(k)*delta4 & |
|---|
| 1970 | -pgwet(k)*(1.-delta4)-pgsub(k)-pgdep(k) & |
|---|
| 1971 | -psacr(k)*(1-delta2)-Pracs(k)*(1-delta2) & |
|---|
| 1972 | -praci(k)*(1-delta3)-piacr(k)*(1-delta3) |
|---|
| 1973 | if (tmp_g .gt. qgzodt(k)) then |
|---|
| 1974 | factor=qgzodt(k)/tmp_g |
|---|
| 1975 | pgsub(k)=pgsub(k)*factor |
|---|
| 1976 | endif |
|---|
| 1977 | |
|---|
| 1978 | 998 continue |
|---|
| 1979 | !c |
|---|
| 1980 | !c calculate new water substances, thetae, tem, and qvsbar |
|---|
| 1981 | !c |
|---|
| 1982 | |
|---|
| 1983 | !cc graupel |
|---|
| 1984 | pvapor(k)=-pssub(k)-psdep(k)-prevp(k)-pgsub(k)*gindex & |
|---|
| 1985 | -pgdep(k)*gindex |
|---|
| 1986 | qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k) ) |
|---|
| 1987 | pclw(k)=-praut(k)-pracw(k)-psacw(k)-psfw(k)-pgacw(k)*gindex |
|---|
| 1988 | if(flag_qndrop)then |
|---|
| 1989 | if( qlz(k) > 1e-20 ) & |
|---|
| 1990 | qndropz(k)=amax1( 0.0,qndropz(k)+dtb*pclw(k)*qndropz(k)/qlz(k) ) !sg |
|---|
| 1991 | endif |
|---|
| 1992 | qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) |
|---|
| 1993 | pcli(k)=-psaut(k)-psfi(k)-psaci(k)-praci(k)-pgaci(k)*gdelta4 & |
|---|
| 1994 | -Pgacip(k)*g1sdelt4 |
|---|
| 1995 | qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) |
|---|
| 1996 | tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k) & |
|---|
| 1997 | +Pgfr(k)*gindex+Pgacr(k)*gdelta4 & |
|---|
| 1998 | +Pgacrp(k)*g1sdelt4 |
|---|
| 1999 | 232 format(i2,1x,6(f9.3,1x)) |
|---|
| 2000 | prain(k)=-tmp_r |
|---|
| 2001 | qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) |
|---|
| 2002 | tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+ & |
|---|
| 2003 | psfi(k)+praci(k)*delta3+piacr(k)*delta3+ & |
|---|
| 2004 | psdep(k))+Pgaut(k)*gindex+Pgacs(k)*gdelta4+ & |
|---|
| 2005 | Pgacsp(k)*g1sdelt4+Pracs(k)*(1.-delta2)- & |
|---|
| 2006 | Psacr(k)*delta2 |
|---|
| 2007 | psnow(k)=-tmp_s |
|---|
| 2008 | qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) |
|---|
| 2009 | qschg(k)=qschg(k)+psnow(k) |
|---|
| 2010 | qschg(k)=psnow(k) |
|---|
| 2011 | !cc graupel |
|---|
| 2012 | tmp_g=-pgaut(k)-pgfr(k)-Pgacw(k)*delta4-Pgaci(k)*delta4 & |
|---|
| 2013 | -Pgacr(k)*delta4-Pgacs(k)*delta4 & |
|---|
| 2014 | -pgwet(k)*(1.-delta4)-pgsub(k)-pgdep(k) & |
|---|
| 2015 | -psacr(k)*(1-delta2)-Pracs(k)*(1-delta2) & |
|---|
| 2016 | -praci(k)*(1-delta3)-piacr(k)*(1-delta3) |
|---|
| 2017 | 252 format(i2,1x,6(f12.9,1x)) |
|---|
| 2018 | 262 format(i2,1x,7(f12.9,1x)) |
|---|
| 2019 | pgraupel(k)=-tmp_g |
|---|
| 2020 | pgraupel(k)=pgraupel(k)*gindex |
|---|
| 2021 | qgz(k)=amax1( 0.0,qgz(k)+dtb*pgraupel(k)) |
|---|
| 2022 | ! qgchg(k)=qgchg(k)+pgraupel(k) |
|---|
| 2023 | qgchg(k)=pgraupel(k) |
|---|
| 2024 | qgz(k)=qgz(k)*gindex |
|---|
| 2025 | |
|---|
| 2026 | tmp=ocp/tothz(k)*xLf*(qschg(k)+qgchg(k)) |
|---|
| 2027 | theiz(k)=theiz(k)+dtb*tmp |
|---|
| 2028 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 2029 | tem(k)=thz(k)*tothz(k) |
|---|
| 2030 | |
|---|
| 2031 | temcc(k)=tem(k)-273.15 |
|---|
| 2032 | |
|---|
| 2033 | !bloss: Moves computation of saturation mixing ratio below |
|---|
| 2034 | |
|---|
| 2035 | ! if( temcc(k) .lt. -40.0 ) qswz(k)=qsiz(k) |
|---|
| 2036 | ! qlpqi=qlz(k)+qiz(k) |
|---|
| 2037 | ! if ( qlpqi .eq. 0.0 ) then |
|---|
| 2038 | ! qvsbar(k)=qsiz(k) |
|---|
| 2039 | ! else |
|---|
| 2040 | ! qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
|---|
| 2041 | ! endif |
|---|
| 2042 | |
|---|
| 2043 | ! |
|---|
| 2044 | else |
|---|
| 2045 | !c |
|---|
| 2046 | !c combined cloud water depletions |
|---|
| 2047 | !c |
|---|
| 2048 | tmp=praut(k)+psacw(k)+pracw(k)+pgacw(k)*gindex |
|---|
| 2049 | if ( tmp .gt. qlzodt(k) ) then |
|---|
| 2050 | factor=qlzodt(k)/tmp |
|---|
| 2051 | praut(k)=praut(k)*factor |
|---|
| 2052 | psacw(k)=psacw(k)*factor |
|---|
| 2053 | pracw(k)=pracw(k)*factor |
|---|
| 2054 | !cc graupel |
|---|
| 2055 | pgacw(k)=pgacw(k)*factor*gindex |
|---|
| 2056 | end if |
|---|
| 2057 | !c |
|---|
