1 | SUBROUTINE cv3p_mixing(nloc,ncum,nd,na,ntra,icb,nk,inb & |
---|
2 | & ,ph,t,rr,rs,u,v,tra,h,lv,qnk & |
---|
3 | & ,unk,vnk,hp,tv,tvp,ep,clw,sig & |
---|
4 | & ,ment,qent,hent,uent,vent,nent & |
---|
5 | & ,sigij,elij,supmax,ments,qents,traent) |
---|
6 | !*************************************************************** |
---|
7 | !* * |
---|
8 | !* CV3P_MIXING : compute mixed draught properties and, * |
---|
9 | !* within a scaling factor, mixed draught * |
---|
10 | !* mass fluxes. * |
---|
11 | !* written by : VTJ Philips,JY Grandpeix, 21/05/2003, 09.14.15* |
---|
12 | !* modified by : * |
---|
13 | !*************************************************************** |
---|
14 | !* |
---|
15 | implicit none |
---|
16 | !c |
---|
17 | #include "cvthermo.h" |
---|
18 | #include "cv3param.h" |
---|
19 | #include "YOMCST2.h" |
---|
20 | |
---|
21 | !c inputs: |
---|
22 | integer ncum, nd, na, ntra, nloc |
---|
23 | integer icb(nloc), inb(nloc), nk(nloc) |
---|
24 | real sig(nloc,nd) |
---|
25 | real qnk(nloc),unk(nloc),vnk(nloc) |
---|
26 | real ph(nloc,nd+1) |
---|
27 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd) |
---|
28 | real u(nloc,nd), v(nloc,nd) |
---|
29 | real tra(nloc,nd,ntra) ! input of convect3 |
---|
30 | real lv(nloc,na) |
---|
31 | real h(nloc,na) !liquid water static energy of environment |
---|
32 | real hp(nloc,na) !liquid water static energy of air shed from adiab. asc. |
---|
33 | real tv(nloc,na), tvp(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
34 | |
---|
35 | !c outputs: |
---|
36 | real ment(nloc,na,na), qent(nloc,na,na) |
---|
37 | real uent(nloc,na,na), vent(nloc,na,na) |
---|
38 | real sigij(nloc,na,na), elij(nloc,na,na) |
---|
39 | real supmax(nloc,na) ! Highest mixing fraction of mixed updraughts |
---|
40 | ! with the sign of (h-hp) |
---|
41 | real traent(nloc,nd,nd,ntra) |
---|
42 | real ments(nloc,nd,nd), qents(nloc,nd,nd) |
---|
43 | real hent(nloc,nd,nd) |
---|
44 | integer nent(nloc,nd) |
---|
45 | |
---|
46 | !c local variables: |
---|
47 | integer i, j, k, il, im, jm |
---|
48 | integer num1, num2 |
---|
49 | real rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
50 | real alt, delp, delm |
---|
51 | real Qmixmax(nloc), Rmixmax(nloc), SQmRmax(nloc) |
---|
52 | real Qmixmin(nloc), Rmixmin(nloc), SQmRmin(nloc) |
---|
53 | real signhpmh(nloc) |
---|
54 | real Sx(nloc), Scrit2 |
---|
55 | real smid(nloc), sjmin(nloc), sjmax(nloc) |
---|
56 | real Sbef(nloc), Sup(nloc), Smin(nloc) |
---|
57 | real asij(nloc), smax(nloc), scrit(nloc) |
---|
58 | real sij(nloc,nd,nd) |
---|
59 | real csum(nloc,nd) |
---|
60 | real awat |
---|
61 | logical lwork(nloc) |
---|
62 | !c |
---|
63 | REAL amxupcrit, df, ff |
---|
64 | INTEGER nstep |
---|
65 | !C |
---|
66 | !c -- Mixing probability distribution functions |
---|
67 | !c |
---|
68 | real Qcoef1,Qcoef2,QFF,QFFF,Qmix,Rmix,Qmix1,Rmix1,Qmix2,Rmix2,F |
