1 | !WRF:MODEL_LAYER:PHYSICS |
---|
2 | ! |
---|
3 | |
---|
4 | MODULE module_mp_lin |
---|
5 | |
---|
6 | USE module_wrf_error |
---|
7 | ! |
---|
8 | REAL , PARAMETER, PRIVATE :: RH = 1.0 |
---|
9 | ! REAL , PARAMETER, PRIVATE :: episp0 = 0.622*611.21 |
---|
10 | REAL , PARAMETER, PRIVATE :: xnor = 8.0e6 |
---|
11 | REAL , PARAMETER, PRIVATE :: xnos = 3.0e6 |
---|
12 | |
---|
13 | ! Lin |
---|
14 | ! REAL , PARAMETER, PRIVATE :: xnog = 4.0e4 |
---|
15 | ! REAL , PARAMETER, PRIVATE :: rhograul = 917. |
---|
16 | |
---|
17 | ! Hobbs |
---|
18 | REAL , PARAMETER, PRIVATE :: xnog = 4.0e6 |
---|
19 | REAL , PARAMETER, PRIVATE :: rhograul = 400. |
---|
20 | |
---|
21 | ! |
---|
22 | REAL , PARAMETER, PRIVATE :: & |
---|
23 | qi0 = 1.0e-3, ql0 = 7.0e-4, qs0 = 6.0E-4, & |
---|
24 | xmi50 = 4.8e-10, xmi40 = 2.46e-10, & |
---|
25 | constb = 0.8, constd = 0.25, & |
---|
26 | o6 = 1./6., cdrag = 0.6, & |
---|
27 | avisc = 1.49628e-6, adiffwv = 8.7602e-5, & |
---|
28 | axka = 1.4132e3, di50 = 1.0e-4, xmi = 4.19e-13, & |
---|
29 | cw = 4.187e3, vf1s = 0.78, vf2s = 0.31, & |
---|
30 | xni0 = 1.0e-2, xmnin = 1.05e-18, bni = 0.5, & |
---|
31 | ci = 2.093e3 |
---|
32 | CONTAINS |
---|
33 | |
---|
34 | !------------------------------------------------------------------- |
---|
35 | ! Lin et al., 1983, JAM, 1065-1092, and |
---|
36 | ! Rutledge and Hobbs, 1984, JAS, 2949-2972 |
---|
37 | ! May 2009 - Changes and corrections from P. Blossey (U. Washington) |
---|
38 | !------------------------------------------------------------------- |
---|
39 | SUBROUTINE lin_et_al(th & |
---|
40 | ,qv, ql, qr & |
---|
41 | ,qi, qs & |
---|
42 | ,rho, pii, p & |
---|
43 | ,dt_in & |
---|
44 | ,z,ht, dz8w & |
---|
45 | ,grav, cp, Rair, rvapor & |
---|
46 | ,XLS, XLV, XLF, rhowater, rhosnow & |
---|
47 | ,EP2,SVP1,SVP2,SVP3,SVPT0 & |
---|
48 | , RAINNC, RAINNCV & |
---|
49 | , SNOWNC, SNOWNCV & |
---|
50 | , GRAUPELNC, GRAUPELNCV, SR & |
---|
51 | ,ids,ide, jds,jde, kds,kde & |
---|
52 | ,ims,ime, jms,jme, kms,kme & |
---|
53 | ,its,ite, jts,jte, kts,kte & |
---|
54 | ! Optional |
---|
55 | ,qlsink, precr, preci, precs, precg & |
---|
56 | , F_QG,F_QNDROP & |
---|
57 | , qg, qndrop & |
---|
58 | ) |
---|
59 | !------------------------------------------------------------------- |
---|
60 | IMPLICIT NONE |
---|
61 | !------------------------------------------------------------------- |
---|
62 | ! |
---|
63 | ! Shuhua 12/17/99 |
---|
64 | ! |
---|
65 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
66 | ims,ime, jms,jme, kms,kme , & |
---|
67 | its,ite, jts,jte, kts,kte |
---|
68 | |
---|
69 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
70 | INTENT(INOUT) :: & |
---|
71 | th, & |
---|
72 | qv, & |
---|
73 | ql, & |
---|
74 | qr |
---|
75 | |
---|
76 | ! |
---|
77 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
78 | INTENT(IN ) :: & |
---|
79 | rho, & |
---|
80 | pii, & |
---|
81 | p, & |
---|
82 | dz8w |
---|
83 | |
---|
84 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
85 | INTENT(IN ) :: z |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN) :: ht |
---|
90 | |
---|
91 | REAL, INTENT(IN ) :: dt_in, & |
---|
92 | grav, & |
---|
93 | Rair, & |
---|
94 | rvapor, & |
---|
95 | cp, & |
---|
96 | XLS, & |
---|
97 | XLV, & |
---|
98 | XLF, & |
---|
99 | rhowater, & |
---|
100 | rhosnow |
---|
101 | |
---|
102 | REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0 |
---|
103 | |
---|
104 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
105 | INTENT(INOUT) :: RAINNC, & |
---|
106 | RAINNCV, & |
---|
107 | SR |
---|
108 | |
---|
109 | ! Optional |
---|
110 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
111 | OPTIONAL, & |
---|
112 | INTENT(INOUT) :: SNOWNC, & |
---|
113 | SNOWNCV, & |
---|
114 | GRAUPELNC, & |
---|
115 | GRAUPELNCV |
---|
116 | |
---|
117 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
118 | OPTIONAL, & |
---|
119 | INTENT(INOUT) :: & |
---|
120 | qi, & |
---|
121 | qs, & |
---|
122 | qg, & |
---|
123 | qndrop |
---|
124 | |
---|
125 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
126 | OPTIONAL, INTENT(OUT ) :: & |
---|
127 | qlsink, & ! cloud water conversion to rain (/s) |
---|
128 | precr, & ! rain precipitation rate at all levels (kg/m2/s) |
---|
129 | preci, & ! ice precipitation rate at all levels (kg/m2/s) |
---|
130 | precs, & ! snow precipitation rate at all levels (kg/m2/s) |
---|
131 | precg ! graupel precipitation rate at all levels (kg/m2/s) |
---|
132 | |
---|
133 | LOGICAL, INTENT(IN), OPTIONAL :: F_QG, F_QNDROP |
---|
134 | |
---|
135 | ! LOCAL VAR |
---|
136 | |
---|
137 | INTEGER :: min_q, max_q |
---|
138 | |
---|
139 | REAL, DIMENSION( its:ite , jts:jte ) & |
---|
140 | :: rain, snow, graupel,ice |
---|
141 | |
---|
142 | REAL, DIMENSION( kts:kte ) :: qvz, qlz, qrz, & |
---|
143 | qiz, qsz, qgz, & |
---|
144 | thz, & |
---|
145 | tothz, rhoz, & |
---|
146 | orhoz, sqrhoz, & |
---|
147 | prez, zz, & |
---|
148 | precrz, preciz, precsz, precgz, & |
---|
149 | qndropz, & |
---|
150 | dzw, preclw |
---|
151 | |
---|
152 | LOGICAL :: flag_qg, flag_qndrop |
---|
153 | ! |
---|
154 | REAL :: dt, pptrain, pptsnow, pptgraul, rhoe_s, & |
---|
155 | gindex, pptice |
---|
156 | real :: qndropconst |
---|
157 | |
---|
158 | INTEGER :: i,j,k |
---|
159 | ! |
---|
160 | flag_qg = .false. |
---|
161 | flag_qndrop = .false. |
---|
162 | IF ( PRESENT ( f_qg ) ) flag_qg = f_qg |
---|
163 | IF ( PRESENT ( f_qndrop ) ) flag_qndrop = f_qndrop |
---|
164 | ! |
---|
165 | dt=dt_in |
---|
166 | rhoe_s=1.29 |
---|
167 | qndropconst=100.e6 !sg |
---|
168 | gindex=1.0 |
---|
169 | |
---|
170 | IF (.not.flag_qg) gindex=0. |
---|
171 | |
---|
172 | j_loop: DO j = jts, jte |
---|
173 | i_loop: DO i = its, ite |
---|
174 | ! |
---|
175 | !- write data from 3-D to 1-D |
---|
176 | ! |
---|
177 | DO k = kts, kte |
---|
178 | qvz(k)=qv(i,k,j) |
---|
179 | qlz(k)=ql(i,k,j) |
---|
180 | qrz(k)=qr(i,k,j) |
---|
181 | thz(k)=th(i,k,j) |
---|
182 | ! |
---|
183 | rhoz(k)=rho(i,k,j) |
---|
184 | orhoz(k)=1./rhoz(k) |
---|
185 | prez(k)=p(i,k,j) |
---|
186 | sqrhoz(k)=sqrt(rhoe_s*orhoz(k)) |
---|
187 | tothz(k)=pii(i,k,j) |
---|
188 | zz(k)=z(i,k,j) |
---|
189 | dzw(k)=dz8w(i,k,j) |
---|
190 | END DO |
---|
191 | |
---|
192 | IF (flag_qndrop .AND. PRESENT( qndrop )) THEN |
---|
193 | DO k = kts, kte |
---|
194 | qndropz(k)=qndrop(i,k,j) |
---|
195 | ENDDO |
---|
196 | ELSE |
---|
197 | DO k = kts, kte |
---|
198 | qndropz(k)=qndropconst |
---|
199 | ENDDO |
---|
200 | ENDIF |
---|
201 | |
---|
202 | DO k = kts, kte |
---|
203 | qiz(k)=qi(i,k,j) |
---|
204 | qsz(k)=qs(i,k,j) |
---|
205 | ENDDO |
---|
206 | |
---|
207 | IF ( flag_qg .AND. PRESENT( qg ) ) THEN |
---|
208 | DO k = kts, kte |
---|
209 | qgz(k)=qg(i,k,j) |
---|
210 | ENDDO |
---|
211 | ELSE |
---|
212 | DO k = kts, kte |
---|
213 | qgz(k)=0. |
---|
214 | ENDDO |
---|
215 | ENDIF |
---|
216 | ! |
---|
217 | pptrain=0. |
---|
218 | pptsnow=0. |
---|
219 | pptgraul=0. |
---|
220 | pptice=0. |
---|
221 | CALL clphy1d( dt, qvz, qlz, qrz, qiz, qsz, qgz, & |
---|
222 | qndropz,flag_qndrop, & |
---|
223 | thz, tothz, rhoz, orhoz, sqrhoz, & |
---|
224 | prez, zz, dzw, ht(I,J), preclw, & |
---|
225 | precrz, preciz, precsz, precgz, & |
---|
226 | pptrain, pptsnow, pptgraul, pptice, & |
---|
227 | grav, cp, Rair, rvapor, gindex, & |
---|
228 | XLS, XLV, XLF, rhowater, rhosnow, & |
---|
229 | EP2,SVP1,SVP2,SVP3,SVPT0, & |
---|
230 | kts, kte, i, j ) |
---|
231 | |
---|
232 | ! |
---|
233 | ! Precipitation from cloud microphysics -- only for one time step |
---|
234 | ! |
---|
235 | ! unit is transferred from m to mm |
---|
236 | |
---|
237 | ! |
---|
238 | rain(i,j)=pptrain |
---|
239 | snow(i,j)=pptsnow |
---|
240 | graupel(i,j)=pptgraul |
---|
241 | ice(i,j)=pptice |
---|
242 | sr(i,j)=(pptice+pptsnow+pptgraul)/(pptice+pptsnow+pptgraul+pptrain+1.e-12) |
---|
243 | ! |
---|
244 | RAINNCV(i,j)= pptrain + pptsnow + pptgraul + pptice |
---|
245 | RAINNC(i,j)=RAINNC(i,j) + pptrain + pptsnow + pptgraul + pptice |
---|
246 | IF(PRESENT(SNOWNCV))SNOWNCV(i,j)= pptsnow + pptice |
---|
247 | IF(PRESENT(SNOWNC))SNOWNC(i,j)=SNOWNC(i,j) + pptsnow + pptice |
---|
248 | IF(PRESENT(GRAUPELNCV))GRAUPELNCV(i,j)= pptgraul |
---|
249 | IF(PRESENT(GRAUPELNC))GRAUPELNC(i,j)=GRAUPELNC(i,j) + pptgraul |
---|
250 | |
---|
251 | ! |
---|
252 | !- update data from 1-D back to 3-D |
---|
253 | ! |
---|
254 | ! |
---|
255 | IF ( present(qlsink) .and. present(precr) ) THEN !sg beg |
---|
256 | DO k = kts, kte |
---|
257 | if(ql(i,k,j)>1.e-20) then |
---|
258 | qlsink(i,k,j)=-preclw(k)/ql(i,k,j) |
---|
259 | else |
---|
260 | qlsink(i,k,j)=0. |
---|
261 | endif |
---|
262 | precr(i,k,j)=precrz(k) |
---|
263 | END DO |
---|
264 | END IF !sg end |
---|
265 | |
---|
266 | DO k = kts, kte |
---|
267 | qv(i,k,j)=qvz(k) |
---|
268 | ql(i,k,j)=qlz(k) |
---|
269 | qr(i,k,j)=qrz(k) |
---|
270 | th(i,k,j)=thz(k) |
---|
271 | END DO |
---|
272 | ! |
---|
273 | IF ( flag_qndrop .AND. PRESENT( qndrop ) ) THEN !sg beg |
---|
274 | DO k = kts, kte |
---|
275 | qndrop(i,k,j)=qndropz(k) |
---|
276 | ENDDO |
---|
277 | END IF !sg end |
---|
278 | |
---|
279 | DO k = kts, kte |
---|
280 | qi(i,k,j)=qiz(k) |
---|
281 | qs(i,k,j)=qsz(k) |
---|
282 | ENDDO |
---|
283 | |
---|
284 | IF ( present(preci) ) THEN !sg beg |
---|
285 | DO k = kts, kte |
---|
286 | preci(i,k,j)=preciz(k) |
---|
287 | ENDDO |
---|
288 | END IF |
---|
289 | |
---|
290 | IF ( present(precs) ) THEN |
---|
291 | DO k = kts, kte |
---|
292 | precs(i,k,j)=precsz(k) |
---|
293 | ENDDO |
---|
294 | END IF !sg end |
---|
295 | |
---|
296 | IF ( flag_qg .AND. PRESENT( qg ) ) THEN |
---|
297 | DO k = kts, kte |
---|
298 | qg(i,k,j)=qgz(k) |
---|
299 | ENDDO |
---|
300 | |
---|
301 | IF ( present(precg) ) THEN !sg beg |
---|
302 | DO k = kts, kte |
---|
303 | precg(i,k,j)=precgz(k) |
---|
304 | ENDDO !sg end |
---|
305 | END IF |
---|
306 | ELSE !sg beg |
---|
307 | IF ( present(precg) ) precg(i,:,j)=0. !sg end |
---|
308 | ENDIF |
---|
309 | ! |
---|
310 | ENDDO i_loop |
---|
311 | ENDDO j_loop |
---|
312 | |
---|
313 | END SUBROUTINE lin_et_al |
---|
314 | |
---|
315 | |
---|
316 | !----------------------------------------------------------------------- |
---|
317 | SUBROUTINE clphy1d(dt, qvz, qlz, qrz, qiz, qsz, qgz, & |
---|
318 | qndropz,flag_qndrop, & |
---|
319 | thz, tothz, rho, orho, sqrho, & |
---|
320 | prez, zz, dzw, zsfc, preclw, & |
---|
321 | precrz, preciz, precsz, precgz, & |
---|
322 | pptrain, pptsnow, pptgraul, & |
---|
323 | pptice, grav, cp, Rair, rvapor, gindex, & |
---|
324 | XLS, XLV, XLF, rhowater, rhosnow, & |
---|
325 | EP2,SVP1,SVP2,SVP3,SVPT0, & |
---|
326 | kts, kte, i, j ) |
---|
327 | !----------------------------------------------------------------------- |
---|
328 | IMPLICIT NONE |
---|
329 | !----------------------------------------------------------------------- |
---|
330 | ! This program handles the vertical 1-D cloud micphysics |
---|
331 | !----------------------------------------------------------------------- |
---|
332 | ! avisc: constant in empirical formular for dynamic viscosity of air |
---|
333 | ! =1.49628e-6 [kg/m/s] = 1.49628e-5 [g/cm/s] |
---|
334 | ! adiffwv: constant in empirical formular for diffusivity of water |
---|
335 | ! vapor in air |
---|
336 | ! = 8.7602e-5 [kgm/s3] = 8.7602 [gcm/s3] |
---|
337 | ! axka: constant in empirical formular for thermal conductivity of air |
---|
338 | ! = 1.4132e3 [m2/s2/K] = 1.4132e7 [cm2/s2/K] |
---|
339 | ! qi0: mixing ratio threshold for cloud ice aggregation [kg/kg] |
---|
340 | ! xmi50: mass of a 50 micron ice crystal |
---|
341 | ! = 4.8e-10 [kg] =4.8e-7 [g] |
---|
342 | ! xmi40: mass of a 40 micron ice crystal |
---|
343 | ! = 2.46e-10 [kg] = 2.46e-7 [g] |
---|
344 | ! di50: diameter of a 50 micro (radius) ice crystal |
---|
345 | ! =1.0e-4 [m] |
---|
346 | ! xmi: mass of one cloud ice crystal |
---|
347 | ! =4.19e-13 [kg] = 4.19e-10 [g] |
---|
348 | ! oxmi=1.0/xmi |
---|
349 | ! |
---|
350 | ! xni0=1.0e-2 [m-3] The value given in Lin et al. is wrong.(see |
---|
351 | ! Hsie et al.(1980) and Rutledge and Hobbs(1983) ) |
---|
352 | ! bni=0.5 [K-1] |
---|
353 | ! xmnin: mass of a natural ice nucleus |
---|
354 | ! = 1.05e-18 [kg] = 1.05e-15 [g] This values is suggested by |
---|
355 | ! Hsie et al. (1980) |
---|
356 | ! = 1.0e-12 [kg] suggested by Rutlegde and Hobbs (1983) |
---|
357 | ! rhowater: density of water=1.0 g/cm3=1000.0 kg/m3 |
---|
358 | ! consta: constant in empirical formular for terminal |
---|
359 | ! velocity of raindrop |
---|
360 | ! =2115.0 [cm**(1-b)/s] = 2115.0*0.01**(1-b) [m**(1-b)/s] |
---|
361 | ! constb: constant in empirical formular for terminal |
---|
362 | ! velocity of raindrop |
---|
363 | ! =0.8 |
---|
364 | ! xnor: intercept parameter of the raindrop size distribution |
---|
365 | ! = 0.08 cm-4 = 8.0e6 m-4 |
---|
366 | ! araut: time sacle for autoconversion of cloud water to raindrops |
---|
367 | ! =1.0e-3 [s-1] |
---|
368 | ! ql0: mixing ratio threshold for cloud watercoalescence [kg/kg] |
