1 | !*********************************************************************** |
---|
2 | SUBROUTINE ADVE(NTSD,DT,DETA1,DETA2,PDTOP & |
---|
3 | & ,CURV,F,FAD,F4D,EM_LOC,EMT_LOC,EN,ENT,DX,DY & |
---|
4 | & ,HTM,HBM2,VTM,VBM2,LMH,LMV & |
---|
5 | & ,T,U,V,PDSLO,TOLD,UOLD,VOLD & |
---|
6 | & ,PETDT,UPSTRM & |
---|
7 | & ,FEW,FNS,FNE,FSE & |
---|
8 | & ,ADT,ADU,ADV & |
---|
9 | & ,N_IUP_H,N_IUP_V & |
---|
10 | & ,N_IUP_ADH,N_IUP_ADV & |
---|
11 | & ,IUP_H,IUP_V,IUP_ADH,IUP_ADV & |
---|
12 | & ,IHE,IHW,IVE,IVW,INDX3_WRK & |
---|
13 | & ,IDS,IDE,JDS,JDE,KDS,KDE & |
---|
14 | & ,IMS,IME,JMS,JME,KMS,KME & |
---|
15 | & ,ITS,ITE,JTS,JTE,KTS,KTE) |
---|
16 | !*********************************************************************** |
---|
17 | !$$$ SUBPROGRAM DOCUMENTATION BLOCK |
---|
18 | ! . . . |
---|
19 | ! SUBPROGRAM: ADVE HORIZONTAL AND VERTICAL ADVECTION |
---|
20 | ! PRGRMMR: JANJIC ORG: W/NP22 DATE: 93-10-28 |
---|
21 | ! |
---|
22 | ! ABSTRACT: |
---|
23 | ! ADVE CALCULATES THE CONTRIBUTION OF THE HORIZONTAL AND VERTICAL |
---|
24 | ! ADVECTION TO THE TENDENCIES OF TEMPERATURE AND WIND AND THEN |
---|
25 | ! UPDATES THOSE VARIABLES. |
---|
26 | ! THE JANJIC ADVECTION SCHEME FOR THE ARAKAWA E GRID IS USED |
---|
27 | ! FOR ALL VARIABLES INSIDE THE FIFTH ROW. AN UPSTREAM SCHEME |
---|
28 | ! IS USED ON ALL VARIABLES IN THE THIRD, FOURTH, AND FIFTH |
---|
29 | ! OUTERMOST ROWS. THE ADAMS-BASHFORTH TIME SCHEME IS USED. |
---|
30 | ! |
---|
31 | ! PROGRAM HISTORY LOG: |
---|
32 | ! 87-06-?? JANJIC - ORIGINATOR |
---|
33 | ! 95-03-25 BLACK - CONVERSION FROM 1-D TO 2-D IN HORIZONTAL |
---|
34 | ! 96-03-28 BLACK - ADDED EXTERNAL EDGE |
---|
35 | ! 98-10-30 BLACK - MODIFIED FOR DISTRIBUTED MEMORY |
---|
36 | ! 99-07- JANJIC - CONVERTED TO ADAMS-BASHFORTH SCHEME |
---|
37 | ! COMBINING HORIZONTAL AND VERTICAL ADVECTION |
---|
38 | ! 02-02-04 BLACK - ADDED VERTICAL CFL CHECK |
---|
39 | ! 02-02-05 BLACK - CONVERTED TO WRF FORMAT |
---|
40 | ! 02-08-29 MICHALAKES - CONDITIONAL COMPILATION OF MPI |
---|
41 | ! CONVERT TO GLOBAL INDEXING |
---|
42 | ! 02-09-06 WOLFE - MORE CONVERSION TO GLOBAL INDEXING |
---|
43 | ! 04-05-29 JANJIC,BLACK - CRANK-NICHOLSON VERTICAL ADVECTION |
---|
44 | ! |
---|
45 | ! USAGE: CALL ADVE FROM SUBROUTINE SOLVE_RUNSTREAM |
---|
46 | ! INPUT ARGUMENT LIST: |
---|
47 | ! |
---|
48 | ! OUTPUT ARGUMENT LIST: |
---|
49 | ! |
---|
50 | ! OUTPUT FILES: |
---|
51 | ! NONE |
---|
52 | ! |
---|
53 | ! SUBPROGRAMS CALLED: |
---|
54 | ! |
---|
55 | ! UNIQUE: NONE |
---|
56 | ! |
---|
57 | ! LIBRARY: NONE |
---|
58 | ! |
---|
59 | ! ATTRIBUTES: |
---|
60 | ! LANGUAGE: FORTRAN 90 |
---|
61 | ! MACHINE : IBM SP |
---|
62 | !$$$ |
---|
63 | !*********************************************************************** |
---|
64 | !----------------------------------------------------------------------- |
---|
65 | ! |
---|
66 | IMPLICIT NONE |
---|
67 | ! |
---|
68 | !----------------------------------------------------------------------- |
---|
69 | ! |
---|
70 | INTEGER,INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE & |
---|
71 | & ,IMS,IME,JMS,JME,KMS,KME & |
---|
72 | & ,ITS,ITE,JTS,JTE,KTS,KTE |
---|
73 | ! |
---|
74 | INTEGER,DIMENSION(JMS:JME),INTENT(IN) :: IHE,IHW,IVE,IVW |
---|
75 | INTEGER,DIMENSION(JMS:JME),INTENT(IN) :: N_IUP_H,N_IUP_V & |
---|
76 | & ,N_IUP_ADH,N_IUP_ADV |
---|
77 | INTEGER,DIMENSION(IMS:IME,JMS:JME),INTENT(IN) :: IUP_H,IUP_V & |
---|
78 | & ,IUP_ADH,IUP_ADV & |
---|
79 | & ,LMH,LMV |
---|
80 | ! |
---|
81 | !*** NMM_MAX_DIM is set in configure.wrf and must agree with |
---|
82 | !*** the value of dimspec q in the Registry/Registry |
---|
83 | ! |
---|
84 | INTEGER,DIMENSION(-3:3,NMM_MAX_DIM,0:6),INTENT(IN) :: INDX3_WRK |
---|
85 | ! |
---|
86 | INTEGER,INTENT(IN) :: NTSD |
---|
87 | ! |
---|
88 | REAL,INTENT(IN) :: DT,DY,EN,ENT,F4D,PDTOP |
---|
89 | ! |
---|
90 | REAL,DIMENSION(NMM_MAX_DIM),INTENT(IN) :: EM_LOC,EMT_LOC |
---|
91 | ! |
---|
92 | REAL,DIMENSION(KMS:KME),INTENT(IN) :: DETA1,DETA2 |
---|
93 | ! |
---|
94 | REAL,DIMENSION(IMS:IME,JMS:JME),INTENT(IN) :: CURV,DX,F,FAD,HBM2 & |
---|
95 | & ,PDSLO,VBM2 |
---|
96 | ! |
---|
97 | REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(IN) :: PETDT |
---|
98 | ! |
---|
99 | REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(IN) :: HTM,VTM |
---|
100 | ! |
---|
101 | REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(INOUT) :: T,TOLD & |
---|
102 | & ,U,UOLD & |
---|
103 | & ,V,VOLD |
---|
104 | ! |
---|
105 | REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(OUT) :: ADT,ADU & |
---|
106 | & ,ADV & |
---|
107 | & ,FEW,FNE & |
---|
108 | & ,FNS,FSE |
---|
109 | ! |
---|
110 | !----------------------------------------------------------------------- |
---|
111 | ! |
---|
112 | !*** LOCAL VARIABLES |
---|
113 | ! |
---|
114 | LOGICAL :: UPSTRM |
---|
115 | ! |
---|
116 | INTEGER :: I,IEND,IFP,IFQ,II,IPQ,ISP,ISQ,ISTART & |
---|
117 | & ,IUP_ADH_J,IVH,IVL & |
---|
118 | & ,J,J1,JA,JAK,JEND,JGLOBAL,JJ,JKNT,JP2,JSTART & |
---|
119 | & ,K,KNTI_ADH,KSTART,KSTOP,LMHK,LMVK & |
---|
120 | & ,N,N_IUPH_J,N_IUPADH_J,N_IUPADV_J |
---|
121 | ! |
---|
122 | INTEGER :: MY_IS_GLB,MY_IE_GLB,MY_JS_GLB,MY_JE_GLB |
---|
123 | ! |
---|
124 | INTEGER :: J0_P3,J0_P2,J0_P1,J0_00,J0_M1,J1_P2,J1_P1,J1_00,J1_M1 & |
---|
125 | & ,J2_P1,J2_00,J2_M1,J3_P2,J3_P1,J3_00 & |
---|
126 | & ,J4_P1,J4_00,J4_M1,J5_00,J5_M1,J6_P1,J6_00 |
---|
127 | ! |
---|
128 | INTEGER,DIMENSION(ITS-5:ITE+5,KTS:KTE) :: ISPA,ISQA |
---|
129 | ! |
---|
130 | REAL :: ARRAY3_X,CFT,CFU,CFV,CMT,CMU,CMV & |
---|
131 | & ,DPDE_P3,DTE,DTQ & |
---|
132 | & ,F0,F1,F2,F3,FEW_00,FEW_P1,FNE_X,FNS_P1,FNS_X,FPP,FSE_X & |
---|
133 | & ,HM,PDOP,PDOPU,PDOPV,PP & |
---|
134 | & ,PVVLO,PVVLOU,PVVLOV,PVVUP,PVVUPU,PVVUPV & |
---|
135 | & ,QP,RDP,RDPD,RDPDX,RDPDY,RDPU,RDPV & |
---|
136 | & ,T_UP,TEMPA,TEMPB,TTA,TTB,U_UP,UDY_P1,UDY_X & |