---|
69 | Qcoef1(F) = tanh(F/gammas) |
---|
70 | Qcoef2(F) = ( tanh(F/gammas) + gammas * & |
---|
71 | & log(cosh((1.- F)/gammas)/cosh(F/gammas))) |
---|
72 | QFF(F) = Max(Min(F,1.),0.) |
---|
73 | QFFF(F) = Min(QFF(F),scut) |
---|
74 | Qmix1(F) = ( tanh((QFF(F) - Fmax)/gammas)+Qcoef1max )/ & |
---|
75 | & Qcoef2max |
---|
76 | Rmix1(F) = ( gammas*log(cosh((QFF(F)-Fmax)/gammas)) & |
---|
77 | & +QFF(F)*Qcoef1max ) / Qcoef2max |
---|
78 | Qmix2(F) = -Log(1.-QFFF(F))/scut |
---|
79 | Rmix2(F) = (QFFF(F)+(1.-QFF(F))*Log(1.-QFFF(F)))/scut |
---|
80 | Qmix(F) = qqa1*Qmix1(F) + qqa2*Qmix2(F) |
---|
81 | Rmix(F) = qqa1*Rmix1(F) + qqa2*Rmix2(F) |
---|
82 | !C |
---|
83 | INTEGER, SAVE :: ifrst |
---|
84 | DATA ifrst/0/ |
---|
85 | !$OMP THREADPRIVATE(ifrst) |
---|
86 | !C |
---|
87 | |
---|
88 | !c===================================================================== |
---|
89 | !c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
90 | !c===================================================================== |
---|
91 | !c |
---|
92 | !c -- Initialize mixing PDF coefficients |
---|
93 | IF (ifrst .EQ. 0) THEN |
---|
94 | ifrst = 1 |
---|
95 | Qcoef1max = Qcoef1(Fmax) |
---|
96 | Qcoef2max = Qcoef2(Fmax) |
---|
97 | !c |
---|
98 | ENDIF |
---|
99 | !c |
---|
100 | |
---|
101 | !c ori do 360 i=1,ncum*nlp |
---|
102 | do 361 j=1,nl |
---|
103 | do 360 i=1,ncum |
---|
104 | nent(i,j)=0 |
---|
105 | !c in convect3, m is computed in cv3_closure |
---|
106 | !c ori m(i,1)=0.0 |
---|
107 | 360 continue |
---|
108 | 361 continue |
---|
109 | |
---|
110 | !c ori do 400 k=1,nlp |
---|
111 | !c ori do 390 j=1,nlp |
---|
112 | do 400 j=1,nl |
---|
113 | do 390 k=1,nl |
---|
114 | do 385 i=1,ncum |
---|
115 | qent(i,k,j)=rr(i,j) |
---|
116 | uent(i,k,j)=u(i,j) |
---|
117 | vent(i,k,j)=v(i,j) |
---|
118 | elij(i,k,j)=0.0 |
---|
119 | hent(i,k,j)=0.0 |
---|
120 | !AC! ment(i,k,j)=0.0 |
---|
121 | !AC! sij(i,k,j)=0.0 |
---|
122 | 385 continue |
---|
123 | 390 continue |
---|
124 | 400 continue |
---|
125 | |
---|
126 | !AC! |
---|
127 | ment(1:ncum,1:nd,1:nd)=0.0 |
---|
128 | sij(1:ncum,1:nd,1:nd)=0.0 |
---|
129 | !AC! |
---|
130 | |
---|
131 | do k=1,ntra |
---|
132 | do j=1,nd ! instead nlp |
---|
133 | do i=1,nd ! instead nlp |
---|
134 | do il=1,ncum |
---|
135 | traent(il,i,j,k)=tra(il,j,k) |
---|
136 | enddo |
---|
137 | enddo |
---|
138 | enddo |
---|
139 | enddo |
---|
140 | |
---|
141 | !c===================================================================== |
---|
142 | !c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
143 | !c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
144 | !c --- FRACTION (sij) |
---|
145 | !c===================================================================== |
---|
146 | |
---|
147 | do 750 i=minorig+1, nl |
---|
148 | |
---|
149 | do 710 j=minorig,nl |
---|
