1 | ! |
---|
2 | ! $Id: orografi.F 1403 2010-07-01 09:02:53Z fairhead $ |
---|
3 | ! |
---|
4 | MODULE orografi |
---|
5 | |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | SUBROUTINE drag_noro (nlon,nlev,dtime,paprs,pplay, & |
---|
9 | & pmea,pstd, psig, pgam, pthe,ppic,pval, & |
---|
10 | & kgwd,kdx,ktest, & |
---|
11 | & t, u, v, & |
---|
12 | & pulow, pvlow, pustr, pvstr, & |
---|
13 | & d_t, d_u, d_v) |
---|
14 | !c |
---|
15 | USE dimphy |
---|
16 | IMPLICIT none |
---|
17 | !c====================================================================== |
---|
18 | !c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
19 | !c Objet: Frottement de la montagne Interface |
---|
20 | !c====================================================================== |
---|
21 | !c Arguments: |
---|
22 | !c dtime---input-R- pas d'integration (s) |
---|
23 | !c paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
24 | !c pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
25 | !c t-------input-R-temperature (K) |
---|
26 | !c u-------input-R-vitesse horizontale (m/s) |
---|
27 | !c v-------input-R-vitesse horizontale (m/s) |
---|
28 | !c |
---|
29 | !c d_t-----output-R-increment de la temperature |
---|
30 | !c d_u-----output-R-increment de la vitesse u |
---|
31 | !c d_v-----output-R-increment de la vitesse v |
---|
32 | !c====================================================================== |
---|
33 | !cym#include "dimensions.h" |
---|
34 | !cym#include "dimphy.h" |
---|
35 | #include "YOMCST.h" |
---|
36 | !c |
---|
37 | !c ARGUMENTS |
---|
38 | !c |
---|
39 | INTEGER nlon,nlev |
---|
40 | REAL dtime |
---|
41 | REAL paprs(klon,klev+1) |
---|
42 | REAL pplay(klon,klev) |
---|
43 | REAL pmea(nlon),pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
---|
44 | REAL ppic(nlon),pval(nlon) |
---|
45 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
46 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
47 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
48 | !c |
---|
49 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
50 | !c |
---|
51 | !c Variables locales: |
---|
52 | !c |
---|
53 | REAL zgeom(klon,klev) |
---|
54 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
55 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
56 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
57 | !c |
---|
58 | !c initialiser les variables de sortie (pour securite) |
---|
59 | !c |
---|
60 | DO i = 1,klon |
---|
61 | pulow(i) = 0.0 |
---|
62 | pvlow(i) = 0.0 |
---|
63 | pustr(i) = 0.0 |
---|
64 | pvstr(i) = 0.0 |
---|
65 | ENDDO |
---|
66 | DO k = 1, klev |
---|
67 | DO i = 1, klon |
---|
68 | d_t(i,k) = 0.0 |
---|
69 | d_u(i,k) = 0.0 |
---|
70 | d_v(i,k) = 0.0 |
---|
71 | pdudt(i,k)=0.0 |
---|
72 | pdvdt(i,k)=0.0 |
---|
73 | pdtdt(i,k)=0.0 |
---|
74 | ENDDO |
---|
75 | ENDDO |
---|
76 | !c |
---|
77 | !c preparer les variables d'entree (attention: l'ordre des niveaux |
---|
78 | !c verticaux augmente du haut vers le bas) |
---|
79 | !c |
---|
80 | DO k = 1, klev |
---|
81 | DO i = 1, klon |
---|
82 | pt(i,k) = t(i,klev-k+1) |
---|
83 | pu(i,k) = u(i,klev-k+1) |
---|
84 | pv(i,k) = v(i,klev-k+1) |
---|
85 | papmf(i,k) = pplay(i,klev-k+1) |
---|
86 | ENDDO |
---|
87 | ENDDO |
---|
88 | DO k = 1, klev+1 |
---|
89 | DO i = 1, klon |
---|
90 | papmh(i,k) = paprs(i,klev-k+2) |
---|
91 | ENDDO |
---|
92 | ENDDO |
---|
93 | DO i = 1, klon |
---|
94 | zgeom(i,klev) = RD * pt(i,klev) & |
---|
95 | & * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
96 | ENDDO |
---|
97 | DO k = klev-1, 1, -1 |
---|
98 | DO i = 1, klon |
---|
99 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 & |
---|
100 | & * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
101 | ENDDO |
---|
102 | ENDDO |
---|
103 | !c |
---|
104 | !c appeler la routine principale |
---|
105 | !c |
---|
106 | CALL orodrag(klon,klev,kgwd,kdx,ktest, & |
---|
107 | & dtime, & |
---|
108 | & papmh, papmf, zgeom, & |
---|
109 | & pt, pu, pv, & |
---|
110 | & pmea, pstd, psig, pgam, pthe, ppic,pval, & |
---|
111 | & pulow,pvlow, & |
---|
112 | & pdudt,pdvdt,pdtdt) |
---|
113 | !C |
---|
114 | DO k = 1, klev |
---|
115 | DO i = 1, klon |
---|
116 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
117 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
118 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
119 | pustr(i) = pustr(i) & |
---|
120 | !IM BUG . +rg*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) & |
---|
121 | & +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/RG |
---|
122 | pvstr(i) = pvstr(i) & |
---|
123 | !IM BUG . +rg*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) & |
---|
124 | & +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/RG |
---|
125 | ENDDO |
---|
126 | ENDDO |
---|
127 | !c |
---|
128 | RETURN |
---|
129 | END SUBROUTINE drag_noro |
---|
130 | |
---|
131 | SUBROUTINE orodrag( nlon,nlev & |
---|
132 | & , kgwd, kdx, ktest & |
---|
133 | & , ptsphy & |
---|
134 | & , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 & |
---|
135 | & , pmea, pstd, psig, pgamma, ptheta, ppic, pval & |
---|
136 | !c outputs & |
---|
137 | & , pulow,pvlow & |
---|
138 | & , pvom,pvol,pte ) |
---|
139 | |
---|
140 | USE dimphy |
---|
141 | implicit none |
---|
142 | |
---|
143 | !c |
---|
144 | !c |
---|
145 | !c**** *gwdrag* - does the gravity wave parametrization. |
---|
146 | !c |
---|
147 | !c purpose. |
---|
148 | !c -------- |
---|
149 | !c |
---|
150 | !c this routine computes the physical tendencies of the |
---|
151 | !c prognostic variables u,v and t due to vertical transports by |
---|
152 | !c subgridscale orographically excited gravity waves |
---|
153 | !c |
---|
154 | !c** interface. |
---|
155 | !c ---------- |
---|
156 | !c called from *callpar*. |
---|
157 | !c |
---|
158 | !c the routine takes its input from the long-term storage: |
---|
159 | !c u,v,t and p at t-1. |
---|
160 | !c |
---|
161 | !c explicit arguments : |
---|
162 | !c -------------------- |
---|
163 | !c ==== inputs === |
---|
164 | !c ==== outputs === |
---|
165 | !c |
---|
166 | !c implicit arguments : none |
---|
167 | !c -------------------- |
---|
168 | !c |
---|
169 | !c implicit logical (l) |
---|
170 | !c |
---|
171 | !c method. |
---|
172 | !c ------- |
---|
173 | !c |
---|
174 | !c externals. |
---|
175 | !c ---------- |
---|
176 | integer ismin, ismax |
---|
177 | external ismin, ismax |
---|
178 | !c |
---|
179 | !c reference. |
---|
180 | !c ---------- |
---|
181 | !c |
---|
182 | !c author. |
---|
183 | !c ------- |
---|
184 | !c m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
185 | !c |
---|
186 | !c f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
187 | !c----------------------------------------------------------------------- |
---|
188 | !c |
---|
189 | !c |
---|
190 | !cym#include "dimensions.h" |
---|
191 | !cym#include "dimphy.h" |
---|
192 | #include "YOMCST.h" |
---|
193 | #include "YOEGWD.h" |
---|
194 | !c----------------------------------------------------------------------- |
---|
195 | !c |
---|
196 | !c* 0.1 arguments |
---|
197 | !c --------- |
---|
198 | !c |
---|
199 | !c |
---|
200 | !cym integer nlon, nlev, klevm1 |
---|
201 | integer nlon, nlev |
---|
202 | integer kgwd, jl, ilevp1, jk, ji |
---|
203 | real zdelp, ztemp, zforc, ztend |
---|
204 | real rover, zb, zc, zconb, zabsv |
---|
205 | real zzd1, ratio, zbet, zust,zvst, zdis |
---|
206 | real pte(nlon,nlev), & |
---|
207 | & pvol(nlon,nlev), & |
---|
208 | & pvom(nlon,nlev), & |
---|
209 | & pulow(klon), & |
---|
210 | & pvlow(klon) |
---|
211 | real pum1(nlon,nlev), & |
---|
212 | & pvm1(nlon,nlev), & |
---|
213 | & ptm1(nlon,nlev), & |
---|
214 | & pmea(nlon),pstd(nlon),psig(nlon), & |
---|
215 | & pgamma(nlon),ptheta(nlon),ppic(nlon),pval(nlon), & |
---|
216 | & pgeom1(nlon,nlev), & |
---|
217 | & papm1(nlon,nlev), & |
---|
218 | & paphm1(nlon,nlev+1) |
---|
219 | !c |
---|
220 | integer kdx(nlon),ktest(nlon) |
---|
221 | !c----------------------------------------------------------------------- |
---|
222 | !c |
---|
223 | !c* 0.2 local arrays |
---|
224 | !c ------------ |
---|
225 | integer isect(klon), & |
---|
226 | & icrit(klon), & |
---|
227 | & ikcrith(klon), & |
