1 | MODULE module_cu_camzm_driver |
---|
2 | |
---|
3 | !Roughly based on zm_conv_intr.F90 from CAM |
---|
4 | |
---|
5 | USE module_cam_support, only: pcnst, pcols, pver, pverp |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | PRIVATE !Default to private |
---|
10 | PUBLIC :: & !Public entities |
---|
11 | camzm_driver, & |
---|
12 | zm_conv_init |
---|
13 | |
---|
14 | CONTAINS |
---|
15 | |
---|
16 | !------------------------------------------------------------------------ |
---|
17 | SUBROUTINE camzm_driver( & |
---|
18 | ids,ide, jds,jde, kds,kde & |
---|
19 | ,ims,ime, jms,jme, kms,kme & |
---|
20 | ,its,ite, jts,jte, kts,kte & |
---|
21 | ,itimestep, bl_pbl_physics, sf_sfclay_physics & |
---|
22 | ,th, t_phy, tsk, tke_pbl, ust, qv, qc, qi & |
---|
23 | ,mavail, kpbl, pblh, xland, z & |
---|
24 | ,z_at_w, dz8w, ht, p, p8w, pi_phy, psfc & |
---|
25 | ,u_phy, v_phy, hfx, qfx, cldfra & |
---|
26 | ,tpert_camuwpbl & |
---|
27 | ,dx, dt, stepcu, cudt, curr_secs, adapt_step_flag& |
---|
28 | ,cape_out, mu_out, md_out, zmdt, zmdq & |
---|
29 | ,rliq_out, dlf_out & |
---|
30 | ,pconvb, pconvt, cubot, cutop, raincv, pratec & |
---|
31 | ,rucuten, rvcuten & |
---|
32 | ,rthcuten, rqvcuten, rqccuten, rqicuten & |
---|
33 | ,evaptzm, fzsntzm, evsntzm, evapqzm, zmflxprc & |
---|
34 | ,zmflxsnw, zmntprpd, zmntsnpd, zmeiheat & |
---|
35 | ,cmfmc, cmfmcdzm, preccdzm, precz & |
---|
36 | ,zmmtu, zmmtv, zmupgu, zmupgd, zmvpgu, zmvpgd & |
---|
37 | ,zmicuu, zmicud, zmicvu, zmicvd & |
---|
38 | ,zmdice, zmdliq & |
---|
39 | ) |
---|
40 | ! This routine is based on zm_conv_tend in CAM. It handles the mapping of |
---|
41 | ! variables from the WRF to the CAM framework for the Zhang-McFarlane |
---|
42 | ! convective parameterization. |
---|
43 | ! |
---|
44 | ! Author: William.Gustafson@pnl.gov, Nov. 2009 |
---|
45 | ! Last modified: William.Gustafson@pnl.gov, Nov. 2010 |
---|
46 | !------------------------------------------------------------------------ |
---|
47 | USE shr_kind_mod, only: r8 => shr_kind_r8 |
---|
48 | USE physconst, only: cpair, gravit |
---|
49 | USE module_cu_camzm, only: convtran, momtran, zm_conv_evap, zm_convr |
---|
50 | |
---|
51 | ! Subroutine arguments... |
---|
52 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
---|
53 | ims,ime, jms,jme, kms,kme, & |
---|
54 | its,ite, jts,jte, kts,kte, & |
---|
55 | bl_pbl_physics, & !pbl scheme |
---|
56 | itimestep, & !time step index |
---|
57 | sf_sfclay_physics, & !surface layer scheme |
---|
58 | stepcu !number of time steps between Cu calls |
---|
59 | |
---|
60 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN) :: & |
---|
61 | cldfra, & !cloud fraction |
---|
62 | dz8w, & !height between interfaces (m) |
---|
63 | p, & !pressure at mid-level (Pa) |
---|
64 | p8w, & !pressure at level interface (Pa) |
---|
65 | pi_phy, & !exner function, (p0/p)^(R/cpair) (none) |
---|
66 | qv, & !water vapor mixing ratio (kg/kg-dry air) |
---|
67 | th, & !potential temperature (K) |
---|
68 | tke_pbl, & !turbulent kinetic energy from PBL (m2/s2) |
---|
69 | t_phy, & !temperature (K) |
---|
70 | u_phy, & !zonal wind component on T points (m/s) |
---|
71 | v_phy, & !meridional wind component on T points (m/s) |
---|
72 | z, & !height above sea level at mid-level (m) |
---|
73 | z_at_w !height above sea level at interface (m) |
---|
74 | |
---|
75 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN), OPTIONAL :: & |
---|
76 | qc, & !cloud droplet mixing ratio (kg/kg-dry air) |
---|
77 | qi !cloud ice crystal mixing ratio (kg/kg-dry air) |
---|
78 | |
---|
79 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(INOUT) :: & |
---|
80 | dlf_out, & !detraining cloud water tendendcy |
---|
81 | evaptzm, & !temp. tendency - evap/snow prod from ZM (K/s) |
---|
82 | fzsntzm, & !temp. tendency - rain to snow conversion from ZM (K/s) |
---|
83 | evsntzm, & !temp. tendency - snow to rain conversion from ZM (K/s) |
---|
84 | evapqzm, & !spec. humidity tend. - evaporation from ZM (kg/kg/s) |
---|
85 | zmflxprc, & !flux of precipitation from ZM (kg/m2/s) |
---|
86 | zmflxsnw, & !flux of snow from ZM (kg/m2/s) |
---|
87 | zmntprpd, & !net precipitation production from ZM (kg/kg/s) |
---|
88 | zmntsnpd, & !net snow production from ZM (kg/kg/s) |
---|
89 | zmeiheat, & !heating by ice and evaporation from ZM (W/kg) |
---|
90 | cmfmc, & !convective mass flux--m sub c, deep here but ultimately deep+shallow (kg/m2/s) |
---|
91 | cmfmcdzm, & !convection mass flux from ZM deep (kg/m2/s) |
---|
92 | md_out, & !output convective downdraft mass flux (kg/m2/s) |
---|
93 | mu_out, & !output convective updraft mass flux (kg/m2/s) |
---|
94 | rucuten, & !UNcoupled zonal wind tendency due to Cu scheme (m/s2) |
---|
95 | rvcuten, & !UNcoupled meridional wind tendency due to Cu scheme (m/s2) |
---|
96 | rthcuten, & !UNcoupled potential temperature tendendcy due to cu scheme (K/s) |
---|
97 | rqvcuten, & !UNcoupled water vapor mixing ratio tendency due to Cu scheme (kg/kg/s) |
---|