---|
137 | & ,VXD_X,VDX_P2,V_UP,VDX_X,VM,VTA,VUA,VVA & |
---|
138 | & ,VVLO,VVLOU,VVLOV,VVUP,VVUPU,VVUPV |
---|
139 | ! |
---|
140 | REAL,DIMENSION(ITS-5:ITE+5,KTS:KTE) :: ARRAY0,ARRAY1 & |
---|
141 | & ,ARRAY2,ARRAY3 & |
---|
142 | & ,VAD_TEND_T,VAD_TEND_U & |
---|
143 | & ,VAD_TEND_V |
---|
144 | ! |
---|
145 | REAL,DIMENSION(ITS-5:ITE+5,KTS:KTE) :: TEW,UEW,VEW |
---|
146 | ! |
---|
147 | REAL,DIMENSION(KTS:KTE) :: CRT,CRU,CRV,DETA1_PDTOP & |
---|
148 | & ,RCMT,RCMU,RCMV,RSTT,RSTU,RSTV,TN,UN & |
---|
149 | & ,VAD_TNDX_T,VAD_TNDX_U,VAD_TNDX_V,VN |
---|
150 | ! |
---|
151 | REAL,DIMENSION(ITS-5:ITE+5,-1:1) :: PETDTK |
---|
152 | ! |
---|
153 | REAL,DIMENSION(ITS-5:ITE+5) :: TDN,UDN,VDN |
---|
154 | ! |
---|
155 | !----------------------------------------------------------------------- |
---|
156 | ! |
---|
157 | !*** TYPE 0 WORKING ARRAY |
---|
158 | ! |
---|
159 | REAL,DIMENSION(ITS-5:ITE+5,KMS:KME,-3:3) :: DPDE |
---|
160 | ! |
---|
161 | !*** TYPE 1 WORKING ARRAY |
---|
162 | ! |
---|
163 | REAL,DIMENSION(ITS-5:ITE+5,KMS:KME,-2:2) :: TST,UDY,UST,VDX,VST |
---|
164 | ! |
---|
165 | !*** TYPE 4 WORKING ARRAY |
---|
166 | ! |
---|
167 | REAL,DIMENSION(ITS-5:ITE+5,KMS:KME,-1:1) :: TNS,UNS,VNS |
---|
168 | ! |
---|
169 | !*** TYPE 5 WORKING ARRAY |
---|
170 | ! |
---|
171 | REAL,DIMENSION(ITS-5:ITE+5,KMS:KME,-1:0) :: TNE,UNE,VNE |
---|
172 | ! |
---|
173 | !*** TYPE 6 WORKING ARRAY |
---|
174 | ! |
---|
175 | REAL,DIMENSION(ITS-5:ITE+5,KMS:KME, 0:1) :: TSE,USE,VSE |
---|
176 | !----------------------------------------------------------------------- |
---|
177 | !----------------------------------------------------------------------- |
---|
178 | !*********************************************************************** |
---|
179 | ! |
---|
180 | ! DPDE ----- 3 |
---|
181 | ! | J Increasing |
---|
182 | ! | |
---|
183 | ! | ^ |
---|
184 | ! FNS ----- 2 | |
---|
185 | ! | | |
---|
186 | ! | | |
---|
187 | ! | | |
---|
188 | ! VNS ----- 1 | |
---|
189 | ! | |
---|
190 | ! | |
---|
191 | ! | |
---|
192 | ! ADV ----- 0 ------> Current J |
---|
193 | ! | |
---|
194 | ! | |
---|
195 | ! | |
---|
196 | ! VNS ----- -1 |
---|
197 | ! | |
---|
198 | ! | |
---|
199 | ! | |
---|
200 | ! FNS ----- -2 |
---|
201 | ! | |
---|
202 | ! | |
---|
203 | ! | |
---|
204 | ! DPDE ----- -3 |
---|
205 | ! |
---|
206 | !*********************************************************************** |
---|
207 | !----------------------------------------------------------------------- |
---|
208 | !----------------------------------------------------------------------- |
---|
209 | ! |
---|
210 | ISTART=MYIS_P2 |
---|
211 | IEND=MYIE_P2 |
---|
212 | IF(ITE==IDE)IEND=MYIE-3 |
---|
213 | ! |
---|
214 | DTQ=DT*0.25 |
---|
215 | DTE=DT*(0.5*0.25) |
---|
216 | !*** |
---|
217 | !*** INITIALIZE SOME WORKING ARRAYS TO ZERO |
---|
218 | !*** |
---|
219 | DO K=KTS,KTE |
---|
220 | DO I=ITS-5,ITE+5 |
---|
221 | TEW(I,K)=0. |
---|
222 | UEW(I,K)=0. |
---|
223 | VEW(I,K)=0. |
---|
224 | ENDDO |
---|
225 | ENDDO |
---|
226 | ! |
---|
227 | !*** TYPE 0 |
---|
228 | ! |
---|
229 | DO N=-3,3 |
---|
230 | DO K=KTS,KTE |
---|
231 | DO I=ITS-5,ITE+5 |
---|
232 | DPDE(I,K,N)=0. |
---|
233 | ENDDO |
---|
234 | ENDDO |
---|
235 | ENDDO |
---|
236 | ! |
---|
237 | !*** TYPE 1 |
---|
238 | ! |
---|
239 | DO N=-2,2 |
---|
240 | DO K=KTS,KTE |
---|
241 | DO I=ITS-5,ITE+5 |
---|
242 | TST(I,K,N)=0. |
---|
243 | UST(I,K,N)=0. |
---|
244 | VST(I,K,N)=0. |
---|
245 | UDY(I,K,N)=0. |
---|
246 | VDX(I,K,N)=0. |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | ENDDO |
---|
250 | ! |
---|
251 | !*** TYPES 5 AND 6 |
---|
252 | ! |
---|
253 | DO N=-1,0 |
---|
254 | DO K=KTS,KTE |
---|
255 | DO I=ITS-5,ITE+5 |
---|
256 | TNE(I,K,N)=0. |
---|
257 | TSE(I,K,N+1)=0. |
---|
258 | UNE(I,K,N)=0. |
---|
259 | USE(I,K,N+1)=0. |
---|
260 | VNE(I,K,N)=0. |
---|
261 | VSE(I,K,N+1)=0. |
---|
262 | ENDDO |
---|
263 | ENDDO |
---|
264 | ENDDO |
---|
265 | !----------------------------------------------------------------------- |
---|
266 | !*** |
---|
267 | !*** PRECOMPUTE DETA1 TIMES PDTOP. |
---|
268 | !*** |
---|
269 | !----------------------------------------------------------------------- |
---|
270 | ! |
---|
271 | DO K=KTS,KTE |
---|
272 | DETA1_PDTOP(K)=DETA1(K)*PDTOP |
---|
273 | ENDDO |
---|
274 | !----------------------------------------------------------------------- |
---|
275 | !*** |
---|
276 | !*** WE NEED THE STARTING AND ENDING J FOR THIS TASK'S INTEGRATION |
---|
277 | !*** |
---|
278 | JSTART=MYJS2 |
---|
279 | JEND=MYJE2 |
---|
280 | ! |
---|
281 | ! |
---|
282 | !----------------------------------------------------------------------- |
---|
283 | ! |
---|
284 | !*** START THE HORIZONTAL ADVECTION IN THE INITIAL SOUTHERN SLABS. |
---|
285 | ! |
---|
286 | !----------------------------------------------------------------------- |
---|
287 | ! |
---|
288 | DO J=-2,1 |
---|
289 | JJ=JSTART+J |
---|
290 | DO K=KTS,KTE |
---|
291 | DO I=MYIS_P4,MYIE_P4 |
---|
292 | TST(I,K,J)=T(I,K,JJ)*FFC+TOLD(I,K,JJ)*FBC |
---|
293 | UST(I,K,J)=U(I,K,JJ)*FFC+UOLD(I,K,JJ)*FBC |
---|
294 | VST(I,K,J)=V(I,K,JJ)*FFC+VOLD(I,K,JJ)*FBC |
---|
295 | ENDDO |
---|
296 | ENDDO |
---|
297 | ENDDO |
---|
298 | ! |
---|
299 | !----------------------------------------------------------------------- |
---|
300 | !*** MARCH NORTHWARD THROUGH THE SOUTHERNMOST SLABS TO BEGIN |
---|
301 | !*** FILLING THE MAIN WORKING ARRAYS WHICH ARE MULTI-DIMENSIONED |
---|
302 | !*** IN J BECAUSE THEY ARE DIFFERENCED OR AVERAGED IN J. |
---|
303 | !*** ONLY THE NORTHERNMOST OF EACH OF THE WORKING ARRAYS WILL BE |
---|
304 | !*** FILLED IN THE PRIMARY INTEGRATION SECTION. |
---|
305 | !----------------------------------------------------------------------- |
---|
306 | ! |
---|
307 | J1=-3 |
---|
308 | IF(JTS==JDS)J1=-2 ! Cannot go 3 south from J=2 for south tasks |