| 2058 | !c combined all snow processes |
|---|
| 2059 | !c |
|---|
| 2060 | tmp_s=-(psmlt(k)+psmltevp(k))+Pgacs(k)*gindex |
|---|
| 2061 | if (tmp_s .gt. qszodt(k) ) then |
|---|
| 2062 | factor=qszodt(k)/tmp_s |
|---|
| 2063 | psmlt(k)=psmlt(k)*factor |
|---|
| 2064 | psmltevp(k)=psmltevp(k)*factor |
|---|
| 2065 | !cc graupel |
|---|
| 2066 | Pgacs(k)=Pgacs(k)*factor*gindex |
|---|
| 2067 | endif |
|---|
| 2068 | |
|---|
| 2069 | !c |
|---|
| 2070 | !c |
|---|
| 2071 | !cc graupel |
|---|
| 2072 | !c |
|---|
| 2073 | ! if (gindex .eq. 0.) goto 997 |
|---|
| 2074 | |
|---|
| 2075 | !c |
|---|
| 2076 | !c combined all graupel processes |
|---|
| 2077 | !c |
|---|
| 2078 | tmp_g=-pgmlt(k)-pgacs(k)-pgmltevp(k) |
|---|
| 2079 | if (tmp_g .gt. qgzodt(k)) then |
|---|
| 2080 | factor=qgzodt(k)/tmp_g |
|---|
| 2081 | pgmltevp(k)=pgmltevp(k)*factor |
|---|
| 2082 | pgmlt(k)=pgmlt(k)*factor |
|---|
| 2083 | endif |
|---|
| 2084 | !c |
|---|
| 2085 | 997 continue |
|---|
| 2086 | |
|---|
| 2087 | !c |
|---|
| 2088 | !c combined all rain processes |
|---|
| 2089 | !c |
|---|
| 2090 | tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) & |
|---|
| 2091 | +pgmlt(k)*gindex-pgacw(k)*gindex |
|---|
| 2092 | if (tmp_r .gt. qrzodt(k) ) then |
|---|
| 2093 | factor=qrzodt(k)/tmp_r |
|---|
| 2094 | prevp(k)=prevp(k)*factor |
|---|
| 2095 | endif |
|---|
| 2096 | !c |
|---|
| 2097 | !c |
|---|
| 2098 | !c calculate new water substances and thetae |
|---|
| 2099 | !c |
|---|
| 2100 | |
|---|
| 2101 | |
|---|
| 2102 | pvapor(k)=-psmltevp(k)-prevp(k)-pgmltevp(k)*gindex |
|---|
| 2103 | qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k)) |
|---|
| 2104 | pclw(k)=-praut(k)-pracw(k)-psacw(k)-pgacw(k)*gindex |
|---|
| 2105 | if(flag_qndrop)then |
|---|
| 2106 | if( qlz(k) > 1e-20 ) & |
|---|
| 2107 | qndropz(k)=amax1( 0.0,qndropz(k)+dtb*pclw(k)*qndropz(k)/qlz(k) ) !sg |
|---|
| 2108 | endif |
|---|
| 2109 | qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) |
|---|
| 2110 | pcli(k)=0.0 |
|---|
| 2111 | qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) |
|---|
| 2112 | tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) & |
|---|
| 2113 | +pgmlt(k)*gindex-pgacw(k)*gindex |
|---|
| 2114 | 242 format(i2,1x,7(f9.6,1x)) |
|---|
| 2115 | prain(k)=-tmp_r |
|---|
| 2116 | tmpqrz=qrz(k) |
|---|
| 2117 | qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) |
|---|
| 2118 | tmp_s=-(psmlt(k)+psmltevp(k))+Pgacs(k)*gindex |
|---|
| 2119 | psnow(k)=-tmp_s |
|---|
| 2120 | qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) |
|---|
| 2121 | ! qschg(k)=qschg(k)+psnow(k) |
|---|
| 2122 | qschg(k)=psnow(k) |
|---|
| 2123 | !cc graupel |
|---|
| 2124 | |
|---|
| 2125 | tmp_g=-pgmlt(k)-pgacs(k)-pgmltevp(k) |
|---|
| 2126 | ! write(*,272)k,pgmlt(k),pgacs(k),pgmltevp(k), |
|---|
| 2127 | 272 format(i2,1x,3(f12.9,1x)) |
|---|
| 2128 | pgraupel(k)=-tmp_g*gindex |
|---|
| 2129 | qgz(k)=amax1( 0.0,qgz(k)+dtb*pgraupel(k)) |
|---|
| 2130 | ! qgchg(k)=qgchg(k)+pgraupel(k) |
|---|
| 2131 | qgchg(k)=pgraupel(k) |
|---|
| 2132 | qgz(k)=qgz(k)*gindex |
|---|
| 2133 | ! |
|---|
| 2134 | tmp=ocp/tothz(k)*xLf*(qschg(k)+qgchg(k)) |
|---|
| 2135 | theiz(k)=theiz(k)+dtb*tmp |
|---|
| 2136 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 2137 | |
|---|
| 2138 | tem(k)=thz(k)*tothz(k) |
|---|
| 2139 | temcc(k)=tem(k)-273.15 |
|---|
| 2140 | ! qswz(k)=episp0k*oprez(k)* & |
|---|
| 2141 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 2142 | |
|---|
| 2143 | !bloss: Moved computation of saturation mixing ratio below |
|---|
| 2144 | |
|---|
| 2145 | ! es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 2146 | ! qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 2147 | ! qsiz(k)=qswz(k) |
|---|
| 2148 | ! qvsbar(k)=qswz(k) |
|---|
| 2149 | ! |
|---|
| 2150 | end if |
|---|
| 2151 | preclw(k)=pclw(k) !sg |
|---|
| 2152 | |
|---|
| 2153 | ! |
|---|
| 2154 | !*********************************************************************** |
|---|