98 | zmdt, & !temp. tendency from moist convection (K/s) |
---|
99 | zmdq, & !spec. humidity tendency from moist convection (kg/kg/s) |
---|
100 | zmmtu, & !U tendency from ZM convective momentum transport (m/s2) |
---|
101 | zmmtv, & !V tendency from ZM convective momentum transport (m/s2) |
---|
102 | zmupgu, & !zonal force from ZM updraft pressure gradient term (m/s2) |
---|
103 | zmupgd, & !zonal force from ZM downdraft pressure gradient term (m/s2) |
---|
104 | zmvpgu, & !meridional force from ZM updraft pressure gradient term (m/s2) |
---|
105 | zmvpgd, & !meridional force from ZM downdraft pressure gradient term (m/s2) |
---|
106 | zmicuu, & !ZM in-cloud U updrafts (m/s) |
---|
107 | zmicud, & !ZM in-cloud U downdrafts (m/s) |
---|
108 | zmicvu, & !ZM in-cloud V updrafts (m/s) |
---|
109 | zmicvd, & !ZM in-cloud V downdrafts (m/s) |
---|
110 | zmdice, & !ZM cloud ice tendency (kg/kg/s) |
---|
111 | zmdliq !ZM cloud liquid tendency (kg/kg/s) |
---|
112 | |
---|
113 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(INOUT), OPTIONAL :: & |
---|
114 | rqccuten, & !UNcoupled cloud droplet mixing ratio tendency due to Cu scheme (kg/kg/s) |
---|
115 | rqicuten !UNcoupled ice crystal mixing ratio tendency due to Cu scheme (kg/kg/s) |
---|
116 | |
---|
117 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(IN) :: & |
---|
118 | hfx, & !upward heat flux at sfc (W/m2) |
---|
119 | ht, & !terrain height (m) |
---|
120 | xland, & !land/water mask, 1=land, 2=water |
---|
121 | mavail, & !soil moisture availability |
---|
122 | pblh, & !planetary boundary layer height (m) |
---|
123 | psfc, & !surface pressure (Pa) |
---|
124 | qfx, & !upward moisture flux at sfc (kg/m2/s) |
---|
125 | tpert_camuwpbl, & !temperature perturbation from UW CAM PBL |
---|
126 | tsk, & !skin temperature (K) |
---|
127 | ust !u* in similarity theory (m/s) |
---|
128 | |
---|
129 | REAL, DIMENSION( ims:ime, jms:jme ), INTENT(INOUT) :: & |
---|
130 | cape_out, & !convective available potential energy (J/kg) |
---|
131 | cubot, & !level number of base of convection |
---|
132 | cutop, & !level number of top of convection |
---|
133 | pconvb, & !pressure of base of convection (Pa) |
---|
134 | pconvt, & !pressure of top of convection (Pa) |
---|
135 | pratec, & !rain rate returned to WRF for accumulation (mm/s) |
---|
136 | preccdzm, & !convection precipitation rate from ZM deep (m/s) |
---|
137 | precz, & !total precipitation rate from ZM (m/s) |
---|
138 | raincv, & !time-step convective rain amount (mm) |
---|
139 | rliq_out !vertical integral of reserved cloud water |
---|
140 | |
---|
141 | REAL, INTENT(IN) :: & |
---|
142 | cudt, & !cumulus time step (min) |
---|
143 | curr_secs, & !current forecast time (s) |
---|
144 | dt, & !domain time step (s) |
---|
145 | dx !grid spacing (m) |
---|
146 | |
---|
147 | INTEGER, DIMENSION( ims:ime, jms:jme), INTENT(IN) :: & |
---|
148 | kpbl !index of PBL level |
---|
149 | |
---|
150 | LOGICAL, INTENT(IN) :: & |
---|
151 | adapt_step_flag !using adaptive time steps? |
---|
152 | |
---|
153 | ! Local variables... |
---|
154 | !Variables dimensioned for input to ZM routines |
---|
155 | REAL(r8), DIMENSION(pcols, kte+1) :: & |
---|
156 | mcon, & !convective mass flux--m sub c (sub arg out in CAM) |
---|
157 | pflx, & !scattered precip flux at each level (sub arg out in CAM) |
---|
158 | pint8, & !pressure at layer interface (Pa) |
---|
159 | zi8 !height above sea level at mid-level (m) |
---|
160 | |
---|
161 | REAL(r8), DIMENSION(pcols, kte, pcnst) :: & |
---|
162 | qh8 !specific humidity (kg/kg-moist air) |
---|
163 | |
---|
164 | REAL(r8), DIMENSION(pcols, kte, 3) :: & |
---|
165 | cloud, & !holder for cloud water and ice (q in CAM) |
---|
166 | cloudtnd, & !holder for cloud tendencies (ptend_loc%q in CAM) |
---|
167 | fracis !fraction of cloud species that are insoluble |
---|
168 | |
---|
169 | REAL(r8), DIMENSION(pcols, kte, 2) :: & |
---|
170 | icwu, & !in-cloud winds in upraft (m/s) |
---|
171 | icwd, & !in-cloud winds in downdraft (m/s) |
---|
172 | pguall, & !apparent force from updraft pres. gradient (~units?) |
---|
173 | pgdall, & !apparent force from downdraft pres. gradient (~units?) |
---|
174 | winds, & !wind components (m/s) |
---|
175 | wind_tends !wind component tendencies (m/s2) |
---|
176 | |
---|
177 | REAL(r8), DIMENSION(pcols, kte) :: & |
---|
178 | cld8, & !cloud fraction |
---|
179 | cme, & !cmf condensation - evaporation (~units?, sub arg out in CAM) |
---|
180 | dlf, & !scattered version of the detraining cld h2o tendency (~units?) |
---|
181 | fake_dpdry, & !place holder for dpdry, delta pres. of dry atmos. |
---|
182 | flxprec, & !evap outfld: convective-scale flux of precip at interfaces (kg/m2/s) |
---|
183 | flxsnow, & !evap outfld: convective-scale flux of snow at interfaces (kg/m2/s) |
---|
184 | ntprprd, & !evap outfld: net precip production in layer (kg/kg/s) |
---|
185 | ntsnprd, & !evap outfld: net snow production in layer (kg/kg/s) |
---|
186 | pdel8, & !pressure thickness of layer (between interfaces, Pa) |