---|
309 | ! |
---|
310 | DO J=J1,2 |
---|
311 | JJ=JSTART+J |
---|
312 | ! |
---|
313 | DO K=KTS,KTE |
---|
314 | DO I=MYIS_P4,MYIE_P4 |
---|
315 | DPDE(I,K,J)=DETA1_PDTOP(K)+DETA2(K)*PDSLO(I,JJ) |
---|
316 | ENDDO |
---|
317 | ENDDO |
---|
318 | ! |
---|
319 | ENDDO |
---|
320 | ! |
---|
321 | !----------------------------------------------------------------------- |
---|
322 | DO J=-2,1 |
---|
323 | JJ=JSTART+J |
---|
324 | ! |
---|
325 | DO K=KTS,KTE |
---|
326 | DO I=MYIS_P4,MYIE_P4 |
---|
327 | UDY(I,K,J)=U(I,K,JJ)*DY |
---|
328 | VDX_X=V(I,K,JJ)*DX(I,JJ) |
---|
329 | FNS(I,K,JJ)=VDX_X*(DPDE(I,K,J-1)+DPDE(I,K,J+1)) |
---|
330 | VDX(I,K,J)=VDX_X |
---|
331 | ENDDO |
---|
332 | ENDDO |
---|
333 | ! |
---|
334 | ENDDO |
---|
335 | ! |
---|
336 | !----------------------------------------------------------------------- |
---|
337 | DO J=-2,0 |
---|
338 | JJ=JSTART+J |
---|
339 | ! |
---|
340 | DO K=KTS,KTE |
---|
341 | DO I=MYIS_P3,MYIE_P3 |
---|
342 | TEMPA=(UDY(I+IHE(JJ),K,J)+VDX(I+IHE(JJ),K,J)) & |
---|
343 | & +(UDY(I,K,J+1) +VDX(I,K,J+1)) |
---|
344 | FNE(I,K,JJ)=TEMPA*(DPDE(I,K,J)+DPDE(I+IHE(JJ),K,J+1)) |
---|
345 | ENDDO |
---|
346 | ENDDO |
---|
347 | ! |
---|
348 | ENDDO |
---|
349 | ! |
---|
350 | !----------------------------------------------------------------------- |
---|
351 | DO J=-1,1 |
---|
352 | JJ=JSTART+J |
---|
353 | ! |
---|
354 | DO K=KTS,KTE |
---|
355 | DO I=MYIS_P3,MYIE_P3 |
---|
356 | TEMPB=(UDY(I+IHE(JJ),K,J)-VDX(I+IHE(JJ),K,J)) & |
---|
357 | & +(UDY(I,K,J-1) -VDX(I,K,J-1)) |
---|
358 | FSE(I,K,JJ)=TEMPB*(DPDE(I,K,J)+DPDE(I+IHE(JJ),K,J-1)) |
---|
359 | ENDDO |
---|
360 | ENDDO |
---|
361 | ! |
---|
362 | ENDDO |
---|
363 | ! |
---|
364 | !----------------------------------------------------------------------- |
---|
365 | DO J=-1,0 |
---|
366 | JJ=JSTART+J |
---|
367 | ! |
---|
368 | DO K=KTS,KTE |
---|
369 | DO I=MYIS1_P3,MYIE1_P3 |
---|
370 | FNS_X=FNS(I,K,JJ) |
---|
371 | TNS(I,K,J)=FNS_X*(TST(I,K,J+1)-TST(I,K,J-1)) |
---|
372 | ! |
---|
373 | UDY_X=U(I,K,JJ)*DY |
---|
374 | FEW(I,K,JJ)=UDY_X*(DPDE(I+IVW(JJ),K,J)+DPDE(I+IVE(JJ),K,J)) |
---|
375 | ENDDO |
---|
376 | ENDDO |
---|
377 | ! |
---|
378 | DO K=KTS,KTE |
---|
379 | DO I=MYIS1_P4,MYIE1_P4 |
---|
380 | UNS(I,K,J)=(FNS(I+IHW(JJ),K,JJ)+FNS(I+IHE(JJ),K,JJ)) & |
---|
381 | & *(UST(I,K,J+1)-UST(I,K,J-1)) |
---|
382 | VNS(I,K,J)=(FNS(I,K,JJ-1)+FNS(I,K,JJ+1)) & |
---|
383 | & *(VST(I,K,J+1)-VST(I,K,J-1)) |
---|
384 | ENDDO |
---|
385 | ENDDO |
---|
386 | ! |
---|
387 | ENDDO |
---|
388 | ! |
---|
389 | !----------------------------------------------------------------------- |
---|
390 | JJ=JSTART-1 |
---|
391 | ! |
---|
392 | DO K=KTS,KTE |
---|
393 | DO I=MYIS1_P2,MYIE1_P2 |
---|
394 | FNE_X=FNE(I,K,JJ) |
---|
395 | TNE(I,K,-1)=FNE_X*(TST(I+IHE(JJ),K,0)-TST(I,K,-1)) |
---|
396 | ! |
---|
397 | FSE_X=FSE(I,K,JJ+1) |
---|
398 | TSE(I,K,0)=FSE_X*(TST(I+IHE(JJ+1),K,-1)-TST(I,K,0)) |
---|
399 | ! |
---|
400 | UNE(I,K,-1)=(FNE(I+IVW(JJ),K,JJ)+FNE(I+IVE(JJ),K,JJ)) & |
---|
401 | & *(UST(I+IVE(JJ),K,0)-UST(I,K,-1)) |
---|
402 | USE(I,K,0)=(FSE(I+IVW(JJ+1),K,JJ+1)+FSE(I+IVE(JJ+1),K,JJ+1)) & |
---|
403 | & *(UST(I+IVE(JJ+1),K,-1)-UST(I,K,0)) |
---|
404 | VNE(I,K,-1)=(FNE(I,K,JJ-1)+FNE(I,K,JJ+1)) & |
---|
405 | & *(VST(I+IVE(JJ),K,0)-VST(I,K,-1)) |
---|
406 | VSE(I,K,0)=(FSE(I,K,JJ)+FSE(I,K,JJ+2)) & |
---|
407 | & *(VST(I+IVE(JJ+1),K,-1)-VST(I,K,0)) |
---|
408 | ENDDO |
---|
409 | ENDDO |
---|
410 | ! |
---|
411 | JKNT=0 |
---|
412 | ! |
---|
413 | !----------------------------------------------------------------------- |
---|
414 | !----------------------------------------------------------------------- |
---|
415 | ! |
---|
416 | main_integration : DO J=JSTART,JEND |
---|
417 | ! |
---|
418 | !----------------------------------------------------------------------- |
---|
419 | !----------------------------------------------------------------------- |
---|
420 | !*** |
---|
421 | !*** SET THE 3RD INDEX IN THE WORKING ARRAYS (SEE SUBROUTINE INIT |
---|
422 | !*** AND PFDHT DIAGRAMS) |
---|
423 | !*** |
---|
424 | !*** J[TYPE]_NN WHERE "TYPE" IS THE WORKING ARRAY TYPE SEEN IN THE |
---|
425 | !*** LOCAL DECLARATION ABOVE (DEPENDENT UPON THE J EXTENT) AND |
---|
426 | !*** NN IS THE NUMBER OF ROWS NORTH OF THE CENTRAL ROW WHOSE J IS |
---|
427 | !*** THE CURRENT VALUE OF THE main_integration LOOP. |
---|
428 | !*** (P3 denotes +3, M1 denotes -1, etc.) |
---|
429 | !*** |
---|
430 | |
---|
431 | ! |
---|
432 | ! John and Tom both think this is all right, even for tiles, |
---|
433 | ! as long as the slab arrays being indexed by these things |
---|
434 | ! are locally defined. |
---|
435 | ! |
---|
436 | JKNT=JKNT+1 |
---|
437 | ! |
---|
438 | J0_P3=INDX3_WRK(3,JKNT,0) |
---|
439 | J0_P2=INDX3_WRK(2,JKNT,0) |
---|
440 | J0_P1=INDX3_WRK(1,JKNT,0) |
---|
441 | J0_00=INDX3_WRK(0,JKNT,0) |
---|
442 | J0_M1=INDX3_WRK(-1,JKNT,0) |
---|
443 | ! |
---|
444 | J1_P2=INDX3_WRK(2,JKNT,1) |
---|
445 | J1_P1=INDX3_WRK(1,JKNT,1) |
---|
446 | J1_00=INDX3_WRK(0,JKNT,1) |
---|
447 | J1_M1=INDX3_WRK(-1,JKNT,1) |
---|
448 | ! |
---|
449 | J2_P1=INDX3_WRK(1,JKNT,2) |
---|
450 | J2_00=INDX3_WRK(0,JKNT,2) |
---|
451 | J2_M1=INDX3_WRK(-1,JKNT,2) |
---|
452 | ! |
---|
453 | J3_P2=INDX3_WRK(2,JKNT,3) |
---|
454 | J3_P1=INDX3_WRK(1,JKNT,3) |
---|
455 | J3_00=INDX3_WRK(0,JKNT,3) |
---|
456 | ! |
---|
457 | J4_P1=INDX3_WRK(1,JKNT,4) |
---|
458 | J4_00=INDX3_WRK(0,JKNT,4) |
---|
459 | J4_M1=INDX3_WRK(-1,JKNT,4) |
---|
460 | ! |
---|
461 | J5_00=INDX3_WRK(0,JKNT,5) |
---|
462 | J5_M1=INDX3_WRK(-1,JKNT,5) |
---|
463 | ! |
---|
464 | J6_P1=INDX3_WRK(1,JKNT,6) |
---|
465 | J6_00=INDX3_WRK(0,JKNT,6) |
---|
466 | ! |
---|
467 | MY_IS_GLB=1 ! make this a noop for global indexing |
---|
468 | MY_IE_GLB=1 ! make this a noop for global indexing |
---|