---|
228 | & ikenvh(klon), & |
---|
229 | & iknu(klon), & |
---|
230 | & iknu2(klon), & |
---|
231 | & ikcrit(klon), & |
---|
232 | & ikhlim(klon) |
---|
233 | !c |
---|
234 | real ztau(klon,klev+1), & |
---|
235 | & ztauf(klon,klev+1), & |
---|
236 | & zstab(klon,klev+1), & |
---|
237 | & zvph(klon,klev+1), & |
---|
238 | & zrho(klon,klev+1), & |
---|
239 | & zri(klon,klev+1), & |
---|
240 | & zpsi(klon,klev+1), & |
---|
241 | & zzdep(klon,klev) |
---|
242 | real zdudt(klon), & |
---|
243 | & zdvdt(klon), & |
---|
244 | & zdtdt(klon), & |
---|
245 | & zdedt(klon), & |
---|
246 | & zvidis(klon), & |
---|
247 | & znu(klon), & |
---|
248 | & zd1(klon), & |
---|
249 | & zd2(klon), & |
---|
250 | & zdmod(klon) |
---|
251 | real ztmst, ptsphy, zrtmst |
---|
252 | !c |
---|
253 | !c------------------------------------------------------------------ |
---|
254 | !c |
---|
255 | !c* 1. initialization |
---|
256 | !c -------------- |
---|
257 | !c |
---|
258 | 100 continue |
---|
259 | !c |
---|
260 | !c ------------------------------------------------------------------ |
---|
261 | !c |
---|
262 | !c* 1.1 computational constants |
---|
263 | !c ----------------------- |
---|
264 | !c |
---|
265 | 110 continue |
---|
266 | !c |
---|
267 | !c ztmst=twodt |
---|
268 | !c if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
269 | !cym klevm1=klev-1 |
---|
270 | ztmst=ptsphy |
---|
271 | zrtmst=1./ztmst |
---|
272 | !c ------------------------------------------------------------------ |
---|
273 | !c |
---|
274 | 120 continue |
---|
275 | !c |
---|
276 | !c ------------------------------------------------------------------ |
---|
277 | !c |
---|
278 | !c* 1.3 check whether row contains point for printing |
---|
279 | !c --------------------------------------------- |
---|
280 | !c |
---|
281 | 130 continue |
---|
282 | !c |
---|
283 | !c ------------------------------------------------------------------ |
---|
284 | !c |
---|
285 | !c* 2. precompute basic state variables. |
---|
286 | !c* ---------- ----- ----- ---------- |
---|
287 | !c* define low level wind, project winds in plane of |
---|
288 | !c* low level wind, determine sector in which to take |
---|
289 | !c* the variance and set indicator for critical levels. |
---|
290 | !c |
---|
291 | 200 continue |
---|
292 | !c |
---|
293 | !c |
---|
294 | !c |
---|
295 | call orosetup & |
---|
296 | & ( nlon, ktest & |
---|
297 | & , ikcrit, ikcrith, icrit, ikenvh,iknu,iknu2 & |
---|
298 | & , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd & |
---|
299 | & , zrho , zri , zstab , ztau , zvph , zpsi, zzdep & |
---|
300 | & , pulow, pvlow & |
---|
301 | & , ptheta,pgamma,pmea,ppic,pval,znu ,zd1, zd2, zdmod ) |
---|
302 | !c |
---|
303 | !c |
---|
304 | !c |
---|
305 | !c*********************************************************** |
---|
306 | !c |
---|
307 | !c |
---|
308 | !c* 3. compute low level stresses using subcritical and |
---|
309 | !c* supercritical forms.computes anisotropy coefficient |
---|
310 | !c* as measure of orographic twodimensionality. |
---|
311 | !c |
---|
312 | 300 continue |
---|
313 | !c |
---|
314 | call gwstress & |
---|
315 | & ( nlon , nlev & |
---|
316 | & , ktest , icrit, ikenvh, iknu & |
---|
317 | & , zrho , zstab, zvph , pstd, psig, pmea, ppic & |
---|
318 | & , ztau & |
---|
319 | & , pgeom1,zdmod) |
---|
320 | !c |
---|
321 | !c |
---|
322 | !c* 4. compute stress profile. |
---|
323 | !c* ------- ------ -------- |
---|
324 | !c |
---|
325 | 400 continue |
---|
326 | !c |
---|
327 | !c |
---|
328 | call gwprofil & |
---|
329 | & ( nlon , nlev & |
---|
330 | & , kgwd , kdx , ktest & |
---|
331 | & , ikcrith, icrit & |
---|
332 | & , paphm1, zrho , zstab , zvph & |
---|
333 | & , zri , ztau & |
---|
334 | & , zdmod , psig , pstd) |
---|
335 | !c |
---|
336 | !c |
---|
337 | !c* 5. compute tendencies. |
---|
338 | !c* ------------------- |
---|
339 | !c |
---|
340 | 500 continue |
---|
341 | !c |
---|
342 | !c explicit solution at all levels for the gravity wave |
---|
343 | !c implicit solution for the blocked levels |
---|
344 | |
---|
345 | do 510 jl=kidia,kfdia |
---|
346 | zvidis(jl)=0.0 |
---|
347 | zdudt(jl)=0.0 |
---|
348 | zdvdt(jl)=0.0 |
---|
349 | zdtdt(jl)=0.0 |
---|
350 | 510 continue |
---|
351 | !c |
---|
352 | ilevp1=klev+1 |
---|
353 | !c |
---|
354 | !c |
---|
355 | do 524 jk=1,klev |
---|
356 | !c |
---|
357 | !c |
---|
358 | !c do 523 jl=1,kgwd |
---|
359 | !c ji=kdx(jl) |
---|
360 | !c Modif vectorisation 02/04/2004 |
---|
361 | do 523 ji=kidia,kfdia |
---|
362 | if(ktest(ji).eq.1) then |
---|
363 | |
---|
364 | zdelp=paphm1(ji,jk+1)-paphm1(ji,jk) |
---|
365 | ztemp=-rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,ilevp1)*zdelp) |
---|
366 | zdudt(ji)=(pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
367 | zdvdt(ji)=(pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
368 | !c |
---|
369 | !c controle des overshoots: |
---|
370 | !c |
---|
371 | zforc=sqrt(zdudt(ji)**2+zdvdt(ji)**2)+1.E-12 |
---|
372 | ztend=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst+1.E-12 |
---|
373 | rover=0.25 |
---|
374 | if(zforc.ge.rover*ztend)then |
---|
375 | zdudt(ji)=rover*ztend/zforc*zdudt(ji) |
---|
376 | zdvdt(ji)=rover*ztend/zforc*zdvdt(ji) |
---|
377 | endif |
---|
378 | !c |
---|
379 | !c fin du controle des overshoots |
---|
380 | !c |
---|
381 | if(jk.ge.ikenvh(ji)) then |
---|
382 | zb=1.0-0.18*pgamma(ji)-0.04*pgamma(ji)**2 |
---|
383 | zc=0.48*pgamma(ji)+0.3*pgamma(ji)**2 |
---|
384 | zconb=2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
---|
385 | zabsv=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
386 | zzd1=zb*cos(zpsi(ji,jk))**2+zc*sin(zpsi(ji,jk))**2 |
---|
387 | ratio=(cos(zpsi(ji,jk))**2+pgamma(ji)*sin(zpsi(ji,jk))**2)/ & |
---|
388 | & (pgamma(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
389 | zbet=max(0.,2.-1./ratio)*zconb*zzdep(ji,jk)*zzd1*zabsv |
---|
390 | !c |
---|
391 | !c simplement oppose au vent |
---|
392 | !c |
---|
393 | zdudt(ji)=-pum1(ji,jk)/ztmst |
---|
394 | zdvdt(ji)=-pvm1(ji,jk)/ztmst |
---|
395 | !c |
---|
396 | !c projection dans la direction de l'axe principal de l'orographie |
---|
397 | !cmod zdudt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
398 | !cmod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
399 | !cmod * *cos(ptheta(ji)*rpi/180.)/ztmst |
---|
400 | !cmod zdvdt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
401 | !cmod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
402 | !cmod * *sin(ptheta(ji)*rpi/180.)/ztmst |
---|
403 | zdudt(ji)=zdudt(ji)*(zbet/(1.+zbet)) |
---|
404 | zdvdt(ji)=zdvdt(ji)*(zbet/(1.+zbet)) |
---|
405 | end if |
---|
406 | pvom(ji,jk)=zdudt(ji) |
---|
407 | pvol(ji,jk)=zdvdt(ji) |
---|
408 | zust=pum1(ji,jk)+ztmst*zdudt(ji) |
---|
409 | zvst=pvm1(ji,jk)+ztmst*zdvdt(ji) |
---|
410 | zdis=0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
411 | zdedt(ji)=zdis/ztmst |
---|
412 | zvidis(ji)=zvidis(ji)+zdis*zdelp |
---|
413 | zdtdt(ji)=zdedt(ji)/rcpd |
---|
414 | !c pte(ji,jk)=zdtdt(ji) |
---|
415 | !c |
---|
416 | !c ENCORE UN TRUC POUR EVITER LES EXPLOSIONS |
---|
417 | !c |
---|
418 | pte(ji,jk)=0.0 |
---|
419 | |
---|
420 | endif |
---|
421 | 523 continue |
---|
422 | |
---|
423 | 524 continue |
---|
424 | !c |
---|
425 | !c |
---|
426 | return |
---|
427 | end SUBROUTINE orodrag |
---|
428 | |
---|
429 | SUBROUTINE orosetup & |
---|
430 | & ( nlon , ktest & |
---|
431 | & , kkcrit, kkcrith, kcrit & |
---|
432 | & , kkenvh, kknu , kknu2 & |
---|
433 | & , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd & |
---|
434 | & , prho , pri , pstab , ptau , pvph ,ppsi, pzdep & |
---|
435 | & , pulow , pvlow & |
---|
436 | & , ptheta, pgamma, pmea, ppic, pval & |
---|
437 | & , pnu , pd1 , pd2 ,pdmod ) |
---|
438 | !c |
---|
439 | !c**** *gwsetup* |
---|
440 | !c |
---|
441 | !c purpose. |
---|
442 | !c -------- |
---|
443 | !c |
---|
444 | !c** interface. |
---|
445 | !c ---------- |
---|
446 | !c from *orodrag* |
---|
447 | !c |
---|
448 | !c explicit arguments : |
---|
449 | !c -------------------- |
---|
450 | !c ==== inputs === |
---|
451 | !c ==== outputs === |
---|
452 | !c |
---|
453 | !c implicit arguments : none |