---|
187 | pmid8, & !pressure at layer middle (Pa) |
---|
188 | ql8, & !cloud liquid water (~units?) |
---|
189 | qi8, & !cloud ice (~units?) |
---|
190 | t8, & !temperature (K) |
---|
191 | zm8, & !height above ground at mid-level (m) |
---|
192 | qtnd, & !specific humidity tendency (kg/kg/s) |
---|
193 | rprd, & !rain production rate (kg/kg/s, comes from pbuf array in CAM, add to restart?~) |
---|
194 | stnd, & !heating rate (dry static energy tendency, W/kg) |
---|
195 | tend_s_snwprd, & !heating rate of snow production (~units?) |
---|
196 | tend_s_snwevmlt, & !heating rate of evap/melting of snow (~units?) |
---|
197 | zdu !detraining mass flux (~units? sub arg out in CAM) |
---|
198 | |
---|
199 | REAL(r8), DIMENSION(pcols) :: & |
---|
200 | cape, & !convective available potential energy (J/kg) |
---|
201 | jctop, & !row of top-of-deep-convection indices passed out (sub arg out in CAM) |
---|
202 | jcbot, & !row of base of cloud indices passed out (sub arg out in CAM) |
---|
203 | landfrac, & !land fraction |
---|
204 | pblh8, & !planetary boundary layer height (m) |
---|
205 | phis, & !geopotential at terrain height (m2/s2) |
---|
206 | prec, & !convective-scale precipitation rate from ZM (m/s) |
---|
207 | rliq, & !reserved liquid (not yet in cldliq) for energy integrals (units? sub arg out in CAM) |
---|
208 | snow, & !convective-scale snowfall rate from ZM (m/s) |
---|
209 | tpert !thermal (convective) temperature excess (K) |
---|
210 | |
---|
211 | !Variables that were declared at the module level of zm_conv_intr in |
---|
212 | !CAM. In that context they needed to be held between calls to |
---|
213 | !zm_conv_tend and zm_conv_tend2 at the chunk level. In WRF, these vars |
---|
214 | !are setup to hold the whole "memory" dimension, but as a 1-D vector |
---|
215 | !instead of a 2-D array as is typically done in WRF. This allows us to |
---|
216 | !leave the CAM routines in tact. For now, this forces us to immediately |
---|
217 | !call zm_conv_tend2 before leaving this module, but it allows us to |
---|
218 | !follow the WRF rules. We can deal with generalizing this for handling |
---|
219 | !tracer convective transport of aerosols later.~ |
---|
220 | REAL(r8), DIMENSION(pcols, kte, (ime-ims+1)*(jme-jms+1)) :: & |
---|
221 | dp, & !layer pres. thickness between interfaces (mb) |
---|
222 | du, & |
---|
223 | ed, & |
---|
224 | eu, & |
---|
225 | md, & |
---|
226 | mu |
---|
227 | |
---|
228 | REAL(r8), DIMENSION(pcols, (ime-ims+1)*(jme-jms+1)) :: & |
---|
229 | dsubcld ! layer pres. thickness between LCL and maxi (mb) |
---|
230 | |
---|
231 | INTEGER, DIMENSION(pcols, (ime-ims+1)*(jme-jms+1)) :: & |
---|
232 | ideep, & ! holds position of gathered points |
---|
233 | jt, & ! top-level index of deep cumulus convection |
---|
234 | maxg ! gathered values of maxi |
---|
235 | |
---|
236 | INTEGER, DIMENSION((ime-ims+1)*(jme-jms+1)) :: & |
---|
237 | lengath ! number of gathered points |
---|
238 | |
---|
239 | !Other local vars |
---|
240 | INTEGER :: i, j, k, kflip, n, ncnst |
---|
241 | INTEGER :: lchnk !chunk identifier, used to map 2-D to 1-D arrays in WRF |
---|
242 | INTEGER :: ncol !number of atmospheric columns in chunk |
---|
243 | LOGICAL, DIMENSION(3) :: l_qt !logical switches for constituent tendency presence |
---|
244 | LOGICAL, DIMENSION(2) :: l_windt !logical switches for wind tendency presence |
---|
245 | LOGICAL :: run_param !flag for handling alternate cumulus call freq. |
---|
246 | ! |
---|
247 | ! Check to see if this is a convection timestep... |
---|
248 | ! |
---|
249 | if (adapt_step_flag) then |
---|
250 | if ( (itimestep==0) .or. (cudt<=0) .or. & |
---|
251 | ( curr_secs+dt >= ( int(curr_secs/( cudt*60 )) + 1 )*cudt*60 ) ) then |
---|
252 | run_param = .TRUE. |
---|
253 | else |
---|
254 | run_param = .FALSE. |
---|
255 | endif |
---|
256 | |
---|
257 | else |
---|
258 | if (mod(itimestep,stepcu)==0 .or. itimestep==0) then |
---|
259 | run_param = .TRUE. |
---|
260 | else |
---|
261 | run_param = .FALSE. |
---|
262 | endif |
---|
263 | endif |
---|
264 | |
---|
265 | !Leave the subroutine if it is not yet time to call the cumulus param |
---|
266 | if( .not. run_param ) return |
---|
267 | ! |
---|
268 | ! Initialize... |
---|
269 | ! |
---|
270 | ncol = 1 !chunk size in WRF is 1 since we loop over all columns in a tile |
---|
271 | |
---|
272 | cape_out(its:ite, jts:jte) = 0. |
---|
273 | mu_out(its:ite, kts:kte, jts:jte) = 0. |
---|
274 | md_out(its:ite, kts:kte, jts:jte) = 0. |
---|
275 | zmdt(its:ite, kts:kte, jts:jte) = 0. |
---|
276 | ! |
---|
277 | ! Map variables to inputs for zm_convr and call it... |
---|
278 | ! Loop over the points in the tile and treat them each as a CAM chunk. |
---|
279 | ! |
---|
280 | do j = jts,jte |
---|
281 | do i = its,ite |
---|
282 | lchnk = (j-jts)*(ite-its+1) + (i-its+1) !1-D index location from the 2-D tile |
---|
283 | |
---|
284 | !Flip variables on the layer middles |
---|
285 | do k = kts,kte |
---|
286 | kflip = kte-k+1 |
---|
287 | |
---|