---|
369 | ! vf1r: ventilation factors for rain =0.78 |
---|
370 | ! vf2r: ventilation factors for rain =0.31 |
---|
371 | ! rhosnow: density of snow=0.1 g/cm3=100.0 kg/m3 |
---|
372 | ! constc: constant in empirical formular for terminal |
---|
373 | ! velocity of snow |
---|
374 | ! =152.93 [cm**(1-d)/s] = 152.93*0.01**(1-d) [m**(1-d)/s] |
---|
375 | ! constd: constant in empirical formular for terminal |
---|
376 | ! velocity of snow |
---|
377 | ! =0.25 |
---|
378 | ! xnos: intercept parameter of the snowflake size distribution |
---|
379 | ! vf1s: ventilation factors for snow =0.78 |
---|
380 | ! vf2s: ventilation factors for snow =0.31 |
---|
381 | ! |
---|
382 | !---------------------------------------------------------------------- |
---|
383 | |
---|
384 | INTEGER, INTENT(IN ) :: kts, kte, i, j |
---|
385 | |
---|
386 | REAL, DIMENSION( kts:kte ), & |
---|
387 | INTENT(INOUT) :: qvz, qlz, qrz, qiz, qsz, & |
---|
388 | qndropz, & |
---|
389 | qgz, thz |
---|
390 | |
---|
391 | REAL, DIMENSION( kts:kte ), & |
---|
392 | INTENT(IN ) :: tothz, rho, orho, sqrho, & |
---|
393 | prez, zz, dzw |
---|
394 | |
---|
395 | REAL, INTENT(IN ) :: dt, grav, cp, Rair, rvapor, & |
---|
396 | XLS, XLV, XLF, rhowater, & |
---|
397 | rhosnow,EP2,SVP1,SVP2,SVP3,SVPT0 |
---|
398 | |
---|
399 | REAL, DIMENSION( kts:kte ), INTENT(OUT) :: preclw, & |
---|
400 | precrz, preciz, precsz, precgz |
---|
401 | |
---|
402 | REAL, INTENT(INOUT) :: pptrain, pptsnow, pptgraul, pptice |
---|
403 | |
---|
404 | REAL, INTENT(IN ) :: zsfc |
---|
405 | logical, intent(in) :: flag_qndrop !sg |
---|
406 | |
---|
407 | ! local vars |
---|
408 | |
---|
409 | REAL :: obp4, bp3, bp5, bp6, odp4, & |
---|
410 | dp3, dp5, dp5o2 |
---|
411 | |
---|
412 | |
---|
413 | ! temperary vars |
---|
414 | |
---|
415 | REAL :: tmp, tmp0, tmp1, tmp2,tmp3, & |
---|
416 | tmp4,delta2,delta3, delta4, & |
---|
417 | tmpa,tmpb,tmpc,tmpd,alpha1, & |
---|
418 | qic, abi,abr, abg, odtberg, & |
---|
419 | vti50,eiw,eri,esi,esr, esw, & |
---|
420 | erw,delrs,term0,term1,araut, & |
---|
421 | constg2, vf1r, vf2r,alpha2, & |
---|
422 | Ap, Bp, egw, egi, egs, egr, & |
---|
423 | constg, gdelta4, g1sdelt4, & |
---|
424 | factor, tmp_r, tmp_s,tmp_g, & |
---|
425 | qlpqi, rsat, a1, a2, xnin |
---|
426 | |
---|
427 | INTEGER :: k |
---|
428 | ! |
---|
429 | REAL, DIMENSION( kts:kte ) :: oprez, tem, temcc, theiz, qswz, & |
---|
430 | qsiz, qvoqswz, qvoqsiz, qvzodt, & |
---|
431 | qlzodt, qizodt, qszodt, qrzodt, & |
---|
432 | qgzodt |
---|
433 | |
---|
434 | REAL, DIMENSION( kts:kte ) :: psnow, psaut, psfw, psfi, praci, & |
---|
435 | piacr, psaci, psacw, psdep, pssub, & |
---|
436 | pracs, psacr, psmlt, psmltevp, & |
---|
437 | prain, praut, pracw, prevp, pvapor, & |
---|
438 | pclw, pladj, pcli, pimlt, pihom, & |
---|
439 | pidw, piadj, pgraupel, pgaut, & |
---|
440 | pgfr, pgacw, pgaci, pgacr, pgacs, & |
---|
441 | pgacip,pgacrp,pgacsp,pgwet, pdry, & |
---|
442 | pgsub, pgdep, pgmlt, pgmltevp, & |
---|
443 | qschg, qgchg |
---|
444 | ! |
---|
445 | |
---|
446 | REAL, DIMENSION( kts:kte ) :: qvsbar, rs0, viscmu, visc, diffwv, & |
---|
447 | schmidt, xka |
---|
448 | |
---|
449 | REAL, DIMENSION( kts:kte ) :: vtr, vts, vtg, & |
---|
450 | vtrold, vtsold, vtgold, vtiold, & |
---|
451 | xlambdar, xlambdas, xlambdag, & |
---|
452 | olambdar, olambdas, olambdag |
---|
453 | |
---|
454 | REAL :: episp0k, dtb, odtb, pi, pio4, & |
---|
455 | pio6, oxLf, xLvocp, xLfocp, consta, & |
---|
456 | constc, ocdrag, gambp4, gamdp4, & |
---|
457 | gam4pt5, Cpor, oxmi, gambp3, gamdp3,& |
---|
458 | gambp6, gam3pt5, gam2pt75, gambp5o2,& |
---|
459 | gamdp5o2, cwoxlf, ocp, xni50, es |
---|
460 | ! |
---|
461 | REAL :: qvmin=1.e-20 |
---|
462 | REAL :: gindex |
---|
463 | REAL :: temc1,save1,save2,xni50mx |
---|
464 | |
---|
465 | ! for terminal velocity flux |
---|
466 | |
---|
467 | INTEGER :: min_q, max_q |
---|
468 | REAL :: t_del_tv, del_tv, flux, fluxin, fluxout ,tmpqrz |
---|
469 | LOGICAL :: notlast |
---|
470 | ! |
---|
471 | REAL :: tmp_tem, tmp_temcc !bloss |
---|
472 | ! |
---|
473 | real :: liqconc, dis, beta, kappa, p0, xc, capn,rhocgs |
---|
474 | |
---|
475 | !sg: begin |
---|
476 | ! liqconc = liquid water content (g cm^-3) |
---|
477 | ! capn = droplet number concentration (# cm^-3) |
---|
478 | ! dis = relative dispersion (dimensionless) between 0.2 and 1. |
---|
479 | ! Written by Yangang Liu based on Liu et al., GRL 32, 2005. |
---|
480 | ! Autoconversion rate p = p0 * (threshold function) |
---|
481 | ! p0 = "base" autoconversion rate (g cm^-3 s^-1) |
---|
482 | ! kappa = constant in Long kernel = [kappa2 * (3/(4*pi*rhow))^3] in Liu papers |
---|
483 | ! beta = Condensation rate constant = (beta6)^6 in Liu papers |
---|
484 | ! xc = Normalized critical mass |
---|
485 | ! *********************************************************** |
---|
486 | if(flag_qndrop)then |
---|
487 | dis = 0.5 ! droplet dispersion, set to 0.5 per SG 8-Nov-2006 |
---|
488 | ! Give empirical constants |
---|
489 | kappa=1.1d10 |
---|
490 | ! Calculate Condensation rate constant |
---|
491 | beta = (1.0d0+3.0d0*dis**2)*(1.0d0+4.0d0*dis**2)* & |
---|
492 | (1.0d0+5.0d0*dis**2)/((1.0d0+dis**2)*(1.0d0+2.0d0*dis**2)) |
---|
493 | endif |
---|
494 | !sg: end |
---|
495 | |
---|
496 | dtb=dt |
---|
497 | odtb=1./dtb |
---|
498 | pi=acos(-1.) |
---|
499 | pio4=acos(-1.)/4. |
---|
500 | pio6=acos(-1.)/6. |
---|
501 | ocp=1./cp |
---|
502 | oxLf=1./xLf |
---|
503 | xLvocp=xLv/cp |
---|
504 | xLfocp=xLf/cp |
---|
505 | consta=2115.0*0.01**(1-constb) |
---|
506 | constc=152.93*0.01**(1-constd) |
---|
507 | ocdrag=1./Cdrag |
---|
508 | ! episp0k=RH*episp0 |
---|
509 | episp0k=RH*ep2*1000.*svp1 |
---|
510 | ! |
---|
511 | gambp4=ggamma(constb+4.) |
---|
512 | gamdp4=ggamma(constd+4.) |
---|
513 | gam4pt5=ggamma(4.5) |
---|
514 | Cpor=cp/Rair |
---|
515 | oxmi=1.0/xmi |
---|
516 | gambp3=ggamma(constb+3.) |
---|
517 | gamdp3=ggamma(constd+3.) |
---|
518 | gambp6=ggamma(constb+6) |
---|
519 | gam3pt5=ggamma(3.5) |
---|
520 | gam2pt75=ggamma(2.75) |
---|
521 | gambp5o2=ggamma((constb+5.)/2.) |
---|
522 | gamdp5o2=ggamma((constd+5.)/2.) |
---|
523 | cwoxlf=cw/xlf |
---|
524 | delta2=0. |
---|
525 | delta3=0. |
---|
526 | delta4=0. |
---|
527 | ! |
---|
528 | !----------------------------------------------------------------------- |
---|
529 | ! oprez 1./prez ( prez : pressure) |
---|
530 | ! qsw saturated mixing ratio on water surface |
---|
531 | ! qsi saturated mixing ratio on ice surface |
---|
532 | ! episp0k RH*e*saturated pressure at 273.15 K |
---|
533 | ! qvoqsw qv/qsw |
---|
534 | ! qvoqsi qv/qsi |
---|
535 | ! qvzodt qv/dt |
---|
536 | ! qlzodt ql/dt |
---|
537 | ! qizodt qi/dt |
---|
538 | ! qszodt qs/dt |
---|
539 | ! qrzodt qr/dt |
---|
540 | ! qgzodt qg/dt |
---|
541 | ! |
---|
542 | ! temcc temperature in dregee C |
---|
543 | ! |
---|
544 | |
---|
545 | obp4=1.0/(constb+4.0) |
---|
546 | bp3=constb+3.0 |
---|
547 | bp5=constb+5.0 |
---|
548 | bp6=constb+6.0 |
---|
549 | odp4=1.0/(constd+4.0) |
---|
550 | dp3=constd+3.0 |
---|
551 | dp5=constd+5.0 |
---|
552 | dp5o2=0.5*(constd+5.0) |
---|
553 | ! |
---|
554 | do k=kts,kte |
---|
555 | oprez(k)=1./prez(k) |
---|
556 | enddo |
---|
557 | |
---|
558 | do k=kts,kte |
---|
559 | qlz(k)=amax1( 0.0,qlz(k) ) |
---|
560 | qiz(k)=amax1( 0.0,qiz(k) ) |
---|
561 | qvz(k)=amax1( qvmin,qvz(k) ) |
---|
562 | qsz(k)=amax1( 0.0,qsz(k) ) |
---|
563 | qrz(k)=amax1( 0.0,qrz(k) ) |
---|
564 | qgz(k)=amax1( 0.0,qgz(k) ) |
---|
565 | qndropz(k)=amax1( 0.0,qndropz(k) ) !sg |
---|
566 | ! |
---|
567 | tem(k)=thz(k)*tothz(k) |
---|
568 | temcc(k)=tem(k)-273.15 |
---|
569 | ! |
---|
570 | ! qswz(k)=episp0k*oprez(k)* & |
---|
571 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
572 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
573 | qswz(k)=ep2*es/(prez(k)-es) |
---|
574 | if (tem(k) .lt. 273.15 ) then |
---|
575 | ! qsiz(k)=episp0k*oprez(k)* & |
---|
576 | ! exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
---|
577 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
---|
578 | qsiz(k)=ep2*es/(prez(k)-es) |
---|
579 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
---|
580 | else |
---|
581 | qsiz(k)=qswz(k) |
---|
582 | endif |
---|
583 | ! |
---|
584 | qvoqswz(k)=qvz(k)/qswz(k) |
---|
585 | qvoqsiz(k)=qvz(k)/qsiz(k) |
---|
586 | |
---|
587 | theiz(k)=thz(k)+(xlvocp*qvz(k)-xlfocp*qiz(k))/tothz(k) |
---|
588 | enddo |
---|
589 | |
---|
590 | |
---|
591 | ! |
---|
592 | ! |
---|
593 | !----------------------------------------------------------------------- |
---|
594 | ! In this simple stable cloud parameterization scheme, only five |
---|
595 | ! forms of water substance (water vapor, cloud water, cloud ice, |
---|
596 | ! rain and snow are considered. The prognostic variables are total |
---|
597 | ! water (qp),cloud water (ql), and cloud ice (qi). Rain and snow are |
---|
598 | ! diagnosed following Nagata and Ogura, 1991, MWR, 1309-1337. Eq (A7). |
---|
599 | ! the micro physics are based on (1) Hsie et al.,1980, JAM, 950-977 ; |
---|
600 | ! (2) Lin et al., 1983, JAM, 1065-1092 ; (3) Rutledge and Hobbs, 1983, |
---|
601 | ! JAS, 1185-1206 ; (4) Rutledge and Hobbs, 1984, JAS, 2949-2972. |
---|
602 | !----------------------------------------------------------------------- |
---|
603 | ! |
---|
604 | ! rhowater: density of water=1.0 g/cm3=1000.0 kg/m3 |
---|
605 | ! rhosnow: density of snow=0.1 g/cm3=100.0 kg/m3 |
---|
606 | ! xnor: intercept parameter of the raindrop size distribution |
---|
607 | ! = 0.08 cm-4 = 8.0e6 m-4 |
---|
608 | ! xnos: intercept parameter of the snowflake size distribution |
---|
609 | ! = 0.03 cm-4 = 3.0e6 m-4 |
---|
610 | ! xnog: intercept parameter of the graupel size distribution |
---|
611 | ! = 4.0e-4 cm-4 = 4.0e4 m-4 |
---|
612 | ! consta: constant in empirical formular for terminal |
---|
613 | ! velocity of raindrop |
---|
614 | ! =2115.0 [cm**(1-b)/s] = 2115.0*0.01**(1-b) [m**(1-b)/s] |
---|
615 | ! constb: constant in empirical formular for terminal |
---|
616 | ! velocity of raindrop |
---|
617 | ! =0.8 |
---|
618 | ! constc: constant in empirical formular for terminal |
---|
619 | ! velocity of snow |
---|
620 | ! =152.93 [cm**(1-d)/s] = 152.93*0.01**(1-d) [m**(1-d)/s] |
---|
621 | ! constd: constant in empirical formular for terminal |
---|
622 | ! velocity of snow |
---|
623 | ! =0.25 |
---|
624 | ! avisc: constant in empirical formular for dynamic viscosity of air |
---|
625 | ! =1.49628e-6 [kg/m/s] = 1.49628e-5 [g/cm/s] |
---|
626 | ! adiffwv: constant in empirical formular for diffusivity of water |
---|
627 | ! vapor in air |
---|
628 | ! = 8.7602e-5 [kgm/s3] = 8.7602 [gcm/s3] |
---|
629 | ! axka: constant in empirical formular for thermal conductivity of air |
---|
630 | ! = 1.4132e3 [m2/s2/K] = 1.4132e7 [cm2/s2/K] |
---|
631 | ! qi0: mixing ratio threshold for cloud ice aggregation [kg/kg] |
---|
632 | ! = 1.0e-3 g/g = 1.0e-3 kg/gk |
---|
633 | ! ql0: mixing ratio threshold for cloud watercoalescence [kg/kg] |
---|
634 | ! = 2.0e-3 g/g = 2.0e-3 kg/gk |
---|
635 | ! qs0: mixing ratio threshold for snow aggregation |
---|
636 | ! = 6.0e-4 g/g = 6.0e-4 kg/gk |
---|
637 | ! xmi50: mass of a 50 micron ice crystal |
---|
638 | ! = 4.8e-10 [kg] =4.8e-7 [g] |
---|
639 | ! xmi40: mass of a 40 micron ice crystal |
---|
640 | ! = 2.46e-10 [kg] = 2.46e-7 [g] |
---|
641 | ! di50: diameter of a 50 micro (radius) ice crystal |
---|
642 | ! =1.0e-4 [m] |
---|
643 | ! xmi: mass of one cloud ice crystal |
---|
644 | ! =4.19e-13 [kg] = 4.19e-10 [g] |
---|
645 | ! oxmi=1.0/xmi |
---|
646 | ! |
---|
647 | |
---|
648 | |
---|
649 | ! if gindex=1.0 include graupel |
---|
650 | ! if gindex=0. no graupel |
---|
651 | ! |
---|
652 | ! |
---|
653 | do k=kts,kte |
---|
654 | psnow(k)=0.0 |
---|
655 | psaut(k)=0.0 |
---|
656 | psfw(k)=0.0 |
---|
657 | psfi(k)=0.0 |
---|
658 | praci(k)=0.0 |
---|
659 | piacr(k)=0.0 |
---|
660 | psaci(k)=0.0 |
---|
661 | psacw(k)=0.0 |
---|
662 | psdep(k)=0.0 |
---|
663 | pssub(k)=0.0 |
---|
664 | pracs(k)=0.0 |
---|
665 | psacr(k)=0.0 |
---|
666 | psmlt(k)=0.0 |
---|
667 | psmltevp(k)=0.0 |
---|
668 | ! |
---|
669 | prain(k)=0.0 |
---|
670 | praut(k)=0.0 |
---|
671 | pracw(k)=0.0 |
---|
672 | prevp(k)=0.0 |
---|
673 | ! |
---|
674 | pvapor(k)=0.0 |
---|
675 | ! |
---|
676 | pclw(k)=0.0 |
---|
677 | preclw(k)=0.0 !sg |
---|
678 | pladj(k)=0.0 |
---|
679 | ! |
---|
680 | pcli(k)=0.0 |
---|
681 | pimlt(k)=0.0 |
---|
682 | pihom(k)=0.0 |
---|
683 | pidw(k)=0.0 |
---|
684 | piadj(k)=0.0 |
---|
685 | enddo |
---|
686 | |
---|
687 | ! |
---|
688 | !!! graupel |
---|
689 | ! |
---|
690 | do k=kts,kte |
---|
691 | pgraupel(k)=0.0 |
---|
692 | pgaut(k)=0.0 |
---|
693 | pgfr(k)=0.0 |
---|
694 | pgacw(k)=0.0 |
---|
695 | pgaci(k)=0.0 |
---|
696 | pgacr(k)=0.0 |
---|
697 | pgacs(k)=0.0 |
---|
698 | pgacip(k)=0.0 |
---|
699 | pgacrP(k)=0.0 |
---|
700 | pgacsp(k)=0.0 |
---|
701 | pgwet(k)=0.0 |
---|
702 | pdry(k)=0.0 |
---|
703 | pgsub(k)=0.0 |
---|
704 | pgdep(k)=0.0 |
---|
705 | pgmlt(k)=0.0 |
---|