---|
454 | !c -------------------- |
---|
455 | !c |
---|
456 | !c method. |
---|
457 | !c ------- |
---|
458 | !c |
---|
459 | !c |
---|
460 | !c externals. |
---|
461 | !c ---------- |
---|
462 | !c |
---|
463 | !c |
---|
464 | !c reference. |
---|
465 | !c ---------- |
---|
466 | !c |
---|
467 | !c see ecmwf research department documentation of the "i.f.s." |
---|
468 | !c |
---|
469 | !c author. |
---|
470 | !c ------- |
---|
471 | !c |
---|
472 | !c modifications. |
---|
473 | !c -------------- |
---|
474 | !c f.lott for the new-gwdrag scheme november 1993 |
---|
475 | !c |
---|
476 | !c----------------------------------------------------------------------- |
---|
477 | USE dimphy |
---|
478 | implicit none |
---|
479 | !c |
---|
480 | |
---|
481 | !cym#include "dimensions.h" |
---|
482 | !cym#include "dimphy.h" |
---|
483 | #include "YOMCST.h" |
---|
484 | #include "YOEGWD.h" |
---|
485 | |
---|
486 | !c----------------------------------------------------------------------- |
---|
487 | !c |
---|
488 | !c* 0.1 arguments |
---|
489 | !c --------- |
---|
490 | !c |
---|
491 | integer nlon |
---|
492 | integer jl, jk |
---|
493 | real zdelp |
---|
494 | |
---|
495 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon), & |
---|
496 | & ktest(nlon),kkenvh(nlon) |
---|
497 | |
---|
498 | !c |
---|
499 | real paphm1(nlon,klev+1),papm1(nlon,klev),pum1(nlon,klev), & |
---|
500 | & pvm1(nlon,klev),ptm1(nlon,klev),pgeom1(nlon,klev), & |
---|
501 | & prho(nlon,klev+1),pri(nlon,klev+1),pstab(nlon,klev+1), & |
---|
502 | & ptau(nlon,klev+1),pvph(nlon,klev+1),ppsi(nlon,klev+1), & |
---|
503 | & pzdep(nlon,klev) |
---|
504 | real pulow(nlon),pvlow(nlon),ptheta(nlon),pgamma(nlon),pnu(nlon), & |
---|
505 | & pd1(nlon),pd2(nlon),pdmod(nlon) |
---|
506 | real pstd(nlon),pmea(nlon),ppic(nlon),pval(nlon) |
---|
507 | !c |
---|
508 | !c----------------------------------------------------------------------- |
---|
509 | !c |
---|
510 | !c* 0.2 local arrays |
---|
511 | !c ------------ |
---|
512 | !c |
---|
513 | !c |
---|
514 | integer ilevm1, ilevm2, ilevh |
---|
515 | real zcons1, zcons2,zcons3, zhgeo |
---|
516 | real zu, zphi, zvt1,zvt2, zst, zvar, zdwind, zwind |
---|
517 | real zstabm, zstabp, zrhom, zrhop, alpha |
---|
518 | real zggeenv, zggeom1,zgvar |
---|
519 | logical lo |
---|
520 | logical ll1(klon,klev+1) |
---|
521 | integer kknu(klon),kknu2(klon),kknub(klon),kknul(klon), & |
---|
522 | & kentp(klon),ncount(klon) |
---|
523 | !c |
---|
524 | real zhcrit(klon,klev),zvpf(klon,klev), & |
---|
525 | & zdp(klon,klev) |
---|
526 | real znorm(klon),zb(klon),zc(klon), & |
---|
527 | & zulow(klon),zvlow(klon),znup(klon),znum(klon) |
---|
528 | !c |
---|
529 | !c ------------------------------------------------------------------ |
---|
530 | !c |
---|
531 | !c* 1. initialization |
---|
532 | !c -------------- |
---|
533 | !c |
---|
534 | !c print *,' entree gwsetup' |
---|
535 | 100 continue |
---|
536 | !c |
---|
537 | !c ------------------------------------------------------------------ |
---|
538 | !c |
---|
539 | !c* 1.1 computational constants |
---|
540 | !c ----------------------- |
---|
541 | !c |
---|
542 | 110 continue |
---|
543 | !c |
---|
544 | ilevm1=klev-1 |
---|
545 | ilevm2=klev-2 |
---|
546 | ilevh =klev/3 |
---|
547 | !c |
---|
548 | zcons1=1./rd |
---|
549 | !cold zcons2=g**2/cpd |
---|
550 | zcons2=rg**2/rcpd |
---|
551 | !cold zcons3=1.5*api |
---|
552 | zcons3=1.5*rpi |
---|
553 | !c |
---|
554 | !c |
---|
555 | !c ------------------------------------------------------------------ |
---|
556 | !c |
---|
557 | !c* 2. |
---|
558 | !c -------------- |
---|
559 | !c |
---|
560 | 200 continue |
---|
561 | !c |
---|
562 | !c ------------------------------------------------------------------ |
---|
563 | !c |
---|
564 | !c* 2.1 define low level wind, project winds in plane of |
---|
565 | !c* low level wind, determine sector in which to take |
---|
566 | !c* the variance and set indicator for critical levels. |
---|
567 | !c |
---|
568 | !c |
---|
569 | !c |
---|
570 | do 2001 jl=kidia,kfdia |
---|
571 | kknu(jl) =klev |
---|
572 | kknu2(jl) =klev |
---|
573 | kknub(jl) =klev |
---|
574 | kknul(jl) =klev |
---|
575 | pgamma(jl) =max(pgamma(jl),gtsec) |
---|
576 | ll1(jl,klev+1)=.false. |
---|
577 | 2001 continue |
---|
578 | !c |
---|
579 | !c Ajouter une initialisation (L. Li, le 23fev99): |
---|
580 | !c |
---|
581 | do jk=klev,ilevh,-1 |
---|
582 | do jl=kidia,kfdia |
---|
583 | ll1(jl,jk)= .FALSE. |
---|
584 | ENDDO |
---|
585 | ENDDO |
---|
586 | !c |
---|
587 | !c* define top of low level flow |
---|
588 | !c ---------------------------- |
---|
589 | do 2002 jk=klev,ilevh,-1 |
---|
590 | do 2003 jl=kidia,kfdia |
---|
591 | lo=(paphm1(jl,jk)/paphm1(jl,klev+1)).ge.gsigcr |
---|
592 | if(lo) then |
---|
593 | kkcrit(jl)=jk |
---|
594 | endif |
---|
595 | zhcrit(jl,jk)=ppic(jl) |
---|
596 | zhgeo=pgeom1(jl,jk)/rg |
---|
597 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
598 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
599 | kknu(jl)=jk |
---|
600 | endif |
---|
601 | if(.not.ll1(jl,ilevh))kknu(jl)=ilevh |
---|
602 | 2003 continue |
---|
603 | 2002 continue |
---|
604 | do 2004 jk=klev,ilevh,-1 |
---|
605 | do 2005 jl=kidia,kfdia |
---|
606 | zhcrit(jl,jk)=ppic(jl)-pval(jl) |
---|
607 | zhgeo=pgeom1(jl,jk)/rg |
---|
608 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
609 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
610 | kknu2(jl)=jk |
---|
611 | endif |
---|
612 | if(.not.ll1(jl,ilevh))kknu2(jl)=ilevh |
---|
613 | 2005 continue |
---|
614 | 2004 continue |
---|
615 | do 2006 jk=klev,ilevh,-1 |
---|
616 | do 2007 jl=kidia,kfdia |
---|
617 | zhcrit(jl,jk)=amax1(ppic(jl)-pmea(jl),pmea(jl)-pval(jl)) |
---|
618 | zhgeo=pgeom1(jl,jk)/rg |
---|
619 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
620 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
621 | kknub(jl)=jk |
---|
622 | endif |
---|
623 | if(.not.ll1(jl,ilevh))kknub(jl)=ilevh |
---|
624 | 2007 continue |
---|
625 | 2006 continue |
---|
626 | !c |
---|
627 | do 2010 jl=kidia,kfdia |
---|
628 | kknu(jl)=min(kknu(jl),nktopg) |
---|
629 | kknu2(jl)=min(kknu2(jl),nktopg) |
---|
630 | kknub(jl)=min(kknub(jl),nktopg) |
---|
631 | kknul(jl)=klev |
---|
632 | 2010 continue |
---|
633 | !c |
---|
634 | |
---|
635 | 210 continue |
---|
636 | !c |
---|
637 | !c |
---|
638 | !cc* initialize various arrays |
---|
639 | !c |
---|
640 | do 2107 jl=kidia,kfdia |
---|
641 | prho(jl,klev+1) =0.0 |
---|
642 | pstab(jl,klev+1) =0.0 |
---|
643 | pstab(jl,1) =0.0 |
---|
644 | pri(jl,klev+1) =9999.0 |
---|
645 | ppsi(jl,klev+1) =0.0 |
---|
646 | pri(jl,1) =0.0 |
---|
647 | pvph(jl,1) =0.0 |
---|
648 | pulow(jl) =0.0 |
---|
649 | pvlow(jl) =0.0 |
---|
650 | zulow(jl) =0.0 |
---|
651 | zvlow(jl) =0.0 |
---|
652 | kkcrith(jl) =klev |
---|
653 | kkenvh(jl) =klev |
---|
654 | kentp(jl) =klev |
---|
655 | kcrit(jl) =1 |
---|
656 | ncount(jl) =0 |
---|
657 | ll1(jl,klev+1) =.false. |
---|
658 | 2107 continue |
---|
659 | !c |
---|
660 | !c* define low-level flow |
---|
661 | !c --------------------- |
---|
662 | !c |
---|
663 | do 223 jk=klev,2,-1 |
---|
664 | do 222 jl=kidia,kfdia |
---|
665 | if(ktest(jl).eq.1) then |
---|
666 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
667 | prho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
668 | pstab(jl,jk)=2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
---|
669 | & (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
670 | pstab(jl,jk)=max(pstab(jl,jk),gssec) |
---|
671 | endif |
---|
672 | 222 continue |
---|
673 | 223 continue |
---|
674 | !c |
---|
675 | !c******************************************************************** |
---|
676 | !c |
---|
677 | !c* define blocked flow |
---|
678 | !c ------------------- |
---|
679 | do 2115 jk=klev,ilevh,-1 |
---|
680 | do 2116 jl=kidia,kfdia |
---|
681 | if(jk.ge.kknub(jl).and.jk.le.kknul(jl)) then |
---|
682 | pulow(jl)=pulow(jl)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
683 | pvlow(jl)=pvlow(jl)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
684 | end if |
---|
685 | 2116 continue |
---|
686 | 2115 continue |
---|
687 | do 2110 jl=kidia,kfdia |