| 2155 | !********** saturation adjustment ********** |
|---|
| 2156 | !*********************************************************************** |
|---|
| 2157 | !bloss: BEGIN |
|---|
| 2158 | ! |
|---|
| 2159 | ! compute saturation specific humidity at the temperature |
|---|
| 2160 | ! which would be experienced if all cloud liquid and ice |
|---|
| 2161 | ! were to become vapor. This will make for a consistent |
|---|
| 2162 | ! check of saturation. Previously, qvsbar was computed |
|---|
| 2163 | ! without accounting for the change in temperature due to |
|---|
| 2164 | ! evaporation/sublimation, and as a result would |
|---|
| 2165 | ! incorrectly identify some points as subsaturated. |
|---|
| 2166 | |
|---|
| 2167 | tmp_tem = tem(k) ! updated temperature from above. |
|---|
| 2168 | |
|---|
| 2169 | if(qlz(k)+qiz(k).gt. 0.) then |
|---|
| 2170 | ! account for latent heat if all qlz and qiz were converted to vapor |
|---|
| 2171 | tmp_tem = tem(k) - xlvocp*qlz(k) - (xlvocp+xlfocp)*qiz(k) |
|---|
| 2172 | end if |
|---|
| 2173 | |
|---|
| 2174 | ! compute temperature in celsius |
|---|
| 2175 | tmp_temcc = tmp_tem - 273.15 |
|---|
| 2176 | |
|---|
| 2177 | ! estimate lower bound on saturation vapor pressure |
|---|
| 2178 | ! (ice if <0C, liquid aboce) |
|---|
| 2179 | if (tmp_temcc .lt. 0.) then |
|---|
| 2180 | es=1000.*svp1*exp( 21.8745584*(tmp_tem-273.16)/(tmp_tem-7.66) ) !ice |
|---|
| 2181 | else |
|---|
| 2182 | es=1000.*svp1*exp( svp2*tmp_temcc/(tmp_tem-svp3) ) !liquid |
|---|
| 2183 | end if |
|---|
| 2184 | |
|---|
| 2185 | ! compute lower bound on saturation mixing ratio. |
|---|
| 2186 | qvsbar(k)=ep2*es/(prez(k)-es) |
|---|
| 2187 | ! |
|---|
| 2188 | !bloss: END |
|---|
| 2189 | ! |
|---|
| 2190 | ! allow supersaturation exits linearly from 0% at 500 mb to 50% |
|---|
| 2191 | ! above 300 mb |
|---|
| 2192 | ! 5.0e-5=1.0/(500mb-300mb) |
|---|
| 2193 | ! |
|---|
| 2194 | rsat=1.0+0.5*(50000.0-prez(k))*5.0e-5 |
|---|
| 2195 | rsat=amax1(1.0,rsat) |
|---|
| 2196 | rsat=amin1(1.5,rsat) |
|---|
| 2197 | rsat=1.0 |
|---|
| 2198 | if( qvz(k)+qlz(k)+qiz(k) .lt. rsat*qvsbar(k) ) then |
|---|
| 2199 | |
|---|
| 2200 | !c |
|---|
| 2201 | !c unsaturated |
|---|
| 2202 | !c |
|---|
| 2203 | qvz(k)=qvz(k)+qlz(k)+qiz(k) |
|---|
| 2204 | qlz(k)=0.0 |
|---|
| 2205 | qiz(k)=0.0 |
|---|
| 2206 | |
|---|
| 2207 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 2208 | tem(k)=thz(k)*tothz(k) |
|---|
| 2209 | temcc(k)=tem(k)-273.15 |
|---|
| 2210 | |
|---|
| 2211 | go to 1800 |
|---|
| 2212 | ! |
|---|
| 2213 | else |
|---|
| 2214 | !c |
|---|
| 2215 | !c saturated |
|---|
| 2216 | !c |
|---|
| 2217 | ! |
|---|
| 2218 | pladj(k)=qlz(k) |
|---|
| 2219 | piadj(k)=qiz(k) |
|---|
| 2220 | ! |
|---|
| 2221 | |
|---|
| 2222 | CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & |
|---|
| 2223 | k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0 ) |
|---|
| 2224 | |
|---|
| 2225 | ! |
|---|
| 2226 | pladj(k)=odtb*(qlz(k)-pladj(k)) |
|---|
| 2227 | piadj(k)=odtb*(qiz(k)-piadj(k)) |
|---|
| 2228 | ! |
|---|
| 2229 | pclw(k)=pclw(k)+pladj(k) |
|---|
| 2230 | pcli(k)=pcli(k)+piadj(k) |
|---|
| 2231 | pvapor(k)=pvapor(k)-( pladj(k)+piadj(k) ) |
|---|
| 2232 | ! |
|---|
| 2233 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 2234 | tem(k)=thz(k)*tothz(k) |
|---|
| 2235 | |
|---|
| 2236 | temcc(k)=tem(k)-273.15 |
|---|
| 2237 | |
|---|
| 2238 | ! qswz(k)=episp0k*oprez(k)* & |
|---|
| 2239 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 2240 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 2241 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 2242 | if (tem(k) .lt. 273.15 ) then |
|---|
| 2243 | ! qsiz(k)=episp0k*oprez(k)* & |
|---|
| 2244 | ! exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 2245 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 2246 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 2247 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
|---|
| 2248 | else |
|---|
| 2249 | qsiz(k)=qswz(k) |
