1 | !IDEAL:MODEL_LAYER:INITIALIZATION |
---|
2 | ! |
---|
3 | |
---|
4 | ! This MODULE holds the routines which are used to perform various initializations |
---|
5 | ! for the individual domains. |
---|
6 | |
---|
7 | ! This MODULE CONTAINS the following routines: |
---|
8 | |
---|
9 | ! initialize_field_test - 1. Set different fields to different constant |
---|
10 | ! values. This is only a test. If the correct |
---|
11 | ! domain is not found (based upon the "id") |
---|
12 | ! then a fatal error is issued. |
---|
13 | |
---|
14 | !----------------------------------------------------------------------- |
---|
15 | |
---|
16 | MODULE module_initialize_ideal |
---|
17 | |
---|
18 | USE module_domain |
---|
19 | USE module_io_domain |
---|
20 | USE module_state_description |
---|
21 | USE module_model_constants |
---|
22 | USE module_bc |
---|
23 | USE module_timing |
---|
24 | USE module_configure |
---|
25 | USE module_init_utilities |
---|
26 | USE module_soil_pre |
---|
27 | #ifdef DM_PARALLEL |
---|
28 | USE module_dm |
---|
29 | #endif |
---|
30 | |
---|
31 | |
---|
32 | CONTAINS |
---|
33 | |
---|
34 | |
---|
35 | !------------------------------------------------------------------- |
---|
36 | ! this is a wrapper for the solver-specific init_domain routines. |
---|
37 | ! Also dereferences the grid variables and passes them down as arguments. |
---|
38 | ! This is crucial, since the lower level routines may do message passing |
---|
39 | ! and this will get fouled up on machines that insist on passing down |
---|
40 | ! copies of assumed-shape arrays (by passing down as arguments, the |
---|
41 | ! data are treated as assumed-size -- ie. f77 -- arrays and the copying |
---|
42 | ! business is avoided). Fie on the F90 designers. Fie and a pox. |
---|
43 | ! NOTE: Modified to remove all but arrays of rank 4 or more from the |
---|
44 | ! argument list. Arrays with rank>3 are still problematic due to the |
---|
45 | ! above-noted fie- and pox-ities. TBH 20061129. |
---|
46 | |
---|
47 | SUBROUTINE init_domain ( grid ) |
---|
48 | |
---|
49 | IMPLICIT NONE |
---|
50 | |
---|
51 | ! Input data. |
---|
52 | TYPE (domain), POINTER :: grid |
---|
53 | ! Local data. |
---|
54 | INTEGER :: idum1, idum2 |
---|
55 | |
---|
56 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
---|
57 | |
---|
58 | CALL init_domain_rk( grid & |
---|
59 | ! |
---|
60 | #include <actual_new_args.inc> |
---|
61 | ! |
---|
62 | ) |
---|
63 | END SUBROUTINE init_domain |
---|
64 | |
---|
65 | !------------------------------------------------------------------- |
---|
66 | |
---|
67 | SUBROUTINE init_domain_rk ( grid & |
---|
68 | ! |
---|
69 | # include <dummy_new_args.inc> |
---|
70 | ! |
---|
71 | ) |
---|
72 | IMPLICIT NONE |
---|
73 | |
---|
74 | ! Input data. |
---|
75 | TYPE (domain), POINTER :: grid |
---|
76 | |
---|
77 | # include <dummy_new_decl.inc> |
---|
78 | |
---|
79 | TYPE (grid_config_rec_type) :: config_flags |
---|
80 | |
---|
81 | ! Local data |
---|
82 | INTEGER :: & |
---|
83 | ids, ide, jds, jde, kds, kde, & |
---|
84 | ims, ime, jms, jme, kms, kme, & |
---|
85 | its, ite, jts, jte, kts, kte, & |
---|
86 | i, j, k |
---|
87 | |
---|
88 | INTEGER, PARAMETER :: nl_max = 1000 |
---|
89 | REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in |
---|
90 | INTEGER :: nl_in |
---|
91 | |
---|
92 | INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc, lm |
---|
93 | REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u |
---|
94 | REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2 |
---|
95 | ! REAL, EXTERNAL :: interp_0 |
---|
96 | REAL :: pi, rnd |
---|
97 | |
---|
98 | ! variables/arrays for analytic vortex: |
---|
99 | integer :: nref,kref,nloop,i1,i2 |
---|
100 | real :: r0,zdd,dd1,dd2,xref,vr,fcor,qvs,e1,tx,px,qx,ric,rjc,rr,diff,sst |
---|
101 | real*8 :: rmax,vmax,frac,angle |
---|
102 | real, dimension(:), allocatable :: rref,zref,th0,qv0,thv0,prs0,pi0,rh0 |
---|
103 | real, dimension(:,:), allocatable :: vref,piref,pref,thref,thvref,qvref |
---|
104 | |
---|
105 | ! stuff from original initialization that has been dropped from the Registry |
---|
106 | REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt |
---|
107 | REAL :: qvf1, qvf2, pd_surf |
---|
108 | INTEGER :: it |
---|
109 | real :: thtmp, ptmp, temp(3) |
---|
110 | |
---|
111 | LOGICAL :: moisture_init |
---|
112 | LOGICAL :: stretch_grid, dry_sounding |
---|