150 | do 700 il=1,ncum |
---|
151 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. & |
---|
152 | & (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
153 | |
---|
154 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
155 | bf2=1.+lv(il,j)*lv(il,j)*rs(il,j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
156 | anum=h(il,j)-hp(il,i)+(cpv-cpd)*t(il,j)*(rti-rr(il,j)) |
---|
157 | denom=h(il,i)-hp(il,i)+(cpd-cpv)*(rr(il,i)-rti)*t(il,j) |
---|
158 | dei=denom |
---|
159 | if(abs(dei).lt.0.01)dei=0.01 |
---|
160 | sij(il,i,j)=anum/dei |
---|
161 | sij(il,i,i)=1.0 |
---|
162 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
163 | altem=altem/bf2 |
---|
164 | cwat=clw(il,j)*(1.-ep(il,j)) |
---|
165 | stemp=sij(il,i,j) |
---|
166 | if((stemp.lt.0.0.or.stemp.gt.1.0.or.altem.gt.cwat) & |
---|
167 | & .and.j.gt.i)then |
---|
168 | anum=anum-lv(il,j)*(rti-rs(il,j)-cwat*bf2) |
---|
169 | denom=denom+lv(il,j)*(rr(il,i)-rti) |
---|
170 | if(abs(denom).lt.0.01)denom=0.01 |
---|
171 | sij(il,i,j)=anum/denom |
---|
172 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
173 | altem=altem-(bf2-1.)*cwat |
---|
174 | end if |
---|
175 | if(sij(il,i,j).gt.0.0)then |
---|
176 | !ccc ment(il,i,j)=m(il,i) |
---|
177 | ment(il,i,j)=1. |
---|
178 | elij(il,i,j)=altem |
---|
179 | elij(il,i,j)=amax1(0.0,elij(il,i,j)) |
---|
180 | nent(il,i)=nent(il,i)+1 |
---|
181 | endif |
---|
182 | |
---|
183 | sij(il,i,j)=amax1(0.0,sij(il,i,j)) |
---|
184 | sij(il,i,j)=amin1(1.0,sij(il,i,j)) |
---|
185 | endif ! new |
---|
186 | 700 continue |
---|
187 | 710 continue |
---|
188 | |
---|
189 | !c |
---|
190 | !c *** if no air can entrain at level i assume that updraft detrains *** |
---|
191 | !c *** at that level and calculate detrained air flux and properties *** |
---|
192 | !c |
---|
193 | |
---|
194 | !c@ do 170 i=icb(il),inb(il) |
---|
195 | |
---|
196 | do 740 il=1,ncum |
---|
197 | if ((i.ge.icb(il)).and.(i.le.inb(il)) & |
---|
198 | & .and.(nent(il,i).eq.0)) then |
---|
199 | !c@ if(nent(il,i).eq.0)then |
---|
200 | !ccc ment(il,i,i)=m(il,i) |
---|
201 | ment(il,i,i)=1. |
---|
202 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
203 | uent(il,i,i)=unk(il) |
---|
204 | vent(il,i,i)=vnk(il) |
---|
205 | elij(il,i,i)=clw(il,i)*(1.-ep(il,i)) |
---|
206 | sij(il,i,i)=0.0 |
---|
207 | end if |
---|
208 | 740 continue |
---|
209 | 750 continue |
---|
210 | |
---|
211 | do j=1,ntra |
---|
212 | do i=minorig+1,nl |
---|
213 | do il=1,ncum |
---|
214 | if (i.ge.icb(il) .and. i.le.inb(il) & |
---|
215 | & .and. nent(il,i).eq.0) then |
---|
216 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
217 | endif |
---|
218 | enddo |
---|
219 | enddo |
---|
220 | enddo |
---|
221 | |
---|
222 | do 100 j=minorig,nl |
---|
223 | do 101 i=minorig,nl |
---|
224 | do 102 il=1,ncum |
---|
225 | if ((j.ge.(icb(il)-1)).and.(j.le.inb(il)) & |
---|