|---|
| 2250 | endif |
|---|
| 2251 | qlpqi=qlz(k)+qiz(k) |
|---|
| 2252 | if ( qlpqi .eq. 0.0 ) then |
|---|
| 2253 | qvsbar(k)=qsiz(k) |
|---|
| 2254 | else |
|---|
| 2255 | qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
|---|
| 2256 | endif |
|---|
| 2257 | |
|---|
| 2258 | end if |
|---|
| 2259 | |
|---|
| 2260 | ! |
|---|
| 2261 | !*********************************************************************** |
|---|
| 2262 | !***** melting and freezing of cloud ice and cloud water ***** |
|---|
| 2263 | !*********************************************************************** |
|---|
| 2264 | qlpqi=qlz(k)+qiz(k) |
|---|
| 2265 | if(qlpqi .le. 0.0) go to 1800 |
|---|
| 2266 | ! |
|---|
| 2267 | !c |
|---|
| 2268 | !c (1) HOMOGENEOUS NUCLEATION WHEN T< -40 C (Pihom) |
|---|
| 2269 | !c |
|---|
| 2270 | if(temcc(k) .lt. -40.0) pihom(k)=qlz(k)*odtb |
|---|
| 2271 | !c |
|---|
| 2272 | !c (2) MELTING OF ICE CRYSTAL WHEN T> 0 C (Pimlt) |
|---|
| 2273 | !c |
|---|
| 2274 | if(temcc(k) .gt. 0.0) pimlt(k)=qiz(k)*odtb |
|---|
| 2275 | !c |
|---|
| 2276 | !c (3) PRODUCTION OF CLOUD ICE BY BERGERON PROCESS (Pidw): Hsie (p957) |
|---|
| 2277 | !c this process only considered when -31 C < T < 0 C |
|---|
| 2278 | !c |
|---|
| 2279 | if(temcc(k) .lt. 0.0 .and. temcc(k) .gt. -31.0) then |
|---|
| 2280 | !c! |
|---|
| 2281 | !c! parama1 and parama2 functions must be user supplied |
|---|
| 2282 | !c! |
|---|
| 2283 | a1=parama1( temcc(k) ) |
|---|
| 2284 | a2=parama2( temcc(k) ) |
|---|
| 2285 | !! change unit from cgs to mks |
|---|
| 2286 | a1=a1*0.001**(1.0-a2) |
|---|
| 2287 | xnin=xni0*exp(-bni*temcc(k)) |
|---|
| 2288 | pidw(k)=xnin*orho(k)*(a1*xmnin**a2) |
|---|
| 2289 | end if |
|---|
| 2290 | ! |
|---|
| 2291 | pcli(k)=pcli(k)+pihom(k)-pimlt(k)+pidw(k) |
|---|
| 2292 | pclw(k)=pclw(k)-pihom(k)+pimlt(k)-pidw(k) |
|---|
| 2293 | qlz(k)=amax1( 0.0,qlz(k)+dtb*(-pihom(k)+pimlt(k)-pidw(k)) ) |
|---|
| 2294 | qiz(k)=amax1( 0.0,qiz(k)+dtb*(pihom(k)-pimlt(k)+pidw(k)) ) |
|---|
| 2295 | |
|---|
| 2296 | ! |
|---|
| 2297 | CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & |
|---|
| 2298 | k, xLvocp, xLfocp, episp0k ,EP2,SVP1,SVP2,SVP3,SVPT0) |
|---|
| 2299 | |
|---|
| 2300 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 2301 | tem(k)=thz(k)*tothz(k) |
|---|
| 2302 | |
|---|
| 2303 | temcc(k)=tem(k)-273.15 |
|---|
| 2304 | |
|---|
| 2305 | ! qswz(k)=episp0k*oprez(k)* & |
|---|
| 2306 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 2307 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
|---|
| 2308 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 2309 | |
|---|
| 2310 | if (tem(k) .lt. 273.15 ) then |
|---|
| 2311 | ! qsiz(k)=episp0k*oprez(k)* & |
|---|
| 2312 | ! exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 2313 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
|---|
| 2314 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 2315 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
|---|
| 2316 | else |
|---|
| 2317 | qsiz(k)=qswz(k) |
|---|
| 2318 | endif |
|---|
| 2319 | qlpqi=qlz(k)+qiz(k) |
|---|
| 2320 | if ( qlpqi .eq. 0.0 ) then |
|---|
| 2321 | qvsbar(k)=qsiz(k) |
|---|
| 2322 | else |
|---|
| 2323 | qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
|---|
| 2324 | endif |
|---|
| 2325 | |
|---|
| 2326 | 1800 continue |
|---|
| 2327 | ! |
|---|
| 2328 | !*********************************************************************** |
|---|
| 2329 | !********** integrate the productions of rain and snow ********** |
|---|
| 2330 | !*********************************************************************** |
|---|
| 2331 | !c |
|---|
| 2332 | |
|---|
| 2333 | 2000 continue |
|---|
| 2334 | |
|---|
| 2335 | |
|---|
| 2336 | !--------------------------------------------------------------------- |
|---|
| 2337 | |
|---|
| 2338 | ! |
|---|
| 2339 | !*********************************************************************** |
|---|
| 2340 | !****** Write terms in cloud physics to time series dataset ***** |