---|
688 | pulow(jl)=pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
689 | pvlow(jl)=pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
690 | znorm(jl)=max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
691 | pvph(jl,klev+1)=znorm(jl) |
---|
692 | 2110 continue |
---|
693 | !c |
---|
694 | !c******* setup orography axes and define plane of profiles ******* |
---|
695 | !c |
---|
696 | do 2112 jl=kidia,kfdia |
---|
697 | lo=(pulow(jl).lt.gvsec).and.(pulow(jl).ge.-gvsec) |
---|
698 | if(lo) then |
---|
699 | zu=pulow(jl)+2.*gvsec |
---|
700 | else |
---|
701 | zu=pulow(jl) |
---|
702 | endif |
---|
703 | zphi=atan(pvlow(jl)/zu) |
---|
704 | ppsi(jl,klev+1)=ptheta(jl)*rpi/180.-zphi |
---|
705 | zb(jl)=1.-0.18*pgamma(jl)-0.04*pgamma(jl)**2 |
---|
706 | zc(jl)=0.48*pgamma(jl)+0.3*pgamma(jl)**2 |
---|
707 | pd1(jl)=zb(jl)-(zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
708 | pd2(jl)=(zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
---|
709 | pdmod(jl)=sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
710 | 2112 continue |
---|
711 | !c |
---|
712 | !c ************ define flow in plane of lowlevel stress ************* |
---|
713 | !c |
---|
714 | do 213 jk=1,klev |
---|
715 | do 212 jl=kidia,kfdia |
---|
716 | if(ktest(jl).eq.1) then |
---|
717 | zvt1 =pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk) |
---|
718 | zvt2 =-pvlow(jl)*pum1(jl,jk)+pulow(jl)*pvm1(jl,jk) |
---|
719 | zvpf(jl,jk)=(zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
720 | endif |
---|
721 | ptau(jl,jk) =0.0 |
---|
722 | pzdep(jl,jk) =0.0 |
---|
723 | ppsi(jl,jk) =0.0 |
---|
724 | ll1(jl,jk) =.false. |
---|
725 | 212 continue |
---|
726 | 213 continue |
---|
727 | do 215 jk=2,klev |
---|
728 | do 214 jl=kidia,kfdia |
---|
729 | if(ktest(jl).eq.1) then |
---|
730 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
731 | pvph(jl,jk)=((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+ & |
---|
732 | & (papm1(jl,jk)-paphm1(jl,jk))*zvpf(jl,jk-1)) & |
---|
733 | & /zdp(jl,jk) |
---|
734 | if(pvph(jl,jk).lt.gvsec) then |
---|
735 | pvph(jl,jk)=gvsec |
---|
736 | kcrit(jl)=jk |
---|
737 | endif |
---|
738 | endif |
---|
739 | 214 continue |
---|
740 | 215 continue |
---|
741 | !c |
---|
742 | !c |
---|
743 | !c* 2.2 brunt-vaisala frequency and density at half levels. |
---|
744 | !c |
---|
745 | 220 continue |
---|
746 | !c |
---|
747 | do 2211 jk=ilevh,klev |
---|
748 | do 221 jl=kidia,kfdia |
---|
749 | if(ktest(jl).eq.1) then |
---|
750 | if(jk.ge.(kknub(jl)+1).and.jk.le.kknul(jl)) then |
---|
751 | zst=zcons2/ptm1(jl,jk)*(1.-rcpd*prho(jl,jk)* & |
---|
752 | & (ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
753 | pstab(jl,klev+1)=pstab(jl,klev+1)+zst*zdp(jl,jk) |
---|
754 | pstab(jl,klev+1)=max(pstab(jl,klev+1),gssec) |
---|
755 | prho(jl,klev+1)=prho(jl,klev+1)+paphm1(jl,jk)*2.*zdp(jl,jk) & |
---|
756 | & *zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
757 | endif |
---|
758 | endif |
---|
759 | 221 continue |
---|
760 | 2211 continue |
---|
761 | !c |
---|
762 | do 2212 jl=kidia,kfdia |
---|
763 | pstab(jl,klev+1)=pstab(jl,klev+1)/(papm1(jl,kknul(jl)) & |
---|
764 | & -papm1(jl,kknub(jl))) |
---|
765 | prho(jl,klev+1)=prho(jl,klev+1)/(papm1(jl,kknul(jl)) & |
---|
766 | & -papm1(jl,kknub(jl))) |
---|
767 | zvar=pstd(jl) |
---|
768 | 2212 continue |
---|
769 | !c |
---|
770 | !c* 2.3 mean flow richardson number. |
---|
771 | !c* and critical height for froude layer |
---|
772 | !c |
---|
773 | 230 continue |
---|
774 | !c |
---|
775 | do 232 jk=2,klev |
---|
776 | do 231 jl=kidia,kfdia |
---|
777 | if(ktest(jl).eq.1) then |
---|
778 | zdwind=max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)),gvsec) |
---|
779 | pri(jl,jk)=pstab(jl,jk)*(zdp(jl,jk) & |
---|
780 | & /(rg*prho(jl,jk)*zdwind))**2 |
---|
781 | pri(jl,jk)=max(pri(jl,jk),grcrit) |
---|
782 | endif |
---|
783 | 231 continue |
---|
784 | 232 continue |
---|
785 | |
---|
786 | !c |
---|
787 | !c |
---|
788 | !c* define top of 'envelope' layer |
---|
789 | !c ---------------------------- |
---|
790 | |
---|
791 | do 233 jl=kidia,kfdia |
---|
792 | pnu (jl)=0.0 |
---|
793 | znum(jl)=0.0 |
---|
794 | 233 continue |
---|
795 | |
---|
796 | ! do 234 jk=2,klev-1 |
---|
797 | ! do 234 jl=kidia,kfdia |
---|
798 | ! L. Fita. July 2013 |
---|
799 | DO jk=2,klev-1 |
---|
800 | DO jl=kidia,kfdia |
---|
801 | |
---|
802 | |
---|
803 | if(ktest(jl).eq.1) then |
---|
804 | |
---|
805 | if (jk.ge.kknub(jl)) then |
---|
806 | |
---|
807 | znum(jl)=pnu(jl) |
---|
808 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
809 | & max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
810 | zwind=max(sqrt(zwind**2),gvsec) |
---|
811 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
812 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
813 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
814 | zrhom=prho(jl,jk ) |
---|
815 | zrhop=prho(jl,jk+1) |
---|
816 | pnu(jl) = pnu(jl) + (zdelp/rg)* & |
---|
817 | & ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
818 | if((znum(jl).le.gfrcrit).and.(pnu(jl).gt.gfrcrit) & |
---|
819 | & .and.(kkenvh(jl).eq.klev)) THEN |
---|
820 | kkenvh(jl)=jk |
---|
821 | endif |
---|
822 | |
---|
823 | endif |
---|
824 | END IF |
---|
825 | |
---|
826 | ! 234 continue |
---|
827 | END DO |
---|
828 | END DO |
---|
829 | |
---|
830 | !c calculation of a dynamical mixing height for the breaking |
---|
831 | !c of gravity waves: |
---|
832 | |
---|
833 | |
---|
834 | do 235 jl=kidia,kfdia |
---|
835 | znup(jl)=0.0 |
---|
836 | znum(jl)=0.0 |
---|
837 | 235 continue |
---|
838 | |
---|
839 | ! do 236 jk=klev-1,2,-1 |
---|
840 | ! do 236 jl=kidia,kfdia |
---|
841 | ! L. Fita, July 2013 |
---|
842 | DO jk=klev-1,2,-1 |
---|
843 | DO jl=kidia,kfdia |
---|
844 | |
---|
845 | |
---|
846 | if(ktest(jl).eq.1) then |
---|
847 | |
---|
848 | znum(jl)=znup(jl) |
---|
849 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
850 | & max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
851 | zwind=max(sqrt(zwind**2),gvsec) |
---|
852 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
853 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
854 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
855 | zrhom=prho(jl,jk ) |
---|
856 | zrhop=prho(jl,jk+1) |
---|
857 | znup(jl) = znup(jl) + (zdelp/rg)* & |
---|
858 | & ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
859 | if((znum(jl).le.rpi/2.).and.(znup(jl).gt.rpi/2.) & |
---|
860 | & .and.(kkcrith(jl).eq.klev)) THEN |
---|
861 | kkcrith(jl)=jk |
---|
862 | endif |
---|
863 | |
---|
864 | END IF |
---|
865 | ! 236 continue |
---|
866 | END DO |
---|
867 | END DO |
---|
868 | |
---|
869 | do 237 jl=kidia,kfdia |
---|
870 | kkcrith(jl)=min0(kkcrith(jl),kknu2(jl)) |
---|
871 | kkcrith(jl)=max0(kkcrith(jl),ilevh*2) |
---|
872 | 237 continue |
---|
873 | !c |
---|
874 | !c directional info for flow blocking ************************* |
---|
875 | !c |
---|
876 | do 251 jk=ilevh,klev |
---|
877 | do 252 jl=kidia,kfdia |
---|
878 | if(jk.ge.kkenvh(jl)) then |
---|
879 | lo=(pum1(jl,jk).lt.gvsec).and.(pum1(jl,jk).ge.-gvsec) |
---|
880 | if(lo) then |
---|
881 | zu=pum1(jl,jk)+2.*gvsec |
---|
882 | else |
---|
883 | zu=pum1(jl,jk) |
---|
884 | endif |
---|
885 | zphi=atan(pvm1(jl,jk)/zu) |
---|
886 | ppsi(jl,jk)=ptheta(jl)*rpi/180.-zphi |
---|
887 | end if |
---|
888 | 252 continue |
---|
889 | 251 continue |
---|
890 | !c forms the vertical 'leakiness' ************************** |
---|
891 | |
---|
892 | alpha=3. |
---|
893 | |
---|
894 | do 254 jk=ilevh,klev |
---|
895 | do 253 jl=kidia,kfdia |
---|
896 | if(jk.ge.kkenvh(jl)) then |
---|
897 | zggeenv=amax1(1., & |
---|
898 | & (pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)-1))/2.) |
---|
899 | zggeom1=amax1(pgeom1(jl,jk),1.) |
---|
900 | zgvar=amax1(pstd(jl)*rg,1.) |
---|
901 | !cmod pzdep(jl,jk)=sqrt((zggeenv-zggeom1)/(zggeom1+zgvar)) |
---|
902 | pzdep(jl,jk)=(pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl, jk))/ & |
---|
903 | & (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,klev)) |
---|
904 | end if |
---|
905 | 253 continue |
---|
906 | 254 continue |
---|
907 | |
---|
908 | 260 continue |
---|
909 | |