226 | & .and.(i.ge.icb(il)).and.(i.le.inb(il)))then |
---|
227 | sigij(il,i,j)=sij(il,i,j) |
---|
228 | endif |
---|
229 | 102 continue |
---|
230 | 101 continue |
---|
231 | 100 continue |
---|
232 | !c@ enddo |
---|
233 | |
---|
234 | !c@170 continue |
---|
235 | |
---|
236 | !c===================================================================== |
---|
237 | !c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
238 | !c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
239 | !c===================================================================== |
---|
240 | |
---|
241 | call zilch(csum,nloc*nd) |
---|
242 | |
---|
243 | do il=1,ncum |
---|
244 | lwork(il) = .FALSE. |
---|
245 | enddo |
---|
246 | |
---|
247 | !c--------------------------------------------------------------- |
---|
248 | DO 789 i=minorig+1,nl !Loop on origin level "i" |
---|
249 | !c--------------------------------------------------------------- |
---|
250 | |
---|
251 | num1=0 |
---|
252 | do il=1,ncum |
---|
253 | if ( i.ge.icb(il) .and. i.le.inb(il) ) num1=num1+1 |
---|
254 | enddo |
---|
255 | if (num1.le.0) goto 789 |
---|
256 | |
---|
257 | !c |
---|
258 | !cjyg1 Find maximum of SIJ for J>I, if any. |
---|
259 | !c |
---|
260 | Sx(:) = 0. |
---|
261 | !c |
---|
262 | DO il = 1,ncum |
---|
263 | IF ( i.ge.icb(il) .and. i.le.inb(il) ) THEN |
---|
264 | Signhpmh(il) = sign(1.,hp(il,i)-h(il,i)) |
---|
265 | Sbef(il) = max(0.,signhpmh(il)) |
---|
266 | ENDIF |
---|
267 | ENDDO |
---|
268 | |
---|
269 | DO j = i+1,nl |
---|
270 | DO il = 1,ncum |
---|
271 | IF ( i.ge.icb(il) .and. i.le.inb(il) & |
---|
272 | & .and. j.le.inb(il) ) THEN |
---|
273 | IF (Sbef(il) .LT. Sij(il,i,j)) THEN |
---|
274 | Sx(il) = max(Sij(il,i,j),Sx(il)) |
---|
275 | ENDIF |
---|
276 | Sbef(il) = Sij(il,i,j) |
---|
277 | ENDIF |
---|
278 | ENDDO |
---|
279 | ENDDO |
---|
280 | !c |
---|
281 | |
---|
282 | do 781 il=1,ncum |
---|
283 | if ( i.ge.icb(il) .and. i.le.inb(il) ) then |
---|
284 | lwork(il)=(nent(il,i).ne.0) |
---|
285 | qp=qnk(il)-ep(il,i)*clw(il,i) |
---|
286 | anum=h(il,i)-hp(il,i)-lv(il,i)*(qp-rs(il,i)) & |
---|
287 | & +(cpv-cpd)*t(il,i)*(qp-rr(il,i)) |
---|
288 | denom=h(il,i)-hp(il,i)+lv(il,i)*(rr(il,i)-qp) & |
---|
289 | & +(cpd-cpv)*t(il,i)*(rr(il,i)-qp) |
---|
290 | if(abs(denom).lt.0.01)denom=0.01 |
---|
291 | scrit(il)=min(anum/denom,1.) |
---|
292 | alt=qp-rs(il,i)+scrit(il)*(rr(il,i)-qp) |
---|
293 | !c |
---|
294 | !cjyg1 Find new critical value Scrit2 |
---|
295 | !c such that : Sij > Scrit2 => mixed draught will detrain at J<I |
---|
296 | !c Sij < Scrit2 => mixed draught will detrain at J>I |
---|
297 | !c |
---|
298 | Scrit2 = min(Scrit(il),Sx(il))*max(0.,-signhpmh(il)) & |
---|
299 | & +Scrit(il)*max(0.,signhpmh(il)) |
---|
300 | !c |
---|
301 | Scrit(il) = Scrit2 |
---|
302 | !c |
---|
303 | !cjyg Correction pour la nouvelle logique; la correction pour ALT |