|---|
| 2341 | !*********************************************************************** |
|---|
| 2342 | ! |
|---|
| 2343 | ! open(unit=24,form='formatted',status='new', |
|---|
| 2344 | ! & file='cloud.dat') |
|---|
| 2345 | |
|---|
| 2346 | !9030 format(10e12.6) |
|---|
| 2347 | |
|---|
| 2348 | ! write(24,*)'tmp' |
|---|
| 2349 | ! write(24,9030) (tem(k),k=kts+1,kte) |
|---|
| 2350 | ! write(24,*)'qiz' |
|---|
| 2351 | ! write(24,9030) (qiz(k),k=kts+1,kte) |
|---|
| 2352 | ! write(24,*)'qsz' |
|---|
| 2353 | ! write(24,9030) (qsz(k),k=kts+1,kte) |
|---|
| 2354 | ! write(24,*)'qrz' |
|---|
| 2355 | ! write(24,9030) (qrz(k),k=kts+1,kte) |
|---|
| 2356 | ! write(24,*)'qgz' |
|---|
| 2357 | ! write(24,9030) (qgz(k),k=kts+1,kte) |
|---|
| 2358 | ! write(24,*)'qvoqsw' |
|---|
| 2359 | ! write(24,9030) (qvoqswz(k),k=kts+1,kte) |
|---|
| 2360 | ! write(24,*)'qvoqsi' |
|---|
| 2361 | ! write(24,9030) (qvoqsiz(k),k=kts+1,kte) |
|---|
| 2362 | ! write(24,*)'vtr' |
|---|
| 2363 | ! write(24,9030) (vtr(k),k=kts+1,kte) |
|---|
| 2364 | ! write(24,*)'vts' |
|---|
| 2365 | ! write(24,9030) (vts(k),k=kts+1,kte) |
|---|
| 2366 | ! write(24,*)'vtg' |
|---|
| 2367 | ! write(24,9030) (vtg(k),k=kts+1,kte) |
|---|
| 2368 | ! write(24,*)'pclw' |
|---|
| 2369 | ! write(24,9030) (pclw(k),k=kts+1,kte) |
|---|
| 2370 | ! write(24,*)'pvapor' |
|---|
| 2371 | ! write(24,9030) (pvapor(k),k=kts+1,kte) |
|---|
| 2372 | ! write(24,*)'pcli' |
|---|
| 2373 | ! write(24,9030) (pcli(k),k=kts+1,kte) |
|---|
| 2374 | ! write(24,*)'pimlt' |
|---|
| 2375 | ! write(24,9030) (pimlt(k),k=kts+1,kte) |
|---|
| 2376 | ! write(24,*)'pihom' |
|---|
| 2377 | ! write(24,9030) (pihom(k),k=kts+1,kte) |
|---|
| 2378 | ! write(24,*)'pidw' |
|---|
| 2379 | ! write(24,9030) (pidw(k),k=kts+1,kte) |
|---|
| 2380 | ! write(24,*)'prain' |
|---|
| 2381 | ! write(24,9030) (prain(k),k=kts+1,kte) |
|---|
| 2382 | ! write(24,*)'praut' |
|---|
| 2383 | ! write(24,9030) (praut(k),k=kts+1,kte) |
|---|
| 2384 | ! write(24,*)'pracw' |
|---|
| 2385 | ! write(24,9030) (pracw(k),k=kts+1,kte) |
|---|
| 2386 | ! write(24,*)'prevp' |
|---|
| 2387 | ! write(24,9030) (prevp(k),k=kts+1,kte) |
|---|
| 2388 | ! write(24,*)'psnow' |
|---|
| 2389 | ! write(24,9030) (psnow(k),k=kts+1,kte) |
|---|
| 2390 | ! write(24,*)'psaut' |
|---|
| 2391 | ! write(24,9030) (psaut(k),k=kts+1,kte) |
|---|
| 2392 | ! write(24,*)'psfw' |
|---|
| 2393 | ! write(24,9030) (psfw(k),k=kts+1,kte) |
|---|
| 2394 | ! write(24,*)'psfi' |
|---|
| 2395 | ! write(24,9030) (psfi(k),k=kts+1,kte) |
|---|
| 2396 | ! write(24,*)'praci' |
|---|
| 2397 | ! write(24,9030) (praci(k),k=kts+1,kte) |
|---|
| 2398 | ! write(24,*)'piacr' |
|---|
| 2399 | ! write(24,9030) (piacr(k),k=kts+1,kte) |
|---|
| 2400 | ! write(24,*)'psaci' |
|---|
| 2401 | ! write(24,9030) (psaci(k),k=kts+1,kte) |
|---|
| 2402 | ! write(24,*)'psacw' |
|---|
| 2403 | ! write(24,9030) (psacw(k),k=kts+1,kte) |
|---|
| 2404 | ! write(24,*)'psdep' |
|---|
| 2405 | ! write(24,9030) (psdep(k),k=kts+1,kte) |
|---|
| 2406 | ! write(24,*)'pssub' |
|---|
| 2407 | ! write(24,9030) (pssub(k),k=kts+1,kte) |
|---|
| 2408 | ! write(24,*)'pracs' |
|---|
| 2409 | ! write(24,9030) (pracs(k),k=kts+1,kte) |
|---|
| 2410 | ! write(24,*)'psacr' |
|---|
| 2411 | ! write(24,9030) (psacr(k),k=kts+1,kte) |
|---|
| 2412 | ! write(24,*)'psmlt' |
|---|
| 2413 | ! write(24,9030) (psmlt(k),k=kts+1,kte) |
|---|
| 2414 | ! write(24,*)'psmltevp' |
|---|
| 2415 | ! write(24,9030) (psmltevp(k),k=kts+1,kte) |
|---|
| 2416 | ! write(24,*)'pladj' |
|---|
| 2417 | ! write(24,9030) (pladj(k),k=kts+1,kte) |
|---|
| 2418 | ! write(24,*)'piadj' |
|---|
| 2419 | ! write(24,9030) (piadj(k),k=kts+1,kte) |
|---|
| 2420 | ! write(24,*)'pgraupel' |
|---|
| 2421 | ! write(24,9030) (pgraupel(k),k=kts+1,kte) |
|---|
| 2422 | ! write(24,*)'pgaut' |
|---|
| 2423 | ! write(24,9030) (pgaut(k),k=kts+1,kte) |
|---|
| 2424 | ! write(24,*)'pgfr' |
|---|
| 2425 | ! write(24,9030) (pgfr(k),k=kts+1,kte) |
|---|