288 | cld8(1,kflip) = cldfra(i,k,j) |
---|
289 | pdel8(1,kflip) = p8w(i,k,j) - p8w(i,k+1,j) |
---|
290 | pmid8(1,kflip) = p(i,k,j) |
---|
291 | qh8(1,kflip,1) = max( qv(i,k,j)/(1.+qv(i,k,j)), 1e-30 ) !values of 0 cause a crash in entropy |
---|
292 | if( present(qc) ) then |
---|
293 | ql8(1,kflip) = qc(i,k,j)/(1.+qv(i,k,j)) !Convert to moist mix ratio |
---|
294 | else |
---|
295 | ql8(1,kflip) = 0. |
---|
296 | end if |
---|
297 | if( present(qi) ) then |
---|
298 | qi8(1,kflip) = qi(i,k,j)/(1.+qv(i,k,j)) !Used in convtran, ditto for conversion |
---|
299 | else |
---|
300 | qi8(1,kflip) = 0. |
---|
301 | end if |
---|
302 | t8(1,kflip) = t_phy(i,k,j) |
---|
303 | zm8(1,kflip) = z(i,k,j) - ht(i,j) !Height above the ground at midlevels |
---|
304 | end do |
---|
305 | |
---|
306 | !Flip variables on the layer interfaces |
---|
307 | do k = kts,kte+1 |
---|
308 | kflip = kte-k+2 |
---|
309 | |
---|
310 | pint8(1,kflip) = p8w(i,k,j) |
---|
311 | zi8(1,kflip) = z_at_w(i,k,j) -ht(i,j) !Height above the ground at interfaces |
---|
312 | end do |
---|
313 | |
---|
314 | !Other necessary conversions for input to ZM |
---|
315 | if( xland(i,j)==2 ) then |
---|
316 | landfrac(1) = 1. !land, WRF is all or nothing |
---|
317 | else |
---|
318 | landfrac(1) = 0. !water |
---|
319 | end if |
---|
320 | pblh8(1) = pblh(i,j) |
---|
321 | phis(1) = ht(i,j)*gravit |
---|
322 | |
---|
323 | call get_tpert(bl_pbl_physics, sf_sfclay_physics, dx, & |
---|
324 | mavail(i,j), kpbl(i,j), pblh(i,j), & |
---|
325 | dz8w(i,1,j), psfc(i,j), qv(i,1,j), t_phy(i,1,j), & |
---|
326 | th(i,1,j), tsk(i,j), tke_pbl(i,:,j), ust(i,j), & |
---|
327 | u_phy(i,1,j), v_phy(i,1,j), hfx(i,j), qfx(i,j), & |
---|
328 | tpert_camuwpbl(i,j), kte, & |
---|
329 | tpert(1)) |
---|
330 | |
---|
331 | !Call the Zhang-McFarlane (1996) convection parameterization |
---|
332 | !NOTE: The 0.5*dt is correct and is a nuance of CAM typically |
---|
333 | ! using 2*dt for physics tendencies. Everywhere in zm_convr |
---|
334 | ! that dt is used, the dt is multiplied by 2 to get back to |
---|
335 | ! the 2*dt. Everywhere else in the CAM ZM interface the full |
---|
336 | ! 2*dt is passed into the subroutines. In WRF we use 1*dt |
---|
337 | ! in place of CAM's 2*dt since the adjustment is made |
---|
338 | ! elsewhere. |
---|
339 | call zm_convr( lchnk, ncol, & |
---|
340 | t8, qh8, prec, jctop, jcbot, & |
---|
341 | pblh8, zm8, phis, zi8, qtnd, & |
---|
342 | stnd, pmid8, pint8, pdel8, & |
---|
343 | 0.5_r8*real(dt,r8), mcon, cme, cape, & |
---|
344 | tpert, dlf, pflx, zdu, rprd, & |
---|
345 | mu(:,:,lchnk), md(:,:,lchnk),du(:,:,lchnk),eu(:,:,lchnk),ed(:,:,lchnk), & |
---|
346 | dp(:,:,lchnk), dsubcld(:,lchnk), jt(:,lchnk), maxg(:,lchnk), ideep(:,lchnk), & |
---|
347 | lengath(lchnk), ql8, rliq, landfrac ) |
---|
348 | |
---|
349 | !Start mapping CAM output to WRF output variables. We follow the |
---|
350 | !same order as in CAM's zm_conv_tend to ease maintenance... |
---|
351 | do k=kts,kte |
---|
352 | kflip = kte-k+1 |
---|
353 | dlf_out(i,k,j) = dlf(1,kflip) |
---|
354 | end do |
---|
355 | cape_out(i,j) = cape(1) |
---|
356 | rliq_out(i,j) = rliq(1) |
---|
357 | |
---|
358 | !Convert mass flux from reported mb/s to kg/m2/s |
---|
359 | mcon(:ncol,:pver) = mcon(:ncol,:pver) * 100._r8/gravit |
---|
360 | |
---|
361 | ! Store upward and downward mass fluxes in un-gathered arrays |
---|
362 | ! + convert from mb/s to kg/m2/s |
---|
363 | do n=1,lengath(lchnk) |
---|
364 | do k=kts,kte |
---|
365 | kflip = kte-k+1 |
---|
366 | ! ii = ideep(n,lchnk) <--in WRF this is always 1 because chunk size=1 |
---|
367 | mu_out(i,k,j) = mu(n,kflip,lchnk) * 100._r8/gravit |
---|
368 | md_out(i,k,j) = md(n,kflip,lchnk) * 100._r8/gravit |
---|
369 | end do |
---|
370 | end do |
---|
371 | |
---|
372 | do k=kts,kte |
---|
373 | kflip = kte-k+1 |
---|
374 | zmdt(i,k,j) = stnd(1,kflip)/cpair |
---|
375 | zmdq(i,k,j) = qtnd(1,kflip) |
---|
376 | end do |
---|
377 | |
---|
378 | !Top and bottom pressure of convection |
---|
379 | pconvt(i,j) = p8w(i,1,j) |
---|
380 | pconvb(i,j) = p8w(i,1,j) |
---|
381 | do n = 1,lengath(lchnk) |
---|
382 | if (maxg(n,lchnk).gt.jt(n,lchnk)) then |
---|
383 | pconvt(i,j) = pmid8(ideep(n,lchnk),jt(n,lchnk)) ! gathered array (or jctop ungathered) |
---|
384 | pconvb(i,j) = pmid8(ideep(n,lchnk),maxg(n,lchnk))! gathered array |
---|
385 | endif |
---|
386 | end do |
---|
387 | cutop(i,j) = jctop(1) |
---|
388 | cubot(i,j) = jcbot(1) |
---|
389 | |
---|
390 | !Add tendency from this process to tendencies arrays. Also, |
---|
391 | !increment the local state arrays to reflect additional tendency |
---|
392 | !from zm_convr, i.e. the physics update call in CAM. Note that |
---|
393 | !we are not readjusting the pressure levels to hydrostatic |
---|
394 | !balance for the new virtual temperature like is done in CAM. We |
---|
395 | !will let WRF take care of such things later for the total |
---|
396 | !tendency. |
---|
397 | do k=kts,kte |
---|
398 | kflip = kte-k+1 |
---|
399 | |