706 | pgmltevp(k)=0.0 |
---|
707 | qschg(k)=0. |
---|
708 | qgchg(k)=0. |
---|
709 | enddo |
---|
710 | ! |
---|
711 | ! |
---|
712 | ! Set rs0=episp0*oprez(k) |
---|
713 | ! episp0=e*saturated pressure at 273.15 K |
---|
714 | ! e = 0.622 |
---|
715 | ! |
---|
716 | DO k=kts,kte |
---|
717 | rs0(k)=ep2*1000.*svp1/(prez(k)-1000.*svp1) |
---|
718 | END DO |
---|
719 | ! |
---|
720 | !*********************************************************************** |
---|
721 | ! Calculate precipitation fluxes due to terminal velocities. |
---|
722 | !*********************************************************************** |
---|
723 | ! |
---|
724 | !- Calculate termianl velocity (vt?) of precipitation q?z |
---|
725 | !- Find maximum vt? to determine the small delta t |
---|
726 | ! |
---|
727 | !-- rain |
---|
728 | ! |
---|
729 | t_del_tv=0. |
---|
730 | del_tv=dtb |
---|
731 | notlast=.true. |
---|
732 | DO while (notlast) |
---|
733 | ! |
---|
734 | min_q=kte |
---|
735 | max_q=kts-1 |
---|
736 | ! |
---|
737 | do k=kts,kte-1 |
---|
738 | if (qrz(k) .gt. 1.0e-8) then |
---|
739 | min_q=min0(min_q,k) |
---|
740 | max_q=max0(max_q,k) |
---|
741 | tmp1=sqrt(pi*rhowater*xnor/rho(k)/qrz(k)) |
---|
742 | tmp1=sqrt(tmp1) |
---|
743 | vtrold(k)=o6*consta*gambp4*sqrho(k)/tmp1**constb |
---|
744 | if (k .eq. 1) then |
---|
745 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtrold(k)) |
---|
746 | else |
---|
747 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtrold(k)) |
---|
748 | endif |
---|
749 | else |
---|
750 | vtrold(k)=0. |
---|
751 | endif |
---|
752 | enddo |
---|
753 | |
---|
754 | if (max_q .ge. min_q) then |
---|
755 | ! |
---|
756 | !- Check if the summation of the small delta t >= big delta t |
---|
757 | ! (t_del_tv) (del_tv) (dtb) |
---|
758 | |
---|
759 | t_del_tv=t_del_tv+del_tv |
---|
760 | ! |
---|
761 | if ( t_del_tv .ge. dtb ) then |
---|
762 | notlast=.false. |
---|
763 | del_tv=dtb+del_tv-t_del_tv |
---|
764 | endif |
---|
765 | ! |
---|
766 | fluxin=0. |
---|
767 | do k=max_q,min_q,-1 |
---|
768 | fluxout=rho(k)*vtrold(k)*qrz(k) |
---|
769 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
---|
770 | tmpqrz=qrz(k) |
---|
771 | qrz(k)=qrz(k)+del_tv*flux |
---|
772 | fluxin=fluxout |
---|
773 | enddo |
---|
774 | if (min_q .eq. 1) then |
---|
775 | pptrain=pptrain+fluxin*del_tv |
---|
776 | else |
---|
777 | qrz(min_q-1)=qrz(min_q-1)+del_tv* & |
---|
778 | fluxin/rho(min_q-1)/dzw(min_q-1) |
---|
779 | endif |
---|
780 | ! |
---|
781 | else |
---|
782 | notlast=.false. |
---|
783 | endif |
---|
784 | ENDDO |
---|
785 | |
---|
786 | ! |
---|
787 | !-- snow |
---|
788 | ! |
---|
789 | t_del_tv=0. |
---|
790 | del_tv=dtb |
---|
791 | notlast=.true. |
---|
792 | |
---|
793 | DO while (notlast) |
---|
794 | ! |
---|
795 | min_q=kte |
---|
796 | max_q=kts-1 |
---|
797 | ! |
---|
798 | do k=kts,kte-1 |
---|
799 | if (qsz(k) .gt. 1.0e-8) then |
---|
800 | min_q=min0(min_q,k) |
---|
801 | max_q=max0(max_q,k) |
---|
802 | tmp1=sqrt(pi*rhosnow*xnos/rho(k)/qsz(k)) |
---|
803 | tmp1=sqrt(tmp1) |
---|
804 | vtsold(k)=o6*constc*gamdp4*sqrho(k)/tmp1**constd |
---|
805 | if (k .eq. 1) then |
---|
806 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtsold(k)) |
---|
807 | else |
---|
808 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtsold(k)) |
---|
809 | endif |
---|
810 | else |
---|
811 | vtsold(k)=0. |
---|
812 | endif |
---|
813 | enddo |
---|
814 | |
---|
815 | if (max_q .ge. min_q) then |
---|
816 | ! |
---|
817 | ! |
---|
818 | !- Check if the summation of the small delta t >= big delta t |
---|
819 | ! (t_del_tv) (del_tv) (dtb) |
---|
820 | |
---|
821 | t_del_tv=t_del_tv+del_tv |
---|
822 | |
---|
823 | if ( t_del_tv .ge. dtb ) then |
---|
824 | notlast=.false. |
---|
825 | del_tv=dtb+del_tv-t_del_tv |
---|
826 | endif |
---|
827 | ! |
---|
828 | fluxin=0. |
---|
829 | do k=max_q,min_q,-1 |
---|
830 | fluxout=rho(k)*vtsold(k)*qsz(k) |
---|
831 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
---|
832 | qsz(k)=qsz(k)+del_tv*flux |
---|
833 | qsz(k)=amax1(0.,qsz(k)) |
---|
834 | fluxin=fluxout |
---|
835 | enddo |
---|
836 | if (min_q .eq. 1) then |
---|
837 | pptsnow=pptsnow+fluxin*del_tv |
---|
838 | else |
---|
839 | qsz(min_q-1)=qsz(min_q-1)+del_tv* & |
---|
840 | fluxin/rho(min_q-1)/dzw(min_q-1) |
---|
841 | endif |
---|
842 | ! |
---|
843 | else |
---|
844 | notlast=.false. |
---|
845 | endif |
---|
846 | |
---|
847 | ENDDO |
---|
848 | ! |
---|
849 | !-- grauupel |
---|
850 | ! |
---|
851 | t_del_tv=0. |
---|
852 | del_tv=dtb |
---|
853 | notlast=.true. |
---|
854 | ! |
---|
855 | DO while (notlast) |
---|
856 | ! |
---|
857 | min_q=kte |
---|
858 | max_q=kts-1 |
---|
859 | ! |
---|
860 | do k=kts,kte-1 |
---|
861 | if (qgz(k) .gt. 1.0e-8) then |
---|
862 | min_q=min0(min_q,k) |
---|
863 | max_q=max0(max_q,k) |
---|
864 | tmp1=sqrt(pi*rhograul*xnog/rho(k)/qgz(k)) |
---|
865 | tmp1=sqrt(tmp1) |
---|
866 | term0=sqrt(4.*grav*rhograul*0.33334/rho(k)/cdrag) |
---|
867 | vtgold(k)=o6*gam4pt5*term0*sqrt(1./tmp1) |
---|
868 | if (k .eq. 1) then |
---|
869 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtgold(k)) |
---|
870 | else |
---|
871 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtgold(k)) |
---|
872 | endif |
---|
873 | else |
---|
874 | vtgold(k)=0. |
---|
875 | endif |
---|
876 | enddo |
---|
877 | |
---|
878 | if (max_q .ge. min_q) then |
---|
879 | ! |
---|
880 | ! |
---|
881 | !- Check if the summation of the small delta t >= big delta t |
---|
882 | ! (t_del_tv) (del_tv) (dtb) |
---|
883 | |
---|
884 | t_del_tv=t_del_tv+del_tv |
---|
885 | |
---|
886 | if ( t_del_tv .ge. dtb ) then |
---|
887 | notlast=.false. |
---|
888 | del_tv=dtb+del_tv-t_del_tv |
---|
889 | endif |
---|
890 | |
---|
891 | ! |
---|
892 | fluxin=0. |
---|
893 | do k=max_q,min_q,-1 |
---|
894 | fluxout=rho(k)*vtgold(k)*qgz(k) |
---|
895 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
---|
896 | qgz(k)=qgz(k)+del_tv*flux |
---|
897 | qgz(k)=amax1(0.,qgz(k)) |
---|
898 | fluxin=fluxout |
---|
899 | enddo |
---|
900 | if (min_q .eq. 1) then |
---|
901 | pptgraul=pptgraul+fluxin*del_tv |
---|
902 | else |
---|
903 | qgz(min_q-1)=qgz(min_q-1)+del_tv* & |
---|
904 | fluxin/rho(min_q-1)/dzw(min_q-1) |
---|
905 | endif |
---|
906 | ! |
---|
907 | else |
---|
908 | notlast=.false. |
---|
909 | endif |
---|
910 | ! |
---|
911 | ENDDO |
---|
912 | |
---|
913 | ! |
---|
914 | !-- cloud ice (03/21/02) follow Vaughan T.J. Phillips at GFDL |
---|
915 | ! |
---|
916 | t_del_tv=0. |
---|
917 | del_tv=dtb |
---|
918 | notlast=.true. |
---|
919 | ! |
---|
920 | DO while (notlast) |
---|
921 | ! |
---|
922 | min_q=kte |
---|
923 | max_q=kts-1 |
---|
924 | ! |
---|
925 | do k=kts,kte-1 |
---|
926 | if (qiz(k) .gt. 1.0e-8) then |
---|
927 | min_q=min0(min_q,k) |
---|
928 | max_q=max0(max_q,k) |
---|
929 | vtiold(k)= 3.29 * (rho(k)* qiz(k))** 0.16 ! Heymsfield and Donner |
---|
930 | if (k .eq. 1) then |
---|
931 | del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtiold(k)) |
---|
932 | else |
---|
933 | del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtiold(k)) |
---|
934 | endif |
---|
935 | else |
---|
936 | vtiold(k)=0. |
---|
937 | endif |
---|
938 | enddo |
---|
939 | |
---|
940 | if (max_q .ge. min_q) then |
---|
941 | ! |
---|
942 | ! |
---|
943 | !- Check if the summation of the small delta t >= big delta t |
---|
944 | ! (t_del_tv) (del_tv) (dtb) |
---|
945 | |
---|
946 | t_del_tv=t_del_tv+del_tv |
---|
947 | |
---|
948 | if ( t_del_tv .ge. dtb ) then |
---|
949 | notlast=.false. |
---|
950 | del_tv=dtb+del_tv-t_del_tv |
---|
951 | endif |
---|
952 | |
---|
953 | fluxin=0. |
---|
954 | do k=max_q,min_q,-1 |
---|
955 | fluxout=rho(k)*vtiold(k)*qiz(k) |
---|
956 | flux=(fluxin-fluxout)/rho(k)/dzw(k) |
---|
957 | qiz(k)=qiz(k)+del_tv*flux |
---|
958 | qiz(k)=amax1(0.,qiz(k)) |
---|
959 | fluxin=fluxout |
---|
960 | enddo |
---|
961 | if (min_q .eq. 1) then |
---|
962 | pptice=pptice+fluxin*del_tv |
---|
963 | else |
---|
964 | qiz(min_q-1)=qiz(min_q-1)+del_tv* & |
---|
965 | fluxin/rho(min_q-1)/dzw(min_q-1) |
---|
966 | endif |
---|
967 | ! |
---|
968 | else |
---|
969 | notlast=.false. |
---|
970 | endif |
---|
971 | ! |
---|
972 | ENDDO |
---|
973 | do k=kts,kte-1 !sg beg |
---|
974 | precrz(k)=rho(k)*vtrold(k)*qrz(k) |
---|
975 | preciz(k)=rho(k)*vtiold(k)*qiz(k) |
---|
976 | precsz(k)=rho(k)*vtsold(k)*qsz(k) |
---|
977 | precgz(k)=rho(k)*vtgold(k)*qgz(k) |
---|
978 | enddo !sg end |
---|
979 | precrz(kte)=0. !wig - top level never set for vtXold vars |
---|
980 | preciz(kte)=0. !wig |
---|
981 | precsz(kte)=0. !wig |
---|
982 | precgz(kte)=0. !wig |
---|
983 | |
---|
984 | |
---|
985 | ! Microphysics processes |
---|
986 | ! |
---|
987 | DO 2000 k=kts,kte |
---|
988 | ! |
---|
989 | qvzodt(k)=amax1( 0.0,odtb*qvz(k) ) |
---|
990 | qlzodt(k)=amax1( 0.0,odtb*qlz(k) ) |
---|
991 | qizodt(k)=amax1( 0.0,odtb*qiz(k) ) |
---|
992 | qszodt(k)=amax1( 0.0,odtb*qsz(k) ) |
---|
993 | qrzodt(k)=amax1( 0.0,odtb*qrz(k) ) |
---|
994 | qgzodt(k)=amax1( 0.0,odtb*qgz(k) ) |
---|
995 | !*********************************************************************** |
---|
996 | !***** diagnose mixing ratios (qrz,qsz), terminal ***** |
---|
997 | !***** velocities (vtr,vts), and slope parameters in size ***** |
---|
998 | !***** distribution(xlambdar,xlambdas) of rain and snow ***** |
---|
999 | !***** follows Nagata and Ogura, 1991, MWR, 1309-1337. Eq (A7) ***** |
---|
1000 | !*********************************************************************** |
---|
1001 | ! |
---|
1002 | !**** assuming no cloud water can exist in the top two levels due to |
---|
1003 | !**** radiation consideration |
---|
1004 | ! |
---|
1005 | !! if |
---|
1006 | !! unsaturated, |
---|
1007 | !! no cloud water, rain, ice, snow and graupel |
---|
1008 | !! then |
---|
1009 | !! skip these processes and jump to line 2000 |
---|
1010 | ! |
---|
1011 | ! |
---|
1012 | tmp=qiz(k)+qlz(k)+qsz(k)+qrz(k)+qgz(k)*gindex |
---|
1013 | if( qvz(k)+qlz(k)+qiz(k) .lt. qsiz(k) & |
---|
1014 | .and. tmp .eq. 0.0 ) go to 2000 |
---|
1015 | |
---|
1016 | !! calculate terminal velocity of rain |
---|
1017 | ! |
---|
1018 | if (qrz(k) .gt. 1.0e-8) then |
---|
1019 | tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) |
---|
1020 | xlambdar(k)=sqrt(tmp1) |
---|
1021 | olambdar(k)=1.0/xlambdar(k) |
---|
1022 | vtrold(k)=o6*consta*gambp4*sqrho(k)*olambdar(k)**constb |
---|
1023 | else |
---|
1024 | vtrold(k)=0. |
---|
1025 | olambdar(k)=0. |
---|
1026 | endif |
---|
1027 | ! |
---|
1028 | ! if (qrz(k) .gt. 1.0e-12) then |
---|
1029 | if (qrz(k) .gt. 1.0e-8) then |
---|
1030 | tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) |
---|
1031 | xlambdar(k)=sqrt(tmp1) |
---|
1032 | olambdar(k)=1.0/xlambdar(k) |
---|
1033 | vtr(k)=o6*consta*gambp4*sqrho(k)*olambdar(k)**constb |
---|
1034 | else |
---|
1035 | vtr(k)=0. |
---|
1036 | olambdar(k)=0. |
---|
1037 | endif |
---|
1038 | ! |
---|
1039 | !! calculate terminal velocity of snow |
---|
1040 | ! |
---|
1041 | if (qsz(k) .gt. 1.0e-8) then |
---|
1042 | tmp1=sqrt(pi*rhosnow*xnos*orho(k)/qsz(k)) |
---|
1043 | xlambdas(k)=sqrt(tmp1) |
---|
1044 | olambdas(k)=1.0/xlambdas(k) |
---|
1045 | vtsold(k)=o6*constc*gamdp4*sqrho(k)*olambdas(k)**constd |
---|
1046 | else |
---|
1047 | vtsold(k)=0. |
---|
1048 | olambdas(k)=0. |
---|
1049 | endif |
---|
1050 | ! |
---|
1051 | ! if (qsz(k) .gt. 1.0e-12) then |
---|
1052 | if (qsz(k) .gt. 1.0e-8) then |
---|
1053 | tmp1=sqrt(pi*rhosnow*xnos*orho(k)/qsz(k)) |
---|
1054 | xlambdas(k)=sqrt(tmp1) |
---|
1055 | olambdas(k)=1.0/xlambdas(k) |
---|
1056 | vts(k)=o6*constc*gamdp4*sqrho(k)*olambdas(k)**constd |
---|
1057 | else |
---|
1058 | vts(k)=0. |
---|
1059 | olambdas(k)=0. |
---|
1060 | endif |
---|
1061 | ! |
---|
1062 | !! calculate terminal velocity of graupel |
---|
1063 | ! |
---|
1064 | if (qgz(k) .gt. 1.0e-8) then |
---|
1065 | tmp1=sqrt( pi*rhograul*xnog*orho(k)/qgz(k)) |
---|
1066 | xlambdag(k)=sqrt(tmp1) |
---|
1067 | olambdag(k)=1.0/xlambdag(k) |
---|
1068 | term0=sqrt(4.*grav*rhograul*0.33334*orho(k)*ocdrag) |
---|
1069 | vtgold(k)=o6*gam4pt5*term0*sqrt(olambdag(k)) |
---|
1070 | else |
---|
1071 | vtgold(k)=0. |
---|
1072 | olambdag(k)=0. |
---|
1073 | endif |
---|
1074 | ! |
---|
1075 | ! if (qgz(k) .gt. 1.0e-12) then |
---|
1076 | if (qgz(k) .gt. 1.0e-8) then |
---|
1077 | tmp1=sqrt( pi*rhograul*xnog*orho(k)/qgz(k)) |
---|
1078 | xlambdag(k)=sqrt(tmp1) |
---|
1079 | olambdag(k)=1.0/xlambdag(k) |
---|
1080 | term0=sqrt(4.*grav*rhograul*0.33334*orho(k)*ocdrag) |
---|
1081 | vtg(k)=o6*gam4pt5*term0*sqrt(olambdag(k)) |
---|
1082 | else |
---|
1083 | vtg(k)=0. |
---|
1084 | olambdag(k)=0. |
---|
1085 | endif |
---|
1086 | ! |
---|
1087 | !*********************************************************************** |
---|
1088 | !***** compute viscosity,difusivity,thermal conductivity, and ****** |
---|
1089 | !***** Schmidt number ****** |
---|
1090 | !*********************************************************************** |
---|