| 2426 | ! write(24,*)'pgacw' |
|---|
| 2427 | ! write(24,9030) (pgacw(k),k=kts+1,kte) |
|---|
| 2428 | ! write(24,*)'pgaci' |
|---|
| 2429 | ! write(24,9030) (pgaci(k),k=kts+1,kte) |
|---|
| 2430 | ! write(24,*)'pgacr' |
|---|
| 2431 | ! write(24,9030) (pgacr(k),k=kts+1,kte) |
|---|
| 2432 | ! write(24,*)'pgacs' |
|---|
| 2433 | ! write(24,9030) (pgacs(k),k=kts+1,kte) |
|---|
| 2434 | ! write(24,*)'pgacip' |
|---|
| 2435 | ! write(24,9030) (pgacip(k),k=kts+1,kte) |
|---|
| 2436 | ! write(24,*)'pgacrP' |
|---|
| 2437 | ! write(24,9030) (pgacrP(k),k=kts+1,kte) |
|---|
| 2438 | ! write(24,*)'pgacsp' |
|---|
| 2439 | ! write(24,9030) (pgacsp(k),k=kts+1,kte) |
|---|
| 2440 | ! write(24,*)'pgwet' |
|---|
| 2441 | ! write(24,9030) (pgwet(k),k=kts+1,kte) |
|---|
| 2442 | ! write(24,*)'pdry' |
|---|
| 2443 | ! write(24,9030) (pdry(k),k=kts+1,kte) |
|---|
| 2444 | ! write(24,*)'pgsub' |
|---|
| 2445 | ! write(24,9030) (pgsub(k),k=kts+1,kte) |
|---|
| 2446 | ! write(24,*)'pgdep' |
|---|
| 2447 | ! write(24,9030) (pgdep(k),k=kts+1,kte) |
|---|
| 2448 | ! write(24,*)'pgmlt' |
|---|
| 2449 | ! write(24,9030) (pgmlt(k),k=kts+1,kte) |
|---|
| 2450 | ! write(24,*)'pgmltevp' |
|---|
| 2451 | ! write(24,9030) (pgmltevp(k),k=kts+1,kte) |
|---|
| 2452 | |
|---|
| 2453 | |
|---|
| 2454 | |
|---|
| 2455 | !**** below if qv < qvmin then qv=qvmin, ql=0.0, and qi=0.0 |
|---|
| 2456 | ! |
|---|
| 2457 | do k=kts+1,kte |
|---|
| 2458 | if ( qvz(k) .lt. qvmin ) then |
|---|
| 2459 | qlz(k)=0.0 |
|---|
| 2460 | qiz(k)=0.0 |
|---|
| 2461 | qvz(k)=amax1( qvmin,qvz(k)+qlz(k)+qiz(k) ) |
|---|
| 2462 | end if |
|---|
| 2463 | enddo |
|---|
| 2464 | ! |
|---|
| 2465 | END SUBROUTINE clphy1d |
|---|
| 2466 | |
|---|
| 2467 | |
|---|
| 2468 | !--------------------------------------------------------------------- |
|---|
| 2469 | ! SATURATED ADJUSTMENT |
|---|
| 2470 | !--------------------------------------------------------------------- |
|---|
| 2471 | SUBROUTINE satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, & |
|---|
| 2472 | kts, kte, k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0) |
|---|
| 2473 | !--------------------------------------------------------------------- |
|---|
| 2474 | IMPLICIT NONE |
|---|
| 2475 | !--------------------------------------------------------------------- |
|---|
| 2476 | ! This program use Newton's method for finding saturated temperature |
|---|
| 2477 | ! and saturation mixing ratio. |
|---|
| 2478 | ! |
|---|
| 2479 | ! In this saturation adjustment scheme we assume |
|---|
| 2480 | ! (1) the saturation mixing ratio is the mass weighted average of |
|---|
| 2481 | ! saturation values over liquid water (qsw), and ice (qsi) |
|---|
| 2482 | ! following Lord et al., 1984 and Tao, 1989 |
|---|
| 2483 | ! |
|---|
| 2484 | ! (2) the percentage of cloud liquid and cloud ice will |
|---|
| 2485 | ! be fixed during the saturation calculation |
|---|
| 2486 | !--------------------------------------------------------------------- |
|---|
| 2487 | ! |
|---|
| 2488 | |
|---|
| 2489 | INTEGER, INTENT(IN ) :: kts, kte, k |
|---|
| 2490 | |
|---|
| 2491 | REAL, DIMENSION( kts:kte ), & |
|---|
| 2492 | INTENT(INOUT) :: qvz, qlz, qiz |
|---|
| 2493 | ! |
|---|
| 2494 | REAL, DIMENSION( kts:kte ), & |
|---|
| 2495 | INTENT(IN ) :: prez, theiz, tothz |
|---|
| 2496 | |
|---|
| 2497 | REAL, INTENT(IN ) :: xLvocp, xLfocp, episp0k |
|---|
| 2498 | REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0 |
|---|
| 2499 | |
|---|
| 2500 | ! LOCAL VARS |
|---|
| 2501 | |
|---|
| 2502 | INTEGER :: n |
|---|
| 2503 | |
|---|
| 2504 | REAL, DIMENSION( kts:kte ) :: thz, tem, temcc, qsiz, & |
|---|
| 2505 | qswz, qvsbar |
|---|
| 2506 | |
|---|
| 2507 | REAL :: qsat, qlpqi, ratql, t0, t1, tmp1, ratqi, tsat, absft, & |
|---|
| 2508 | denom1, denom2, dqvsbar, ftsat, dftsat, qpz, & |
|---|
| 2509 | gindex, es |
|---|
| 2510 | |
|---|
| 2511 | REAL :: tem_noliqice, qsat_noliqice !bloss |
|---|
| 2512 | ! |
|---|