---|
910 | return |
---|
911 | end SUBROUTINE orosetup |
---|
912 | |
---|
913 | SUBROUTINE gwstress & |
---|
914 | & ( nlon , nlev & |
---|
915 | & , ktest, kcrit, kkenvh & |
---|
916 | & , kknu & |
---|
917 | & , prho , pstab , pvph , pstd, psig & |
---|
918 | & , pmea , ppic , ptau & |
---|
919 | & , pgeom1 , pdmod ) |
---|
920 | !c |
---|
921 | !c**** *gwstress* |
---|
922 | !c |
---|
923 | !c purpose. |
---|
924 | !c -------- |
---|
925 | !c |
---|
926 | !c** interface. |
---|
927 | !c ---------- |
---|
928 | !c call *gwstress* from *gwdrag* |
---|
929 | !c |
---|
930 | !c explicit arguments : |
---|
931 | !c -------------------- |
---|
932 | !c ==== inputs === |
---|
933 | !c ==== outputs === |
---|
934 | !c |
---|
935 | !c implicit arguments : none |
---|
936 | !c -------------------- |
---|
937 | !c |
---|
938 | !c method. |
---|
939 | !c ------- |
---|
940 | !c |
---|
941 | !c |
---|
942 | !c externals. |
---|
943 | !c ---------- |
---|
944 | !c |
---|
945 | !c |
---|
946 | !c reference. |
---|
947 | !c ---------- |
---|
948 | !c |
---|
949 | !c see ecmwf research department documentation of the "i.f.s." |
---|
950 | !c |
---|
951 | !c author. |
---|
952 | !c ------- |
---|
953 | !c |
---|
954 | !c modifications. |
---|
955 | !c -------------- |
---|
956 | !c f. lott put the new gwd on ifs 22/11/93 |
---|
957 | !c |
---|
958 | !c----------------------------------------------------------------------- |
---|
959 | USE dimphy |
---|
960 | implicit none |
---|
961 | !cym#include "dimensions.h" |
---|
962 | !cym#include "dimphy.h" |
---|
963 | #include "YOMCST.h" |
---|
964 | #include "YOEGWD.h" |
---|
965 | |
---|
966 | !c----------------------------------------------------------------------- |
---|
967 | !c |
---|
968 | !c* 0.1 arguments |
---|
969 | !c --------- |
---|
970 | !c |
---|
971 | integer nlon, nlev |
---|
972 | integer kcrit(nlon), & |
---|
973 | & ktest(nlon),kkenvh(nlon),kknu(nlon) |
---|
974 | !c |
---|
975 | real prho(nlon,nlev+1),pstab(nlon,nlev+1),ptau(nlon,nlev+1), & |
---|
976 | & pvph(nlon,nlev+1), & |
---|
977 | & pgeom1(nlon,nlev),pstd(nlon) |
---|
978 | !c |
---|
979 | real psig(nlon) |
---|
980 | real pmea(nlon),ppic(nlon) |
---|
981 | real pdmod(nlon) |
---|
982 | !c |
---|
983 | !c----------------------------------------------------------------------- |
---|
984 | !c |
---|
985 | !c* 0.2 local arrays |
---|
986 | !c ------------ |
---|
987 | integer jl |
---|
988 | real zblock, zvar, zeff |
---|
989 | logical lo |
---|
990 | !c |
---|
991 | !c----------------------------------------------------------------------- |
---|
992 | !c |
---|
993 | !c* 0.3 functions |
---|
994 | !c --------- |
---|
995 | !c ------------------------------------------------------------------ |
---|
996 | !c |
---|
997 | !c* 1. initialization |
---|
998 | !c -------------- |
---|
999 | !c |
---|
1000 | 100 continue |
---|
1001 | !c |
---|
1002 | !c* 3.1 gravity wave stress. |
---|
1003 | !c |
---|
1004 | 300 continue |
---|
1005 | !c |
---|
1006 | !c |
---|
1007 | do 301 jl=kidia,kfdia |
---|
1008 | if(ktest(jl).eq.1) then |
---|
1009 | |
---|
1010 | !c effective mountain height above the blocked flow |
---|
1011 | |
---|
1012 | if(kkenvh(jl).eq.klev)then |
---|
1013 | zblock=0.0 |
---|
1014 | else |
---|
1015 | zblock=(pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)+1))/2./rg |
---|
1016 | endif |
---|
1017 | |
---|
1018 | zvar=ppic(jl)-pmea(jl) |
---|
1019 | zeff=amax1(0.,zvar-zblock) |
---|
1020 | |
---|
1021 | ptau(jl,klev+1)=prho(jl,klev+1)*gkdrag*psig(jl)*zeff**2 & |
---|
1022 | & /4./pstd(jl)*pvph(jl,klev+1)*pdmod(jl)*sqrt(pstab(jl,klev+1)) |
---|
1023 | |
---|
1024 | !c too small value of stress or low level flow include critical level |
---|
1025 | !c or low level flow: gravity wave stress nul. |
---|
1026 | |
---|
1027 | lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) & |
---|
1028 | & .or.(pvph(jl,klev+1).lt.gvcrit) |
---|
1029 | !c if(lo) ptau(jl,klev+1)=0.0 |
---|
1030 | |
---|
1031 | else |
---|
1032 | |
---|
1033 | ptau(jl,klev+1)=0.0 |
---|
1034 | |
---|
1035 | endif |
---|
1036 | |
---|
1037 | 301 continue |
---|
1038 | !c |
---|
1039 | return |
---|
1040 | end SUBROUTINE gwstress |
---|
1041 | |
---|
1042 | SUBROUTINE GWPROFIL & |
---|
1043 | & ( NLON, NLEV & |
---|
1044 | & , kgwd, kdx , ktest & |
---|
1045 | & , KKCRITH, KCRIT & |
---|
1046 | & , PAPHM1, PRHO , PSTAB , PVPH , PRI , PTAU & |
---|
1047 | & , pdmod , psig , pvar) |
---|
1048 | |
---|
1049 | !C**** *GWPROFIL* |
---|
1050 | !C |
---|
1051 | !C PURPOSE. |
---|
1052 | !C -------- |
---|
1053 | !C |
---|
1054 | !C** INTERFACE. |
---|
1055 | !C ---------- |
---|
1056 | !C FROM *GWDRAG* |
---|
1057 | !C |
---|
1058 | !C EXPLICIT ARGUMENTS : |
---|
1059 | !C -------------------- |
---|
1060 | !C ==== INPUTS === |
---|
1061 | !C ==== OUTPUTS === |
---|
1062 | !C |
---|
1063 | !C IMPLICIT ARGUMENTS : NONE |
---|
1064 | !C -------------------- |
---|
1065 | !C |
---|
1066 | !C METHOD: |
---|
1067 | !C ------- |
---|
1068 | !C THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
---|
1069 | !C IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
---|
1070 | !C AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
---|
1071 | !C IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
---|
1072 | !C BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
---|
1073 | !C NONLINEAR GRAVITY WAVE BREAKING. |
---|
1074 | !C ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
---|
1075 | !C LEVEL (KCRIT) OR WHEN IT BREAKS. |
---|
1076 | !C |
---|
1077 | !C |
---|
1078 | !C |
---|
1079 | !C EXTERNALS. |
---|
1080 | !C ---------- |
---|
1081 | !C |
---|
1082 | !C |
---|
1083 | !C REFERENCE. |
---|
1084 | !C ---------- |
---|
1085 | !C |
---|
1086 | !C SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
1087 | !C |
---|
1088 | !C AUTHOR. |
---|
1089 | !C ------- |
---|
1090 | !C |
---|
1091 | !C MODIFICATIONS. |
---|
1092 | !C -------------- |
---|
1093 | !C PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
---|
1094 | !C----------------------------------------------------------------------- |
---|
1095 | USE dimphy |
---|
1096 | implicit none |
---|
1097 | !C |
---|
1098 | |
---|
1099 | !C |
---|
1100 | |
---|
1101 | !cym#include "dimensions.h" |
---|
1102 | !cym#include "dimphy.h" |
---|
1103 | #include "YOMCST.h" |
---|
1104 | #include "YOEGWD.h" |
---|
1105 | |
---|
1106 | !C----------------------------------------------------------------------- |
---|
1107 | !C |
---|
1108 | !C* 0.1 ARGUMENTS |
---|
1109 | !C --------- |
---|
1110 | !C |
---|
1111 | integer nlon,nlev |
---|
1112 | INTEGER KKCRITH(NLON),KCRIT(NLON) & |
---|
1113 | & ,kdx(nlon) , ktest(nlon) |
---|
1114 | |
---|
1115 | !C |
---|
1116 | REAL PAPHM1(NLON,NLEV+1), PSTAB(NLON,NLEV+1), & |
---|
1117 | & PRHO (NLON,NLEV+1), PVPH (NLON,NLEV+1), & |
---|
1118 | & PRI (NLON,NLEV+1), PTAU(NLON,NLEV+1) |
---|
1119 | REAL pdmod (NLON) , psig(NLON), & |
---|
1120 | & pvar(NLON) |
---|
1121 | !C----------------------------------------------------------------------- |
---|
1122 | !C |
---|
1123 | !C* 0.2 LOCAL ARRAYS |
---|
1124 | !C ------------ |
---|
1125 | !C |
---|
1126 | integer ilevh, ji, kgwd, jl, jk |
---|
1127 | real zsqr, zalfa, zriw, zdel, zb, zalpha,zdz2n |
---|
1128 | real zdelp, zdelpt |
---|
1129 | REAL ZDZ2 (KLON,KLEV) , ZNORM(KLON) , zoro(KLON) |
---|
1130 | REAL ZTAU (KLON,KLEV+1) |
---|
1131 | !C |
---|
1132 | !C----------------------------------------------------------------------- |
---|
1133 | !C |
---|
1134 | !C* 1. INITIALIZATION |
---|
1135 | !C -------------- |
---|
1136 | !C |
---|
1137 | !c print *,' entree gwprofil' |
---|
1138 | 100 CONTINUE |
---|
1139 | !C |
---|
1140 | !C |
---|
1141 | !C* COMPUTATIONAL CONSTANTS. |
---|
1142 | !C ------------- ---------- |
---|
1143 | !C |
---|
1144 | ilevh=KLEV/3 |
---|
1145 | !C |
---|
1146 | !c DO 400 ji=1,kgwd |
---|
1147 | !c jl=kdx(ji) |
---|
1148 | !c Modif vectorisation 02/04/2004 |
---|
1149 | DO 400 jl=kidia,kfdia |
---|
1150 | if (ktest(jl).eq.1) then |
---|
1151 | Zoro(JL)=Psig(JL)*Pdmod(JL)/4./max(pvar(jl),1.0) |
---|
1152 | ZTAU(JL,KLEV+1)=PTAU(JL,KLEV+1) |
---|
1153 | endif |
---|
1154 | 400 CONTINUE |
---|