---|
304 | !c est un peu au hazard |
---|
305 | if(scrit(il).le.0.0)scrit(il)=0.0 |
---|
306 | if(alt.le.0.0) scrit(il)=1.0 |
---|
307 | !C |
---|
308 | smax(il)=0.0 |
---|
309 | asij(il)=0.0 |
---|
310 | Sup(il)=0. ! upper S-value reached by descending draughts |
---|
311 | endif |
---|
312 | 781 continue |
---|
313 | |
---|
314 | !c--------------------------------------------------------------- |
---|
315 | do 175 j=minorig,nl !Loop on destination level "j" |
---|
316 | !c--------------------------------------------------------------- |
---|
317 | |
---|
318 | num2=0 |
---|
319 | do il=1,ncum |
---|
320 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. & |
---|
321 | & j.ge.(icb(il)-1) .and. j.le.inb(il) & |
---|
322 | & .and. lwork(il) ) num2=num2+1 |
---|
323 | enddo |
---|
324 | if (num2.le.0) goto 175 |
---|
325 | |
---|
326 | !c ----------------------------------------------- |
---|
327 | IF (j .GT. i) THEN |
---|
328 | !c ----------------------------------------------- |
---|
329 | do 782 il=1,ncum |
---|
330 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. & |
---|
331 | & j.ge.(icb(il)-1) .and. j.le.inb(il) & |
---|
332 | & .and. lwork(il) ) then |
---|
333 | if(sij(il,i,j).gt.0.0)then |
---|
334 | Smid(il)=min(Sij(il,i,j),Scrit(il)) |
---|
335 | Sjmax(il)=Smid(il) |
---|
336 | Sjmin(il)=Smid(il) |
---|
337 | IF (Smid(il) .LT. Smin(il) .AND. & |
---|
338 | & Sij(il,i,j+1) .LT. Smid(il)) THEN |
---|
339 | Smin(il)=Smid(il) |
---|
340 | Sjmax(il)=min( (Sij(il,i,j+1)+Sij(il,i,j))/2. , & |
---|
341 | & Sij(il,i,j) , & |
---|
342 | & Scrit(il) ) |
---|
343 | Sjmin(il)=max( (Sbef(il)+Sij(il,i,j))/2. , & |
---|
344 | & Sij(il,i,j) ) |
---|
345 | Sjmin(il)=min(Sjmin(il),Scrit(il)) |
---|
346 | Sbef(il) = Sij(il,i,j) |
---|
347 | ENDIF |
---|
348 | endif |
---|
349 | endif |
---|
350 | 782 continue |
---|
351 | !c ----------------------------------------------- |
---|
352 | ELSE IF (j .EQ. i) THEN |
---|
353 | !c ----------------------------------------------- |
---|
354 | do 783 il=1,ncum |
---|
355 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. & |
---|
356 | & j.ge.(icb(il)-1) .and. j.le.inb(il) & |
---|
357 | & .and. lwork(il) ) then |
---|
358 | if(sij(il,i,j).gt.0.0)then |
---|
359 | Smid(il) = 1. |
---|
360 | Sjmin(il) = max((Sij(il,i,j-1)+Smid(il))/2.,Scrit(il)) & |
---|
361 | & *max(0.,-signhpmh(il)) & |
---|
362 | & +min((Sij(il,i,j+1)+Smid(il))/2.,Scrit(il)) & |
---|
363 | & *max(0., signhpmh(il)) |
---|
364 | Sjmin(il) = max(Sjmin(il),Sup(il)) |
---|
365 | Sjmax(il) = 1. |
---|
366 | !c |
---|
367 | !c- preparation des variables Scrit, Smin et Sbef pour la partie j>i |
---|
368 | Scrit(il) = min(Sjmin(il),Sjmax(il),Scrit(il)) |
---|
369 | |
---|
370 | Smin(il) = 1. |
---|
371 | Sbef(il) = max(0.,signhpmh(il)) |
---|
372 | Supmax(il,i) = sign(Scrit(il),-signhpmh(il)) |