| 2513 | !--------------------------------------------------------------------- |
|---|
| 2514 | |
|---|
| 2515 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
|---|
| 2516 | |
|---|
| 2517 | tem(k)=tothz(k)*thz(k) |
|---|
| 2518 | |
|---|
| 2519 | !bloss: BEGIN |
|---|
| 2520 | tem_noliqice = tem(k) - xlvocp*qlz(k) - (xLvocp+xLfocp)*qiz(k) |
|---|
| 2521 | |
|---|
| 2522 | if (tem_noliqice .gt. 273.15) then |
|---|
| 2523 | es=1000.*svp1*exp( svp2*(tem_noliqice-svpt0)/(tem_noliqice-svp3) ) |
|---|
| 2524 | qsat_noliqice=ep2*es/(prez(k)-es) |
|---|
| 2525 | else |
|---|
| 2526 | qsat_noliqice=episp0k/prez(k)* & |
|---|
| 2527 | exp( 21.8745584*(tem_noliqice-273.15)/(tem_noliqice-7.66) ) |
|---|
| 2528 | end if |
|---|
| 2529 | !bloss: END |
|---|
| 2530 | qpz=qvz(k)+qlz(k)+qiz(k) |
|---|
| 2531 | if (qpz .lt. qsat_noliqice) then |
|---|
| 2532 | qvz(k)=qpz |
|---|
| 2533 | qiz(k)=0.0 |
|---|
| 2534 | qlz(k)=0.0 |
|---|
| 2535 | go to 400 |
|---|
| 2536 | end if |
|---|
| 2537 | qlpqi=qlz(k)+qiz(k) |
|---|
| 2538 | if( qlpqi .ge. 1.0e-5) then |
|---|
| 2539 | ratql=qlz(k)/qlpqi |
|---|
| 2540 | ratqi=qiz(k)/qlpqi |
|---|
| 2541 | else |
|---|
| 2542 | t0=273.15 |
|---|
| 2543 | ! t1=233.15 |
|---|
| 2544 | t1=248.15 |
|---|
| 2545 | tmp1=( t0-tem(k) )/(t0-t1) |
|---|
| 2546 | tmp1=amin1(1.0,tmp1) |
|---|
| 2547 | tmp1=amax1(0.0,tmp1) |
|---|
| 2548 | ratqi=tmp1 |
|---|
| 2549 | ratql=1.0-tmp1 |
|---|
| 2550 | end if |
|---|
| 2551 | ! |
|---|
| 2552 | ! |
|---|
| 2553 | !-- saturation mixing ratios over water and ice |
|---|
| 2554 | !-- at the outset we will follow Bolton 1980 MWR for |
|---|
| 2555 | !-- the water and Murray JAS 1967 for the ice |
|---|
| 2556 | ! |
|---|
| 2557 | !-- dqvsbar=d(qvsbar)/dT |
|---|
| 2558 | !-- ftsat=F(Tsat) |
|---|
| 2559 | !-- dftsat=d(F(T))/dT |
|---|
| 2560 | ! |
|---|
| 2561 | ! First guess of tsat |
|---|
| 2562 | |
|---|
| 2563 | tsat=tem(k) |
|---|
| 2564 | absft=1.0 |
|---|
| 2565 | ! |
|---|
| 2566 | do 200 n=1,20 |
|---|
| 2567 | denom1=1.0/(tsat-svp3) |
|---|
| 2568 | denom2=1.0/(tsat-7.66) |
|---|
| 2569 | ! qswz(k)=episp0k/prez(k)* & |
|---|
| 2570 | ! exp( svp2*denom1*(tsat-273.15) ) |
|---|
| 2571 | es=1000.*svp1*exp( svp2*denom1*(tsat-svpt0) ) |
|---|
| 2572 | qswz(k)=ep2*es/(prez(k)-es) |
|---|
| 2573 | if (tem(k) .lt. 273.15) then |
|---|
| 2574 | ! qsiz(k)=episp0k/prez(k)* & |
|---|
| 2575 | ! exp( 21.8745584*denom2*(tsat-273.15) ) |
|---|
| 2576 | es=1000.*svp1*exp( 21.8745584*denom2*(tsat-273.15) ) |
|---|
| 2577 | qsiz(k)=ep2*es/(prez(k)-es) |
|---|
| 2578 | if (tem(k) .lt. 233.15) qswz(k)=qsiz(k) |
|---|
| 2579 | else |
|---|
| 2580 | qsiz(k)=qswz(k) |
|---|
| 2581 | endif |
|---|
| 2582 | qvsbar(k)=ratql*qswz(k)+ratqi*qsiz(k) |
|---|
| 2583 | ! |
|---|
| 2584 | ! if( absft .lt. 0.01 .and. n .gt. 3 ) go to 300 |
|---|
| 2585 | if( absft .lt. 0.01 ) go to 300 |
|---|
| 2586 | ! |
|---|
| 2587 | dqvsbar=ratql*qswz(k)*svp2*243.5*denom1*denom1+ & |
|---|
| 2588 | ratqi*qsiz(k)*21.8745584*265.5*denom2*denom2 |
|---|
| 2589 | ftsat=tsat+(xlvocp+ratqi*xlfocp)*qvsbar(k)- & |
|---|
| 2590 | tothz(k)*theiz(k)-xlfocp*ratqi*(qvz(k)+qlz(k)+qiz(k)) |
|---|
| 2591 | dftsat=1.0+(xlvocp+ratqi*xlfocp)*dqvsbar |
|---|
| 2592 | tsat=tsat-ftsat/dftsat |
|---|
| 2593 | absft=abs(ftsat) |
|---|
| 2594 | |
|---|
| 2595 | 200 continue |
|---|
| 2596 | 9020 format(1x,'point can not converge, absft,n=',e12.5,i5) |
|---|
| 2597 | ! |
|---|
| 2598 | 300 continue |
|---|
| 2599 | if( qpz .gt. qvsbar(k) ) then |
|---|
| 2600 | qvz(k)=qvsbar(k) |
|---|
| 2601 | qiz(k)=ratqi*( qpz-qvz(k) ) |
|---|
| 2602 | qlz(k)=ratql*( qpz-qvz(k) ) |
|---|
| 2603 | else |
|---|
| 2604 | qvz(k)=qpz |
|---|
| 2605 | qiz(k)=0.0 |
|---|
| 2606 | qlz(k)=0.0 |
|---|
| 2607 | end if |
|---|
| 2608 | 400 continue |
|---|
| 2609 | |
|---|
| 2610 | END SUBROUTINE satadj |
|---|
| 2611 | |
|---|
| 2612 | |
|---|
| 2613 | !---------------------------------------------------------------- |
|---|
| 2614 | REAL FUNCTION parama1(temp) |
|---|