1091 | !c------------------------------------------------------------------ |
---|
1092 | !c viscmu: dynamic viscosity of air kg/m/s |
---|
1093 | !c visc: kinematic viscosity of air = viscmu/rho (m2/s) |
---|
1094 | !c avisc=1.49628e-6 kg/m/s=1.49628e-5 g/cm/s |
---|
1095 | !c viscmu=1.718e-5 kg/m/s in RH |
---|
1096 | !c diffwv: Diffusivity of water vapor in air |
---|
1097 | !c adiffwv = 8.7602e-5 (8.794e-5 in MM5) kgm/s3 |
---|
1098 | !c = 8.7602 (8.794 in MM5) gcm/s3 |
---|
1099 | !c diffwv(k)=2.26e-5 m2/s |
---|
1100 | !c schmidt: Schmidt number=visc/diffwv |
---|
1101 | !c xka: thermal conductivity of air J/m/s/K (Kgm/s3/K) |
---|
1102 | !c xka(k)=2.43e-2 J/m/s/K in RH |
---|
1103 | !c axka=1.4132e3 (1.414e3 in MM5) m2/s2/k = 1.4132e7 cm2/s2/k |
---|
1104 | !c------------------------------------------------------------------ |
---|
1105 | |
---|
1106 | viscmu(k)=avisc*tem(k)**1.5/(tem(k)+120.0) |
---|
1107 | visc(k)=viscmu(k)*orho(k) |
---|
1108 | diffwv(k)=adiffwv*tem(k)**1.81*oprez(k) |
---|
1109 | schmidt(k)=visc(k)/diffwv(k) |
---|
1110 | xka(k)=axka*viscmu(k) |
---|
1111 | |
---|
1112 | if (tem(k) .lt. 273.15) then |
---|
1113 | |
---|
1114 | ! |
---|
1115 | !*********************************************************************** |
---|
1116 | !********* snow production processes for T < 0 C ********** |
---|
1117 | !*********************************************************************** |
---|
1118 | !c |
---|
1119 | !c (1) ICE CRYSTAL AGGREGATION TO SNOW (Psaut): Lin (21) |
---|
1120 | !c! psaut=alpha1*(qi-qi0) |
---|
1121 | !c! alpha1=1.0e-3*exp(0.025*(T-T0)) |
---|
1122 | !c |
---|
1123 | ! alpha1=1.0e-3*exp( 0.025*temcc(k) ) |
---|
1124 | |
---|
1125 | alpha1=1.0e-3*exp( 0.025*temcc(k) ) |
---|
1126 | ! |
---|
1127 | if(temcc(k) .lt. -20.0) then |
---|
1128 | tmp1=-7.6+4.0*exp( -0.2443e-3*(abs(temcc(k))-20)**2.455 ) |
---|
1129 | qic=1.0e-3*exp(tmp1)*orho(k) |
---|
1130 | else |
---|
1131 | qic=qi0 |
---|
1132 | end if |
---|
1133 | !testing |
---|
1134 | ! tmp1=amax1( 0.0,alpha1*(qiz(k)-qic) ) |
---|
1135 | ! psaut(k)=amin1( tmp1,qizodt(k) ) |
---|
1136 | |
---|
1137 | tmp1=odtb*(qiz(k)-qic)*(1.0-exp(-alpha1*dtb)) |
---|
1138 | psaut(k)=amax1( 0.0,tmp1 ) |
---|
1139 | |
---|
1140 | !c |
---|
1141 | !c (2) BERGERON PROCESS TRANSFER OF CLOUD WATER TO SNOW (Psfw) |
---|
1142 | !c this process only considered when -31 C < T < 0 C |
---|
1143 | !c Lin (33) and Hsie (17) |
---|
1144 | !c |
---|
1145 | !c! |
---|
1146 | !c! parama1 and parama2 functions must be user supplied |
---|
1147 | !c! |
---|
1148 | |
---|
1149 | ! testing |
---|
1150 | if( qlz(k) .gt. 1.0e-10 ) then |
---|
1151 | temc1=amax1(-30.99,temcc(k)) |
---|
1152 | ! print*,'temc1',temc1,qlz(k) |
---|
1153 | a1=parama1( temc1 ) |
---|
1154 | a2=parama2( temc1 ) |
---|
1155 | tmp1=1.0-a2 |
---|
1156 | !! change unit from cgs to mks |
---|
1157 | a1=a1*0.001**tmp1 |
---|
1158 | !c! dtberg is the time needed for a crystal to grow from 40 to 50 um |
---|
1159 | !c ! odtberg=1.0/dtberg |
---|
1160 | odtberg=(a1*tmp1)/(xmi50**tmp1-xmi40**tmp1) |
---|
1161 | ! |
---|
1162 | !c! compute terminal velocity of a 50 micron ice cystal |
---|
1163 | ! |
---|
1164 | vti50=constc*di50**constd*sqrho(k) |
---|
1165 | ! |
---|
1166 | eiw=1.0 |
---|
1167 | save1=a1*xmi50**a2 |
---|
1168 | save2=0.25*pi*eiw*rho(k)*di50*di50*vti50 |
---|
1169 | ! |
---|
1170 | tmp2=( save1 + save2*qlz(k) ) |
---|
1171 | ! |
---|
1172 | !! maximum number of 50 micron crystals limited by the amount |
---|
1173 | !! of supercool water |
---|
1174 | ! |
---|
1175 | xni50mx=qlzodt(k)/tmp2 |
---|
1176 | ! |
---|
1177 | !! number of 50 micron crystals produced |
---|
1178 | ! |
---|
1179 | ! |
---|
1180 | xni50=qiz(k)*( 1.0-exp(-dtb*odtberg) )/xmi50 |
---|
1181 | xni50=amin1(xni50,xni50mx) |
---|
1182 | ! |
---|
1183 | tmp3=odtb*tmp2/save2*( 1.0-exp(-save2*xni50*dtb) ) |
---|
1184 | psfw(k)=amin1( tmp3,qlzodt(k) ) |
---|
1185 | !testing |
---|
1186 | ! psfw(k)=0. |
---|
1187 | |
---|
1188 | !0915 if( temcc(k).gt.-30.99 ) then |
---|
1189 | !0915 a1=parama1( temcc(k) ) |
---|
1190 | !0915 a2=parama2( temcc(k) ) |
---|
1191 | !0915 tmp1=1.0-a2 |
---|
1192 | !! change unit from cgs to mks |
---|
1193 | !0915 a1=a1*0.001**tmp1 |
---|
1194 | |
---|
1195 | !c! dtberg is the time needed for a crystal to grow from 40 to 50 um |
---|
1196 | !c! odtberg=1.0/dtberg |
---|
1197 | !0915 odtberg=(a1*tmp1)/(xmi50**tmp1-xmi40**tmp1) |
---|
1198 | |
---|
1199 | !c! number of 50 micron crystals produced |
---|
1200 | !0915 xni50=qiz(k)*dtb*odtberg/xmi50 |
---|
1201 | |
---|
1202 | !c! need to calculate the terminal velocity of a 50 micron |
---|
1203 | !c! ice cystal |
---|
1204 | !0915 vti50=constc*di50**constd*sqrho(k) |
---|
1205 | !0915 eiw=1.0 |
---|
1206 | !0915 tmp2=xni50*( a1*xmi50**a2 + & |
---|
1207 | !0915 0.25*qlz(k)*pi*eiw*rho(k)*di50*di50*vti50 ) |
---|
1208 | !0915 psfw(k)=amin1( tmp2,qlzodt(k) ) |
---|
1209 | !0915 psfw(k)=0. |
---|
1210 | !c |
---|
1211 | !c (3) REDUCTION OF CLOUD ICE BY BERGERON PROCESS (Psfi): Lin (34) |
---|
1212 | !c this process only considered when -31 C < T < 0 C |
---|
1213 | !c |
---|
1214 | tmp1=xni50*xmi50-psfw(k) |
---|
1215 | psfi(k)=amin1(tmp1,qizodt(k)) |
---|
1216 | ! testing |
---|
1217 | ! psfi(k)=0. |
---|
1218 | end if |
---|
1219 | ! |
---|
1220 | |
---|
1221 | !0915 tmp1=qiz(k)*odtberg |
---|
1222 | !0915 psfi(k)=amin1(tmp1,qizodt(k)) |
---|
1223 | ! testing |
---|
1224 | !0915 psfi(k)=0. |
---|
1225 | !0915 end if |
---|
1226 | ! |
---|
1227 | if(qrz(k) .le. 0.0) go to 1000 |
---|
1228 | ! |
---|
1229 | ! Processes (4) and (5) only need when qrz > 0.0 |
---|
1230 | ! |
---|
1231 | !c |
---|
1232 | !c (4) CLOUD ICE ACCRETION BY RAIN (Praci): Lin (25) |
---|
1233 | !c may produce snow or graupel |
---|
1234 | !c |
---|
1235 | eri=1.0 |
---|
1236 | !0915 tmp1=qiz(k)*pio4*eri*xnor*consta*sqrho(k) |
---|
1237 | !0915 tmp2=tmp1*gambp3*olambdar(k)**bp3 |
---|
1238 | !0915 praci(k)=amin1( tmp2,qizodt(k) ) |
---|
1239 | |
---|
1240 | save1=pio4*eri*xnor*consta*sqrho(k) |
---|
1241 | tmp1=save1*gambp3*olambdar(k)**bp3 |
---|
1242 | praci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) |
---|
1243 | |
---|
1244 | !c |
---|
1245 | !c (5) RAIN ACCRETION BY CLOUD ICE (Piacr): Lin (26) |
---|
1246 | !c |
---|
1247 | !0915 tmp2=tmp1*rho(k)*pio6*rhowater*gambp6*oxmi* & |
---|
1248 | !0915 olambdar(k)**bp6 |
---|
1249 | !0915 piacr(k)=amin1( tmp2,qrzodt(k) ) |
---|
1250 | |
---|
1251 | tmp2=qiz(k)*save1*rho(k)*pio6*rhowater*gambp6*oxmi* & |
---|
1252 | olambdar(k)**bp6 |
---|
1253 | piacr(k)=amin1( tmp2,qrzodt(k) ) |
---|
1254 | |
---|
1255 | ! |
---|
1256 | 1000 continue |
---|
1257 | ! |
---|
1258 | if(qsz(k) .le. 0.0) go to 1200 |
---|
1259 | ! |
---|
1260 | ! Compute the following processes only when qsz > 0.0 |
---|
1261 | ! |
---|
1262 | !c |
---|
1263 | !c (6) ICE CRYSTAL ACCRETION BY SNOW (Psaci): Lin (22) |
---|
1264 | !c |
---|
1265 | esi=exp( 0.025*temcc(k) ) |
---|
1266 | save1=pio4*xnos*constc*gamdp3*sqrho(k)* & |
---|
1267 | olambdas(k)**dp3 |
---|
1268 | tmp1=esi*save1 |
---|
1269 | psaci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) |
---|
1270 | |
---|
1271 | !0915 tmp1=pio4*xnos*constc*gamdp3*sqrho(k)* & |
---|
1272 | !0915 olambdas(k)**dp3 |
---|
1273 | !0915 tmp2=qiz(k)*esi*tmp1 |
---|
1274 | !0915 psaci(k)=amin1( tmp2,qizodt(k) ) |
---|
1275 | !c |
---|
1276 | !c (7) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) |
---|
1277 | !c |
---|
1278 | esw=1.0 |
---|
1279 | tmp1=esw*save1 |
---|
1280 | psacw(k)=qlzodt(K)*( 1.0-exp(-tmp1*dtb) ) |
---|
1281 | |
---|
1282 | !0915 tmp2=qlz(k)*esw*tmp1 |
---|
1283 | !0915 psacw(k)=amin1( tmp2,qlzodt(k) ) |
---|
1284 | !c |
---|
1285 | !c (8) DEPOSITION/SUBLIMATION OF SNOW (Psdep/Pssub): Lin (31) |
---|
1286 | !c includes consideration of ventilation effect |
---|
1287 | !c |
---|
1288 | !c abi=2*pi*(Si-1)/rho/(A"+B") |
---|
1289 | !c |
---|
1290 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
---|
1291 | tmpb=xls*xls*rho(k)*qsiz(k)*diffwv(k) |
---|
1292 | tmpc=tmpa*qsiz(k)*diffwv(k) |
---|
1293 | abi=2.0*pi*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) |
---|
1294 | ! |
---|
1295 | !c vf1s,vf2s=ventilation factors for snow |
---|
1296 | !c vf1s=0.78,vf2s=0.31 in LIN |
---|
1297 | ! |
---|
1298 | tmp1=constc*sqrho(k)*olambdas(k)**dp5/visc(k) |
---|
1299 | tmp2=abi*xnos*( vf1s*olambdas(k)*olambdas(k)+ & |
---|
1300 | vf2s*schmidt(k)**0.33334*gamdp5o2*sqrt(tmp1) ) |
---|
1301 | tmp3=odtb*( qvz(k)-qsiz(k) ) |
---|
1302 | ! |
---|
1303 | !bloss: BEGIN |
---|
1304 | !the old implementation would give the wrong results if olambdas(k) ==0 |
---|
1305 | !which can lead to positive pssub, i.e. tmp2=0 but tmp3> 0 |
---|
1306 | ! if( tmp2 .le. 0.0) then |
---|
1307 | if( tmp3 .le. 0.0) then |
---|
1308 | tmp2=amax1( tmp2,tmp3) |
---|
1309 | pssub(k)=amin1(0.,amax1( tmp2,-qszodt(k) )) |
---|
1310 | !bloss: END |
---|
1311 | psdep(k)=0.0 |
---|
1312 | else |
---|
1313 | psdep(k)=amin1( tmp2,tmp3 ) |
---|
1314 | pssub(k)=0.0 |
---|
1315 | end if |
---|
1316 | |
---|
1317 | !0915 psdep(k)=amax1(0.0,tmp2) |
---|
1318 | !0915 pssub(k)=amin1(0.0,tmp2) |
---|
1319 | !0915 pssub(k)=amax1( pssub(k),-qszodt(k) ) |
---|
1320 | ! |
---|
1321 | if(qrz(k) .le. 0.0) go to 1200 |
---|
1322 | ! |
---|
1323 | ! Compute processes (9) and (10) only when qsz > 0.0 and qrz > 0.0 |
---|
1324 | ! |
---|
1325 | !c |
---|
1326 | !c (9) ACCRETION OF SNOW BY RAIN (Pracs): Lin (27) |
---|
1327 | !c |
---|
1328 | esr=1.0 |
---|
1329 | tmpa=olambdar(k)*olambdar(k) |
---|
1330 | tmpb=olambdas(k)*olambdas(k) |
---|
1331 | tmpc=olambdar(k)*olambdas(k) |
---|
1332 | tmp1=pi*pi*esr*xnor*xnos*abs( vtr(k)-vts(k) )*orho(k) |
---|
1333 | tmp2=tmpb*tmpb*olambdar(k)*(5.0*tmpb+2.0*tmpc+0.5*tmpa) |
---|
1334 | tmp3=tmp1*rhosnow*tmp2 |
---|
1335 | pracs(k)=amin1( tmp3,qszodt(k) ) |
---|
1336 | !c |
---|
1337 | !c (10) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) |
---|
1338 | !c |
---|
1339 | tmp3=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
---|
1340 | tmp4=tmp1*rhowater*tmp3 |
---|
1341 | psacr(k)=amin1( tmp4,qrzodt(k) ) |
---|
1342 | ! |
---|
1343 | 1200 continue |
---|
1344 | ! |
---|
1345 | else |
---|
1346 | ! |
---|
1347 | !*********************************************************************** |
---|
1348 | !********* snow production processes for T > 0 C ********** |
---|
1349 | !*********************************************************************** |
---|
1350 | ! |
---|
1351 | if (qsz(k) .le. 0.0) go to 1400 |
---|
1352 | !c |
---|
1353 | !c (1) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) |
---|
1354 | !c |
---|
1355 | esw=1.0 |
---|
1356 | |
---|
1357 | tmp1=esw*pio4*xnos*constc*gamdp3*sqrho(k)* & |
---|
1358 | olambdas(k)**dp3 |
---|
1359 | psacw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) |
---|
1360 | |
---|
1361 | !0915 tmp1=pio4*xnos*constc*gamdp3*sqrho(k)* & |
---|
1362 | !0915 olambdas(k)**dp3 |
---|
1363 | !0915 tmp2=qlz(k)*esw*tmp1 |
---|
1364 | !0915 psacw(k)=amin1( tmp2,qlzodt(k) ) |
---|
1365 | !c |
---|
1366 | !c (2) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) |
---|
1367 | !c |
---|
1368 | esr=1.0 |
---|
1369 | tmpa=olambdar(k)*olambdar(k) |
---|
1370 | tmpb=olambdas(k)*olambdas(k) |
---|
1371 | tmpc=olambdar(k)*olambdas(k) |
---|
1372 | tmp1=pi*pi*esr*xnor*xnos*abs( vtr(k)-vts(k) )*orho(k) |
---|
1373 | tmp2=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
---|
1374 | tmp3=tmp1*rhowater*tmp2 |
---|
1375 | psacr(k)=amin1( tmp3,qrzodt(k) ) |
---|
1376 | !c |
---|
1377 | !c (3) MELTING OF SNOW (Psmlt): Lin (32) |
---|
1378 | !c Psmlt is negative value |
---|
1379 | ! |
---|
1380 | delrs=rs0(k)-qvz(k) |
---|
1381 | term1=2.0*pi*orho(k)*( xlv*diffwv(k)*rho(k)*delrs- & |
---|
1382 | xka(k)*temcc(k) ) |
---|
1383 | tmp1=constc*sqrho(k)*olambdas(k)**dp5/visc(k) |
---|
1384 | tmp2=xnos*( vf1s*olambdas(k)*olambdas(k)+ & |
---|
1385 | vf2s*schmidt(k)**0.33334*gamdp5o2*sqrt(tmp1) ) |
---|
1386 | tmp3=term1*oxlf*tmp2-cwoxlf*temcc(k)*( psacw(k)+psacr(k) ) |
---|
1387 | tmp4=amin1(0.0,tmp3) |
---|
1388 | psmlt(k)=amax1( tmp4,-qszodt(k) ) |
---|
1389 | !c |
---|
1390 | !c (4) EVAPORATION OF MELTING SNOW (Psmltevp): HR (A27) |
---|
1391 | !c but use Lin et al. coefficience |
---|
1392 | !c Psmltevp is a negative value |
---|
1393 | !c |
---|
1394 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
---|
1395 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
---|
1396 | tmpc=tmpa*qswz(k)*diffwv(k) |
---|
1397 | tmpd=amin1( 0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb ) |
---|
1398 | |
---|
1399 | ! abr=2.0*pi*(qvoqswz(k)-1.0)*tmpc/(tmpa+tmpb) |
---|
1400 | |
---|
1401 | abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
---|
1402 | ! |
---|
1403 | !**** allow evaporation to occur when RH less than 90% |
---|
1404 | !**** here not using 100% because the evaporation cooling |
---|
1405 | !**** of temperature is not taking into account yet; hence, |
---|
1406 | !**** the qsw value is a little bit larger. This will avoid |
---|
1407 | !**** evaporation can generate cloud. |