469 | MY_JS_GLB=1 ! make this a noop for global indexing |
---|
470 | MY_JE_GLB=1 ! make this a noop for global indexing |
---|
471 | ! |
---|
472 | !----------------------------------------------------------------------- |
---|
473 | !*** THE WORKING ARRAYS FOR THE PRIMARY VARIABLES |
---|
474 | !----------------------------------------------------------------------- |
---|
475 | ! |
---|
476 | DO K=KTS,KTE |
---|
477 | DO I=MYIS_P4,MYIE_P4 |
---|
478 | TST(I,K,J1_P2)=T(I,K,J+2)*FFC+TOLD(I,K,J+2)*FBC |
---|
479 | UST(I,K,J1_P2)=U(I,K,J+2)*FFC+UOLD(I,K,J+2)*FBC |
---|
480 | VST(I,K,J1_P2)=V(I,K,J+2)*FFC+VOLD(I,K,J+2)*FBC |
---|
481 | ENDDO |
---|
482 | ENDDO |
---|
483 | ! |
---|
484 | !----------------------------------------------------------------------- |
---|
485 | !*** MASS FLUXES AND MASS POINT ADVECTION COMPONENTS |
---|
486 | !----------------------------------------------------------------------- |
---|
487 | ! |
---|
488 | DO K=KTS,KTE |
---|
489 | DO I=MYIS_P4,MYIE_P4 |
---|
490 | ! |
---|
491 | !----------------------------------------------------------------------- |
---|
492 | !*** THE NS AND EW FLUXES IN THE FOLLOWING LOOP ARE ON V POINTS |
---|
493 | !*** FOR T. |
---|
494 | !----------------------------------------------------------------------- |
---|
495 | ! |
---|
496 | DPDE_P3=DETA1_PDTOP(K)+DETA2(K)*PDSLO(I,J+3) |
---|
497 | DPDE(I,K,J0_P3)=DPDE_P3 |
---|
498 | ! |
---|
499 | !----------------------------------------------------------------------- |
---|
500 | UDY(I,K,J1_P2)=U(I,K,J+2)*DY |
---|
501 | VDX_P2=V(I,K,J+2)*DX(I,J+2) |
---|
502 | VDX(I,K,J1_P2)=VDX_P2 |
---|
503 | FNS(I,K,J+2)=VDX_P2*(DPDE(I,K,J0_P1)+DPDE_P3) |
---|
504 | ENDDO |
---|
505 | ENDDO |
---|
506 | ! |
---|
507 | !----------------------------------------------------------------------- |
---|
508 | DO K=KTS,KTE |
---|
509 | DO I=MYIS_P3,MYIE_P3 |
---|
510 | TEMPA=(UDY(I+IHE(J+1),K,J1_P1)+VDX(I+IHE(J+1),K,J1_P1)) & |
---|
511 | & +(UDY(I,K,J1_P2) +VDX(I,K,J1_P2)) |
---|
512 | FNE(I,K,J+1)=TEMPA*(DPDE(I,K,J0_P1)+DPDE(I+IHE(J+1),K,J0_P2)) |
---|
513 | ! |
---|
514 | !----------------------------------------------------------------------- |
---|
515 | TEMPB=(UDY(I+IHE(J+2),K,J1_P2)-VDX(I+IHE(J+2),K,J1_P2)) & |
---|
516 | & +(UDY(I,K,J1_P1) -VDX(I,K,J1_P1)) |
---|
517 | FSE(I,K,J+2)=TEMPB*(DPDE(I,K,J0_P2)+DPDE(I+IHE(J),K,J0_P1)) |
---|
518 | ! |
---|
519 | !----------------------------------------------------------------------- |
---|
520 | FNS_P1=FNS(I,K,J+1) |
---|
521 | TNS(I,K,J4_P1)=FNS_P1*(TST(I,K,J1_P2)-TST(I,K,J1_00)) |
---|
522 | ! |
---|
523 | !----------------------------------------------------------------------- |
---|
524 | UDY_P1=U(I,K,J+1)*DY |
---|
525 | FEW(I,K,J+1)=UDY_P1*(DPDE(I+IVW(J+1),K,J0_P1) & |
---|
526 | & +DPDE(I+IVE(J+1),K,J0_P1)) |
---|
527 | FEW_00=FEW(I,K,J) |
---|
528 | TEW(I,K)=FEW_00*(TST(I+IVE(J),K,J1_00)-TST(I+IVW(J),K,J1_00)) |
---|
529 | ! |
---|
530 | !----------------------------------------------------------------------- |
---|
531 | !*** THE NE AND SE FLUXES ARE ASSOCIATED WITH H POINTS |
---|
532 | !*** (ACTUALLY JUST TO THE NE AND SE OF EACH H POINT). |
---|
533 | !----------------------------------------------------------------------- |
---|
534 | ! |
---|
535 | FNE_X=FNE(I,K,J) |
---|
536 | TNE(I,K,J5_00)=FNE_X*(TST(I+IHE(J),K,J1_P1)-TST(I,K,J1_00)) |
---|
537 | ! |
---|
538 | FSE_X=FSE(I,K,J+1) |
---|
539 | TSE(I,K,J6_P1)=FSE_X*(TST(I+IHE(J+1),K,J1_00)-TST(I,K,J1_P1)) |
---|
540 | ENDDO |
---|
541 | ENDDO |
---|
542 | ! |
---|
543 | !----------------------------------------------------------------------- |
---|
544 | !*** CALCULATION OF MOMENTUM ADVECTION COMPONENTS |
---|
545 | !----------------------------------------------------------------------- |
---|
546 | !----------------------------------------------------------------------- |
---|
547 | !*** THE NS AND EW FLUXES ARE ON H POINTS FOR U AND V. |
---|
548 | !----------------------------------------------------------------------- |
---|
549 | ! |
---|
550 | DO K=KTS,KTE |
---|
551 | DO I=MYIS_P2,MYIE_P2 |
---|
552 | UEW(I,K)=(FEW(I+IHW(J),K,J)+FEW(I+IHE(J),K,J)) & |
---|
553 | & *(UST(I+IHE(J),K,J1_00)-UST(I+IHW(J),K,J1_00)) |
---|
554 | UNS(I,K,J4_P1)=(FNS(I+IHW(J+1),K,J+1) & |
---|
555 | & +FNS(I+IHE(J+1),K,J+1)) & |
---|
556 | & *(UST(I,K,J1_P2)-UST(I,K,J1_00)) |
---|
557 | VEW(I,K)=(FEW(I,K,J-1)+FEW(I,K,J+1)) & |
---|
558 | & *(VST(I+IHE(J),K,J1_00)-VST(I+IHW(J),K,J1_00)) |
---|
559 | VNS(I,K,J4_P1)=(FNS(I,K,J)+FNS(I,K,J+2)) & |
---|
560 | & *(VST(I,K,J1_P2)-VST(I,K,J1_00)) |
---|
561 | ! |
---|
562 | !----------------------------------------------------------------------- |
---|
563 | !*** THE FOLLOWING NE AND SE FLUXES ARE TIED TO V POINTS AND ARE |
---|
564 | !*** LOCATED JUST TO THE NE AND SE OF THE GIVEN I,J. |
---|
565 | !----------------------------------------------------------------------- |
---|
566 | ! |
---|
567 | UNE(I,K,J5_00)=(FNE(I+IVW(J),K,J)+FNE(I+IVE(J),K,J)) & |
---|
568 | & *(UST(I+IVE(J),K,J1_P1)-UST(I,K,J1_00)) |
---|
569 | USE(I,K,J6_P1)=(FSE(I+IVW(J+1),K,J+1) & |
---|
570 | & +FSE(I+IVE(J+1),K,J+1)) & |
---|
571 | & *(UST(I+IVE(J+1),K,J1_00)-UST(I,K,J1_P1)) |
---|
572 | VNE(I,K,J5_00)=(FNE(I,K,J-1)+FNE(I,K,J+1)) & |
---|
573 | & *(VST(I+IVE(J),K,J1_P1)-VST(I,K,J1_00)) |
---|
574 | VSE(I,K,J6_P1)=(FSE(I,K,J)+FSE(I,K,J+2)) & |
---|
575 | & *(VST(I+IVE(J+1),K,J1_00)-VST(I,K,J1_P1)) |
---|
576 | ENDDO |
---|
577 | ENDDO |
---|
578 | ! |
---|
579 | !----------------------------------------------------------------------- |
---|
580 | !*** COMPUTE THE ADVECTION TENDENCIES FOR T. |
---|
581 | !*** THE AD ARRAYS ARE ON H POINTS. |
---|
582 | !*** SKIP TO UPSTREAM IF THESE ROWS HAVE ONLY UPSTREAM POINTS. |
---|
583 | !----------------------------------------------------------------------- |
---|
584 | ! |
---|
585 | |
---|
586 | JGLOBAL=J+MY_JS_GLB-1 |