1155 | |
---|
1156 | !C |
---|
1157 | DO 430 JK=KLEV,2,-1 |
---|
1158 | !C |
---|
1159 | !C |
---|
1160 | !C* 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
---|
1161 | !C BLOCKING LAYER. |
---|
1162 | 410 CONTINUE |
---|
1163 | !C |
---|
1164 | !c DO 411 ji=1,kgwd |
---|
1165 | !c jl=kdx(ji) |
---|
1166 | !c Modif vectorisation 02/04/2004 |
---|
1167 | do 411 jl=kidia,kfdia |
---|
1168 | if (ktest(jl).eq.1) then |
---|
1169 | IF(JK.GT.KKCRITH(JL)) THEN |
---|
1170 | PTAU(JL,JK)=ZTAU(JL,KLEV+1) |
---|
1171 | !C ENDIF |
---|
1172 | !C IF(JK.EQ.KKCRITH(JL)) THEN |
---|
1173 | ELSE |
---|
1174 | PTAU(JL,JK)=GRAHILO*ZTAU(JL,KLEV+1) |
---|
1175 | ENDIF |
---|
1176 | endif |
---|
1177 | 411 CONTINUE |
---|
1178 | !C |
---|
1179 | !C* 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
---|
1180 | !C LOW LEVEL FLOW LAYER. |
---|
1181 | 415 CONTINUE |
---|
1182 | !C |
---|
1183 | !C |
---|
1184 | !C* 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
---|
1185 | !C |
---|
1186 | 420 CONTINUE |
---|
1187 | !C |
---|
1188 | !c DO 421 ji=1,kgwd |
---|
1189 | !c jl=kdx(ji) |
---|
1190 | !c Modif vectorisation 02/04/2004 |
---|
1191 | do 421 jl=kidia,kfdia |
---|
1192 | if(ktest(jl).eq.1) then |
---|
1193 | IF(JK.LT.KKCRITH(JL)) THEN |
---|
1194 | ZNORM(JL)=gkdrag*PRHO(JL,JK)*SQRT(PSTAB(JL,JK))*PVPH(JL,JK) & |
---|
1195 | & *zoro(jl) |
---|
1196 | ZDZ2(JL,JK)=PTAU(JL,JK+1)/max(ZNORM(JL),gssec) |
---|
1197 | ENDIF |
---|
1198 | endif |
---|
1199 | 421 CONTINUE |
---|
1200 | !C |
---|
1201 | !C* 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
---|
1202 | !C* AND STRESS: BREAKING EVALUATION AND CRITICAL |
---|
1203 | !C LEVEL |
---|
1204 | !C |
---|
1205 | |
---|
1206 | !c DO 431 ji=1,kgwd |
---|
1207 | !c jl=Kdx(ji) |
---|
1208 | !c Modif vectorisation 02/04/2004 |
---|
1209 | do 431 jl=kidia,kfdia |
---|
1210 | if(ktest(jl).eq.1) then |
---|
1211 | |
---|
1212 | IF(JK.LT.KKCRITH(JL)) THEN |
---|
1213 | IF((PTAU(JL,JK+1).LT.GTSEC).OR.(JK.LE.KCRIT(JL))) THEN |
---|
1214 | PTAU(JL,JK)=0.0 |
---|
1215 | ELSE |
---|
1216 | ZSQR=SQRT(PRI(JL,JK)) |
---|
1217 | ZALFA=SQRT(PSTAB(JL,JK)*ZDZ2(JL,JK))/PVPH(JL,JK) |
---|
1218 | ZRIW=PRI(JL,JK)*(1.-ZALFA)/(1+ZALFA*ZSQR)**2 |
---|
1219 | IF(ZRIW.LT.GRCRIT) THEN |
---|
1220 | ZDEL=4./ZSQR/GRCRIT+1./GRCRIT**2+4./GRCRIT |
---|
1221 | ZB=1./GRCRIT+2./ZSQR |
---|
1222 | ZALPHA=0.5*(-ZB+SQRT(ZDEL)) |
---|
1223 | ZDZ2N=(PVPH(JL,JK)*ZALPHA)**2/PSTAB(JL,JK) |
---|
1224 | PTAU(JL,JK)=ZNORM(JL)*ZDZ2N |
---|
1225 | ELSE |
---|
1226 | PTAU(JL,JK)=ZNORM(JL)*ZDZ2(JL,JK) |
---|
1227 | ENDIF |
---|
1228 | PTAU(JL,JK)=MIN(PTAU(JL,JK),PTAU(JL,JK+1)) |
---|
1229 | ENDIF |
---|
1230 | ENDIF |
---|
1231 | endif |
---|
1232 | 431 CONTINUE |
---|
1233 | |
---|
1234 | 430 CONTINUE |
---|
1235 | 440 CONTINUE |
---|
1236 | |
---|
1237 | !C REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
1238 | |
---|
1239 | !c DO 530 ji=1,kgwd |
---|
1240 | !c jl=kdx(ji) |
---|
1241 | !c Modif vectorisation 02/04/2004 |
---|
1242 | do 530 jl=kidia,kfdia |
---|
1243 | if(ktest(jl).eq.1) then |
---|
1244 | ZTAU(JL,KKCRITH(JL))=PTAU(JL,KKCRITH(JL)) |
---|
1245 | ZTAU(JL,NSTRA)=PTAU(JL,NSTRA) |
---|
1246 | endif |
---|
1247 | 530 CONTINUE |
---|
1248 | |
---|
1249 | DO 531 JK=1,KLEV |
---|
1250 | |
---|
1251 | !c DO 532 ji=1,kgwd |
---|
1252 | !c jl=kdx(ji) |
---|
1253 | !c Modif vectorisation 02/04/2004 |
---|
1254 | do 532 jl=kidia,kfdia |
---|
1255 | if(ktest(jl).eq.1) then |
---|
1256 | |
---|
1257 | |
---|
1258 | IF(JK.GT.KKCRITH(JL))THEN |
---|
1259 | |
---|
1260 | ZDELP=PAPHM1(JL,JK)-PAPHM1(JL,KLEV+1 ) |
---|
1261 | ZDELPT=PAPHM1(JL,KKCRITH(JL))-PAPHM1(JL,KLEV+1 ) |
---|
1262 | PTAU(JL,JK)=ZTAU(JL,KLEV+1 ) + & |
---|
1263 | & (ZTAU(JL,KKCRITH(JL))-ZTAU(JL,KLEV+1 ) )* & |
---|
1264 | & ZDELP/ZDELPT |
---|
1265 | ENDIF |
---|
1266 | |
---|
1267 | endif |
---|
1268 | 532 CONTINUE |
---|
1269 | |
---|
1270 | !C REORGANISATION IN THE STRATOSPHERE |
---|
1271 | |
---|
1272 | !c DO 533 ji=1,kgwd |
---|
1273 | !c jl=kdx(ji) |
---|
1274 | !c Modif vectorisation 02/04/2004 |
---|
1275 | do 533 jl=kidia,kfdia |
---|
1276 | if(ktest(jl).eq.1) then |
---|
1277 | |
---|
1278 | |
---|
1279 | IF(JK.LT.NSTRA)THEN |
---|
1280 | |
---|
1281 | ZDELP =PAPHM1(JL,NSTRA) |
---|
1282 | ZDELPT=PAPHM1(JL,JK) |
---|
1283 | PTAU(JL,JK)=ZTAU(JL,NSTRA)*ZDELPT/ZDELP |
---|
1284 | |
---|
1285 | ENDIF |
---|
1286 | |
---|
1287 | endif |
---|
1288 | 533 CONTINUE |
---|
1289 | |
---|
1290 | !C REORGANISATION IN THE TROPOSPHERE |
---|
1291 | |
---|
1292 | !c DO 534 ji=1,kgwd |
---|
1293 | !c jl=kdx(ji) |
---|
1294 | !c Modif vectorisation 02/04/2004 |
---|
1295 | do 534 jl=kidia,kfdia |
---|
1296 | if(ktest(jl).eq.1) then |
---|
1297 | |
---|
1298 | |
---|
1299 | IF(JK.LT.KKCRITH(JL).AND.JK.GT.NSTRA)THEN |
---|
1300 | |
---|
1301 | ZDELP=PAPHM1(JL,JK)-PAPHM1(JL,KKCRITH(JL)) |
---|
1302 | ZDELPT=PAPHM1(JL,NSTRA)-PAPHM1(JL,KKCRITH(JL)) |
---|
1303 | PTAU(JL,JK)=ZTAU(JL,KKCRITH(JL)) + & |
---|
1304 | & (ZTAU(JL,NSTRA)-ZTAU(JL,KKCRITH(JL)))*ZDELP & |
---|
1305 | & /ZDELPT |
---|
1306 | |
---|
1307 | ENDIF |
---|
1308 | endif |
---|
1309 | 534 CONTINUE |
---|
1310 | |
---|
1311 | |
---|
1312 | 531 CONTINUE |
---|
1313 | |
---|
1314 | |
---|
1315 | RETURN |
---|
1316 | END SUBROUTINE GWPROFIL |
---|
1317 | |
---|
1318 | SUBROUTINE lift_noro (nlon,nlev,dtime,paprs,pplay, & |
---|
1319 | & plat,pmea,pstd, ppic, & |
---|
1320 | & ktest, & |
---|
1321 | & t, u, v, & |
---|
1322 | & pulow, pvlow, pustr, pvstr, & |
---|
1323 | & d_t, d_u, d_v) |
---|
1324 | !c |
---|
1325 | USE dimphy |
---|
1326 | IMPLICIT none |
---|
1327 | !c====================================================================== |
---|
1328 | !c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
1329 | !c Objet: Frottement de la montagne Interface |
---|
1330 | !c====================================================================== |
---|
1331 | !c Arguments: |
---|
1332 | !c dtime---input-R- pas d'integration (s) |
---|
1333 | !c paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
1334 | !c pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
1335 | !c t-------input-R-temperature (K) |
---|
1336 | !c u-------input-R-vitesse horizontale (m/s) |
---|
1337 | !c v-------input-R-vitesse horizontale (m/s) |
---|
1338 | !c |
---|
1339 | !c d_t-----output-R-increment de la temperature |
---|
1340 | !c d_u-----output-R-increment de la vitesse u |
---|
1341 | !c d_v-----output-R-increment de la vitesse v |
---|
1342 | !c====================================================================== |
---|
1343 | !cym#include "dimensions.h" |
---|
1344 | !cym#include "dimphy.h" |
---|
1345 | #include "YOMCST.h" |
---|
1346 | !c |
---|
1347 | !c ARGUMENTS |
---|
1348 | !c |
---|
1349 | INTEGER nlon,nlev |
---|
1350 | REAL dtime |
---|
1351 | REAL paprs(klon,klev+1) |
---|
1352 | REAL pplay(klon,klev) |
---|
1353 | REAL plat(nlon),pmea(nlon) |
---|
1354 | REAL pstd(nlon) |
---|
1355 | REAL ppic(nlon) |
---|
1356 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
1357 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
1358 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
1359 | !c |
---|
1360 | INTEGER i, k, ktest(nlon) |
---|
1361 | !c |
---|
1362 | !c Variables locales: |
---|
1363 | !c |
---|
1364 | REAL zgeom(klon,klev) |
---|
1365 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
1366 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
1367 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
1368 | !c |
---|
1369 | !c initialiser les variables de sortie (pour securite) |
---|
1370 | !c |
---|
1371 | DO i = 1,klon |
---|
1372 | pulow(i) = 0.0 |
---|
1373 | pvlow(i) = 0.0 |
---|
1374 | pustr(i) = 0.0 |
---|
1375 | pvstr(i) = 0.0 |
---|
1376 | ENDDO |
---|
1377 | DO k = 1, klev |
---|
1378 | DO i = 1, klon |
---|
1379 | d_t(i,k) = 0.0 |
---|
1380 | d_u(i,k) = 0.0 |
---|
1381 | d_v(i,k) = 0.0 |
---|
1382 | pdudt(i,k)=0.0 |
---|
1383 | pdvdt(i,k)=0.0 |
---|
1384 | pdtdt(i,k)=0.0 |
---|
1385 | ENDDO |
---|
1386 | ENDDO |
---|
1387 | !c |
---|
1388 | !c preparer les variables d'entree (attention: l'ordre des niveaux |
---|
1389 | !c verticaux augmente du haut vers le bas) |
---|
1390 | !c |
---|
1391 | DO k = 1, klev |