---|
373 | endif |
---|
374 | endif |
---|
375 | 783 continue |
---|
376 | !c ----------------------------------------------- |
---|
377 | ELSE IF ( j .LT. i) THEN |
---|
378 | !c ----------------------------------------------- |
---|
379 | do 784 il=1,ncum |
---|
380 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. & |
---|
381 | & j.ge.(icb(il)-1) .and. j.le.inb(il) & |
---|
382 | & .and. lwork(il) ) then |
---|
383 | if(sij(il,i,j).gt.0.0)then |
---|
384 | Smid(il)=max(Sij(il,i,j),Scrit(il)) |
---|
385 | Sjmax(il) = Smid(il) |
---|
386 | Sjmin(il) = Smid(il) |
---|
387 | IF (Smid(il) .GT. Smax(il) .AND. & |
---|
388 | & Sij(il,i,j+1) .GT. Smid(il)) THEN |
---|
389 | Smax(il) = Smid(il) |
---|
390 | Sjmax(il) = max( (Sij(il,i,j+1)+Sij(il,i,j))/2. , & |
---|
391 | & Sij(il,i,j) ) |
---|
392 | Sjmax(il) = max(Sjmax(il),Scrit(il)) |
---|
393 | Sjmin(il) = min( (Sbef(il)+Sij(il,i,j))/2. , & |
---|
394 | & Sij(il,i,j) ) |
---|
395 | Sjmin(il) = max(Sjmin(il),Scrit(il)) |
---|
396 | Sbef(il) = Sij(il,i,j) |
---|
397 | ENDIF |
---|
398 | IF (abs(Sjmin(il)-Sjmax(il)) .GT. 1.e-10) Sup(il)= & |
---|
399 | & max(Sjmin(il),Sjmax(il),Sup(il)) |
---|
400 | endif |
---|
401 | endif |
---|
402 | 784 continue |
---|
403 | !c ----------------------------------------------- |
---|
404 | END IF |
---|
405 | !c ----------------------------------------------- |
---|
406 | !c |
---|
407 | !c |
---|
408 | do il=1,ncum |
---|
409 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. & |
---|
410 | & j.ge.(icb(il)-1) .and. j.le.inb(il) & |
---|
411 | & .and. lwork(il) ) then |
---|
412 | if(sij(il,i,j).gt.0.0)then |
---|
413 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
414 | Qmixmax(il)=Qmix(Sjmax(il)) |
---|
415 | Qmixmin(il)=Qmix(Sjmin(il)) |
---|
416 | Rmixmax(il)=Rmix(Sjmax(il)) |
---|
417 | Rmixmin(il)=Rmix(Sjmin(il)) |
---|
418 | SQmRmax(il)= Sjmax(il)*Qmix(Sjmax(il))-Rmix(Sjmax(il)) |
---|
419 | SQmRmin(il)= Sjmin(il)*Qmix(Sjmin(il))-Rmix(Sjmin(il)) |
---|
420 | !c |
---|
421 | Ment(il,i,j) = abs(Qmixmax(il)-Qmixmin(il))*Ment(il,i,j) |
---|
422 | !c |
---|
423 | !c Sigij(i,j) is the 'true' mixing fraction of mixture Ment(i,j) |
---|
424 | IF (abs(Qmixmax(il)-Qmixmin(il)) .GT. 1.e-10) THEN |
---|
425 | Sigij(il,i,j) = & |
---|
426 | & (SQmRmax(il)-SQmRmin(il))/(Qmixmax(il)-Qmixmin(il)) |
---|
427 | ELSE |
---|
428 | Sigij(il,i,j) = 0. |
---|
429 | ENDIF |
---|
430 | !c |
---|
431 | !c -- Compute Qent, uent, vent according to the true mixing fraction |
---|
432 | Qent(il,i,j) = (1.-Sigij(il,i,j))*rti & |
---|
433 | & + Sigij(il,i,j)*rr(il,i) |
---|
434 | uent(il,i,j) = (1.-Sigij(il,i,j))*unk(il) & |
---|
435 | & + Sigij(il,i,j)*u(il,i) |
---|
436 | vent(il,i,j) = (1.-Sigij(il,i,j))*vnk(il) & |
---|
437 | & + Sigij(il,i,j)*v(il,i) |
---|
438 | !c |
---|
439 | !c-- Compute liquid water static energy of mixed draughts |