---|
400 | !Convert temperature to potential temperature and |
---|
401 | !specific humidity to water vapor mixing ratio |
---|
402 | rthcuten(i,k,j) = zmdt(i,k,j)/pi_phy(i,k,j) |
---|
403 | rqvcuten(i,k,j) = zmdq(i,k,j)/(1._r8 - zmdq(i,k,j)) |
---|
404 | |
---|
405 | t8(1,kflip) = t8(1,kflip) + zmdt(i,k,j)*real(dt,r8) |
---|
406 | qh8(1,kflip,1) = qh8(1,kflip,1) + zmdq(i,k,j)*real(dt,r8) |
---|
407 | end do |
---|
408 | |
---|
409 | ! Determine the phase of the precipitation produced and add latent heat of fusion |
---|
410 | ! Evaporate some of the precip directly into the environment (Sundqvist) |
---|
411 | ! Allow this to use the updated state1 (t8 and qh8 in WRF) and the fresh ptend_loc type |
---|
412 | ! heating and specific humidity tendencies produced |
---|
413 | qtnd = 0._r8 !re-initialize tendencies (i.e. physics_ptend_init(ptend_loc)) |
---|
414 | stnd = 0._r8 |
---|
415 | call zm_conv_evap(ncol, lchnk, & |
---|
416 | t8, pmid8, pdel8, qh8(:,:,1), & |
---|
417 | stnd, tend_s_snwprd, tend_s_snwevmlt, qtnd, & |
---|
418 | rprd, cld8, real(dt,r8), & |
---|
419 | prec, snow, ntprprd, ntsnprd , flxprec, flxsnow) |
---|
420 | |
---|
421 | ! Parse output variables from zm_conv_evap |
---|
422 | do k=kts,kte |
---|
423 | kflip = kte-k+1 |
---|
424 | |
---|
425 | evaptzm(i,k,j) = stnd(1,kflip)/cpair |
---|
426 | fzsntzm(i,k,j) = tend_s_snwprd(1,kflip)/cpair |
---|
427 | evsntzm(i,k,j) = tend_s_snwevmlt(1,kflip)/cpair |
---|
428 | evapqzm(i,k,j) = qtnd(1,kflip) |
---|
429 | zmflxprc(i,k,j) = flxprec(1,kflip) |
---|
430 | zmflxsnw(i,k,j) = flxsnow(1,kflip) |
---|
431 | zmntprpd(i,k,j) = ntprprd(1,kflip) |
---|
432 | zmntsnpd(i,k,j) = ntsnprd(1,kflip) |
---|
433 | zmeiheat(i,k,j) = stnd(1,kflip) !Do we really need this and evaptzm? |
---|
434 | cmfmc(i,k,j) = mcon(1,kflip) !Set to deep value here, shallow added in UW scheme |
---|
435 | cmfmcdzm(i,k,j) = mcon(1,kflip) |
---|
436 | preccdzm(i,j) = prec(1) !Rain rate from just deep |
---|
437 | precz(i,j) = prec(1) !Rain rate for total convection (just deep right now) |
---|
438 | pratec(i,j) = prec(1)*1e3 !Rain rate used in WRF for accumulation (mm/s) |
---|
439 | raincv(i,j) = pratec(i,j)*dt !Rain amount for time step returned back to WRF |
---|
440 | end do |
---|
441 | |
---|
442 | !Add tendency from zm_conv_evap to tendencies arrays. Also, |
---|
443 | !increment the local state arrays to reflect additional tendency |
---|
444 | !Note that we are not readjusting the pressure levels to hydrostatic |
---|
445 | !balance for the new virtual temperature like is done in CAM. We |
---|
446 | !will let WRF take care of such things later for the total |
---|
447 | !tendency. |
---|
448 | do k=kts,kte |
---|
449 | kflip = kte-k+1 |
---|
450 | |
---|
451 | !Convert temperature to potential temperature and |
---|
452 | !specific humidity to water vapor mixing ratio |
---|
453 | rthcuten(i,k,j) = rthcuten(i,k,j) + & |
---|
454 | evaptzm(i,k,j)/pi_phy(i,k,j) |
---|
455 | rqvcuten(i,k,j) = rqvcuten(i,k,j) + & |
---|
456 | evapqzm(i,k,j)/(1. - qv(i,k,j)) |
---|
457 | |
---|
458 | t8(1,kflip) = t8(1,kflip) + evaptzm(i,k,j)*real(dt,r8) |
---|
459 | qh8(1,kflip,1) = qh8(1,kflip,1) + evapqzm(i,k,j)*real(dt,r8) |
---|
460 | end do |
---|
461 | |
---|
462 | ! Momentum transport |
---|
463 | stnd = 0._r8 !Zero relevant tendencies in preparation |
---|
464 | wind_tends = 0._r8 |
---|
465 | do k=kts,kte |
---|
466 | kflip = kte-k+1 |
---|
467 | winds(1,k,1) = u_phy(i,kflip,j) |
---|
468 | winds(1,k,2) = v_phy(i,kflip,j) |
---|
469 | end do |
---|
470 | l_windt(1:2) = .true. |
---|
471 | |
---|
472 | call momtran (lchnk, ncol, & |
---|
473 | l_windt, winds, 2, mu(:,:,lchnk), md(:,:,lchnk), & |
---|
474 | du(:,:,lchnk), eu(:,:,lchnk), ed(:,:,lchnk), dp(:,:,lchnk), dsubcld(:,lchnk), & |
---|
475 | jt(:,lchnk),maxg(:,lchnk), ideep(:,lchnk), 1, lengath(lchnk), & |
---|
476 | itimestep, wind_tends, pguall, pgdall, icwu, icwd, real(dt,r8), stnd ) |
---|
477 | |
---|
478 | !Add tendency from momtran to tendencies arrays. Also, |
---|
479 | !increment the local state arrays to reflect additional tendency |
---|
480 | !Note that we are not readjusting the pressure levels to hydrostatic |
---|
481 | !balance for the new virtual temperature like is done in CAM. We |
---|
482 | !will let WRF take care of such things later for the total |
---|
483 | !tendency. |
---|
484 | do k=kts,kte |
---|
485 | kflip = kte-k+1 |
---|
486 | |
---|
487 | !Convert temperature to potential temperature and |
---|
488 | !specific humidity to water vapor mixing ratio |
---|
489 | rucuten(i,k,j) = wind_tends(1,kflip,1) |
---|
490 | rvcuten(i,k,j) = wind_tends(1,kflip,2) |
---|
491 | rthcuten(i,k,j) = rthcuten(i,k,j) + & |
---|
492 | stnd(1,kflip)/cpair/pi_phy(i,k,j) |
---|
493 | |
---|
494 | t8(1,kflip) = t8(1,kflip) + stnd(1,kflip)/cpair*real(dt,r8) |
---|
495 | !winds is not used again so do not bother updating them |
---|
496 | end do |
---|
497 | |
---|
498 | !Parse output arrays for momtran |
---|
499 | do k=kts,kte |
---|