---|
1392 | DO i = 1, klon |
---|
1393 | pt(i,k) = t(i,klev-k+1) |
---|
1394 | pu(i,k) = u(i,klev-k+1) |
---|
1395 | pv(i,k) = v(i,klev-k+1) |
---|
1396 | papmf(i,k) = pplay(i,klev-k+1) |
---|
1397 | ENDDO |
---|
1398 | ENDDO |
---|
1399 | DO k = 1, klev+1 |
---|
1400 | DO i = 1, klon |
---|
1401 | papmh(i,k) = paprs(i,klev-k+2) |
---|
1402 | ENDDO |
---|
1403 | ENDDO |
---|
1404 | DO i = 1, klon |
---|
1405 | zgeom(i,klev) = RD * pt(i,klev) & |
---|
1406 | & * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
1407 | ENDDO |
---|
1408 | DO k = klev-1, 1, -1 |
---|
1409 | DO i = 1, klon |
---|
1410 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 & |
---|
1411 | & * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
1412 | ENDDO |
---|
1413 | ENDDO |
---|
1414 | !c |
---|
1415 | !c appeler la routine principale |
---|
1416 | !c |
---|
1417 | CALL OROLIFT(klon,klev,ktest, & |
---|
1418 | & dtime, & |
---|
1419 | & papmh, zgeom, & |
---|
1420 | & pt, pu, pv, & |
---|
1421 | & plat,pmea, pstd, ppic, & |
---|
1422 | & pulow,pvlow, & |
---|
1423 | & pdudt,pdvdt,pdtdt) |
---|
1424 | !C |
---|
1425 | DO k = 1, klev |
---|
1426 | DO i = 1, klon |
---|
1427 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
1428 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
1429 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
1430 | pustr(i) = pustr(i) & |
---|
1431 | !IM BUG . +RG*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) & |
---|
1432 | & +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/RG |
---|
1433 | pvstr(i) = pvstr(i) & |
---|
1434 | !IM BUG . +RG*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) & |
---|
1435 | & +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/RG |
---|
1436 | ENDDO |
---|
1437 | ENDDO |
---|
1438 | !c |
---|
1439 | RETURN |
---|
1440 | END SUBROUTINE lift_noro |
---|
1441 | |
---|
1442 | SUBROUTINE OROLIFT( NLON,NLEV & |
---|
1443 | & , KTEST & |
---|
1444 | & , PTSPHY & |
---|
1445 | & , PAPHM1,PGEOM1,PTM1,PUM1,PVM1 & |
---|
1446 | & , PLAT & |
---|
1447 | & , PMEA, PVAROR, ppic & |
---|
1448 | !C OUTPUTS & |
---|
1449 | & , PULOW,PVLOW & |
---|
1450 | & , PVOM,PVOL,PTE ) |
---|
1451 | |
---|
1452 | !C |
---|
1453 | !C**** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
1454 | !C |
---|
1455 | !C PURPOSE. |
---|
1456 | !C -------- |
---|
1457 | !C |
---|
1458 | !C** INTERFACE. |
---|
1459 | !C ---------- |
---|
1460 | !C CALLED FROM *lift_noro |
---|
1461 | !C ---------- |
---|
1462 | !C |
---|
1463 | !C AUTHOR. |
---|
1464 | !C ------- |
---|
1465 | !C F.LOTT LMD 22/11/95 |
---|
1466 | !C |
---|
1467 | USE dimphy |
---|
1468 | implicit none |
---|
1469 | !C |
---|
1470 | !C |
---|
1471 | !cym#include "dimensions.h" |
---|
1472 | !cym#include "dimphy.h" |
---|
1473 | #include "YOMCST.h" |
---|
1474 | #include "YOEGWD.h" |
---|
1475 | !C----------------------------------------------------------------------- |
---|
1476 | !C |
---|
1477 | !C* 0.1 ARGUMENTS |
---|
1478 | !C --------- |
---|
1479 | !C |
---|
1480 | !C |
---|
1481 | integer nlon, nlev |
---|
1482 | REAL PTE(NLON,NLEV), & |
---|
1483 | & PVOL(NLON,NLEV), & |
---|
1484 | & PVOM(NLON,NLEV), & |
---|
1485 | & PULOW(NLON), & |
---|
1486 | & PVLOW(NLON) |
---|
1487 | REAL PUM1(NLON,NLEV), & |
---|
1488 | & PVM1(NLON,NLEV), & |
---|
1489 | & PTM1(NLON,NLEV), & |
---|
1490 | & PLAT(NLON),PMEA(NLON), & |
---|
1491 | & PVAROR(NLON), & |
---|
1492 | & ppic(NLON), & |
---|
1493 | & PGEOM1(NLON,NLEV), & |
---|
1494 | & PAPHM1(NLON,NLEV+1) |
---|
1495 | !C |
---|
1496 | INTEGER KTEST(NLON) |
---|
1497 | real ptsphy |
---|
1498 | !C----------------------------------------------------------------------- |
---|
1499 | !C |
---|
1500 | !C* 0.2 LOCAL ARRAYS |
---|
1501 | !C ------------ |
---|
1502 | logical lifthigh |
---|
1503 | !cym integer klevm1, jl, ilevh, jk |
---|
1504 | integer jl, ilevh, jk |
---|
1505 | real zcons1, ztmst, zrtmst,zpi, zhgeo |
---|
1506 | real zdelp, zslow, zsqua, zscav, zbet |
---|
1507 | INTEGER & |
---|
1508 | & IKNUB(klon), & |
---|
1509 | & IKNUL(klon) |
---|
1510 | LOGICAL LL1(KLON,KLEV+1) |
---|
1511 | !C |
---|
1512 | REAL ZTAU(KLON,KLEV+1), & |
---|
1513 | & ZTAV(KLON,KLEV+1), & |
---|
1514 | & ZRHO(KLON,KLEV+1) |
---|
1515 | REAL ZDUDT(KLON), & |
---|
1516 | & ZDVDT(KLON) |
---|
1517 | REAL ZHCRIT(KLON,KLEV) |
---|
1518 | CHARACTER (LEN=20) :: modname='orografi' |
---|
1519 | CHARACTER (LEN=80) :: abort_message |
---|
1520 | !C----------------------------------------------------------------------- |
---|
1521 | !C |
---|
1522 | !C* 1.1 INITIALIZATIONS |
---|
1523 | !C --------------- |
---|
1524 | |
---|
1525 | LIFTHIGH=.FALSE. |
---|
1526 | |
---|
1527 | IF(NLON.NE.KLON.OR.NLEV.NE.KLEV)THEN |
---|
1528 | abort_message = 'pb dimension' |
---|
1529 | CALL abort_gcm (modname,abort_message,1) |
---|
1530 | ENDIF |
---|
1531 | ZCONS1=1./RD |
---|
1532 | !cym KLEVM1=KLEV-1 |
---|
1533 | ZTMST=PTSPHY |
---|
1534 | ZRTMST=1./ZTMST |
---|
1535 | ZPI=ACOS(-1.) |
---|
1536 | !C |
---|
1537 | DO 1001 JL=kidia,kfdia |
---|
1538 | ZRHO(JL,KLEV+1) =0.0 |
---|
1539 | PULOW(JL) =0.0 |
---|
1540 | PVLOW(JL) =0.0 |
---|
1541 | iknub(JL) =klev |
---|
1542 | iknul(JL) =klev |
---|
1543 | ilevh=klev/3 |
---|
1544 | ll1(jl,klev+1)=.false. |
---|
1545 | DO 1000 JK=1,KLEV |
---|
1546 | PVOM(JL,JK)=0.0 |
---|
1547 | PVOL(JL,JK)=0.0 |
---|
1548 | PTE (JL,JK)=0.0 |
---|
1549 | 1000 CONTINUE |
---|
1550 | 1001 CONTINUE |
---|
1551 | |
---|
1552 | !C |
---|
1553 | !C* 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
1554 | !C* LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
1555 | !C* THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
1556 | !C |
---|
1557 | !C |
---|
1558 | !C |
---|
1559 | DO 2006 JK=KLEV,1,-1 |
---|
1560 | DO 2007 JL=kidia,kfdia |
---|
1561 | IF(KTEST(JL).EQ.1) THEN |
---|
1562 | ZHCRIT(JL,JK)=amax1(Ppic(JL)-pmea(JL),100.) |
---|
1563 | ZHGEO=PGEOM1(JL,JK)/RG |
---|
1564 | ll1(JL,JK)=(ZHGEO.GT.ZHCRIT(JL,JK)) |
---|
1565 | IF(ll1(JL,JK).neqv.ll1(JL,JK+1)) THEN |
---|
1566 | iknub(JL)=JK |
---|
1567 | ENDIF |
---|
1568 | ENDIF |
---|
1569 | 2007 CONTINUE |
---|
1570 | 2006 CONTINUE |
---|
1571 | !C |
---|
1572 | do 2010 jl=kidia,kfdia |
---|
1573 | IF(KTEST(JL).EQ.1) THEN |
---|
1574 | iknub(jl)=max(iknub(jl),klev/2) |
---|
1575 | iknul(jl)=max(iknul(jl),2*klev/3) |
---|
1576 | if(iknub(jl).gt.nktopg) iknub(jl)=nktopg |
---|
1577 | if(iknub(jl).eq.nktopg) iknul(jl)=klev |
---|
1578 | if(iknub(jl).eq.iknul(jl)) iknub(jl)=iknul(jl)-1 |
---|
1579 | ENDIF |
---|
1580 | 2010 continue |
---|
1581 | |
---|
1582 | !C do 2011 jl=kidia,kfdia |
---|
1583 | !C IF(KTEST(JL).EQ.1) THEN |
---|
1584 | !C print *,' iknul= ',iknul(jl),' iknub=',iknub(jl) |
---|
1585 | !C ENDIF |
---|
1586 | !C2011 continue |
---|
1587 | |
---|
1588 | !C PRINT *,' DANS OROLIFT: 2010' |
---|
1589 | |
---|
1590 | DO 223 JK=KLEV,2,-1 |
---|
1591 | DO 222 JL=kidia,kfdia |
---|
1592 | ZRHO(JL,JK)=2.*PAPHM1(JL,JK)*ZCONS1/(PTM1(JL,JK)+PTM1(JL,JK-1)) |
---|
1593 | 222 CONTINUE |
---|
1594 | 223 CONTINUE |
---|
1595 | !C PRINT *,' DANS OROLIFT: 223' |
---|
1596 | |
---|
1597 | !C******************************************************************** |
---|
1598 | !C |
---|
1599 | !C* DEFINE LOW LEVEL FLOW |
---|
1600 | !C ------------------- |
---|
1601 | DO 2115 JK=klev,1,-1 |
---|
1602 | DO 2116 JL=kidia,kfdia |
---|
1603 | IF(KTEST(JL).EQ.1) THEN |
---|
1604 | if(jk.ge.iknub(jl).and.jk.le.iknul(jl)) then |
---|
1605 | pulow(JL)=pulow(JL)+PUM1(JL,JK)*(PAPHM1(JL,JK+1)-PAPHM1(JL,JK)) |
---|
1606 | pvlow(JL)=pvlow(JL)+PVM1(JL,JK)*(PAPHM1(JL,JK+1)-PAPHM1(JL,JK)) |
---|
1607 | zrho(JL,klev+1)=zrho(JL,klev+1) & |
---|
1608 | & +zrho(JL,JK)*(PAPHM1(JL,JK+1)-PAPHM1(JL,JK)) |
---|
1609 | end if |
---|
1610 | ENDIF |
---|
1611 | 2116 CONTINUE |
---|
1612 | 2115 CONTINUE |
---|
1613 | DO 2110 JL=kidia,kfdia |
---|
1614 | IF(KTEST(JL).EQ.1) THEN |
---|
1615 | pulow(JL)=pulow(JL)/(PAPHM1(JL,iknul(jl)+1)-PAPHM1(JL,iknub(jl))) |
---|
1616 | pvlow(JL)=pvlow(JL)/(PAPHM1(JL,iknul(jl)+1)-PAPHM1(JL,iknub(jl))) |
---|
1617 | zrho(JL,klev+1)=zrho(JL,klev+1) & |
---|
1618 | & /(PAPHM1(JL,iknul(jl)+1)-PAPHM1(JL,iknub(jl))) |
---|
1619 | ENDIF |
---|
1620 | 2110 CONTINUE |