---|
1408 | ! |
---|
1409 | !c vf1s,vf2s=ventilation factors for snow |
---|
1410 | !c vf1s=0.78,vf2s=0.31 in LIN |
---|
1411 | ! |
---|
1412 | tmp1=constc*sqrho(k)*olambdas(k)**dp5/visc(k) |
---|
1413 | tmp2=abr*xnos*( vf1s*olambdas(k)*olambdas(k)+ & |
---|
1414 | vf2s*schmidt(k)**0.33334*gamdp5o2*sqrt(tmp1) ) |
---|
1415 | tmp3=amin1(0.0,tmp2) |
---|
1416 | tmp3=amax1( tmp3,tmpd ) |
---|
1417 | psmltevp(k)=amax1( tmp3,-qszodt(k) ) |
---|
1418 | 1400 continue |
---|
1419 | ! |
---|
1420 | end if |
---|
1421 | |
---|
1422 | !*********************************************************************** |
---|
1423 | !********* rain production processes ********** |
---|
1424 | !*********************************************************************** |
---|
1425 | ! |
---|
1426 | !c |
---|
1427 | !c (1) AUTOCONVERSION OF RAIN (Praut): RH |
---|
1428 | !sg: begin |
---|
1429 | if(flag_qndrop)then |
---|
1430 | if( qndropz(k) >= 1. ) then |
---|
1431 | ! Liu et al. autoconversion scheme |
---|
1432 | rhocgs=rho(k)*1.e-3 |
---|
1433 | liqconc=rhocgs*qlz(k) ! (kg/kg) to (g/cm3) |
---|
1434 | capn=1.0e-3*rhocgs*qndropz(k) ! (#/kg) to (#/cm3) |
---|
1435 | ! rate function |
---|
1436 | if(liqconc.gt.1.e-10)then |
---|
1437 | p0=(kappa*beta/capn)*(liqconc*liqconc*liqconc) |
---|
1438 | xc=9.7d-17*capn*sqrt(capn)/(liqconc*liqconc) |
---|
1439 | ! Calculate autoconversion rate (g/g/s) |
---|
1440 | if(xc.lt.10.)then |
---|
1441 | praut(k)=(p0/rhocgs) * ( 0.5d0*(xc*xc+2*xc+2.0d0)* & |
---|
1442 | (1.0d0+xc)*exp(-2.0d0*xc) ) |
---|
1443 | endif |
---|
1444 | endif |
---|
1445 | endif |
---|
1446 | else |
---|
1447 | !sg: end |
---|
1448 | !c araut=afa*rho |
---|
1449 | !c afa=0.001 Rate coefficient for autoconvergence |
---|
1450 | !c |
---|
1451 | !c araut=1.0e-3 |
---|
1452 | !c |
---|
1453 | araut=0.001 |
---|
1454 | !testing |
---|
1455 | ! tmp1=amax1( 0.0,araut*(qlz(k)-ql0) ) |
---|
1456 | ! praut(k)=amin1( tmp1,qlzodt(k) ) |
---|
1457 | tmp1=odtb*(qlz(k)-ql0)*( 1.0-exp(-araut*dtb) ) |
---|
1458 | praut(k)=amax1( 0.0,tmp1 ) |
---|
1459 | endif !sg |
---|
1460 | |
---|
1461 | !c |
---|
1462 | !c (2) ACCRETION OF CLOUD WATER BY RAIN (Pracw): Lin (51) |
---|
1463 | !c |
---|
1464 | erw=1.0 |
---|
1465 | ! tmp1=qlz(k)*pio4*erw*xnor*consta*sqrho(k) |
---|
1466 | ! tmp2=tmp1*gambp3*olambdar(k)**bp3 |
---|
1467 | ! pracw(k)=amin1( tmp2,qlzodt(k) ) |
---|
1468 | |
---|
1469 | tmp1=pio4*erw*xnor*consta*sqrho(k)* & |
---|
1470 | gambp3*olambdar(k)**bp3 |
---|
1471 | pracw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) |
---|
1472 | |
---|
1473 | !c |
---|
1474 | !c (3) EVAPORATION OF RAIN (Prevp): Lin (52) |
---|
1475 | !c Prevp is negative value |
---|
1476 | !c |
---|
1477 | !c Sw=qvoqsw : saturation ratio |
---|
1478 | !c |
---|
1479 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
---|
1480 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
---|
1481 | tmpc=tmpa*qswz(k)*diffwv(k) |
---|
1482 | !bloss: BEGIN |
---|
1483 | ! tmpd=amin1(0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb) |
---|
1484 | |
---|
1485 | ! set max allowed evaporation to 90% of the amount that |
---|
1486 | ! would induce saturation wrt liquid in a single step. |
---|
1487 | tmpd = qswz(k)*xlv/(rvapor*tem(k)**2) ! d(qsat_liq)/dT |
---|
1488 | tmpd = min( 0., 0.9*odtb*(qvz(k) + qlz(k) - qswz(k)) & |
---|
1489 | / (1. + xlvocp * tmpd) ) |
---|
1490 | |
---|
1491 | abr=2.0*pi*(qvoqswz(k)-1.0)*tmpc/(tmpa+tmpb) |
---|
1492 | |
---|
1493 | ! abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
---|
1494 | !bloss: END |
---|
1495 | ! |
---|
1496 | !c vf1r,vf2r=ventilation factors for rain |
---|
1497 | !c vf1r=0.78,vf2r=0.31 in RH, LIN and MM5 |
---|
1498 | ! |
---|
1499 | vf1r=0.78 |
---|
1500 | vf2r=0.31 |
---|
1501 | tmp1=consta*sqrho(k)*olambdar(k)**bp5/visc(k) |
---|
1502 | tmp2=abr*xnor*( vf1r*olambdar(k)*olambdar(k)+ & |
---|
1503 | vf2r*schmidt(k)**0.33334*gambp5o2*sqrt(tmp1) ) |
---|
1504 | tmp3=amin1( 0.0,tmp2 ) |
---|
1505 | tmp3=amax1( tmp3,tmpd ) |
---|
1506 | prevp(k)=amax1( tmp3,-qrzodt(k) ) |
---|
1507 | |
---|
1508 | ! |
---|
1509 | ! if(iout .gt. 0) write(20,*)'tmp1,tmp2,tmp3=',tmp1,tmp2,tmp3 |
---|
1510 | ! if(iout .gt. 0) write(20,*)'qlz,qiz,qrz=',qlz(k),qiz(k),qrz(k) |
---|
1511 | ! if(iout .gt. 0) write(20,*)'tem,qsz,qvz=',tem(k),qsz(k),qvz(k) |
---|
1512 | |
---|
1513 | |
---|
1514 | |
---|
1515 | ! if (gindex .eq. 0.) goto 900 |
---|
1516 | ! |
---|
1517 | if (tem(k) .lt. 273.15) then |
---|
1518 | ! |
---|
1519 | ! |
---|
1520 | !-- graupel |
---|
1521 | !*********************************************************************** |
---|
1522 | !********* graupel production processes for T < 0 C ********** |
---|
1523 | !*********************************************************************** |
---|
1524 | !c |
---|
1525 | !c (1) AUTOCONVERSION OF SNOW TO FORM GRAUPEL (Pgaut): Lin (37) |
---|
1526 | !c pgaut=alpha2*(qsz-qs0) |
---|
1527 | !c qs0=6.0E-4 |
---|
1528 | !c alpha2=1.0e-3*exp(0.09*temcc(k)) Lin (38) |
---|
1529 | ! |
---|
1530 | alpha2=1.0e-3*exp(0.09*temcc(k)) |
---|
1531 | ! |
---|
1532 | |
---|
1533 | ! testing |
---|
1534 | ! tmp1=alpha2*(qsz(k)-qs0) |
---|
1535 | ! tmp1=amax1(0.0,tmp1) |
---|
1536 | ! pgaut(k)=amin1( tmp1,qszodt(k) ) |
---|
1537 | |
---|
1538 | tmp1=odtb*(qsz(k)-qs0)*(1.0-exp(-alpha2*dtb)) |
---|
1539 | pgaut(k)=amax1( 0.0,tmp1 ) |
---|
1540 | |
---|
1541 | !c |
---|
1542 | !c (2) FREEZING OF RAIN TO FORM GRAUPEL (Pgfr): Lin (45) |
---|
1543 | !c positive value |
---|
1544 | !c Constant in Bigg freezing Aplume=Ap=0.66 /k |
---|
1545 | !c Constant in raindrop freezing equ. Bplume=Bp=100./m/m/m/s |
---|
1546 | ! |
---|
1547 | |
---|
1548 | if (qrz(k) .gt. 1.e-8 ) then |
---|
1549 | Bp=100. |
---|
1550 | Ap=0.66 |
---|
1551 | tmp1=olambdar(k)*olambdar(k)*olambdar(k) |
---|
1552 | tmp2=20.*pi*pi*Bp*xnor*rhowater*orho(k)* & |
---|
1553 | (exp(-Ap*temcc(k))-1.0)*tmp1*tmp1*olambdar(k) |
---|
1554 | Pgfr(k)=amin1( tmp2,qrzodt(k) ) |
---|
1555 | else |
---|
1556 | Pgfr(k)=0 |
---|
1557 | endif |
---|
1558 | |
---|
1559 | !c |
---|
1560 | !c if (qgz(k) = 0.0) skip the other step below about graupel |
---|
1561 | !c |
---|
1562 | if (qgz(k) .eq. 0.0) goto 4000 |
---|
1563 | |
---|
1564 | !c |
---|
1565 | !c Comparing Pgwet(wet process) and Pdry(dry process), |
---|
1566 | !c we will pick up the small one. |
---|
1567 | !c |
---|
1568 | |
---|
1569 | !c --------------- |
---|
1570 | !c | dry processes | |
---|
1571 | !c --------------- |
---|
1572 | !c |
---|
1573 | !c (3) ACCRETION OF CLOUD WATER BY GRAUPEL (Pgacw): Lin (40) |
---|
1574 | !c egw=1.0 |
---|
1575 | !c Cdrag=0.6 drag coefficients for hairstone |
---|
1576 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
---|
1577 | !c |
---|
1578 | egw=1.0 |
---|
1579 | constg=sqrt(4.*grav*rhograul*0.33334*orho(k)*oCdrag) |
---|
1580 | tmp1=pio4*xnog*gam3pt5*constg*olambdag(k)**3.5 |
---|
1581 | tmp2=qlz(k)*egw*tmp1 |
---|
1582 | Pgacw(k)=amin1( tmp2,qlzodt(k) ) |
---|
1583 | !c |
---|
1584 | !c (4) ACCRETION OF ICE CRYSTAL BY GRAUPEL (Pgaci): Lin (41) |
---|
1585 | !c egi=1. for wet growth |
---|
1586 | !c egi=0.1 for dry growth |
---|
1587 | !c |
---|
1588 | egi=0.1 |
---|
1589 | tmp2=qiz(k)*egi*tmp1 |
---|
1590 | pgaci(k)=amin1( tmp2,qizodt(k) ) |
---|
1591 | |
---|
1592 | |
---|
1593 | !c |
---|
1594 | !c (5) ACCRETION OF SNOW BY GRAUPEL (Pgacs) : Lin (29) |
---|
1595 | !c Compute processes (6) only when qsz > 0.0 and qgz > 0.0 |
---|
1596 | !c |
---|
1597 | egs=exp(0.09*temcc(k)) |
---|
1598 | tmpa=olambdas(k)*olambdas(k) |
---|
1599 | tmpb=olambdag(k)*olambdag(k) |
---|
1600 | tmpc=olambdas(k)*olambdag(k) |
---|
1601 | tmp1=pi*pi*xnos*xnog*abs( vts(k)-vtg(k) )*orho(k) |
---|
1602 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
---|
1603 | tmp3=tmp1*egs*rhosnow*tmp2 |
---|
1604 | Pgacs(k)=amin1( tmp3,qszodt(k) ) |
---|
1605 | |
---|
1606 | |
---|
1607 | !c |
---|
1608 | !c (6) ACCRETION OF RAIN BY GRAUPEL (Pgacr): Lin (42) |
---|
1609 | !c Compute processes (6) only when qrz > 0.0 and qgz > 0.0 |
---|
1610 | !c egr=1. |
---|
1611 | !c |
---|
1612 | egr=1. |
---|
1613 | tmpa=olambdar(k)*olambdar(k) |
---|
1614 | tmpb=olambdag(k)*olambdag(k) |
---|
1615 | tmpc=olambdar(k)*olambdag(k) |
---|
1616 | tmp1=pi*pi*xnor*xnog*abs( vtr(k)-vtg(k) )*orho(k) |
---|
1617 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
---|
1618 | tmp3=tmp1*egr*rhowater*tmp2 |
---|
1619 | pgacr(k)=amin1( tmp3,qrzodt(k) ) |
---|
1620 | |
---|
1621 | !c |
---|
1622 | !c (7) Calculate total dry process effect Pdry(k) |
---|
1623 | !c |
---|
1624 | Pdry(k)=Pgacw(k)+pgaci(k)+Pgacs(k)+pgacr(k) |
---|
1625 | |
---|
1626 | !c --------------- |
---|
1627 | !c | wet processes | |
---|
1628 | !c --------------- |
---|
1629 | !c |
---|
1630 | !c (3) ACCRETION OF ICE CRYSTAL BY GRAUPEL (Pgacip): Lin (41) |
---|
1631 | !c egi=1. for wet growth |
---|
1632 | !c egi=0.1 for dry growth |
---|
1633 | !c |
---|
1634 | tmp2=10.*pgaci(k) |
---|
1635 | pgacip(k)=amin1( tmp2,qizodt(k) ) |
---|
1636 | |
---|
1637 | !c |
---|
1638 | !c (4) ACCRETION OF SNOW BY GRAUPEL ((Pgacsp) : Lin (29) |
---|
1639 | !c Compute processes (6) only when qsz > 0.0 and qgz > 0.0 |
---|
1640 | !c egs=exp(0.09*(tem(k)-273.15)) when T < 273.15 k |
---|
1641 | !c |
---|
1642 | tmp3=Pgacs(k)*1.0/egs |
---|
1643 | Pgacsp(k)=amin1( tmp3,qszodt(k) ) |
---|
1644 | |
---|
1645 | !c |
---|
1646 | !c (5) WET GROWTH OF GRAUPEL (Pgwet) : Lin (43) |
---|
1647 | !c may involve Pgacs or Pgaci and |
---|
1648 | !c must include PPgacw or Pgacr, or both. |
---|
1649 | !c ( The amount of Pgacw which is not able |
---|
1650 | !c to freeze is shed to rain. ) |
---|
1651 | IF(temcc(k).gt.-40.)THEN |
---|
1652 | |
---|
1653 | term0=constg*olambdag(k)**5.5/visc(k) |
---|
1654 | |
---|
1655 | !c |
---|
1656 | !c vf1s,vf2s=ventilation factors for graupel |
---|
1657 | !c vf1s=0.78,vf2s=0.31 in LIN |
---|
1658 | !c Cdrag=0.6 drag coefficient for hairstone |
---|
1659 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
---|
1660 | !c vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
---|
1661 | |
---|
1662 | delrs=rs0(k)-qvz(k) |
---|
1663 | tmp0=1./(xlf+cw*temcc(k)) |
---|
1664 | tmp1=2.*pi*xnog*(rho(k)*xlv*diffwv(k)*delrs-xka(k)* & |
---|
1665 | temcc(k))*orho(k)*tmp0 |
---|
1666 | constg2=vf1s*olambdag(k)*olambdag(k)+ & |
---|
1667 | vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
---|
1668 | tmp3=tmp1*constg2+(Pgacip(k)+Pgacsp(k))* & |
---|
1669 | (1-Ci*temcc(k)*tmp0) |
---|
1670 | tmp3=amax1(0.0,tmp3) |
---|
1671 | Pgwet(k)=amin1(tmp3,qlzodt(k)+qszodt(k)+qizodt(k) ) !bloss |
---|
1672 | |
---|
1673 | !c |
---|
1674 | !c Comparing Pgwet(wet process) and Pdry(dry process), |
---|
1675 | !c we will apply the small one. |
---|
1676 | !c if dry processes then delta4=1.0 |
---|
1677 | !c if wet processes then delta4=0.0 |
---|
1678 | ! |
---|
1679 | if ( Pdry(k) .lt. Pgwet(k) ) then |
---|
1680 | delta4=1.0 |
---|
1681 | else |
---|
1682 | delta4=0.0 |
---|
1683 | endif |
---|
1684 | ELSE |
---|
1685 | delta4=1.0 |
---|
1686 | ENDIF |
---|
1687 | |
---|
1688 | !c |
---|
1689 | !c |
---|
1690 | !c (6) Pgacrp(k)=Pgwet(k)-Pgacw(k)-Pgacip(k)-Pgacsp(k) |
---|
1691 | !c if Pgacrp(k) > 0. then some of the rain is frozen to hail |
---|
1692 | !c if Pgacrp(k) < 0. then some of the cloud water collected |
---|
1693 | !c by the hail is unable to freeze and is |
---|
1694 | !c shed as rain. |
---|
1695 | !c |
---|
1696 | Pgacrp(k)=Pgwet(k)-Pgacw(k)-Pgacip(k)-Pgacsp(k) |
---|
1697 | |
---|
1698 | !c |
---|
1699 | !c (8) DEPOSITION/SUBLIMATION OF GRAUPEL (Pgdep/Pgsub): Lin (46) |
---|
1700 | !c includes ventilation effect |
---|
1701 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
---|
1702 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
---|
1703 | !c vf2s*schmidt(k)**0.33334*gam2pt75*constg |
---|
1704 | !c |
---|
1705 | !c abg=2*pi*(Si-1)/rho/(A"+B") |
---|
1706 | !c |
---|
1707 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
---|
1708 | tmpb=xls*xls*rho(k)*qsiz(k)*diffwv(k) |
---|
1709 | tmpc=tmpa*qsiz(k)*diffwv(k) |
---|
1710 | abg=2.0*pi*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) |
---|
1711 | !c |
---|
1712 | !c vf1s,vf2s=ventilation factors for graupel |
---|
1713 | !c vf1s=0.78,vf2s=0.31 in LIN |
---|
1714 | !c Cdrag=0.6 drag coefficient for hairstone |
---|
1715 | !c |
---|
1716 | term0=constg*olambdag(k)**5.5/visc(k) |
---|
1717 | constg2=vf1s*olambdag(k)*olambdag(k)+ & |
---|
1718 | vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
---|
1719 | tmp2=abg*xnog*constg2 |
---|
1720 | pgdep(k)=amax1(0.0,tmp2) |
---|
1721 | pgsub(k)=amin1(0.0,tmp2) |
---|
1722 | pgsub(k)=amax1( pgsub(k),-qgzodt(k) ) |
---|
1723 | |
---|
1724 | 4000 continue |
---|
1725 | else |
---|
1726 | ! |
---|
1727 | !*********************************************************************** |
---|
1728 | !********* graupel production processes for T > 0 C ********** |
---|
1729 | !*********************************************************************** |
---|
1730 | ! |
---|
1731 | !c |
---|