---|
587 | IF(JGLOBAL>=6.AND.JGLOBAL<=JDE-5)THEN |
---|
588 | ! |
---|
589 | JJ=J+MY_JS_GLB-1 ! okay because MY_JS_GLB is 1 |
---|
590 | IF(ITS==IDS)ISTART=3+MOD(JJ,2) ! need to think about this |
---|
591 | ! more in terms of how to |
---|
592 | ! convert to global indexing |
---|
593 | ! |
---|
594 | DO K=KTS,KTE |
---|
595 | DO I=ISTART,IEND |
---|
596 | RDPD=1./DPDE(I,K,J0_00) |
---|
597 | ! |
---|
598 | ADT(I,K,J)=(TEW(I+IHW(J),K)+TEW(I+IHE(J),K) & |
---|
599 | & +TNS(I,K,J4_M1)+TNS(I,K,J4_P1) & |
---|
600 | & +TNE(I+IHW(J),K,J5_M1)+TNE(I,K,J5_00) & |
---|
601 | & +TSE(I,K,J6_00)+TSE(I+IHW(J),K,J6_P1)) & |
---|
602 | & *RDPD*FAD(I,J) |
---|
603 | ! |
---|
604 | ENDDO |
---|
605 | ENDDO |
---|
606 | ! |
---|
607 | !----------------------------------------------------------------------- |
---|
608 | !*** COMPUTE THE ADVECTION TENDENCIES FOR U AND V. |
---|
609 | !*** THE AD ARRAYS ARE ON VELOCITY POINTS. |
---|
610 | !----------------------------------------------------------------------- |
---|
611 | ! |
---|
612 | IF(ITS==IDS)ISTART=3+MOD(JJ+1,2) |
---|
613 | ! |
---|
614 | DO K=KTS,KTE |
---|
615 | DO I=ISTART,IEND |
---|
616 | RDPDX=1./(DPDE(I+IVW(J),K,J0_00)+DPDE(I+IVE(J),K,J0_00)) |
---|
617 | RDPDY=1./(DPDE(I,K,J0_M1)+DPDE(I,K,J0_P1)) |
---|
618 | ! |
---|
619 | ADU(I,K,J)=(UEW(I+IVW(J),K)+UEW(I+IVE(J),K) & |
---|
620 | & +UNS(I,K,J4_M1)+UNS(I,K,J4_P1) & |
---|
621 | & +UNE(I+IVW(J),K,J5_M1)+UNE(I,K,J5_00) & |
---|
622 | & +USE(I,K,J6_00)+USE(I+IVW(J),K,J6_P1)) & |
---|
623 | & *RDPDX*FAD(I+IVW(J),J) |
---|
624 | ! |
---|
625 | ADV(I,K,J)=(VEW(I+IVW(J),K)+VEW(I+IVE(J),K) & |
---|
626 | & +VNS(I,K,J4_M1)+VNS(I,K,J4_P1) & |
---|
627 | & +VNE(I+IVW(J),K,J5_M1)+VNE(I,K,J5_00) & |
---|
628 | & +VSE(I,K,J6_00)+VSE(I+IVW(J),K,J6_P1)) & |
---|
629 | & *RDPDY*FAD(I+IVW(J),J) |
---|
630 | ! |
---|
631 | ENDDO |
---|
632 | ENDDO |
---|
633 | ! |
---|
634 | ENDIF |
---|
635 | ! |
---|
636 | !----------------------------------------------------------------------- |
---|
637 | !----------------------------------------------------------------------- |
---|
638 | ! |
---|
639 | !*** END OF JANJIC HORIZONTAL ADVECTION |
---|
640 | ! |
---|
641 | !----------------------------------------------------------------------- |
---|
642 | !----------------------------------------------------------------------- |
---|
643 | !*** UPSTREAM ADVECTION OF T, U, AND V |
---|
644 | !----------------------------------------------------------------------- |
---|
645 | !----------------------------------------------------------------------- |
---|
646 | ! |
---|
647 | upstream : IF(UPSTRM)THEN |
---|
648 | ! |
---|
649 | !----------------------------------------------------------------------- |
---|
650 | !*** |
---|
651 | !*** COMPUTE UPSTREAM COMPUTATIONS ON THIS TASK'S ROWS. |
---|
652 | !*** |
---|
653 | !----------------------------------------------------------------------- |
---|
654 | ! |
---|
655 | N_IUPH_J=N_IUP_H(J) ! See explanation in INIT |
---|
656 | ! |
---|
657 | DO K=KTS,KTE |
---|
658 | ! |
---|
659 | DO II=0,N_IUPH_J-1 |
---|
660 | I=IUP_H(IMS+II,J) |
---|
661 | TTA=EMT_LOC(J)*(UST(I,K,J1_M1)+UST(I+IHW(J),K,J1_00) & |
---|
662 | & +UST(I+IHE(J),K,J1_00)+UST(I,K,J1_P1)) |
---|
663 | TTB=ENT *(VST(I,K,J1_M1)+VST(I+IHW(J),K,J1_00) & |
---|
664 | & +VST(I+IHE(J),K,J1_00)+VST(I,K,J1_P1)) |
---|
665 | PP=-TTA-TTB |
---|
666 | QP= TTA-TTB |
---|
667 | ! |
---|
668 | IF(PP<0.)THEN |
---|
669 | ISPA(I,K)=-1 |
---|
670 | ELSE |
---|
671 | ISPA(I,K)= 1 |
---|
672 | ENDIF |
---|
673 | ! |
---|
674 | IF(QP<0.)THEN |
---|
675 | ISQA(I,K)=-1 |
---|
676 | ELSE |
---|
677 | ISQA(I,K)= 1 |
---|
678 | ENDIF |
---|
679 | ! |
---|
680 | PP=ABS(PP) |
---|
681 | QP=ABS(QP) |
---|
682 | ARRAY3_X=PP*QP |
---|
683 | ARRAY0(I,K)=ARRAY3_X-PP-QP |
---|
684 | ARRAY1(I,K)=PP-ARRAY3_X |
---|
685 | ARRAY2(I,K)=QP-ARRAY3_X |
---|
686 | ARRAY3(I,K)=ARRAY3_X |
---|
687 | ENDDO |
---|
688 | ! |
---|
689 | ENDDO |
---|
690 | !----------------------------------------------------------------------- |
---|
691 | ! |
---|
692 | N_IUPADH_J=N_IUP_ADH(J) |
---|
693 | ! |
---|
694 | DO K=KTS,KTE |
---|
695 | ! |
---|
696 | KNTI_ADH=1 |
---|
697 | IUP_ADH_J=IUP_ADH(IMS,J) |
---|
698 | ! |
---|
699 | DO II=0,N_IUPH_J-1 |
---|
700 | I=IUP_H(IMS+II,J) |
---|
701 | ! |
---|
702 | ISP=ISPA(I,K) |
---|
703 | ISQ=ISQA(I,K) |
---|
704 | IFP=(ISP-1)/2 |
---|
705 | IFQ=(-ISQ-1)/2 |
---|
706 | IPQ=(ISP-ISQ)/2 |
---|
707 | ! |
---|
708 | IF(HTM(I+IHE(J)+IFP,K,J+ISP) & |
---|
709 | & *HTM(I+IHE(J)+IFQ,K,J+ISQ) & |
---|
710 | & *HTM(I+IPQ,K,J+ISP+ISQ)>0.1)THEN |
---|
711 | GO TO 150 |
---|
712 | ENDIF |
---|
713 | ! |
---|
714 | IF(HTM(I+IHE(J)+IFP,K,J+ISP) & |
---|
715 | & +HTM(I+IHE(J)+IFQ,K,J+ISQ) & |
---|
716 | & +HTM(I+IPQ,K,J+ISP+ISQ)<0.1)THEN |
---|
717 | ! |
---|
718 | T(I+IHE(J)+IFP,K,J+ISP)=T(I,K,J) |
---|
719 | T(I+IHE(J)+IFQ,K,J+ISQ)=T(I,K,J) |
---|
720 | T(I+IPQ,K,J+ISP+ISQ)=T(I,K,J) |
---|
721 | ! |
---|
722 | ELSEIF & |
---|
723 | & (HTM(I+IHE(J)+IFP,K,J+ISP)+HTM(I+IPQ,K,J+ISP+ISQ) & |
---|
724 | & <0.99)THEN |
---|
725 | ! |
---|
726 | T(I+IHE(J)+IFP,K,J+ISP)=T(I,K,J) |
---|
727 | T(I+IPQ,K,J+ISP+ISQ)=T(I+IHE(J)+IFQ,K,J+ISQ) |
---|
728 | ! |
---|
729 | ELSEIF & |
---|
730 | & (HTM(I+IHE(J)+IFQ,K,J+ISQ)+HTM(I+IPQ,K,J+ISP+ISQ) & |
---|
731 | <0.99)THEN |
---|
732 | ! |
---|
733 | T(I+IHE(J)+IFQ,K,J+ISQ)=T(I,K,J) |
---|
734 | T(I+IPQ,K,J+ISP+ISQ)=T(I+IHE(J)+IFP,K,J+ISP) |
---|
735 | ! |
---|
736 | ELSEIF & |
---|
737 | & (HTM(I+IHE(J)+IFP,K,J+ISP) & |
---|
738 | & +HTM(I+IHE(J)+IFQ,K,J+ISQ)<0.99)THEN |
---|
739 | T(I+IHE(J)+IFP,K,J+ISP)=0.5*(T(I,K,J) & |
---|
740 | & +T(I+IPQ,K,J+ISP+ISQ)) |
---|
741 | T(I+IHE(J)+IFQ,K,J+ISQ)=T(I+IHE(J)+IFP,K,J+ISP) |
---|
742 | ! |
---|
743 | ELSEIF(HTM(I+IHE(J)+IFP,K,J+ISP)<0.99)THEN |
---|
744 | T(I+IHE(J)+IFP,K,J+ISP)=T(I,K,J) & |
---|