500 | kflip = kte-k+1 |
---|
501 | |
---|
502 | zmmtu(i,k,j) = wind_tends(1,kflip,1) !wind tendencies... |
---|
503 | zmmtv(i,k,j) = wind_tends(1,kflip,2) |
---|
504 | |
---|
505 | zmupgu(i,k,j) = pguall(1,kflip,1) !apparent force pres. grads... |
---|
506 | zmupgd(i,k,j) = pgdall(1,kflip,1) |
---|
507 | zmvpgu(i,k,j) = pguall(1,kflip,2) |
---|
508 | zmvpgd(i,k,j) = pgdall(1,kflip,2) |
---|
509 | |
---|
510 | zmicuu(i,k,j) = icwu(1,kflip,1) !in-cloud winds... |
---|
511 | zmicud(i,k,j) = icwd(1,kflip,1) |
---|
512 | zmicvu(i,k,j) = icwu(1,kflip,2) |
---|
513 | zmicvd(i,k,j) = icwd(1,kflip,2) |
---|
514 | end do |
---|
515 | |
---|
516 | !Setup for convective transport of cloud water and ice |
---|
517 | !~We should set this up to use an integer pointer instead of |
---|
518 | ! hard-coded numbers for each species so that we can easily |
---|
519 | ! handle other species. Something to come back to later... |
---|
520 | l_qt(1) = .false. !do not mix water vapor |
---|
521 | l_qt(2:3) = .true. !do mix cloud water and ice |
---|
522 | cloudtnd = 0._r8 |
---|
523 | fracis(1,:,1:3) = 0._r8 !all cloud liquid & ice is soluble |
---|
524 | ncnst = 3 !number of constituents in cloud array (including vapor) |
---|
525 | fake_dpdry = 0._r8 !delta pres. for dry atmos. (0 since assuming moist mix ratios) |
---|
526 | do k=kts,kte |
---|
527 | kflip = kte-k+1 |
---|
528 | |
---|
529 | cloud(1,kflip,1) = qh8(1,kflip,1) !We can either use moist mix ratios, as is |
---|
530 | cloud(1,kflip,2) = ql8(1,kflip) !done here, or else use dry mix ratios, send |
---|
531 | cloud(1,kflip,3) = qi8(1,kflip) !in appropriate dpdry values, and return the |
---|
532 | !approp. response from cnst_get_type_byind |
---|
533 | end do |
---|
534 | |
---|
535 | call convtran (lchnk, & |
---|
536 | l_qt, cloud, ncnst, mu(:,:,lchnk), md(:,:,lchnk), & |
---|
537 | du(:,:,lchnk), eu(:,:,lchnk), ed(:,:,lchnk), dp(:,:,lchnk), dsubcld(:,lchnk), & |
---|
538 | jt(:,lchnk), maxg(:,lchnk), ideep(:,lchnk), 1, lengath(lchnk), & |
---|
539 | itimestep, fracis, cloudtnd, fake_dpdry) |
---|
540 | |
---|
541 | !Parse output for convtran and increment tendencies |
---|
542 | do k=kts,kte |
---|
543 | kflip = kte-k+1 |
---|
544 | |
---|
545 | zmdice(i,k,j) = cloudtnd(1,kflip,3) |
---|
546 | zmdliq(i,k,j) = cloudtnd(1,kflip,2) |
---|
547 | |
---|
548 | !Convert cloud tendencies from wet to dry mix ratios |
---|
549 | if( present(rqccuten) ) then |
---|
550 | rqccuten(i,k,j) = cloudtnd(1,kflip,2)/(1. - qv(i,k,j)) |
---|
551 | end if |
---|
552 | if( present(rqicuten) ) then |
---|
553 | rqicuten(i,k,j) = cloudtnd(1,kflip,3)/(1. - qv(i,k,j)) |
---|
554 | end if |
---|
555 | end do |
---|
556 | |
---|
557 | end do !i-loop |
---|
558 | end do !j-loop |
---|
559 | END SUBROUTINE camzm_driver |
---|
560 | |
---|
561 | |
---|
562 | !------------------------------------------------------------------------ |
---|
563 | SUBROUTINE zm_conv_init(rucuten, rvcuten, rthcuten, rqvcuten, & |
---|
564 | rqccuten, rqicuten, & |
---|
565 | p_qc, p_qi, param_first_scalar, & |
---|
566 | restart, & |
---|
567 | ids, ide, jds, jde, kds, kde, & |
---|
568 | ims, ime, jms, jme, kms, kme, & |
---|
569 | its, ite, jts, jte, kts, kte ) |
---|
570 | ! Initialization routine for Zhang-McFarlane cumulus parameterization |
---|
571 | ! from CAM. The routine with this name in CAM is revamped here to give |
---|
572 | ! the needed functionality within WRF. |
---|
573 | ! |
---|
574 | ! Author: William.Gustafson@pnl.gov, Nov. 2009 |
---|
575 | !------------------------------------------------------------------------ |
---|
576 | USE module_cam_esinti, only: esinti |
---|
577 | USE physconst, only: epsilo, latvap, latice, rh2o, cpair, tmelt |
---|
578 | USE module_bl_camuwpbl_driver, only: vd_register |
---|
579 | USE module_cu_camzm, only: zm_convi, zmconv_readnl |
---|
580 | |
---|
581 | LOGICAL , INTENT(IN) :: restart |
---|
582 | INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, & |
---|
583 | ims, ime, jms, jme, kms, kme, & |
---|
584 | its, ite, jts, jte, kts, kte, & |
---|
585 | p_qc, p_qi, param_first_scalar |
---|
586 | |
---|
587 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), INTENT(OUT) :: & |
---|
588 | rucuten, & |
---|
589 | rvcuten, & |
---|
590 | rthcuten, & |
---|
591 | rqvcuten, & |
---|
592 | rqccuten, & |
---|
593 | rqicuten |
---|
594 | |
---|
595 | integer :: i, itf, j, jtf, k, ktf |
---|
596 | integer :: limcnv |
---|
597 | |
---|
598 | jtf = min(jte,jde-1) |
---|
599 | ktf = min(kte,kde-1) |
---|
600 | itf = min(ite,ide-1) |
---|
601 | ! |
---|
602 | ! Initialize module_cam_support variables... |
---|
603 | ! This could be moved to a master "cam-init" subroutine once multiple CAM |
---|
604 | ! parameterizations are implemented in WRF. For now, it doesn't hurt to |
---|
605 | ! have these possibly initialized more than once since they are |
---|
606 | ! essentially constant. |
---|
607 | ! |
---|
608 | pver = ktf-kts+1 |
---|
609 | pverp = pver+1 |
---|
610 | ! |
---|