---|
440 | !c IF (j .GT. i) THEN |
---|
441 | !c awat=elij(il,i,j)-(1.-ep(il,j))*clw(il,j) |
---|
442 | !c awat=amax1(awat,0.0) |
---|
443 | !c ELSE |
---|
444 | !c awat = 0. |
---|
445 | !c ENDIF |
---|
446 | !c Hent(il,i,j) = (1.-Sigij(il,i,j))*HP(il,i) |
---|
447 | !c : + Sigij(il,i,j)*H(il,i) |
---|
448 | !c : + (LV(il,j)+(cpd-cpv)*t(il,j))*awat |
---|
449 | !IM 301008 beg |
---|
450 | Hent(il,i,j) = (1.-Sigij(il,i,j))*HP(il,i) & |
---|
451 | & + Sigij(il,i,j)*H(il,i) |
---|
452 | |
---|
453 | Elij(il,i,j) = Qent(il,i,j)-rs(il,j) |
---|
454 | Elij(il,i,j) = Elij(il,i,j) & |
---|
455 | & + ((h(il,j)-Hent(il,i,j))*rs(il,j)*LV(il,j) & |
---|
456 | & / ((cpd*(1.-Qent(il,i,j))+Qent(il,i,j)*cpv) & |
---|
457 | & * rrv*t(il,j)*t(il,j))) |
---|
458 | Elij(il,i,j) = Elij(il,i,j) & |
---|
459 | & / (1.+LV(il,j)*LV(il,j)*rs(il,j) & |
---|
460 | & / ((cpd*(1.-Qent(il,i,j))+Qent(il,i,j)*cpv) & |
---|
461 | & * rrv*t(il,j)*t(il,j))) |
---|
462 | |
---|
463 | Elij(il,i,j) = max(elij(il,i,j),0.) |
---|
464 | |
---|
465 | Elij(il,i,j) = min(elij(il,i,j),Qent(il,i,j)) |
---|
466 | |
---|
467 | IF (j .GT. i) THEN |
---|
468 | awat=elij(il,i,j)-(1.-ep(il,j))*clw(il,j) |
---|
469 | awat=amax1(awat,0.0) |
---|
470 | ELSE |
---|
471 | awat = 0. |
---|
472 | ENDIF |
---|
473 | |
---|
474 | !c print *,h(il,j)-hent(il,i,j),LV(il,j)*rs(il,j)/(cpd*rrv*t(il,j)* |
---|
475 | !c : t(il,j)) |
---|
476 | |
---|
477 | Hent(il,i,j) = Hent(il,i,j)+(LV(il,j)+(cpd-cpv)*t(il,j)) & |
---|
478 | & * awat |
---|
479 | !IM 301008 end |
---|
480 | !c |
---|
481 | !c print *,'mix : i,j,hent(il,i,j),sigij(il,i,j) ', |
---|
482 | !c : i,j,hent(il,i,j),sigij(il,i,j) |
---|
483 | !c |
---|
484 | !c -- ASij is the integral of P(F) over the relevant F interval |
---|
485 | ASij(il) = ASij(il) & |
---|
486 | & + abs(Qmixmax(il)*(1.-Sjmax(il))+Rmixmax(il) & |
---|
487 | & -Qmixmin(il)*(1.-Sjmin(il))-Rmixmin(il)) |
---|
488 | !c |
---|
489 | endif |
---|
490 | endif |
---|
491 | enddo |
---|
492 | do k=1,ntra |
---|
493 | do il=1,ncum |
---|
494 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. & |
---|
495 | & (j.ge.(icb(il)-1)).and.(j.le.inb(il)) & |
---|
496 | & .and. lwork(il) ) then |
---|
497 | if(sij(il,i,j).gt.0.0)then |
---|
498 | traent(il,i,j,k)=sigij(il,i,j)*tra(il,i,k) & |
---|
499 | & +(1.-sigij(il,i,j))*tra(il,nk(il),k) |
---|
500 | endif |
---|
501 | endif |
---|
502 | enddo |
---|
503 | enddo |
---|
504 | !c |
---|
505 | !c -- If I=J (detrainement and entrainement at the same level), then only the |
---|
506 | !c -- adiabatic ascent part of the mixture is considered |
---|
507 | IF (I .EQ. J) THEN |
---|
508 | do il=1,ncum |
---|
509 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. & |
---|
510 | & j.ge.(icb(il)-1) .and. j.le.inb(il) & |
---|
511 | & .and. lwork(il) ) then |
---|
512 | if(sij(il,i,j).gt.0.0)then |
---|