| 2615 | !---------------------------------------------------------------- |
|---|
| 2616 | IMPLICIT NONE |
|---|
| 2617 | !---------------------------------------------------------------- |
|---|
| 2618 | ! This program calculate the parameter for crystal growth rate |
|---|
| 2619 | ! in Bergeron process |
|---|
| 2620 | !---------------------------------------------------------------- |
|---|
| 2621 | |
|---|
| 2622 | REAL, INTENT (IN ) :: temp |
|---|
| 2623 | REAL, DIMENSION(32) :: a1 |
|---|
| 2624 | INTEGER :: i1, i1p1 |
|---|
| 2625 | REAL :: ratio |
|---|
| 2626 | |
|---|
| 2627 | data a1/0.100e-10,0.7939e-7,0.7841e-6,0.3369e-5,0.4336e-5, & |
|---|
| 2628 | 0.5285e-5,0.3728e-5,0.1852e-5,0.2991e-6,0.4248e-6, & |
|---|
| 2629 | 0.7434e-6,0.1812e-5,0.4394e-5,0.9145e-5,0.1725e-4, & |
|---|
| 2630 | 0.3348e-4,0.1725e-4,0.9175e-5,0.4412e-5,0.2252e-5, & |
|---|
| 2631 | 0.9115e-6,0.4876e-6,0.3473e-6,0.4758e-6,0.6306e-6, & |
|---|
| 2632 | 0.8573e-6,0.7868e-6,0.7192e-6,0.6513e-6,0.5956e-6, & |
|---|
| 2633 | 0.5333e-6,0.4834e-6/ |
|---|
| 2634 | |
|---|
| 2635 | i1=int(-temp)+1 |
|---|
| 2636 | i1p1=i1+1 |
|---|
| 2637 | ratio=-(temp)-float(i1-1) |
|---|
| 2638 | parama1=a1(i1)+ratio*( a1(i1p1)-a1(i1) ) |
|---|
| 2639 | |
|---|
| 2640 | END FUNCTION parama1 |
|---|
| 2641 | |
|---|
| 2642 | !---------------------------------------------------------------- |
|---|
| 2643 | REAL FUNCTION parama2(temp) |
|---|
| 2644 | !---------------------------------------------------------------- |
|---|
| 2645 | IMPLICIT NONE |
|---|
| 2646 | !---------------------------------------------------------------- |
|---|
| 2647 | ! This program calculate the parameter for crystal growth rate |
|---|
| 2648 | ! in Bergeron process |
|---|
| 2649 | !---------------------------------------------------------------- |
|---|
| 2650 | |
|---|
| 2651 | REAL, INTENT (IN ) :: temp |
|---|
| 2652 | REAL, DIMENSION(32) :: a2 |
|---|
| 2653 | INTEGER :: i1, i1p1 |
|---|
| 2654 | REAL :: ratio |
|---|
| 2655 | |
|---|
| 2656 | data a2/0.0100,0.4006,0.4831,0.5320,0.5307,0.5319,0.5249, & |
|---|
| 2657 | 0.4888,0.3849,0.4047,0.4318,0.4771,0.5183,0.5463, & |
|---|
| 2658 | 0.5651,0.5813,0.5655,0.5478,0.5203,0.4906,0.4447, & |
|---|
| 2659 | 0.4126,0.3960,0.4149,0.4320,0.4506,0.4483,0.4460, & |
|---|
| 2660 | 0.4433,0.4413,0.4382,0.4361/ |
|---|
| 2661 | i1=int(-temp)+1 |
|---|
| 2662 | i1p1=i1+1 |
|---|
| 2663 | ratio=-(temp)-float(i1-1) |
|---|
| 2664 | parama2=a2(i1)+ratio*( a2(i1p1)-a2(i1) ) |
|---|
| 2665 | |
|---|
| 2666 | END FUNCTION parama2 |
|---|
| 2667 | |
|---|
| 2668 | !---------------------------------------------------------------- |
|---|
| 2669 | REAL FUNCTION ggamma(X) |
|---|
| 2670 | !---------------------------------------------------------------- |
|---|
| 2671 | IMPLICIT NONE |
|---|
| 2672 | !---------------------------------------------------------------- |
|---|
| 2673 | REAL, INTENT(IN ) :: x |
|---|
| 2674 | REAL, DIMENSION(8) :: B |
|---|
| 2675 | INTEGER ::j, K1 |
|---|
| 2676 | REAL ::PF, G1TO2 ,TEMP |
|---|
| 2677 | |
|---|
| 2678 | DATA B/-.577191652,.988205891,-.897056937,.918206857, & |
|---|
| 2679 | -.756704078,.482199394,-.193527818,.035868343/ |
|---|
| 2680 | |
|---|
| 2681 | PF=1. |
|---|
| 2682 | TEMP=X |
|---|
| 2683 | DO 10 J=1,200 |
|---|
| 2684 | IF (TEMP .LE. 2) GO TO 20 |
|---|
| 2685 | TEMP=TEMP-1. |
|---|
| 2686 | 10 PF=PF*TEMP |
|---|
| 2687 | 100 FORMAT(//,5X,'module_mp_lin: INPUT TO GAMMA FUNCTION TOO LARGE, X=',E12.5) |
|---|
| 2688 | WRITE(wrf_err_message,100)X |
|---|
| 2689 | CALL wrf_error_fatal(wrf_err_message) |
|---|
| 2690 | 20 G1TO2=1. |
|---|
| 2691 | TEMP=TEMP - 1. |
|---|
| 2692 | DO 30 K1=1,8 |
|---|
| 2693 | 30 G1TO2=G1TO2 + B(K1)*TEMP**K1 |
|---|
| 2694 | ggamma=PF*G1TO2 |
|---|
| 2695 | |
|---|
| 2696 | END FUNCTION ggamma |
|---|
| 2697 | |
|---|
| 2698 | !---------------------------------------------------------------- |
|---|
| 2699 | |
|---|
| 2700 | END MODULE module_mp_lin |
|---|
| 2701 | |
|---|