1732 | !c (1) ACCRETION OF CLOUD WATER BY GRAUPEL (Pgacw): Lin (40) |
---|
1733 | !c egw=1.0 |
---|
1734 | !c Cdrag=0.6 drag coefficients for hairstone |
---|
1735 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
---|
1736 | |
---|
1737 | egw=1.0 |
---|
1738 | constg=sqrt(4.*grav*rhograul*0.33334*orho(k)*oCdrag) |
---|
1739 | tmp1=pio4*xnog*gam3pt5*constg*olambdag(k)**3.5 |
---|
1740 | tmp2=qlz(k)*egw*tmp1 |
---|
1741 | Pgacw(k)=amin1( tmp2,qlzodt(k) ) |
---|
1742 | |
---|
1743 | !c |
---|
1744 | !c (2) ACCRETION OF RAIN BY GRAUPEL (Pgacr): Lin (42) |
---|
1745 | !c Compute processes (5) only when qrz > 0.0 and qgz > 0.0 |
---|
1746 | !c egr=1. |
---|
1747 | !c |
---|
1748 | egr=1. |
---|
1749 | tmpa=olambdar(k)*olambdar(k) |
---|
1750 | tmpb=olambdag(k)*olambdag(k) |
---|
1751 | tmpc=olambdar(k)*olambdag(k) |
---|
1752 | tmp1=pi*pi*xnor*xnog*abs( vtr(k)-vtg(k) )*orho(k) |
---|
1753 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
---|
1754 | tmp3=tmp1*egr*rhowater*tmp2 |
---|
1755 | pgacr(k)=amin1( tmp3,qrzodt(k) ) |
---|
1756 | |
---|
1757 | |
---|
1758 | !c |
---|
1759 | !c (3) GRAUPEL MELTING TO FORM RAIN (Pgmlt): Lin (47) |
---|
1760 | !c Pgmlt is negative value |
---|
1761 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
---|
1762 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
---|
1763 | !c vf2s*schmidt(k)**0.33334*gam2pt75*constg |
---|
1764 | !c Cdrag=0.6 drag coefficients for hairstone |
---|
1765 | ! |
---|
1766 | delrs=rs0(k)-qvz(k) |
---|
1767 | term1=2.0*pi*orho(k)*( xlv*diffwv(k)*rho(k)*delrs- & |
---|
1768 | xka(k)*temcc(k) ) |
---|
1769 | term0=sqrt(4.*grav*rhograul*0.33334*orho(k)*ocdrag) & |
---|
1770 | *olambdag(k)**5.5/visc(k) |
---|
1771 | |
---|
1772 | constg2=vf1s*olambdag(k)*olambdag(k)+ & |
---|
1773 | vf2s*schmidt(k)**0.33334*gam2pt75*sqrt(term0) |
---|
1774 | tmp2=xnog*constg2 |
---|
1775 | tmp3=term1*oxlf*tmp2-cwoxlf*temcc(k)*( pgacw(k)+pgacr(k) ) |
---|
1776 | tmp4=amin1(0.0,tmp3) |
---|
1777 | pgmlt(k)=amax1( tmp4,-qgzodt(k) ) |
---|
1778 | |
---|
1779 | |
---|
1780 | !c |
---|
1781 | !c (4) EVAPORATION OF MELTING GRAUPEL (Pgmltevp) : HR (A19) |
---|
1782 | !c but use Lin et al. coefficience |
---|
1783 | !c Pgmltevp is a negative value |
---|
1784 | !c abg=2.0*pi*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) |
---|
1785 | !c |
---|
1786 | tmpa=rvapor*xka(k)*tem(k)*tem(k) |
---|
1787 | tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) |
---|
1788 | tmpc=tmpa*qswz(k)*diffwv(k) |
---|
1789 | tmpd=amin1( 0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb ) |
---|
1790 | |
---|
1791 | !c |
---|
1792 | !c abg=2*pi*(Si-1)/rho/(A"+B") |
---|
1793 | !c |
---|
1794 | abg=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) |
---|
1795 | ! |
---|
1796 | !**** allow evaporation to occur when RH less than 90% |
---|
1797 | !**** here not using 100% because the evaporation cooling |
---|
1798 | !**** of temperature is not taking into account yet; hence, |
---|
1799 | !**** the qgw value is a little bit larger. This will avoid |
---|
1800 | !**** evaporation can generate cloud. |
---|
1801 | ! |
---|
1802 | !c vf1s,vf2s=ventilation factors for snow |
---|
1803 | !c vf1s=0.78,vf2s=0.31 in LIN |
---|
1804 | !c constg=sqrt(4.*grav*rhograul*0.33334*orho(k)/Cdrag) |
---|
1805 | !c constg2=vf1s*olambdag(k)*olambdag(k)+ |
---|
1806 | !c vf2s*schmidt(k)**0.33334*gam2pt75*constg |
---|
1807 | ! |
---|
1808 | tmp2=abg*xnog*constg2 |
---|
1809 | tmp3=amin1(0.0,tmp2) |
---|
1810 | tmp3=amax1( tmp3,tmpd ) |
---|
1811 | pgmltevp(k)=amax1( tmp3,-qgzodt(k) ) |
---|
1812 | |
---|
1813 | !c |
---|
1814 | !c (5) ACCRETION OF SNOW BY GRAUPEL (Pgacs) : Lin (29) |
---|
1815 | !c Compute processes (3) only when qsz > 0.0 and qgz > 0.0 |
---|
1816 | !c egs=1.0 |
---|
1817 | !c |
---|
1818 | egs=1. |
---|
1819 | tmpa=olambdas(k)*olambdas(k) |
---|
1820 | tmpb=olambdag(k)*olambdag(k) |
---|
1821 | tmpc=olambdas(k)*olambdag(k) |
---|
1822 | tmp1=pi*pi*xnos*xnog*abs( vts(k)-vtg(k) )*orho(k) |
---|
1823 | tmp2=tmpa*tmpa*olambdag(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) |
---|
1824 | tmp3=tmp1*egs*rhosnow*tmp2 |
---|
1825 | Pgacs(k)=amin1( tmp3,qszodt(k) ) |
---|
1826 | |
---|
1827 | endif |
---|
1828 | |
---|
1829 | |
---|
1830 | ! |
---|
1831 | 900 continue |
---|
1832 | |
---|
1833 | !cc |
---|
1834 | !c |
---|
1835 | !c********************************************************************** |
---|
1836 | !c***** combine all processes together and avoid negative ***** |
---|
1837 | !c***** water substances |
---|
1838 | !*********************************************************************** |
---|
1839 | !c |
---|
1840 | if ( temcc(k) .lt. 0.0) then |
---|
1841 | !,delta4,1.-delta4 |
---|
1842 | !c |
---|
1843 | !c gdelta4=gindex*delta4 |
---|
1844 | !c g1sdelt4=gindex*(1.-delta4) |
---|
1845 | !c |
---|
1846 | gdelta4=gindex*delta4 |
---|
1847 | g1sdelt4=gindex*(1.-delta4) |
---|
1848 | !c |
---|
1849 | !c combined water vapor depletions |
---|
1850 | !c |
---|
1851 | !cc graupel |
---|
1852 | tmp=psdep(k)+pgdep(k)*gindex |
---|
1853 | if ( tmp .gt. qvzodt(k) ) then |
---|
1854 | factor=qvzodt(k)/tmp |
---|
1855 | psdep(k)=psdep(k)*factor |
---|
1856 | pgdep(k)=pgdep(k)*factor*gindex |
---|
1857 | end if |
---|
1858 | !c |
---|
1859 | !c combined cloud water depletions |
---|
1860 | !c |
---|
1861 | tmp=praut(k)+psacw(k)+psfw(k)+pracw(k)+gindex*Pgacw(k) |
---|
1862 | if ( tmp .gt. qlzodt(k) ) then |
---|
1863 | factor=qlzodt(k)/tmp |
---|
1864 | praut(k)=praut(k)*factor |
---|
1865 | psacw(k)=psacw(k)*factor |
---|
1866 | psfw(k)=psfw(k)*factor |
---|
1867 | pracw(k)=pracw(k)*factor |
---|
1868 | !cc graupel |
---|
1869 | Pgacw(k)=Pgacw(k)*factor*gindex |
---|
1870 | end if |
---|
1871 | !c |
---|
1872 | !c combined cloud ice depletions |
---|
1873 | !c |
---|
1874 | tmp=psaut(k)+psaci(k)+praci(k)+psfi(k)+Pgaci(k)*gdelta4 & |
---|
1875 | +Pgacip(k)*g1sdelt4 |
---|
1876 | if (tmp .gt. qizodt(k) ) then |
---|
1877 | factor=qizodt(k)/tmp |
---|
1878 | psaut(k)=psaut(k)*factor |
---|
1879 | psaci(k)=psaci(k)*factor |
---|
1880 | praci(k)=praci(k)*factor |
---|
1881 | psfi(k)=psfi(k)*factor |
---|
1882 | !cc graupel |
---|
1883 | Pgaci(k)=Pgaci(k)*factor*gdelta4 |
---|
1884 | Pgacip(k)=Pgacip(k)*factor*g1sdelt4 |
---|
1885 | endif |
---|
1886 | !c |
---|
1887 | !c combined all rain processes |
---|
1888 | !c |
---|
1889 | tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k) & |
---|
1890 | +Pgfr(k)*gindex+Pgacr(k)*gdelta4 & |
---|
1891 | +Pgacrp(k)*g1sdelt4 |
---|
1892 | if (tmp_r .gt. qrzodt(k) ) then |
---|
1893 | factor=qrzodt(k)/tmp_r |
---|
1894 | piacr(k)=piacr(k)*factor |
---|
1895 | psacr(k)=psacr(k)*factor |
---|
1896 | prevp(k)=prevp(k)*factor |
---|
1897 | !cc graupel |
---|
1898 | Pgfr(k)=Pgfr(k)*factor*gindex |
---|
1899 | Pgacr(k)=Pgacr(k)*factor*gdelta4 |
---|
1900 | Pgacrp(k)=Pgacrp(k)*factor*g1sdelt4 |
---|
1901 | endif |
---|
1902 | |
---|
1903 | !c |
---|
1904 | !c if qrz < 1.0E-4 and qsz < 1.0E-4 then delta2=1. |
---|
1905 | !c (all Pracs and Psacr become to snow) |
---|
1906 | !c if qrz >= 1.0E-4 or qsz >= 1.0E-4 then delta2=0. |
---|
1907 | !c (all Pracs and Psacr become to graupel) |
---|
1908 | !c |
---|
1909 | if (qrz(k) .lt. 1.0E-4 .and. qsz(k) .lt. 1.0E-4) then |
---|
1910 | delta2=1.0 |
---|
1911 | else |
---|
1912 | delta2=0.0 |
---|
1913 | endif |
---|
1914 | ! |
---|
1915 | !cc graupel |
---|
1916 | |
---|
1917 | !c |
---|
1918 | !c if qrz(k) < 1.0e-4 then delta3=1. means praci(k) --> qs |
---|
1919 | !c piacr(k) --> qs |
---|
1920 | !c if qrz(k) > 1.0e-4 then delta3=0. means praci(k) --> qg |
---|
1921 | !c piacr(k) --> qg : Lin (20) |
---|
1922 | |
---|
1923 | if (qrz(k) .lt. 1.0e-4) then |
---|
1924 | delta3=1.0 |
---|
1925 | else |
---|
1926 | delta3=0.0 |
---|
1927 | endif |
---|
1928 | ! |
---|
1929 | !c |
---|
1930 | !c if gindex = 0.(no graupel) then delta2=1.0 |
---|
1931 | !c delta3=1.0 |
---|
1932 | !c |
---|
1933 | if (gindex .eq. 0.) then |
---|
1934 | delta2=1.0 |
---|
1935 | delta3=1.0 |
---|
1936 | endif |
---|
1937 | ! |
---|
1938 | !c |
---|
1939 | !c combined all snow processes |
---|
1940 | !c |
---|
1941 | tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+ & |
---|
1942 | psfi(k)+praci(k)*delta3+piacr(k)*delta3+ & |
---|
1943 | psdep(k))+Pgaut(k)*gindex+Pgacs(k)*gdelta4+ & |
---|
1944 | Pgacsp(k)*g1sdelt4+Pracs(k)*(1.-delta2)- & |
---|
1945 | Psacr(k)*delta2 |
---|
1946 | if ( tmp_s .gt. qszodt(k) ) then |
---|
1947 | factor=qszodt(k)/tmp_s |
---|
1948 | pssub(k)=pssub(k)*factor |
---|
1949 | Pracs(k)=Pracs(k)*factor |
---|
1950 | !cc graupel |
---|
1951 | Pgaut(k)=Pgaut(k)*factor*gindex |
---|
1952 | Pgacs(k)=Pgacs(k)*factor*gdelta4 |
---|
1953 | Pgacsp(k)=Pgacsp(k)*factor*g1sdelt4 |
---|
1954 | endif |
---|
1955 | |
---|
1956 | !cc graupel |
---|
1957 | ! |
---|
1958 | |
---|
1959 | ! if (gindex .eq. 0.) goto 998 |
---|
1960 | !c |
---|
1961 | !c combined all graupel processes |
---|
1962 | !c |
---|
1963 | if(delta4.lt.0.5) then |
---|
1964 | !Re-define pgwet to account for limiting of pgacrp, |
---|
1965 | ! pgacip, pgacw and pgacsp above |
---|
1966 | pgwet(k) = pgacrp(k) + pgacw(k) + pgacip(k) + pgacsp(k) |
---|
1967 | end if |
---|
1968 | tmp_g=-pgaut(k)-pgfr(k)-Pgacw(k)*delta4-Pgaci(k)*delta4 & |
---|
1969 | -Pgacr(k)*delta4-Pgacs(k)*delta4 & |
---|
1970 | -pgwet(k)*(1.-delta4)-pgsub(k)-pgdep(k) & |
---|
1971 | -psacr(k)*(1-delta2)-Pracs(k)*(1-delta2) & |
---|
1972 | -praci(k)*(1-delta3)-piacr(k)*(1-delta3) |
---|
1973 | if (tmp_g .gt. qgzodt(k)) then |
---|
1974 | factor=qgzodt(k)/tmp_g |
---|
1975 | pgsub(k)=pgsub(k)*factor |
---|
1976 | endif |
---|
1977 | |
---|
1978 | 998 continue |
---|
1979 | !c |
---|
1980 | !c calculate new water substances, thetae, tem, and qvsbar |
---|
1981 | !c |
---|
1982 | |
---|
1983 | !cc graupel |
---|
1984 | pvapor(k)=-pssub(k)-psdep(k)-prevp(k)-pgsub(k)*gindex & |
---|
1985 | -pgdep(k)*gindex |
---|
1986 | qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k) ) |
---|
1987 | pclw(k)=-praut(k)-pracw(k)-psacw(k)-psfw(k)-pgacw(k)*gindex |
---|
1988 | if(flag_qndrop)then |
---|
1989 | if( qlz(k) > 1e-20 ) & |
---|
1990 | qndropz(k)=amax1( 0.0,qndropz(k)+dtb*pclw(k)*qndropz(k)/qlz(k) ) !sg |
---|
1991 | endif |
---|
1992 | qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) |
---|
1993 | pcli(k)=-psaut(k)-psfi(k)-psaci(k)-praci(k)-pgaci(k)*gdelta4 & |
---|
1994 | -Pgacip(k)*g1sdelt4 |
---|
1995 | qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) |
---|
1996 | tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k) & |
---|
1997 | +Pgfr(k)*gindex+Pgacr(k)*gdelta4 & |
---|
1998 | +Pgacrp(k)*g1sdelt4 |
---|
1999 | 232 format(i2,1x,6(f9.3,1x)) |
---|
2000 | prain(k)=-tmp_r |
---|
2001 | qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) |
---|
2002 | tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+ & |
---|
2003 | psfi(k)+praci(k)*delta3+piacr(k)*delta3+ & |
---|
2004 | psdep(k))+Pgaut(k)*gindex+Pgacs(k)*gdelta4+ & |
---|
2005 | Pgacsp(k)*g1sdelt4+Pracs(k)*(1.-delta2)- & |
---|
2006 | Psacr(k)*delta2 |
---|
2007 | psnow(k)=-tmp_s |
---|
2008 | qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) |
---|
2009 | qschg(k)=qschg(k)+psnow(k) |
---|
2010 | qschg(k)=psnow(k) |
---|
2011 | !cc graupel |
---|
2012 | tmp_g=-pgaut(k)-pgfr(k)-Pgacw(k)*delta4-Pgaci(k)*delta4 & |
---|
2013 | -Pgacr(k)*delta4-Pgacs(k)*delta4 & |
---|
2014 | -pgwet(k)*(1.-delta4)-pgsub(k)-pgdep(k) & |
---|
2015 | -psacr(k)*(1-delta2)-Pracs(k)*(1-delta2) & |
---|
2016 | -praci(k)*(1-delta3)-piacr(k)*(1-delta3) |
---|
2017 | 252 format(i2,1x,6(f12.9,1x)) |
---|
2018 | 262 format(i2,1x,7(f12.9,1x)) |
---|
2019 | pgraupel(k)=-tmp_g |
---|
2020 | pgraupel(k)=pgraupel(k)*gindex |
---|
2021 | qgz(k)=amax1( 0.0,qgz(k)+dtb*pgraupel(k)) |
---|
2022 | ! qgchg(k)=qgchg(k)+pgraupel(k) |
---|
2023 | qgchg(k)=pgraupel(k) |
---|
2024 | qgz(k)=qgz(k)*gindex |
---|
2025 | |
---|
2026 | tmp=ocp/tothz(k)*xLf*(qschg(k)+qgchg(k)) |
---|
2027 | theiz(k)=theiz(k)+dtb*tmp |
---|
2028 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
---|
2029 | tem(k)=thz(k)*tothz(k) |
---|
2030 | |
---|
2031 | temcc(k)=tem(k)-273.15 |
---|
2032 | |
---|
2033 | !bloss: Moves computation of saturation mixing ratio below |
---|
2034 | |
---|
2035 | ! if( temcc(k) .lt. -40.0 ) qswz(k)=qsiz(k) |
---|
2036 | ! qlpqi=qlz(k)+qiz(k) |
---|
2037 | ! if ( qlpqi .eq. 0.0 ) then |
---|
2038 | ! qvsbar(k)=qsiz(k) |
---|
2039 | ! else |
---|
2040 | ! qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
---|
2041 | ! endif |
---|
2042 | |
---|
2043 | ! |
---|
2044 | else |
---|
2045 | !c |
---|
2046 | !c combined cloud water depletions |
---|
2047 | !c |
---|
2048 | tmp=praut(k)+psacw(k)+pracw(k)+pgacw(k)*gindex |
---|
2049 | if ( tmp .gt. qlzodt(k) ) then |
---|
2050 | factor=qlzodt(k)/tmp |
---|
2051 | praut(k)=praut(k)*factor |
---|
2052 | psacw(k)=psacw(k)*factor |
---|
2053 | pracw(k)=pracw(k)*factor |
---|
2054 | !cc graupel |
---|
2055 | pgacw(k)=pgacw(k)*factor*gindex |
---|
2056 | end if |
---|
2057 | !c |