513 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
514 | !ccc Ment(il,i,i) = m(il,i)*abs(Qmixmax(il)*(1.-Sjmax(il)) |
---|
515 | Ment(il,i,i) = abs(Qmixmax(il)*(1.-Sjmax(il)) & |
---|
516 | & +Rmixmax(il) & |
---|
517 | & -Qmixmin(il)*(1.-Sjmin(il))-Rmixmin(il)) |
---|
518 | Qent(il,i,i) = rti |
---|
519 | uent(il,i,i) = unk(il) |
---|
520 | vent(il,i,i) = vnk(il) |
---|
521 | Hent(il,i,i) = hp(il,i) |
---|
522 | Elij(il,i,i) = clw(il,i)*(1.-ep(il,i)) |
---|
523 | Sigij(il,i,i) = 0. |
---|
524 | endif |
---|
525 | endif |
---|
526 | enddo |
---|
527 | do k=1,ntra |
---|
528 | do il=1,ncum |
---|
529 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. & |
---|
530 | & (j.ge.(icb(il)-1)).and.(j.le.inb(il)) & |
---|
531 | & .and. lwork(il) ) then |
---|
532 | if(sij(il,i,j).gt.0.0)then |
---|
533 | traent(il,i,i,k)=tra(il,nk(il),k) |
---|
534 | endif |
---|
535 | endif |
---|
536 | enddo |
---|
537 | enddo |
---|
538 | !c |
---|
539 | ENDIF |
---|
540 | !c |
---|
541 | 175 continue |
---|
542 | |
---|
543 | do il=1,ncum |
---|
544 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
545 | asij(il)=amax1(1.0e-16,asij(il)) |
---|
546 | asij(il)=1.0/asij(il) |
---|
547 | csum(il,i)=0.0 |
---|
548 | endif |
---|
549 | enddo |
---|
550 | |
---|
551 | do 180 j=minorig,nl |
---|
552 | do il=1,ncum |
---|
553 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) & |
---|
554 | & .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
555 | ment(il,i,j)=ment(il,i,j)*asij(il) |
---|
556 | endif |
---|
557 | enddo |
---|
558 | 180 continue |
---|
559 | |
---|
560 | do 197 j=minorig,nl |
---|
561 | do il=1,ncum |
---|
562 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) & |
---|
563 | & .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
564 | csum(il,i)=csum(il,i)+ment(il,i,j) |
---|
565 | endif |
---|
566 | enddo |
---|
567 | 197 continue |
---|
568 | |
---|
569 | do il=1,ncum |
---|
570 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) & |
---|
571 | & .and. csum(il,i).lt.1. ) then |
---|
572 | !ccc : .and. csum(il,i).lt.m(il,i) ) then |
---|
573 | nent(il,i)=0 |
---|
574 | !ccc ment(il,i,i)=m(il,i) |
---|
575 | ment(il,i,i)=1. |
---|
576 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
577 | uent(il,i,i)=unk(il) |
---|
578 | vent(il,i,i)=vnk(il) |
---|
579 | elij(il,i,i)=clw(il,i)*(1.-ep(il,i)) |
---|
580 | sij(il,i,i)=0.0 |
---|
581 | endif |
---|
582 | enddo ! il |
---|
583 | |
---|
584 | do j=1,ntra |
---|
585 | do il=1,ncum |
---|
586 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) & |
---|
587 | & .and. csum(il,i).lt.1. ) then |
---|
588 | !ccc : .and. csum(il,i).lt.m(il,i) ) then |
---|
589 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
590 | endif |
---|
591 | enddo |
---|
592 | enddo |
---|
593 | !c |
---|
594 | 789 continue |
---|
595 | !c |
---|
596 | return |
---|
597 | end |
---|
598 | |
---|