745 | & +T(I+IPQ,K,J+ISP+ISQ) & |
---|
746 | & -T(I+IHE(J)+IFQ,K,J+ISQ) |
---|
747 | ! |
---|
748 | ELSEIF(HTM(I+IHE(J)+IFQ,K,J+ISQ)<0.99)THEN |
---|
749 | T(I+IHE(J)+IFQ,K,J+ISQ)=T(I,K,J) & |
---|
750 | & +T(I+IPQ,K,J+ISP+ISQ) & |
---|
751 | & -T(I+IHE(J)+IFP,K,J+ISP) |
---|
752 | ! |
---|
753 | ELSE |
---|
754 | T(I+IPQ,K,J+ISP+ISQ)=T(I+IHE(J)+IFP,K,J+ISP) & |
---|
755 | & +T(I+IHE(J)+IFQ,K,J+ISQ) & |
---|
756 | & -T(I,K,J) |
---|
757 | ! |
---|
758 | ENDIF |
---|
759 | ! |
---|
760 | 150 CONTINUE |
---|
761 | ! |
---|
762 | !----------------------------------------------------------------------- |
---|
763 | ! |
---|
764 | IF(I==IUP_ADH_J)THEN ! Update advection H tendencies |
---|
765 | ! |
---|
766 | ISP=ISPA(I,K) |
---|
767 | ISQ=ISQA(I,K) |
---|
768 | IFP=(ISP-1)/2 |
---|
769 | IFQ=(-ISQ-1)/2 |
---|
770 | IPQ=(ISP-ISQ)/2 |
---|
771 | ! |
---|
772 | F0=ARRAY0(I,K) |
---|
773 | F1=ARRAY1(I,K) |
---|
774 | F2=ARRAY2(I,K) |
---|
775 | F3=ARRAY3(I,K) |
---|
776 | ! |
---|
777 | ADT(I,K,J)=F0*T(I,K,J) & |
---|
778 | & +F1*T(I+IHE(J)+IFP,K,J+ISP) & |
---|
779 | & +F2*T(I+IHE(J)+IFQ,K,J+ISQ) & |
---|
780 | +F3*T(I+IPQ,K,J+ISP+ISQ) |
---|
781 | ! |
---|
782 | !----------------------------------------------------------------------- |
---|
783 | ! |
---|
784 | IF(KNTI_ADH<N_IUPADH_J)THEN |
---|
785 | IUP_ADH_J=IUP_ADH(IMS+KNTI_ADH,J) |
---|
786 | KNTI_ADH=KNTI_ADH+1 |
---|
787 | ENDIF |
---|
788 | ! |
---|
789 | ENDIF ! End of advection H tendency IF block |
---|
790 | ! |
---|
791 | ENDDO ! End of II loop |
---|
792 | ! |
---|
793 | ENDDO ! End of K loop |
---|
794 | ! |
---|
795 | !----------------------------------------------------------------------- |
---|
796 | !----------------------------------------------------------------------- |
---|
797 | !*** UPSTREAM ADVECTION OF VELOCITY COMPONENTS |
---|
798 | !----------------------------------------------------------------------- |
---|
799 | !----------------------------------------------------------------------- |
---|
800 | ! |
---|
801 | N_IUPADV_J=N_IUP_ADV(J) |
---|
802 | ! |
---|
803 | DO K=KTS,KTE |
---|
804 | ! |
---|
805 | DO II=0,N_IUPADV_J-1 |
---|
806 | I=IUP_ADV(IMS+II,J) |
---|
807 | ! |
---|
808 | TTA=EM_LOC(J)*UST(I,K,J1_00) |
---|
809 | TTB=EN *VST(I,K,J1_00) |
---|
810 | PP=-TTA-TTB |
---|
811 | QP=TTA-TTB |
---|
812 | ! |
---|
813 | IF(PP<0.)THEN |
---|
814 | ISP=-1 |
---|
815 | ELSE |
---|
816 | ISP= 1 |
---|
817 | ENDIF |
---|
818 | ! |
---|
819 | IF(QP<0.)THEN |
---|
820 | ISQ=-1 |
---|
821 | ELSE |
---|
822 | ISQ= 1 |
---|
823 | ENDIF |
---|
824 | ! |
---|
825 | IFP=(ISP-1)/2 |
---|
826 | IFQ=(-ISQ-1)/2 |
---|
827 | IPQ=(ISP-ISQ)/2 |
---|
828 | PP=ABS(PP) |
---|
829 | QP=ABS(QP) |
---|
830 | F3=PP*QP |
---|
831 | F0=F3-PP-QP |
---|
832 | F1=PP-F3 |
---|
833 | F2=QP-F3 |
---|
834 | ! |
---|
835 | ADU(I,K,J)=F0*U(I,K,J) & |
---|
836 | & +F1*U(I+IVE(J)+IFP,K,J+ISP) & |
---|
837 | & +F2*U(I+IVE(J)+IFQ,K,J+ISQ) & |
---|
838 | & +F3*U(I+IPQ,K,J+ISP+ISQ) |
---|
839 | ! |
---|
840 | ADV(I,K,J)=F0*V(I,K,J) & |
---|
841 | & +F1*V(I+IVE(J)+IFP,K,J+ISP) & |
---|
842 | & +F2*V(I+IVE(J)+IFQ,K,J+ISQ) & |
---|
843 | & +F3*V(I+IPQ,K,J+ISP+ISQ) |
---|
844 | ! |
---|
845 | ENDDO |
---|
846 | ! |
---|
847 | ENDDO ! End of K loop |
---|
848 | ! |
---|
849 | !----------------------------------------------------------------------- |
---|
850 | ! |
---|
851 | ENDIF upstream |
---|
852 | ! |
---|
853 | !----------------------------------------------------------------------- |
---|
854 | !----------------------------------------------------------------------- |
---|
855 | !*** END OF THIS UPSTREAM REGION |
---|
856 | !----------------------------------------------------------------------- |
---|
857 | !----------------------------------------------------------------------- |
---|
858 | ! |
---|
859 | !*** COMPUTE VERTICAL ADVECTION TENDENCIES USING CRANK-NICHOLSON. |
---|
860 | ! |
---|
861 | !----------------------------------------------------------------------- |
---|
862 | !*** FIRST THE TEMPERATURE |
---|
863 | !----------------------------------------------------------------------- |
---|
864 | ! |
---|
865 | iloop_for_t: DO I=MYIS1,MYIE1 |
---|
866 | ! |
---|
867 | PDOP=PDSLO(I,J) |
---|
868 | PVVLO=PETDT(I,KTE-1,J)*DTQ |
---|
869 | VVLO=PVVLO/(DETA1_PDTOP(KTE)+DETA2(KTE)*PDOP) |
---|
870 | CMT=-VVLO+1. |
---|
871 | RCMT(KTE)=1./CMT |
---|
872 | CRT(KTE)=VVLO |
---|
873 | RSTT(KTE)=-VVLO*(T(I,KTE-1,J)-T(I,KTE,J))+T(I,KTE,J) |
---|
874 | ! |
---|
875 | LMHK=KTE-LMH(I,J)+1 |
---|
876 | DO K=KTE-1,LMHK+1,-1 |
---|
877 | RDP=1./(DETA1_PDTOP(K)+DETA2(K)*PDOP) |
---|
878 | PVVUP=PVVLO |
---|
879 | PVVLO=PETDT(I,K-1,J)*DTQ |
---|
880 | VVUP=PVVUP*RDP |
---|
881 | VVLO=PVVLO*RDP |
---|
882 | CFT=-VVUP*RCMT(K+1) |
---|
883 | CMT=-CRT(K+1)*CFT+(VVUP-VVLO+1.) |
---|
884 | RCMT(K)=1./CMT |
---|
885 | CRT(K)=VVLO |
---|
886 | RSTT(K)=-RSTT(K+1)*CFT+T(I,K,J) & |
---|
887 | & -(T(I,K,J)-T(I,K+1,J))*VVUP & |
---|
888 | & -(T(I,K-1,J)-T(I,K,J))*VVLO |
---|
889 | ENDDO |
---|
890 | ! |
---|
891 | PVVUP=PVVLO |
---|
892 | VVUP=PVVUP/(DETA1_PDTOP(LMHK)+DETA2(LMHK)*PDOP) |
---|
893 | CFT=-VVUP*RCMT(LMHK+1) |
---|
894 | CMT=-CRT(LMHK+1)*CFT+VVUP+1. |
---|
895 | CRT(LMHK)=0. |
---|
896 | RSTT(LMHK)=-(T(I,LMHK,J)-T(I,LMHK+1,J))*VVUP & |
---|
897 | & -RSTT(LMHK+1)*CFT+T(I,LMHK,J) |
---|
898 | TN(LMHK)=RSTT(LMHK)/CMT |
---|
899 | VAD_TEND_T(I,LMHK)=TN(LMHK)-T(I,LMHK,J) |
---|
900 | ! |
---|
901 | DO K=LMHK+1,KTE |
---|
902 | TN(K)=(-CRT(K)*TN(K-1)+RSTT(K))*RCMT(K) |
---|
903 | VAD_TEND_T(I,K)=TN(K)-T(I,K,J) |
---|
904 | ENDDO |
---|
905 | ! |
---|
906 | !----------------------------------------------------------------------- |
---|
907 | !*** The following section is only for checking the implicit solution |
---|
908 | !*** using back-substitution. Remove this section otherwise. |
---|