611 | ! Initialize the saturation vapor pressure look-up table... |
---|
612 | ! This could be moved to a master cam-init subroutine too if it is needed |
---|
613 | ! by more than one CAM parameterization. In CAM this is called from |
---|
614 | ! phys_init. |
---|
615 | ! |
---|
616 | call esinti(epsilo, latvap, latice, rh2o, cpair, tmelt) |
---|
617 | |
---|
618 | !~Need code here to set limcnv to max convective level of 40 mb... To |
---|
619 | ! properly set an average value for the whole domain would involve doing |
---|
620 | ! a collective operation across the whole domain to get pressure averages |
---|
621 | ! by level, which is difficult within the WRF framework. So, we will just |
---|
622 | ! use the model top for now. |
---|
623 | ! |
---|
624 | ! Technically, limcnv should be calculated for each grid point at each |
---|
625 | ! time because the levels in WRF do not have a constant pressure, as |
---|
626 | ! opposed to CAM. But, that would involve making this variable local |
---|
627 | ! instead of at the module level as is currently done in CAM. For now, |
---|
628 | ! we will not worry about this because WRF rarely has domains higher than |
---|
629 | ! 40 mb. There is also little variability between grid points near the |
---|
630 | ! model top due to the underlying topography so a constant value would |
---|
631 | ! be OK across the comain. Also, remember that CAM levels are reversed in |
---|
632 | ! the vertical from WRF. So, setting limcnv to 1 means the top of the |
---|
633 | ! domain. Note that because of a bug in the parcel_dilute routine, limcnv |
---|
634 | ! must be >=2 instead of 1. Otherwise, an array out-of-bounds occurs. |
---|
635 | limcnv = 2 |
---|
636 | ! |
---|
637 | ! Get the ZM namelist variables (hard-wired for now)... |
---|
638 | ! |
---|
639 | call zmconv_readnl("hard-wired") |
---|
640 | ! |
---|
641 | !~need to determine if convection should happen in PBL and set |
---|
642 | ! no_deep_pbl_in accordingly |
---|
643 | call zm_convi(limcnv, NO_DEEP_PBL_IN=.false.) |
---|
644 | |
---|
645 | ! |
---|
646 | ! Set initial values for arrays dependent on restart conditions |
---|
647 | ! |
---|
648 | if(.not.restart)then |
---|
649 | do j=jts,jtf |
---|
650 | do k=kts,ktf |
---|
651 | do i=its,itf |
---|
652 | rucuten(i,k,j) = 0. |
---|
653 | rvcuten(i,k,j) = 0. |
---|
654 | rthcuten(i,k,j) = 0. |
---|
655 | rqvcuten(i,k,j) = 0. |
---|
656 | if( p_qc > param_first_scalar ) rqccuten(i,k,j) = 0. |
---|
657 | if( p_qi > param_first_scalar ) rqicuten(i,k,j) = 0. |
---|
658 | enddo |
---|
659 | enddo |
---|
660 | enddo |
---|
661 | end if |
---|
662 | |
---|
663 | END SUBROUTINE zm_conv_init |
---|
664 | |
---|
665 | |
---|
666 | !------------------------------------------------------------------------ |
---|
667 | SUBROUTINE get_tpert(bl_pbl_physics, sf_sfclay_physics, dx, & |
---|
668 | mavail, kpbl, pblh, dzlowest, & |
---|
669 | psfc, qvlowest, t_phylowest, thlowest, tsk, tke_pbl, ust, & |
---|
670 | u_phylowest, v_phylowest, hfx, qfx, tpert_camuwpbl, kte, tpert) |
---|
671 | ! Calculates the temperature perturbation used to trigger convection. |
---|
672 | ! This should only be used if tpert is not already provided by CAM's PBL |
---|
673 | ! scheme. Right now, this only works with the Mellor-Yamada boundary |
---|
674 | ! layer scheme in combination with the MYJ surface scheme. This is due to |
---|
675 | ! the need of TKE for the vertical velocity perturbation. This scheme has |
---|
676 | ! not been generalized to handle all schemes that produce TKE at this |
---|
677 | ! time, and the non-TKE schemes, e.g. YSU, could probably have an |
---|
678 | ! appropriate tpert deduced but we have not taken the time yet to do it. |
---|
679 | ! |
---|
680 | ! Author: William.Gustafson@pnl.gov, Nov. 2009 |
---|
681 | ! Last updated: William.Gustafson@pnl.gov, Nov. 2010 |
---|
682 | !------------------------------------------------------------------------ |
---|
683 | USE shr_kind_mod, only: r8 => shr_kind_r8 |
---|
684 | USE module_model_constants, only: cp, ep_1, ep_2, g, r_d, rcp, & |
---|
685 | svp1, svp2, svp3, svpt0, xlv |
---|
686 | USE module_state_description, ONLY : SFCLAYSCHEME & |
---|
687 | ,MYJSFCSCHEME & |
---|
688 | ,GFSSFCSCHEME & |
---|
689 | ,SLABSCHEME & |
---|
690 | ,LSMSCHEME & |
---|
691 | ,RUCLSMSCHEME & |
---|
692 | ,MYJPBLSCHEME & |
---|
693 | ,CAMUWPBLSCHEME |
---|
694 | ! |
---|
695 | ! Subroutine arguments... |
---|
696 | ! |
---|
697 | real, dimension(:), intent(in) :: tke_pbl |
---|
698 | real, intent(in) :: dx, dzlowest, hfx, mavail, pblh, psfc, qvlowest, & |
---|
699 | tpert_camuwpbl, tsk, t_phylowest, thlowest, ust, u_phylowest, & |
---|
700 | v_phylowest |
---|
701 | integer, intent(in) :: bl_pbl_physics, kpbl, kte, sf_sfclay_physics |
---|
702 | real(r8),intent(inout) :: tpert |
---|
703 | ! |
---|
704 | ! Local vars... |
---|
705 | ! |
---|
706 | real, parameter :: fak = 8.5 !Constant in surface temperature excess |
---|
707 | real, parameter :: tfac = 1. !Ratio of 'tpert' to (w't')/wpert |