---|
2058 | !c combined all snow processes |
---|
2059 | !c |
---|
2060 | tmp_s=-(psmlt(k)+psmltevp(k))+Pgacs(k)*gindex |
---|
2061 | if (tmp_s .gt. qszodt(k) ) then |
---|
2062 | factor=qszodt(k)/tmp_s |
---|
2063 | psmlt(k)=psmlt(k)*factor |
---|
2064 | psmltevp(k)=psmltevp(k)*factor |
---|
2065 | !cc graupel |
---|
2066 | Pgacs(k)=Pgacs(k)*factor*gindex |
---|
2067 | endif |
---|
2068 | |
---|
2069 | !c |
---|
2070 | !c |
---|
2071 | !cc graupel |
---|
2072 | !c |
---|
2073 | ! if (gindex .eq. 0.) goto 997 |
---|
2074 | |
---|
2075 | !c |
---|
2076 | !c combined all graupel processes |
---|
2077 | !c |
---|
2078 | tmp_g=-pgmlt(k)-pgacs(k)-pgmltevp(k) |
---|
2079 | if (tmp_g .gt. qgzodt(k)) then |
---|
2080 | factor=qgzodt(k)/tmp_g |
---|
2081 | pgmltevp(k)=pgmltevp(k)*factor |
---|
2082 | pgmlt(k)=pgmlt(k)*factor |
---|
2083 | endif |
---|
2084 | !c |
---|
2085 | 997 continue |
---|
2086 | |
---|
2087 | !c |
---|
2088 | !c combined all rain processes |
---|
2089 | !c |
---|
2090 | tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) & |
---|
2091 | +pgmlt(k)*gindex-pgacw(k)*gindex |
---|
2092 | if (tmp_r .gt. qrzodt(k) ) then |
---|
2093 | factor=qrzodt(k)/tmp_r |
---|
2094 | prevp(k)=prevp(k)*factor |
---|
2095 | endif |
---|
2096 | !c |
---|
2097 | !c |
---|
2098 | !c calculate new water substances and thetae |
---|
2099 | !c |
---|
2100 | |
---|
2101 | |
---|
2102 | pvapor(k)=-psmltevp(k)-prevp(k)-pgmltevp(k)*gindex |
---|
2103 | qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k)) |
---|
2104 | pclw(k)=-praut(k)-pracw(k)-psacw(k)-pgacw(k)*gindex |
---|
2105 | if(flag_qndrop)then |
---|
2106 | if( qlz(k) > 1e-20 ) & |
---|
2107 | qndropz(k)=amax1( 0.0,qndropz(k)+dtb*pclw(k)*qndropz(k)/qlz(k) ) !sg |
---|
2108 | endif |
---|
2109 | qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) |
---|
2110 | pcli(k)=0.0 |
---|
2111 | qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) |
---|
2112 | tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) & |
---|
2113 | +pgmlt(k)*gindex-pgacw(k)*gindex |
---|
2114 | 242 format(i2,1x,7(f9.6,1x)) |
---|
2115 | prain(k)=-tmp_r |
---|
2116 | tmpqrz=qrz(k) |
---|
2117 | qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) |
---|
2118 | tmp_s=-(psmlt(k)+psmltevp(k))+Pgacs(k)*gindex |
---|
2119 | psnow(k)=-tmp_s |
---|
2120 | qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) |
---|
2121 | ! qschg(k)=qschg(k)+psnow(k) |
---|
2122 | qschg(k)=psnow(k) |
---|
2123 | !cc graupel |
---|
2124 | |
---|
2125 | tmp_g=-pgmlt(k)-pgacs(k)-pgmltevp(k) |
---|
2126 | ! write(*,272)k,pgmlt(k),pgacs(k),pgmltevp(k), |
---|
2127 | 272 format(i2,1x,3(f12.9,1x)) |
---|
2128 | pgraupel(k)=-tmp_g*gindex |
---|
2129 | qgz(k)=amax1( 0.0,qgz(k)+dtb*pgraupel(k)) |
---|
2130 | ! qgchg(k)=qgchg(k)+pgraupel(k) |
---|
2131 | qgchg(k)=pgraupel(k) |
---|
2132 | qgz(k)=qgz(k)*gindex |
---|
2133 | ! |
---|
2134 | tmp=ocp/tothz(k)*xLf*(qschg(k)+qgchg(k)) |
---|
2135 | theiz(k)=theiz(k)+dtb*tmp |
---|
2136 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
---|
2137 | |
---|
2138 | tem(k)=thz(k)*tothz(k) |
---|
2139 | temcc(k)=tem(k)-273.15 |
---|
2140 | ! qswz(k)=episp0k*oprez(k)* & |
---|
2141 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
2142 | |
---|
2143 | !bloss: Moved computation of saturation mixing ratio below |
---|
2144 | |
---|
2145 | ! es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
2146 | ! qswz(k)=ep2*es/(prez(k)-es) |
---|
2147 | ! qsiz(k)=qswz(k) |
---|
2148 | ! qvsbar(k)=qswz(k) |
---|
2149 | ! |
---|
2150 | end if |
---|
2151 | preclw(k)=pclw(k) !sg |
---|
2152 | |
---|
2153 | ! |
---|
2154 | !*********************************************************************** |
---|
2155 | !********** saturation adjustment ********** |
---|
2156 | !*********************************************************************** |
---|
2157 | !bloss: BEGIN |
---|
2158 | ! |
---|
2159 | ! compute saturation specific humidity at the temperature |
---|
2160 | ! which would be experienced if all cloud liquid and ice |
---|
2161 | ! were to become vapor. This will make for a consistent |
---|
2162 | ! check of saturation. Previously, qvsbar was computed |
---|
2163 | ! without accounting for the change in temperature due to |
---|
2164 | ! evaporation/sublimation, and as a result would |
---|
2165 | ! incorrectly identify some points as subsaturated. |
---|
2166 | |
---|
2167 | tmp_tem = tem(k) ! updated temperature from above. |
---|
2168 | |
---|
2169 | if(qlz(k)+qiz(k).gt. 0.) then |
---|
2170 | ! account for latent heat if all qlz and qiz were converted to vapor |
---|
2171 | tmp_tem = tem(k) - xlvocp*qlz(k) - (xlvocp+xlfocp)*qiz(k) |
---|
2172 | end if |
---|
2173 | |
---|
2174 | ! compute temperature in celsius |
---|
2175 | tmp_temcc = tmp_tem - 273.15 |
---|
2176 | |
---|
2177 | ! estimate lower bound on saturation vapor pressure |
---|
2178 | ! (ice if <0C, liquid aboce) |
---|
2179 | if (tmp_temcc .lt. 0.) then |
---|
2180 | es=1000.*svp1*exp( 21.8745584*(tmp_tem-273.16)/(tmp_tem-7.66) ) !ice |
---|
2181 | else |
---|
2182 | es=1000.*svp1*exp( svp2*tmp_temcc/(tmp_tem-svp3) ) !liquid |
---|
2183 | end if |
---|
2184 | |
---|
2185 | ! compute lower bound on saturation mixing ratio. |
---|
2186 | qvsbar(k)=ep2*es/(prez(k)-es) |
---|
2187 | ! |
---|
2188 | !bloss: END |
---|
2189 | ! |
---|
2190 | ! allow supersaturation exits linearly from 0% at 500 mb to 50% |
---|
2191 | ! above 300 mb |
---|
2192 | ! 5.0e-5=1.0/(500mb-300mb) |
---|
2193 | ! |
---|
2194 | rsat=1.0+0.5*(50000.0-prez(k))*5.0e-5 |
---|
2195 | rsat=amax1(1.0,rsat) |
---|
2196 | rsat=amin1(1.5,rsat) |
---|
2197 | rsat=1.0 |
---|
2198 | if( qvz(k)+qlz(k)+qiz(k) .lt. rsat*qvsbar(k) ) then |
---|
2199 | |
---|
2200 | !c |
---|
2201 | !c unsaturated |
---|
2202 | !c |
---|
2203 | qvz(k)=qvz(k)+qlz(k)+qiz(k) |
---|
2204 | qlz(k)=0.0 |
---|
2205 | qiz(k)=0.0 |
---|
2206 | |
---|
2207 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
---|
2208 | tem(k)=thz(k)*tothz(k) |
---|
2209 | temcc(k)=tem(k)-273.15 |
---|
2210 | |
---|
2211 | go to 1800 |
---|
2212 | ! |
---|
2213 | else |
---|
2214 | !c |
---|
2215 | !c saturated |
---|
2216 | !c |
---|
2217 | ! |
---|
2218 | pladj(k)=qlz(k) |
---|
2219 | piadj(k)=qiz(k) |
---|
2220 | ! |
---|
2221 | |
---|
2222 | CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & |
---|
2223 | k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0 ) |
---|
2224 | |
---|
2225 | ! |
---|
2226 | pladj(k)=odtb*(qlz(k)-pladj(k)) |
---|
2227 | piadj(k)=odtb*(qiz(k)-piadj(k)) |
---|
2228 | ! |
---|
2229 | pclw(k)=pclw(k)+pladj(k) |
---|
2230 | pcli(k)=pcli(k)+piadj(k) |
---|
2231 | pvapor(k)=pvapor(k)-( pladj(k)+piadj(k) ) |
---|
2232 | ! |
---|
2233 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
---|
2234 | tem(k)=thz(k)*tothz(k) |
---|
2235 | |
---|
2236 | temcc(k)=tem(k)-273.15 |
---|
2237 | |
---|
2238 | ! qswz(k)=episp0k*oprez(k)* & |
---|
2239 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
2240 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
2241 | qswz(k)=ep2*es/(prez(k)-es) |
---|
2242 | if (tem(k) .lt. 273.15 ) then |
---|
2243 | ! qsiz(k)=episp0k*oprez(k)* & |
---|
2244 | ! exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
---|
2245 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
---|
2246 | qsiz(k)=ep2*es/(prez(k)-es) |
---|
2247 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
---|
2248 | else |
---|
2249 | qsiz(k)=qswz(k) |
---|
2250 | endif |
---|
2251 | qlpqi=qlz(k)+qiz(k) |
---|
2252 | if ( qlpqi .eq. 0.0 ) then |
---|
2253 | qvsbar(k)=qsiz(k) |
---|
2254 | else |
---|
2255 | qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
---|
2256 | endif |
---|
2257 | |
---|
2258 | end if |
---|
2259 | |
---|
2260 | ! |
---|
2261 | !*********************************************************************** |
---|
2262 | !***** melting and freezing of cloud ice and cloud water ***** |
---|
2263 | !*********************************************************************** |
---|
2264 | qlpqi=qlz(k)+qiz(k) |
---|
2265 | if(qlpqi .le. 0.0) go to 1800 |
---|
2266 | ! |
---|
2267 | !c |
---|
2268 | !c (1) HOMOGENEOUS NUCLEATION WHEN T< -40 C (Pihom) |
---|
2269 | !c |
---|
2270 | if(temcc(k) .lt. -40.0) pihom(k)=qlz(k)*odtb |
---|
2271 | !c |
---|
2272 | !c (2) MELTING OF ICE CRYSTAL WHEN T> 0 C (Pimlt) |
---|
2273 | !c |
---|
2274 | if(temcc(k) .gt. 0.0) pimlt(k)=qiz(k)*odtb |
---|
2275 | !c |
---|
2276 | !c (3) PRODUCTION OF CLOUD ICE BY BERGERON PROCESS (Pidw): Hsie (p957) |
---|
2277 | !c this process only considered when -31 C < T < 0 C |
---|
2278 | !c |
---|
2279 | if(temcc(k) .lt. 0.0 .and. temcc(k) .gt. -31.0) then |
---|
2280 | !c! |
---|
2281 | !c! parama1 and parama2 functions must be user supplied |
---|
2282 | !c! |
---|
2283 | a1=parama1( temcc(k) ) |
---|
2284 | a2=parama2( temcc(k) ) |
---|
2285 | !! change unit from cgs to mks |
---|
2286 | a1=a1*0.001**(1.0-a2) |
---|
2287 | xnin=xni0*exp(-bni*temcc(k)) |
---|
2288 | pidw(k)=xnin*orho(k)*(a1*xmnin**a2) |
---|
2289 | end if |
---|
2290 | ! |
---|
2291 | pcli(k)=pcli(k)+pihom(k)-pimlt(k)+pidw(k) |
---|
2292 | pclw(k)=pclw(k)-pihom(k)+pimlt(k)-pidw(k) |
---|
2293 | qlz(k)=amax1( 0.0,qlz(k)+dtb*(-pihom(k)+pimlt(k)-pidw(k)) ) |
---|
2294 | qiz(k)=amax1( 0.0,qiz(k)+dtb*(pihom(k)-pimlt(k)+pidw(k)) ) |
---|
2295 | |
---|
2296 | ! |
---|
2297 | CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & |
---|
2298 | k, xLvocp, xLfocp, episp0k ,EP2,SVP1,SVP2,SVP3,SVPT0) |
---|
2299 | |
---|
2300 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
---|
2301 | tem(k)=thz(k)*tothz(k) |
---|
2302 | |
---|
2303 | temcc(k)=tem(k)-273.15 |
---|
2304 | |
---|
2305 | ! qswz(k)=episp0k*oprez(k)* & |
---|
2306 | ! exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
2307 | es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) |
---|
2308 | qswz(k)=ep2*es/(prez(k)-es) |
---|
2309 | |
---|
2310 | if (tem(k) .lt. 273.15 ) then |
---|
2311 | ! qsiz(k)=episp0k*oprez(k)* & |
---|
2312 | ! exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
---|
2313 | es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) |
---|
2314 | qsiz(k)=ep2*es/(prez(k)-es) |
---|
2315 | if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) |
---|
2316 | else |
---|
2317 | qsiz(k)=qswz(k) |
---|
2318 | endif |
---|
2319 | qlpqi=qlz(k)+qiz(k) |
---|
2320 | if ( qlpqi .eq. 0.0 ) then |
---|
2321 | qvsbar(k)=qsiz(k) |
---|
2322 | else |
---|
2323 | qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi |
---|
2324 | endif |
---|
2325 | |
---|
2326 | 1800 continue |
---|
2327 | ! |
---|
2328 | !*********************************************************************** |
---|
2329 | !********** integrate the productions of rain and snow ********** |
---|
2330 | !*********************************************************************** |
---|
2331 | !c |
---|
2332 | |
---|
2333 | 2000 continue |
---|
2334 | |
---|
2335 | |
---|
2336 | !--------------------------------------------------------------------- |
---|
2337 | |
---|
2338 | ! |
---|
2339 | !*********************************************************************** |
---|
2340 | !****** Write terms in cloud physics to time series dataset ***** |
---|
2341 | !*********************************************************************** |
---|
2342 | ! |
---|
2343 | ! open(unit=24,form='formatted',status='new', |
---|
2344 | ! & file='cloud.dat') |
---|
2345 | |
---|
2346 | !9030 format(10e12.6) |
---|
2347 | |
---|
2348 | ! write(24,*)'tmp' |
---|
2349 | ! write(24,9030) (tem(k),k=kts+1,kte) |
---|
2350 | ! write(24,*)'qiz' |
---|
2351 | ! write(24,9030) (qiz(k),k=kts+1,kte) |
---|
2352 | ! write(24,*)'qsz' |
---|
2353 | ! write(24,9030) (qsz(k),k=kts+1,kte) |
---|
2354 | ! write(24,*)'qrz' |
---|
2355 | ! write(24,9030) (qrz(k),k=kts+1,kte) |
---|
2356 | ! write(24,*)'qgz' |
---|
2357 | ! write(24,9030) (qgz(k),k=kts+1,kte) |
---|
2358 | ! write(24,*)'qvoqsw' |
---|
2359 | ! write(24,9030) (qvoqswz(k),k=kts+1,kte) |
---|
2360 | ! write(24,*)'qvoqsi' |
---|
2361 | ! write(24,9030) (qvoqsiz(k),k=kts+1,kte) |
---|
2362 | ! write(24,*)'vtr' |
---|
2363 | ! write(24,9030) (vtr(k),k=kts+1,kte) |
---|
2364 | ! write(24,*)'vts' |
---|
2365 | ! write(24,9030) (vts(k),k=kts+1,kte) |
---|
2366 | ! write(24,*)'vtg' |
---|
2367 | ! write(24,9030) (vtg(k),k=kts+1,kte) |
---|
2368 | ! write(24,*)'pclw' |
---|
2369 | ! write(24,9030) (pclw(k),k=kts+1,kte) |
---|
2370 | ! write(24,*)'pvapor' |
---|
2371 | ! write(24,9030) (pvapor(k),k=kts+1,kte) |
---|
2372 | ! write(24,*)'pcli' |
---|
2373 | ! write(24,9030) (pcli(k),k=kts+1,kte) |
---|
2374 | ! write(24,*)'pimlt' |
---|
2375 | ! write(24,9030) (pimlt(k),k=kts+1,kte) |
---|
2376 | ! write(24,*)'pihom' |
---|
2377 | ! write(24,9030) (pihom(k),k=kts+1,kte) |
---|
2378 | ! write(24,*)'pidw' |
---|
2379 | ! write(24,9030) (pidw(k),k=kts+1,kte) |
---|
2380 | ! write(24,*)'prain' |
---|
2381 | ! write(24,9030) (prain(k),k=kts+1,kte) |
---|
2382 | ! write(24,*)'praut' |
---|
2383 | ! write(24,9030) (praut(k),k=kts+1,kte) |
---|