909 | !----------------------------------------------------------------------- |
---|
910 | ! |
---|
911 | ! IF(I==ITEST.AND.J==JTEST)THEN |
---|
912 | !! |
---|
913 | ! PVVLO=PETDT(I,KTE-1,J)*DT*0.25 |
---|
914 | ! VVLO=PVVLO/(DETA1_PDTOP(KTE)+DETA2(KTE)*PDOP) |
---|
915 | ! TTLO=VVLO*(T(I,KTE-1,J)-T(I,KTE,J) & |
---|
916 | ! & +TN(KTE-1)-TN(KTE)) |
---|
917 | ! ADTP=TTLO+TN(KTE)-T(I,KTE,J) |
---|
918 | ! WRITE(0,*)' NTSD=',NTSD,' I=',ITEST,' J=',JTEST,' K=',KTE & |
---|
919 | ! &, ' ADTP=',ADTP |
---|
920 | ! WRITE(0,*)' T=',T(I,KTE,J),' TN=',TN(KTE) & |
---|
921 | ! &, ' VAD_TEND_T=',VAD_TEND_T(I,KTE) |
---|
922 | ! WRITE(0,*)' ' |
---|
923 | !! |
---|
924 | ! DO K=KTE-1,LMHK+1,-1 |
---|
925 | ! RDP=1./(DETA1_PDTOP(K)+DETA2(K)*PDOP) |
---|
926 | ! PVVUP=PVVLO |
---|
927 | ! PVVLO=PETDT(I,K-1,J)*DT*0.25 |
---|
928 | ! VVUP=PVVUP*RDP |
---|
929 | ! VVLO=PVVLO*RDP |
---|
930 | ! TTUP=VVUP*(T(I,K,J)-T(I,K+1,J)+TN(K)-TN(K+1)) |
---|
931 | ! TTLO=VVLO*(T(I,K-1,J)-T(I,K,J)+TN(K-1)-TN(K)) |
---|
932 | ! ADTP=TTLO+TTUP+TN(K)-T(I,K,J) |
---|
933 | ! WRITE(0,*)' NTSD=',NTSD,' I=',I,' J=',J,' K=',K & |
---|
934 | ! &, ' ADTP=',ADTP |
---|
935 | ! WRITE(0,*)' T=',T(I,K,J),' TN=',TN(K) & |
---|
936 | ! &, ' VAD_TEND_T=',VAD_TEND_T(I,K) |
---|
937 | ! WRITE(0,*)' ' |
---|
938 | ! ENDDO |
---|
939 | !! |
---|
940 | ! IF(LMHK==KTS)THEN |
---|
941 | ! PVVUP=PVVLO |
---|
942 | ! VVUP=PVVUP/(DETA1_PDTOP(KTS)+DETA2(KTS)*PDOP) |
---|
943 | ! TTUP=VVUP*(T(I,KTS,J)-T(I,KTS+1,J)+TN(KTS)-TN(KTS+1)) |
---|
944 | ! ADTP=TTUP+TN(KTS)-T(I,KTS,J) |
---|
945 | ! WRITE(0,*)' NTSD=',NTSD,' I=',I,' J=',J,' K=',KTS & |
---|
946 | ! &, ' ADTP=',ADTP |
---|
947 | ! WRITE(0,*)' T=',T(I,KTS,J),' TN=',TN(KTS) & |
---|
948 | ! &, ' VAD_TEND_T=',VAD_TEND_T(I,KTS) |
---|
949 | ! WRITE(0,*)' ' |
---|
950 | ! ENDIF |
---|
951 | ! ENDIF |
---|
952 | ! |
---|
953 | !----------------------------------------------------------------------- |
---|
954 | !*** End of check. |
---|
955 | !----------------------------------------------------------------------- |
---|
956 | ! |
---|
957 | ENDDO iloop_for_t |
---|
958 | ! |
---|
959 | !----------------------------------------------------------------------- |
---|
960 | !*** NOW VERTICAL ADVECTION OF WIND COMPONENTS |
---|
961 | !----------------------------------------------------------------------- |
---|
962 | ! |
---|
963 | iloop_for_uv: DO I=MYIS1,MYIE1 |
---|
964 | ! |
---|
965 | PDOPU=(PDSLO(I+IVW(J),J)+PDSLO(I+IVE(J),J))*0.5 |
---|
966 | PDOPV=(PDSLO(I,J-1)+PDSLO(I,J+1))*0.5 |
---|
967 | PVVLOU=(PETDT(I+IVW(J),KTE-1,J)+PETDT(I+IVE(J),KTE-1,J))*DTE |
---|
968 | PVVLOV=(PETDT(I,KTE-1,J-1)+PETDT(I,KTE-1,J+1))*DTE |
---|
969 | VVLOU=PVVLOU/(DETA1_PDTOP(KTE)+DETA2(KTE)*PDOPU) |
---|
970 | VVLOV=PVVLOV/(DETA1_PDTOP(KTE)+DETA2(KTE)*PDOPV) |
---|
971 | CMU=-VVLOU+1. |
---|
972 | CMV=-VVLOV+1. |
---|
973 | RCMU(KTE)=1./CMU |
---|
974 | RCMV(KTE)=1./CMV |
---|
975 | CRU(KTE)=VVLOU |
---|
976 | CRV(KTE)=VVLOV |
---|
977 | RSTU(KTE)=-VVLOU*(U(I,KTE-1,J)-U(I,KTE,J))+U(I,KTE,J) |
---|
978 | RSTV(KTE)=-VVLOV*(V(I,KTE-1,J)-V(I,KTE,J))+V(I,KTE,J) |
---|
979 | ! |
---|
980 | LMVK=KTE-LMV(I,J)+1 |
---|
981 | DO K=KTE-1,LMVK+1,-1 |
---|
982 | RDPU=1./(DETA1_PDTOP(K)+DETA2(K)*PDOPU) |
---|
983 | RDPV=1./(DETA1_PDTOP(K)+DETA2(K)*PDOPV) |
---|
984 | PVVUPU=PVVLOU |
---|
985 | PVVUPV=PVVLOV |
---|
986 | PVVLOU=(PETDT(I+IVW(J),K-1,J)+PETDT(I+IVE(J),K-1,J))*DTE |
---|
987 | PVVLOV=(PETDT(I,K-1,J-1)+PETDT(I,K-1,J+1))*DTE |
---|
988 | VVUPU=PVVUPU*RDPU |
---|
989 | VVUPV=PVVUPV*RDPV |
---|
990 | VVLOU=PVVLOU*RDPU |
---|
991 | VVLOV=PVVLOV*RDPV |
---|
992 | CFU=-VVUPU*RCMU(K+1) |
---|
993 | CFV=-VVUPV*RCMV(K+1) |
---|
994 | CMU=-CRU(K+1)*CFU+VVUPU-VVLOU+1. |
---|
995 | CMV=-CRV(K+1)*CFV+VVUPV-VVLOV+1. |
---|
996 | RCMU(K)=1./CMU |
---|
997 | RCMV(K)=1./CMV |
---|
998 | CRU(K)=VVLOU |
---|
999 | CRV(K)=VVLOV |
---|
1000 | RSTU(K)=-RSTU(K+1)*CFU+U(I,K,J) & |
---|
1001 | & -(U(I,K,J)-U(I,K+1,J))*VVUPU & |
---|
1002 | & -(U(I,K-1,J)-U(I,K,J))*VVLOU |
---|
1003 | RSTV(K)=-RSTV(K+1)*CFV+V(I,K,J) & |
---|
1004 | & -(V(I,K,J)-V(I,K+1,J))*VVUPV & |
---|
1005 | & -(V(I,K-1,J)-V(I,K,J))*VVLOV |
---|
1006 | ENDDO |
---|
1007 | ! |
---|
1008 | RDPU=1./(DETA1_PDTOP(LMVK)+DETA2(LMVK)*PDOPU) |
---|
1009 | RDPV=1./(DETA1_PDTOP(LMVK)+DETA2(LMVK)*PDOPV) |
---|
1010 | PVVUPU=PVVLOU |
---|
1011 | PVVUPV=PVVLOV |
---|
1012 | VVUPU=PVVUPU*RDPU |
---|
1013 | VVUPV=PVVUPV*RDPV |
---|
1014 | CFU=-VVUPU*RCMU(LMVK+1) |
---|
1015 | CFV=-VVUPV*RCMV(LMVK+1) |
---|
1016 | CMU=-CRU(LMVK+1)*CFU+VVUPU+1. |
---|
1017 | CMV=-CRV(LMVK+1)*CFV+VVUPV+1. |
---|
1018 | CRU(LMVK)=0. |
---|
1019 | CRV(LMVK)=0. |
---|
1020 | RSTU(LMVK)=-(U(I,LMVK,J)-U(I,LMVK+1,J))*VVUPU & |
---|
1021 | & -RSTU(LMVK+1)*CFU+U(I,LMVK,J) |
---|
1022 | RSTV(LMVK)=-(V(I,LMVK,J)-V(I,LMVK+1,J))*VVUPV & |
---|
1023 | & -RSTV(LMVK+1)*CFV+V(I,LMVK,J) |
---|
1024 | UN(LMVK)=RSTU(LMVK)/CMU |
---|
1025 | VN(LMVK)=RSTV(LMVK)/CMV |
---|
1026 | VAD_TEND_U(I,LMVK)=UN(LMVK)-U(I,LMVK,J) |
---|
1027 | VAD_TEND_V(I,LMVK)=VN(LMVK)-V(I,LMVK,J) |
---|
1028 | ! |
---|
1029 | DO K=LMVK+1,KTE |
---|
1030 | UN(K)=(-CRU(K)*UN(K-1)+RSTU(K))*RCMU(K) |
---|
1031 | VN(K)=(-CRV(K)*VN(K-1)+RSTV(K))*RCMV(K) |
---|
1032 | VAD_TEND_U(I,K)=UN(K)-U(I,K,J) |
---|
1033 | VAD_TEND_V(I,K)=VN(K)-V(I,K,J) |
---|
1034 | ENDDO |
---|
1035 | ! |
---|
1036 | !----------------------------------------------------------------------- |
---|
1037 | !*** The following section is only for checking the implicit solution |
---|
1038 | !*** using back-substitution. Remove this section otherwise. |
---|
1039 | !----------------------------------------------------------------------- |
---|
1040 | ! |
---|
1041 | ! IF(I==ITEST.AND.J==JTEST)THEN |
---|
1042 | !! |
---|
1043 | ! PDOPU=(PDSLO(I+IVW(J),J)+PDSLO(I+IVE(J),J))*0.5 |
---|
1044 | ! PDOPV=(PDSLO(I,J-1)+PDSLO(I,J+1))*0.5 |
---|
1045 | ! PVVLOU=(PETDT(I+IVW(J),KTE-1,J) & |