---|
708 | real, parameter :: wfac = 1. !Ratio of 'wpert' to sqrt(tke) |
---|
709 | real, parameter :: wpertmin = 1.e-6 !Min PBL eddy vertical velocity perturbation |
---|
710 | real :: ebrk !In CAM, net mean TKE of CL including |
---|
711 | !entrainment effect (m2/s2). In WRF, |
---|
712 | !average TKE within the PBL |
---|
713 | real :: br2, dthvdz, e1, flux, govrth, psfccmb, qfx, qsfc, rhox, thgb, & |
---|
714 | thv, tskv, tvcon, vconv, vsgd, wpert, wspd, za |
---|
715 | integer :: k |
---|
716 | character(len=250) :: msg |
---|
717 | logical :: UnstableOrNeutral |
---|
718 | ! |
---|
719 | ! We can get the perturbation values directly from CAMUWPBLSCHEME if |
---|
720 | ! available. Otherwise, we have to calculate them. |
---|
721 | ! |
---|
722 | if( bl_pbl_physics==CAMUWPBLSCHEME ) then |
---|
723 | tpert = tpert_camuwpbl |
---|
724 | ! |
---|
725 | !...non-CAMUWPBL. Need MYJ SFC & PBL for now until other schemes |
---|
726 | ! get coded to give perturbations too. |
---|
727 | ! First, we need to determine if the conditions are stable or unstable. |
---|
728 | ! We will do this by mimicing the bulk Richardson calculation from |
---|
729 | ! module_sf_sfclay.F because the MYJ scheme does not provide this info. |
---|
730 | ! The logic borrowed from the CuP shallow cumulus scheme. Non-MYJ sfc |
---|
731 | ! scheme code is commented out for now since we also require MYJ PBL |
---|
732 | ! scheme. |
---|
733 | ! |
---|
734 | elseif( bl_pbl_physics==MYJPBLSCHEME ) then |
---|
735 | |
---|
736 | UnstableOrNeutral = .false. |
---|
737 | sfclay_case: SELECT CASE (sf_sfclay_physics) |
---|
738 | CASE (MYJSFCSCHEME) |
---|
739 | ! The MYJ sfc scheme does not already provide a stability criteria. |
---|
740 | ! So, we will mimic the bulk Richardson calculation from |
---|
741 | ! module_sf_sfclay.F. |
---|
742 | |
---|
743 | if( pblh <= 0. ) call wrf_error_fatal( & |
---|
744 | "CAMZMSCHEME needs a PBL height from a PBL scheme.") |
---|
745 | |
---|
746 | za = 0.5*dzlowest |
---|
747 | |
---|
748 | e1 = svp1*exp(svp2*(tsk-svpt0)/(tsk-svp3)) |
---|
749 | psfccmb=psfc/1000. !converts from Pa to cmb |
---|
750 | qsfc = ep_2*e1/(psfccmb-e1) |
---|
751 | thgb = tsk*(100./psfccmb)**rcp |
---|
752 | tskv = thgb*(1.+ep_1*qsfc*mavail) |
---|
753 | tvcon = 1.+ep_1*qvlowest |
---|
754 | thv = thlowest*tvcon |
---|
755 | dthvdz = (thv-tskv) |
---|
756 | |
---|
757 | govrth = g/thlowest |
---|
758 | |
---|
759 | rhox = psfc/(r_d*t_phylowest*tvcon) |
---|
760 | flux = max(hfx/rhox/cp + ep_1*tskv*qfx/rhox,0.) |
---|
761 | vconv = (g/tsk*pblh*flux)**.33 |
---|
762 | vsgd = 0.32 * (max(dx/5000.-1.,0.))**.33 |
---|
763 | wspd = sqrt(u_phylowest*u_phylowest+v_phylowest*v_phylowest) |
---|
764 | wspd = sqrt(wspd*wspd+vconv*vconv+vsgd*vsgd) |
---|
765 | wspd = max(wspd,0.1) |
---|
766 | |
---|
767 | !And finally, the bulk Richardson number... |
---|
768 | br2 = govrth*za*dthvdz/(wspd*wspd) |
---|
769 | |
---|
770 | if( br2 <= 0. ) UnstableOrNeutral = .true. |
---|
771 | |
---|
772 | CASE DEFAULT |
---|
773 | call wrf_error_fatal("CAMZMSCHEME requires MYJSFCSCHEME or else CAMUWPBLSCHEME.") |
---|
774 | |
---|
775 | END SELECT sfclay_case |
---|
776 | ! |
---|
777 | ! The perturbation temperature for unstable conditions... |
---|
778 | ! The calculation follows the one in caleddy inside eddy_diff.F90 from |
---|
779 | ! CAM. |
---|
780 | ! |
---|
781 | !Check that we are using the MJY BL scheme since we are hard-wired to |
---|
782 | !use TKE and u* from this scheme. At some point this dependency should |
---|
783 | !be broken and a way needs to be found for other schemes to provide |
---|
784 | !reasonable tpert values too. |
---|
785 | if( bl_pbl_physics /= MYJPBLSCHEME ) & |
---|
786 | call wrf_error_fatal("CAMZMSCHEME requires MYJPBLSCHEME or CAMUWPBLSCHEME") |
---|
787 | |
---|
788 | |
---|
789 | !Recalculate rhox in case a non-MYJ scheme is used to get |
---|
790 | !stability and rhox is not calculated above. Right now, this is |
---|
791 | !technically reduncant, but cheap. |
---|
792 | tvcon = 1.+ep_1*qvlowest |
---|
793 | rhox = psfc/(r_d*t_phylowest*tvcon) |
---|
794 | |
---|
795 | if( UnstableOrNeutral ) then |
---|
796 | !1st, get avg TKE w/n the PBL as a proxy for ebrk variable in CAM |
---|
797 | ebrk = 0. |
---|
798 | do k=1,min(kpbl,kte) |
---|
799 | ebrk = ebrk + tke_pbl(k) |
---|
800 | end do |
---|
801 | ebrk = ebrk/real(kpbl) |
---|
802 | |
---|
803 | wpert = max( wfac*sqrt(ebrk), wpertmin ) |
---|
804 | tpert = max( abs(hfx/rhox/cp)*tfac/wpert, 0. ) |
---|
805 | ! |
---|
806 | ! Or, the perturbation temperature for stable conditions... |
---|
807 | ! |
---|
808 | else !Stable conditions |
---|
809 | tpert = max( hfx/rhox/cp*fak/ust, 0. ) |
---|
810 | end if |
---|
811 | |
---|
812 | else |
---|
813 | call wrf_error_fatal("CAMZMSCHEME requires MYJPBLSCHEME or CAMUWPBLSCHEME") |
---|
814 | |
---|
815 | end if !PBL choice |
---|
816 | |
---|
817 | END SUBROUTINE get_tpert |
---|
818 | |
---|
819 | END MODULE module_cu_camzm_driver |
---|