2384 | ! write(24,*)'pracw' |
---|
2385 | ! write(24,9030) (pracw(k),k=kts+1,kte) |
---|
2386 | ! write(24,*)'prevp' |
---|
2387 | ! write(24,9030) (prevp(k),k=kts+1,kte) |
---|
2388 | ! write(24,*)'psnow' |
---|
2389 | ! write(24,9030) (psnow(k),k=kts+1,kte) |
---|
2390 | ! write(24,*)'psaut' |
---|
2391 | ! write(24,9030) (psaut(k),k=kts+1,kte) |
---|
2392 | ! write(24,*)'psfw' |
---|
2393 | ! write(24,9030) (psfw(k),k=kts+1,kte) |
---|
2394 | ! write(24,*)'psfi' |
---|
2395 | ! write(24,9030) (psfi(k),k=kts+1,kte) |
---|
2396 | ! write(24,*)'praci' |
---|
2397 | ! write(24,9030) (praci(k),k=kts+1,kte) |
---|
2398 | ! write(24,*)'piacr' |
---|
2399 | ! write(24,9030) (piacr(k),k=kts+1,kte) |
---|
2400 | ! write(24,*)'psaci' |
---|
2401 | ! write(24,9030) (psaci(k),k=kts+1,kte) |
---|
2402 | ! write(24,*)'psacw' |
---|
2403 | ! write(24,9030) (psacw(k),k=kts+1,kte) |
---|
2404 | ! write(24,*)'psdep' |
---|
2405 | ! write(24,9030) (psdep(k),k=kts+1,kte) |
---|
2406 | ! write(24,*)'pssub' |
---|
2407 | ! write(24,9030) (pssub(k),k=kts+1,kte) |
---|
2408 | ! write(24,*)'pracs' |
---|
2409 | ! write(24,9030) (pracs(k),k=kts+1,kte) |
---|
2410 | ! write(24,*)'psacr' |
---|
2411 | ! write(24,9030) (psacr(k),k=kts+1,kte) |
---|
2412 | ! write(24,*)'psmlt' |
---|
2413 | ! write(24,9030) (psmlt(k),k=kts+1,kte) |
---|
2414 | ! write(24,*)'psmltevp' |
---|
2415 | ! write(24,9030) (psmltevp(k),k=kts+1,kte) |
---|
2416 | ! write(24,*)'pladj' |
---|
2417 | ! write(24,9030) (pladj(k),k=kts+1,kte) |
---|
2418 | ! write(24,*)'piadj' |
---|
2419 | ! write(24,9030) (piadj(k),k=kts+1,kte) |
---|
2420 | ! write(24,*)'pgraupel' |
---|
2421 | ! write(24,9030) (pgraupel(k),k=kts+1,kte) |
---|
2422 | ! write(24,*)'pgaut' |
---|
2423 | ! write(24,9030) (pgaut(k),k=kts+1,kte) |
---|
2424 | ! write(24,*)'pgfr' |
---|
2425 | ! write(24,9030) (pgfr(k),k=kts+1,kte) |
---|
2426 | ! write(24,*)'pgacw' |
---|
2427 | ! write(24,9030) (pgacw(k),k=kts+1,kte) |
---|
2428 | ! write(24,*)'pgaci' |
---|
2429 | ! write(24,9030) (pgaci(k),k=kts+1,kte) |
---|
2430 | ! write(24,*)'pgacr' |
---|
2431 | ! write(24,9030) (pgacr(k),k=kts+1,kte) |
---|
2432 | ! write(24,*)'pgacs' |
---|
2433 | ! write(24,9030) (pgacs(k),k=kts+1,kte) |
---|
2434 | ! write(24,*)'pgacip' |
---|
2435 | ! write(24,9030) (pgacip(k),k=kts+1,kte) |
---|
2436 | ! write(24,*)'pgacrP' |
---|
2437 | ! write(24,9030) (pgacrP(k),k=kts+1,kte) |
---|
2438 | ! write(24,*)'pgacsp' |
---|
2439 | ! write(24,9030) (pgacsp(k),k=kts+1,kte) |
---|
2440 | ! write(24,*)'pgwet' |
---|
2441 | ! write(24,9030) (pgwet(k),k=kts+1,kte) |
---|
2442 | ! write(24,*)'pdry' |
---|
2443 | ! write(24,9030) (pdry(k),k=kts+1,kte) |
---|
2444 | ! write(24,*)'pgsub' |
---|
2445 | ! write(24,9030) (pgsub(k),k=kts+1,kte) |
---|
2446 | ! write(24,*)'pgdep' |
---|
2447 | ! write(24,9030) (pgdep(k),k=kts+1,kte) |
---|
2448 | ! write(24,*)'pgmlt' |
---|
2449 | ! write(24,9030) (pgmlt(k),k=kts+1,kte) |
---|
2450 | ! write(24,*)'pgmltevp' |
---|
2451 | ! write(24,9030) (pgmltevp(k),k=kts+1,kte) |
---|
2452 | |
---|
2453 | |
---|
2454 | |
---|
2455 | !**** below if qv < qvmin then qv=qvmin, ql=0.0, and qi=0.0 |
---|
2456 | ! |
---|
2457 | do k=kts+1,kte |
---|
2458 | if ( qvz(k) .lt. qvmin ) then |
---|
2459 | qlz(k)=0.0 |
---|
2460 | qiz(k)=0.0 |
---|
2461 | qvz(k)=amax1( qvmin,qvz(k)+qlz(k)+qiz(k) ) |
---|
2462 | end if |
---|
2463 | enddo |
---|
2464 | ! |
---|
2465 | END SUBROUTINE clphy1d |
---|
2466 | |
---|
2467 | |
---|
2468 | !--------------------------------------------------------------------- |
---|
2469 | ! SATURATED ADJUSTMENT |
---|
2470 | !--------------------------------------------------------------------- |
---|
2471 | SUBROUTINE satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, & |
---|
2472 | kts, kte, k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0) |
---|
2473 | !--------------------------------------------------------------------- |
---|
2474 | IMPLICIT NONE |
---|
2475 | !--------------------------------------------------------------------- |
---|
2476 | ! This program use Newton's method for finding saturated temperature |
---|
2477 | ! and saturation mixing ratio. |
---|
2478 | ! |
---|
2479 | ! In this saturation adjustment scheme we assume |
---|
2480 | ! (1) the saturation mixing ratio is the mass weighted average of |
---|
2481 | ! saturation values over liquid water (qsw), and ice (qsi) |
---|
2482 | ! following Lord et al., 1984 and Tao, 1989 |
---|
2483 | ! |
---|
2484 | ! (2) the percentage of cloud liquid and cloud ice will |
---|
2485 | ! be fixed during the saturation calculation |
---|
2486 | !--------------------------------------------------------------------- |
---|
2487 | ! |
---|
2488 | |
---|
2489 | INTEGER, INTENT(IN ) :: kts, kte, k |
---|
2490 | |
---|
2491 | REAL, DIMENSION( kts:kte ), & |
---|
2492 | INTENT(INOUT) :: qvz, qlz, qiz |
---|
2493 | ! |
---|
2494 | REAL, DIMENSION( kts:kte ), & |
---|
2495 | INTENT(IN ) :: prez, theiz, tothz |
---|
2496 | |
---|
2497 | REAL, INTENT(IN ) :: xLvocp, xLfocp, episp0k |
---|
2498 | REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0 |
---|
2499 | |
---|
2500 | ! LOCAL VARS |
---|
2501 | |
---|
2502 | INTEGER :: n |
---|
2503 | |
---|
2504 | REAL, DIMENSION( kts:kte ) :: thz, tem, temcc, qsiz, & |
---|
2505 | qswz, qvsbar |
---|
2506 | |
---|
2507 | REAL :: qsat, qlpqi, ratql, t0, t1, tmp1, ratqi, tsat, absft, & |
---|
2508 | denom1, denom2, dqvsbar, ftsat, dftsat, qpz, & |
---|
2509 | gindex, es |
---|
2510 | |
---|
2511 | REAL :: tem_noliqice, qsat_noliqice !bloss |
---|
2512 | ! |
---|
2513 | !--------------------------------------------------------------------- |
---|
2514 | |
---|
2515 | thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) |
---|
2516 | |
---|
2517 | tem(k)=tothz(k)*thz(k) |
---|
2518 | |
---|
2519 | !bloss: BEGIN |
---|
2520 | tem_noliqice = tem(k) - xlvocp*qlz(k) - (xLvocp+xLfocp)*qiz(k) |
---|
2521 | |
---|
2522 | if (tem_noliqice .gt. 273.15) then |
---|
2523 | es=1000.*svp1*exp( svp2*(tem_noliqice-svpt0)/(tem_noliqice-svp3) ) |
---|
2524 | qsat_noliqice=ep2*es/(prez(k)-es) |
---|
2525 | else |
---|
2526 | qsat_noliqice=episp0k/prez(k)* & |
---|
2527 | exp( 21.8745584*(tem_noliqice-273.15)/(tem_noliqice-7.66) ) |
---|
2528 | end if |
---|
2529 | !bloss: END |
---|
2530 | qpz=qvz(k)+qlz(k)+qiz(k) |
---|
2531 | if (qpz .lt. qsat_noliqice) then |
---|
2532 | qvz(k)=qpz |
---|
2533 | qiz(k)=0.0 |
---|
2534 | qlz(k)=0.0 |
---|
2535 | go to 400 |
---|
2536 | end if |
---|
2537 | qlpqi=qlz(k)+qiz(k) |
---|
2538 | if( qlpqi .ge. 1.0e-5) then |
---|
2539 | ratql=qlz(k)/qlpqi |
---|
2540 | ratqi=qiz(k)/qlpqi |
---|
2541 | else |
---|
2542 | t0=273.15 |
---|
2543 | ! t1=233.15 |
---|
2544 | t1=248.15 |
---|
2545 | tmp1=( t0-tem(k) )/(t0-t1) |
---|
2546 | tmp1=amin1(1.0,tmp1) |
---|
2547 | tmp1=amax1(0.0,tmp1) |
---|
2548 | ratqi=tmp1 |
---|
2549 | ratql=1.0-tmp1 |
---|
2550 | end if |
---|
2551 | ! |
---|
2552 | ! |
---|
2553 | !-- saturation mixing ratios over water and ice |
---|
2554 | !-- at the outset we will follow Bolton 1980 MWR for |
---|
2555 | !-- the water and Murray JAS 1967 for the ice |
---|
2556 | ! |
---|
2557 | !-- dqvsbar=d(qvsbar)/dT |
---|
2558 | !-- ftsat=F(Tsat) |
---|
2559 | !-- dftsat=d(F(T))/dT |
---|
2560 | ! |
---|
2561 | ! First guess of tsat |
---|
2562 | |
---|
2563 | tsat=tem(k) |
---|
2564 | absft=1.0 |
---|
2565 | ! |
---|
2566 | do 200 n=1,20 |
---|
2567 | denom1=1.0/(tsat-svp3) |
---|
2568 | denom2=1.0/(tsat-7.66) |
---|
2569 | ! qswz(k)=episp0k/prez(k)* & |
---|
2570 | ! exp( svp2*denom1*(tsat-273.15) ) |
---|
2571 | es=1000.*svp1*exp( svp2*denom1*(tsat-svpt0) ) |
---|
2572 | qswz(k)=ep2*es/(prez(k)-es) |
---|
2573 | if (tem(k) .lt. 273.15) then |
---|
2574 | ! qsiz(k)=episp0k/prez(k)* & |
---|
2575 | ! exp( 21.8745584*denom2*(tsat-273.15) ) |
---|
2576 | es=1000.*svp1*exp( 21.8745584*denom2*(tsat-273.15) ) |
---|
2577 | qsiz(k)=ep2*es/(prez(k)-es) |
---|
2578 | if (tem(k) .lt. 233.15) qswz(k)=qsiz(k) |
---|
2579 | else |
---|
2580 | qsiz(k)=qswz(k) |
---|
2581 | endif |
---|
2582 | qvsbar(k)=ratql*qswz(k)+ratqi*qsiz(k) |
---|
2583 | ! |
---|
2584 | ! if( absft .lt. 0.01 .and. n .gt. 3 ) go to 300 |
---|
2585 | if( absft .lt. 0.01 ) go to 300 |
---|
2586 | ! |
---|
2587 | dqvsbar=ratql*qswz(k)*svp2*243.5*denom1*denom1+ & |
---|
2588 | ratqi*qsiz(k)*21.8745584*265.5*denom2*denom2 |
---|
2589 | ftsat=tsat+(xlvocp+ratqi*xlfocp)*qvsbar(k)- & |
---|
2590 | tothz(k)*theiz(k)-xlfocp*ratqi*(qvz(k)+qlz(k)+qiz(k)) |
---|
2591 | dftsat=1.0+(xlvocp+ratqi*xlfocp)*dqvsbar |
---|
2592 | tsat=tsat-ftsat/dftsat |
---|
2593 | absft=abs(ftsat) |
---|
2594 | |
---|
2595 | 200 continue |
---|
2596 | 9020 format(1x,'point can not converge, absft,n=',e12.5,i5) |
---|
2597 | ! |
---|
2598 | 300 continue |
---|
2599 | if( qpz .gt. qvsbar(k) ) then |
---|
2600 | qvz(k)=qvsbar(k) |
---|
2601 | qiz(k)=ratqi*( qpz-qvz(k) ) |
---|
2602 | qlz(k)=ratql*( qpz-qvz(k) ) |
---|
2603 | else |
---|
2604 | qvz(k)=qpz |
---|
2605 | qiz(k)=0.0 |
---|
2606 | qlz(k)=0.0 |
---|
2607 | end if |
---|
2608 | 400 continue |
---|
2609 | |
---|
2610 | END SUBROUTINE satadj |
---|
2611 | |
---|
2612 | |
---|
2613 | !---------------------------------------------------------------- |
---|
2614 | REAL FUNCTION parama1(temp) |
---|
2615 | !---------------------------------------------------------------- |
---|
2616 | IMPLICIT NONE |
---|
2617 | !---------------------------------------------------------------- |
---|
2618 | ! This program calculate the parameter for crystal growth rate |
---|
2619 | ! in Bergeron process |
---|
2620 | !---------------------------------------------------------------- |
---|
2621 | |
---|
2622 | REAL, INTENT (IN ) :: temp |
---|
2623 | REAL, DIMENSION(32) :: a1 |
---|
2624 | INTEGER :: i1, i1p1 |
---|
2625 | REAL :: ratio |
---|
2626 | |
---|
2627 | data a1/0.100e-10,0.7939e-7,0.7841e-6,0.3369e-5,0.4336e-5, & |
---|
2628 | 0.5285e-5,0.3728e-5,0.1852e-5,0.2991e-6,0.4248e-6, & |
---|
2629 | 0.7434e-6,0.1812e-5,0.4394e-5,0.9145e-5,0.1725e-4, & |
---|
2630 | 0.3348e-4,0.1725e-4,0.9175e-5,0.4412e-5,0.2252e-5, & |
---|
2631 | 0.9115e-6,0.4876e-6,0.3473e-6,0.4758e-6,0.6306e-6, & |
---|
2632 | 0.8573e-6,0.7868e-6,0.7192e-6,0.6513e-6,0.5956e-6, & |
---|
2633 | 0.5333e-6,0.4834e-6/ |
---|
2634 | |
---|
2635 | i1=int(-temp)+1 |
---|
2636 | i1p1=i1+1 |
---|
2637 | ratio=-(temp)-float(i1-1) |
---|
2638 | parama1=a1(i1)+ratio*( a1(i1p1)-a1(i1) ) |
---|
2639 | |
---|
2640 | END FUNCTION parama1 |
---|
2641 | |
---|
2642 | !---------------------------------------------------------------- |
---|
2643 | REAL FUNCTION parama2(temp) |
---|
2644 | !---------------------------------------------------------------- |
---|
2645 | IMPLICIT NONE |
---|
2646 | !---------------------------------------------------------------- |
---|
2647 | ! This program calculate the parameter for crystal growth rate |
---|
2648 | ! in Bergeron process |
---|
2649 | !---------------------------------------------------------------- |
---|
2650 | |
---|
2651 | REAL, INTENT (IN ) :: temp |
---|
2652 | REAL, DIMENSION(32) :: a2 |
---|
2653 | INTEGER :: i1, i1p1 |
---|
2654 | REAL :: ratio |
---|
2655 | |
---|
2656 | data a2/0.0100,0.4006,0.4831,0.5320,0.5307,0.5319,0.5249, & |
---|
2657 | 0.4888,0.3849,0.4047,0.4318,0.4771,0.5183,0.5463, & |
---|
2658 | 0.5651,0.5813,0.5655,0.5478,0.5203,0.4906,0.4447, & |
---|
2659 | 0.4126,0.3960,0.4149,0.4320,0.4506,0.4483,0.4460, & |
---|
2660 | 0.4433,0.4413,0.4382,0.4361/ |
---|
2661 | i1=int(-temp)+1 |
---|
2662 | i1p1=i1+1 |
---|
2663 | ratio=-(temp)-float(i1-1) |
---|
2664 | parama2=a2(i1)+ratio*( a2(i1p1)-a2(i1) ) |
---|
2665 | |
---|
2666 | END FUNCTION parama2 |
---|
2667 | |
---|
2668 | !---------------------------------------------------------------- |
---|
2669 | REAL FUNCTION ggamma(X) |
---|
2670 | !---------------------------------------------------------------- |
---|
2671 | IMPLICIT NONE |
---|
2672 | !---------------------------------------------------------------- |
---|
2673 | REAL, INTENT(IN ) :: x |
---|
2674 | REAL, DIMENSION(8) :: B |
---|
2675 | INTEGER ::j, K1 |
---|
2676 | REAL ::PF, G1TO2 ,TEMP |
---|
2677 | |
---|
2678 | DATA B/-.577191652,.988205891,-.897056937,.918206857, & |
---|
2679 | -.756704078,.482199394,-.193527818,.035868343/ |
---|
2680 | |
---|
2681 | PF=1. |
---|
2682 | TEMP=X |
---|
2683 | DO 10 J=1,200 |
---|
2684 | IF (TEMP .LE. 2) GO TO 20 |
---|
2685 | TEMP=TEMP-1. |
---|
2686 | 10 PF=PF*TEMP |
---|
2687 | 100 FORMAT(//,5X,'module_mp_lin: INPUT TO GAMMA FUNCTION TOO LARGE, X=',E12.5) |
---|
2688 | WRITE(wrf_err_message,100)X |
---|
2689 | CALL wrf_error_fatal(wrf_err_message) |
---|
2690 | 20 G1TO2=1. |
---|
2691 | TEMP=TEMP - 1. |
---|
2692 | DO 30 K1=1,8 |
---|
2693 | 30 G1TO2=G1TO2 + B(K1)*TEMP**K1 |
---|
2694 | ggamma=PF*G1TO2 |
---|
2695 | |
---|
2696 | END FUNCTION ggamma |
---|
2697 | |
---|
2698 | !---------------------------------------------------------------- |
---|
2699 | |
---|
2700 | END MODULE module_mp_lin |
---|
2701 | |
---|