---|
1046 | ! & +PETDT(I+IVE(J),KTE-1,J))*DTE |
---|
1047 | ! PVVLOV=(PETDT(I,KTE-1,J-1) & |
---|
1048 | ! & +PETDT(I,KTE-1,J+1))*DTE |
---|
1049 | ! VVLOU=PVVLOU/(DETA1_PDTOP(KTE)+DETA2(KTE)*PDOPU) |
---|
1050 | ! VVLOV=PVVLOV/(DETA1_PDTOP(KTE)+DETA2(KTE)*PDOPV) |
---|
1051 | ! TULO=VVLOU*(U(I,KTE-1,J)-U(I,KTE,J)+UN(KTE-1)-UN(KTE)) |
---|
1052 | ! TVLO=VVLOV*(V(I,KTE-1,J)-V(I,KTE,J)+VN(KTE-1)-VN(KTE)) |
---|
1053 | ! ADUP=TULO+UN(KTE)-U(I,KTE,J) |
---|
1054 | ! ADVP=TVLO+VN(KTE)-V(I,KTE,J) |
---|
1055 | ! WRITE(0,*)' NTSD=',NTSD,' I=',I,' J=',J,' K=',KTE & |
---|
1056 | ! &, ' ADUP=',ADUP,' ADVP=',ADVP |
---|
1057 | ! WRITE(0,*)' U=',U(I,KTE,J),' UN=',UN(KTE) & |
---|
1058 | ! &, ' VAD_TEND_U=',VAD_TEND_U(I,KTE) & |
---|
1059 | ! &, ' V=',V(I,KTE,J),' VN=',VN(KTE) & |
---|
1060 | ! &, ' VAD_TEND_V=',VAD_TEND_V(I,KTE) |
---|
1061 | ! WRITE(0,*)' ' |
---|
1062 | !! |
---|
1063 | ! DO K=KTE-1,LMVK+1,-1 |
---|
1064 | ! RDPU=1./(DETA1_PDTOP(K)+DETA2(K)*PDOPU) |
---|
1065 | ! RDPV=1./(DETA1_PDTOP(K)+DETA2(K)*PDOPV) |
---|
1066 | ! PVVUPU=PVVLOU |
---|
1067 | ! PVVUPV=PVVLOV |
---|
1068 | ! PVVLOU=(PETDT(I+IVW(J),K-1,J) & |
---|
1069 | ! & +PETDT(I+IVE(J),K-1,J))*DTE |
---|
1070 | ! PVVLOV=(PETDT(I,K-1,J-1)+PETDT(I,K-1,J+1))*DTE |
---|
1071 | ! VVUPU=PVVUPU*RDPU |
---|
1072 | ! VVUPV=PVVUPV*RDPV |
---|
1073 | ! VVLOU=PVVLOU*RDPU |
---|
1074 | ! VVLOV=PVVLOV*RDPV |
---|
1075 | ! TUUP=VVUPU*(U(I,K,J)-U(I,K+1,J)+UN(K)-UN(K+1)) |
---|
1076 | ! TVUP=VVUPV*(V(I,K,J)-V(I,K+1,J)+VN(K)-VN(K+1)) |
---|
1077 | ! TULO=VVLOU*(U(I,K-1,J)-U(I,K,J)+UN(K-1)-UN(K)) |
---|
1078 | ! TVLO=VVLOV*(V(I,K-1,J)-V(I,K,J)+VN(K-1)-VN(K)) |
---|
1079 | ! ADUP=TUUP+TULO+UN(K)-U(I,K,J) |
---|
1080 | ! ADVP=TVUP+TVLO+VN(K)-V(I,K,J) |
---|
1081 | ! WRITE(0,*)' NTSD=',NTSD,' I=',ITEST,' J=',JTEST,' K=',K & |
---|
1082 | ! &, ' ADUP=',ADUP,' ADVP=',ADVP |
---|
1083 | ! WRITE(0,*)' U=',U(I,K,J),' UN=',UN(K) & |
---|
1084 | ! &, ' VAD_TEND_U=',VAD_TEND_U(I,K) & |
---|
1085 | ! &, ' V=',V(I,K,J),' VN=',VN(K) & |
---|
1086 | ! &, ' VAD_TEND_V=',VAD_TEND_V(I,K) |
---|
1087 | ! WRITE(0,*)' ' |
---|
1088 | ! ENDDO |
---|
1089 | !! |
---|
1090 | ! IF(LMVK==KTS)THEN |
---|
1091 | ! PVVUPU=PVVLOU |
---|
1092 | ! PVVUPV=PVVLOV |
---|
1093 | ! VVUPU=PVVUPU/(DETA1_PDTOP(KTS)+DETA2(KTS)*PDOPU) |
---|
1094 | ! VVUPV=PVVUPV/(DETA1_PDTOP(KTS)+DETA2(KTS)*PDOPV) |
---|
1095 | ! TUUP=VVUPU*(U(I,KTS,J)-U(I,KTS+1,J)+UN(KTS)-UN(KTS+1)) |
---|
1096 | ! TVUP=VVUPV*(V(I,KTS,J)-V(I,KTS+1,J)+VN(KTS)-VN(KTS+1)) |
---|
1097 | ! ADUP=TUUP+UN(KTS)-U(I,KTS,J) |
---|
1098 | ! ADVP=TVUP+VN(KTS)-V(I,KTS,J) |
---|
1099 | ! WRITE(0,*)' NTSD=',NTSD,' I=',ITEST,' J=',JTEST,' K=',KTS & |
---|
1100 | ! &, ' ADUP=',ADUP,' ADVP=',ADVP |
---|
1101 | ! WRITE(0,*)' U=',U(I,KTS,J),' UN=',UN(KTS) & |
---|
1102 | ! &, ' VAD_TEND_U=',VAD_TEND_U(I,KTS) & |
---|
1103 | ! &, ' V=',V(I,KTS,J),' VN=',VN(KTS) & |
---|
1104 | ! &, ' VAD_TEND_V=',VAD_TEND_V(I,KTS) |
---|
1105 | ! WRITE(0,*)' ' |
---|
1106 | ! ENDIF |
---|
1107 | ! ENDIF |
---|
1108 | ! |
---|
1109 | !----------------------------------------------------------------------- |
---|
1110 | !*** End of check. |
---|
1111 | !----------------------------------------------------------------------- |
---|
1112 | ! |
---|
1113 | ENDDO iloop_for_uv |
---|
1114 | ! |
---|
1115 | ! |
---|
1116 | !----------------------------------------------------------------------- |
---|
1117 | ! |
---|
1118 | !*** NOW SUM THE VERTICAL AND HORIZONTAL TENDENCIES, |
---|
1119 | !*** CURVATURE AND CORIOLIS TERMS |
---|
1120 | ! |
---|
1121 | !----------------------------------------------------------------------- |
---|
1122 | ! |
---|
1123 | DO K=KTS,KTE |
---|
1124 | DO I=MYIS1,MYIE1 |
---|
1125 | HM=HTM(I,K,J)*HBM2(I,J) |
---|
1126 | VM=VTM(I,K,J)*VBM2(I,J) |
---|
1127 | ADT(I,K,J)=(VAD_TEND_T(I,K)+2.*ADT(I,K,J))*HM |
---|
1128 | ! |
---|
1129 | FPP=CURV(I,J)*2.*UST(I,K,J1_00)+F(I,J)*2. |
---|
1130 | ADU(I,K,J)=(VAD_TEND_U(I,K)+2.*ADU(I,K,J)+VST(I,K,J1_00)*FPP) & |
---|
1131 | & *VM |
---|
1132 | ADV(I,K,J)=(VAD_TEND_V(I,K)+2.*ADV(I,K,J)-UST(I,K,J1_00)*FPP) & |
---|
1133 | & *VM |
---|
1134 | ENDDO |
---|
1135 | ENDDO |
---|
1136 | !----------------------------------------------------------------------- |
---|
1137 | !----------------------------------------------------------------------- |
---|
1138 | ! |
---|
1139 | ENDDO main_integration |
---|
1140 | ! |
---|
1141 | !----------------------------------------------------------------------- |
---|
1142 | !----------------------------------------------------------------------- |
---|
1143 | ! |
---|
1144 | !----------------------------------------------------------------------- |
---|
1145 | !*** SAVE THE OLD VALUES FOR TIMESTEPPING |
---|
1146 | !----------------------------------------------------------------------- |
---|
1147 | ! |
---|
1148 | DO J=MYJS_P4,MYJE_P4 |
---|
1149 | DO K=KTS,KTE |
---|
1150 | DO I=MYIS_P4,MYIE_P4 |
---|
1151 | TOLD(I,K,J)=T(I,K,J) |
---|
1152 | UOLD(I,K,J)=U(I,K,J) |
---|
1153 | VOLD(I,K,J)=V(I,K,J) |
---|
1154 | ENDDO |
---|
1155 | ENDDO |
---|
1156 | ENDDO |
---|
1157 | ! |
---|
1158 | !----------------------------------------------------------------------- |
---|
1159 | !*** FINALLY UPDATE THE PROGNOSTIC VARIABLES |
---|
1160 | !----------------------------------------------------------------------- |
---|
1161 | ! |
---|
1162 | DO J=MYJS2,MYJE2 |
---|
1163 | DO K=KTS,KTE |
---|
1164 | DO I=MYIS1,MYIE1 |
---|
1165 | T(I,K,J)=ADT(I,K,J)+T(I,K,J) |
---|
1166 | U(I,K,J)=ADU(I,K,J)+U(I,K,J) |
---|
1167 | V(I,K,J)=ADV(I,K,J)+V(I,K,J) |
---|
1168 | ENDDO |
---|
1169 | ENDDO |
---|
1170 | ENDDO |
---|
1171 | !----------------------------------------------------------------------- |
---|
1172 | END SUBROUTINE ADVE |
---|
1173 | !----------------------------------------------------------------------- |
---|