---|
1621 | |
---|
1622 | |
---|
1623 | 200 CONTINUE |
---|
1624 | |
---|
1625 | !C*********************************************************** |
---|
1626 | !C |
---|
1627 | !C* 3. COMPUTE MOUNTAIN LIFT |
---|
1628 | !C |
---|
1629 | 300 CONTINUE |
---|
1630 | !C |
---|
1631 | DO 301 JL=kidia,kfdia |
---|
1632 | IF(KTEST(JL).EQ.1) THEN |
---|
1633 | ZTAU(JL,KLEV+1)= - GKLIFT*ZRHO(JL,KLEV+1)*2.*ROMEGA* & |
---|
1634 | !C * (2*PVAROR(JL)+PMEA(JL))* & |
---|
1635 | & 2*PVAROR(JL)* & |
---|
1636 | & SIN(ZPI/180.*PLAT(JL))*PVLOW(JL) |
---|
1637 | ZTAV(JL,KLEV+1)= GKLIFT*ZRHO(JL,KLEV+1)*2.*ROMEGA* & |
---|
1638 | !C * (2*PVAROR(JL)+PMEA(JL))* & |
---|
1639 | & 2*PVAROR(JL)* & |
---|
1640 | & SIN(ZPI/180.*PLAT(JL))*PULOW(JL) |
---|
1641 | ELSE |
---|
1642 | ZTAU(JL,KLEV+1)=0.0 |
---|
1643 | ZTAV(JL,KLEV+1)=0.0 |
---|
1644 | ENDIF |
---|
1645 | 301 CONTINUE |
---|
1646 | |
---|
1647 | !C |
---|
1648 | !C* 4. COMPUTE LIFT PROFILE |
---|
1649 | !C* -------------------- |
---|
1650 | !C |
---|
1651 | |
---|
1652 | 400 CONTINUE |
---|
1653 | |
---|
1654 | DO 401 JK=1,KLEV |
---|
1655 | DO 401 JL=kidia,kfdia |
---|
1656 | IF(KTEST(JL).EQ.1) THEN |
---|
1657 | ZTAU(JL,JK)=ZTAU(JL,KLEV+1)*PAPHM1(JL,JK)/PAPHM1(JL,KLEV+1) |
---|
1658 | ZTAV(JL,JK)=ZTAV(JL,KLEV+1)*PAPHM1(JL,JK)/PAPHM1(JL,KLEV+1) |
---|
1659 | ELSE |
---|
1660 | ZTAU(JL,JK)=0.0 |
---|
1661 | ZTAV(JL,JK)=0.0 |
---|
1662 | ENDIF |
---|
1663 | 401 CONTINUE |
---|
1664 | !C |
---|
1665 | !C |
---|
1666 | !C* 5. COMPUTE TENDENCIES. |
---|
1667 | !C* ------------------- |
---|
1668 | IF(LIFTHIGH)THEN |
---|
1669 | !C |
---|
1670 | 500 CONTINUE |
---|
1671 | !C PRINT *,' DANS OROLIFT: 500' |
---|
1672 | !C |
---|
1673 | !C EXPLICIT SOLUTION AT ALL LEVELS |
---|
1674 | !C |
---|
1675 | DO 524 JK=1,klev |
---|
1676 | DO 523 JL=KIDIA,KFDIA |
---|
1677 | IF(KTEST(JL).EQ.1) THEN |
---|
1678 | ZDELP=PAPHM1(JL,JK+1)-PAPHM1(JL,JK) |
---|
1679 | ZDUDT(JL)=-RG*(ZTAU(JL,JK+1)-ZTAU(JL,JK))/ZDELP |
---|
1680 | ZDVDT(JL)=-RG*(ZTAV(JL,JK+1)-ZTAV(JL,JK))/ZDELP |
---|
1681 | ENDIF |
---|
1682 | 523 CONTINUE |
---|
1683 | 524 CONTINUE |
---|
1684 | !C |
---|
1685 | !C PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
1686 | !C |
---|
1687 | DO 530 JK=1,klev |
---|
1688 | DO 530 JL=KIDIA,KFDIA |
---|
1689 | IF(KTEST(JL).EQ.1) THEN |
---|
1690 | |
---|
1691 | ZSLOW=SQRT(PULOW(JL)**2+PVLOW(JL)**2) |
---|
1692 | ZSQUA=AMAX1(SQRT(PUM1(JL,JK)**2+PVM1(JL,JK)**2),GVSEC) |
---|
1693 | ZSCAV=-ZDUDT(JL)*PVM1(JL,JK)+ZDVDT(JL)*PUM1(JL,JK) |
---|
1694 | IF(ZSQUA.GT.GVSEC)THEN |
---|
1695 | PVOM(JL,JK)=-ZSCAV*PVM1(JL,JK)/ZSQUA**2 |
---|
1696 | PVOL(JL,JK)= ZSCAV*PUM1(JL,JK)/ZSQUA**2 |
---|
1697 | ELSE |
---|
1698 | PVOM(JL,JK)=0.0 |
---|
1699 | PVOL(JL,JK)=0.0 |
---|
1700 | ENDIF |
---|
1701 | ZSQUA=SQRT(PUM1(JL,JK)**2+PUM1(JL,JK)**2) |
---|
1702 | IF(ZSQUA.LT.ZSLOW)THEN |
---|
1703 | PVOM(JL,JK)=ZSQUA/ZSLOW*PVOM(JL,JK) |
---|
1704 | PVOL(JL,JK)=ZSQUA/ZSLOW*PVOL(JL,JK) |
---|
1705 | ENDIF |
---|
1706 | |
---|
1707 | ENDIF |
---|
1708 | 530 CONTINUE |
---|
1709 | !C |
---|
1710 | !C 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
1711 | !C ---------------------------------- |
---|
1712 | |
---|
1713 | ELSE |
---|
1714 | |
---|
1715 | DO 601 JL=KIDIA,KFDIA |
---|
1716 | IF(KTEST(JL).EQ.1) THEN |
---|
1717 | DO JK=KLEV,IKNUB(JL),-1 |
---|
1718 | ZBET=GKLIFT*2.*ROMEGA*SIN(ZPI/180.*PLAT(JL))*ztmst* & |
---|
1719 | & (PGEOM1(JL,IKNUB(JL)-1)-PGEOM1(JL, JK))/ & |
---|
1720 | & (PGEOM1(JL,IKNUB(JL)-1)-PGEOM1(JL,KLEV)) |
---|
1721 | ZDUDT(JL)=-PUM1(JL,JK)/ztmst/(1+ZBET**2) |
---|
1722 | ZDVDT(JL)=-PVM1(JL,JK)/ztmst/(1+ZBET**2) |
---|
1723 | PVOM(JL,JK)= ZBET**2*ZDUDT(JL) - ZBET *ZDVDT(JL) |
---|
1724 | PVOL(JL,JK)= ZBET *ZDUDT(JL) + ZBET**2*ZDVDT(JL) |
---|
1725 | ENDDO |
---|
1726 | ENDIF |
---|
1727 | 601 CONTINUE |
---|
1728 | |
---|
1729 | ENDIF |
---|
1730 | |
---|
1731 | RETURN |
---|
1732 | END SUBROUTINE OROLIFT |
---|
1733 | |
---|
1734 | |
---|
1735 | SUBROUTINE SUGWD(NLON,NLEV,paprs,pplay) |
---|
1736 | USE dimphy |
---|
1737 | USE mod_phys_lmdz_para |
---|
1738 | USE mod_grid_phy_lmdz |
---|
1739 | !c USE parallel |
---|
1740 | !C |
---|
1741 | !C**** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
1742 | !C |
---|
1743 | !C PURPOSE. |
---|
1744 | !C -------- |
---|
1745 | !C INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
1746 | !C GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
1747 | !C |
---|
1748 | !C** INTERFACE. |
---|
1749 | !C ---------- |
---|
1750 | !C CALL *SUGWD* FROM *SUPHEC* |
---|
1751 | !C ----- ------ |
---|
1752 | !C |
---|
1753 | !C EXPLICIT ARGUMENTS : |
---|
1754 | !C -------------------- |
---|
1755 | !C PSIG : VERTICAL COORDINATE TABLE |
---|
1756 | !C NLEV : NUMBER OF MODEL LEVELS |
---|
1757 | !C |
---|
1758 | !C IMPLICIT ARGUMENTS : |
---|
1759 | !C -------------------- |
---|
1760 | !C COMMON YOEGWD |
---|
1761 | !C |
---|
1762 | !C METHOD. |
---|
1763 | !C ------- |
---|
1764 | !C SEE DOCUMENTATION |
---|
1765 | !C |
---|
1766 | !C EXTERNALS. |
---|
1767 | !C ---------- |
---|
1768 | !C NONE |
---|
1769 | !C |
---|
1770 | !C REFERENCE. |
---|
1771 | !C ---------- |
---|
1772 | !C ECMWF Research Department documentation of the IFS |
---|
1773 | !C |
---|
1774 | !C AUTHOR. |
---|
1775 | !C ------- |
---|
1776 | !C MARTIN MILLER *ECMWF* |
---|
1777 | !C |
---|
1778 | !C MODIFICATIONS. |
---|
1779 | !C -------------- |
---|
1780 | !C ORIGINAL : 90-01-01 |
---|
1781 | !C ------------------------------------------------------------------ |
---|
1782 | implicit none |
---|
1783 | !C |
---|
1784 | !C ----------------------------------------------------------------- |
---|
1785 | #include "YOEGWD.h" |
---|
1786 | !C ---------------------------------------------------------------- |
---|
1787 | !C |
---|
1788 | integer nlon,nlev, jk |
---|
1789 | REAL paprs(nlon,nlev+1) |
---|
1790 | REAL pplay(nlon,nlev) |
---|
1791 | real zpr,zstra,zsigt,zpm1r |
---|
1792 | REAL :: pplay_glo(klon_glo,nlev) |
---|
1793 | REAL :: paprs_glo(klon_glo,nlev+1) |
---|
1794 | |
---|
1795 | !C |
---|
1796 | !C* 1. SET THE VALUES OF THE PARAMETERS |
---|
1797 | !C -------------------------------- |
---|
1798 | !C |
---|
1799 | 100 CONTINUE |
---|
1800 | !C |
---|
1801 | PRINT *,' DANS SUGWD NLEV=',NLEV |
---|
1802 | GHMAX=10000. |
---|
1803 | !C |
---|
1804 | ZPR=100000. |
---|
1805 | ZSTRA=0.1 |
---|
1806 | ZSIGT=0.94 |
---|
1807 | !cold ZPR=80000. |
---|
1808 | !cold ZSIGT=0.85 |
---|
1809 | !C |
---|
1810 | |
---|
1811 | CALL gather(pplay,pplay_glo) |
---|
1812 | CALL bcast(pplay_glo) |
---|
1813 | CALL gather(paprs,paprs_glo) |
---|
1814 | CALL bcast(paprs_glo) |
---|
1815 | |
---|
1816 | |
---|
1817 | DO 110 JK=1,NLEV |
---|
1818 | ZPM1R=pplay_glo((klon_glo/2)+1,jk)/paprs_glo((klon_glo/2)+1,1) |
---|
1819 | IF(ZPM1R.GE.ZSIGT)THEN |
---|
1820 | nktopg=JK |
---|
1821 | ENDIF |
---|
1822 | ZPM1R=pplay_glo((klon_glo/2)+1,jk)/paprs_glo((klon_glo/2)+1,1) |
---|
1823 | IF(ZPM1R.GE.ZSTRA)THEN |
---|
1824 | NSTRA=JK |
---|
1825 | ENDIF |
---|
1826 | 110 CONTINUE |
---|
1827 | |
---|
1828 | |
---|
1829 | !c |
---|
1830 | !c inversion car dans orodrag on compte les niveaux a l'envers |
---|
1831 | nktopg=nlev-nktopg+1 |
---|
1832 | nstra=nlev-nstra |
---|
1833 | print *,' DANS SUGWD nktopg=', nktopg |
---|
1834 | print *,' DANS SUGWD nstra=', nstra |
---|
1835 | !C |
---|
1836 | GSIGCR=0.80 |
---|
1837 | !C |
---|
1838 | GKDRAG=0.2 |
---|
1839 | GRAHILO=1. |
---|
1840 | GRCRIT=0.01 |
---|
1841 | GFRCRIT=1.0 |
---|
1842 | GKWAKE=0.50 |
---|
1843 | !C |
---|
1844 | GKLIFT=0.50 |
---|
1845 | GVCRIT =0.0 |
---|
1846 | !C |
---|
1847 | !C |
---|
1848 | !C ---------------------------------------------------------------- |
---|
1849 | !C |
---|
1850 | !C* 2. SET VALUES OF SECURITY PARAMETERS |
---|
1851 | !C --------------------------------- |
---|
1852 | !C |
---|
1853 | 200 CONTINUE |
---|
1854 | !C |
---|
1855 | GVSEC=0.10 |
---|
1856 | GSSEC=1.E-12 |
---|
1857 | !C |
---|
1858 | GTSEC=1.E-07 |
---|
1859 | !C |
---|
1860 | !C ---------------------------------------------------------------- |
---|
1861 | !C |
---|
1862 | RETURN |
---|
1863 | END SUBROUTINE SUGWD |
---|
1864 | |
---|
1865 | END MODULE orografi |
---|