113 | character (len=256) :: mminlu2 |
---|
114 | |
---|
115 | #ifdef DM_PARALLEL |
---|
116 | # include <data_calls.inc> |
---|
117 | #endif |
---|
118 | |
---|
119 | |
---|
120 | SELECT CASE ( model_data_order ) |
---|
121 | CASE ( DATA_ORDER_ZXY ) |
---|
122 | kds = grid%sd31 ; kde = grid%ed31 ; |
---|
123 | ids = grid%sd32 ; ide = grid%ed32 ; |
---|
124 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
125 | |
---|
126 | kms = grid%sm31 ; kme = grid%em31 ; |
---|
127 | ims = grid%sm32 ; ime = grid%em32 ; |
---|
128 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
129 | |
---|
130 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
---|
131 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
---|
132 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
133 | CASE ( DATA_ORDER_XYZ ) |
---|
134 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
135 | jds = grid%sd32 ; jde = grid%ed32 ; |
---|
136 | kds = grid%sd33 ; kde = grid%ed33 ; |
---|
137 | |
---|
138 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
139 | jms = grid%sm32 ; jme = grid%em32 ; |
---|
140 | kms = grid%sm33 ; kme = grid%em33 ; |
---|
141 | |
---|
142 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
143 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
---|
144 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
---|
145 | CASE ( DATA_ORDER_XZY ) |
---|
146 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
147 | kds = grid%sd32 ; kde = grid%ed32 ; |
---|
148 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
149 | |
---|
150 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
151 | kms = grid%sm32 ; kme = grid%em32 ; |
---|
152 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
153 | |
---|
154 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
155 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
---|
156 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
157 | |
---|
158 | END SELECT |
---|
159 | |
---|
160 | !----------------------------------------------------------------------- |
---|
161 | ! USER SETTINGS |
---|
162 | |
---|
163 | ! Parameters for analytic vortex: |
---|
164 | ! Reference: Rotunno and Emanuel, 1987, JAS, p. 549 |
---|
165 | |
---|
166 | r0 = 412500.0 ! outer radius (m) |
---|
167 | rmax = 82500.0 ! approximate radius of max winds (m) |
---|
168 | vmax = 15.0 ! approximate value of max wind speed (m/s) |
---|
169 | zdd = 20000.0 ! depth of vortex (m) |
---|
170 | |
---|
171 | |
---|
172 | ! other settings: |
---|
173 | |
---|
174 | fcor = 5.0e-5 ! Coriolis parameter (1/s) |
---|
175 | sst = 28.0 ! sea-surface temperature (Celsius) |
---|
176 | |
---|
177 | !----------------------------------------------------------------------- |
---|
178 | |
---|
179 | stretch_grid = .true. |
---|
180 | delt = 6. |
---|
181 | ! z_scale = .50 |
---|
182 | z_scale = .40 |
---|
183 | pi = 2.*asin(1.0) |
---|
184 | write(6,*) ' pi is ',pi |
---|
185 | nxc = (ide-ids)/2 |
---|
186 | nyc = jde/2 |
---|
187 | icm = ide/2 |
---|
188 | ! lm is the half width of the land in terms of grid points |
---|
189 | lm = 25 |
---|
190 | write(6,*) 'lm,icm-lm,icm+lm = ', lm,icm-lm,icm+lm |
---|
191 | |
---|
192 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
---|
193 | |
---|
194 | ! here we check to see if the boundary conditions are set properly |
---|
195 | |
---|
196 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
---|
197 | |
---|
198 | moisture_init = .true. |
---|
199 | |
---|
200 | grid%itimestep=0 |
---|
201 | |
---|
202 | #ifdef DM_PARALLEL |
---|
203 | CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) |
---|
204 | CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) |
---|
205 | #endif |
---|
206 | |
---|
207 | mminlu2 = ' ' |
---|
208 | mminlu2(1:4) = 'USGS' |
---|
209 | CALL nl_set_mminlu(1, mminlu2) |
---|
210 | ! CALL nl_set_mminlu(1, 'USGS') |
---|
211 | CALL nl_set_iswater(1,16) |
---|
212 | CALL nl_set_isice(1,3) |
---|
213 | CALL nl_set_cen_lat(1,20.) |
---|
214 | CALL nl_set_cen_lon(1,-105.) |
---|
215 | CALL nl_set_truelat1(1,0.) |
---|
216 | CALL nl_set_truelat2(1,0.) |
---|
217 | CALL nl_set_moad_cen_lat (1,0.) |
---|
218 | CALL nl_set_stand_lon (1,0.) |
---|
219 | CALL nl_set_pole_lon (1,0.) |
---|
220 | CALL nl_set_pole_lat (1,90.) |
---|
221 | CALL nl_set_map_proj(1,0) |
---|
222 | ! CALL model_to_grid_config_rec(1,model_config_rec,config_flags) |
---|
223 | CALL nl_get_iswater(1,grid%iswater) |
---|
224 | |
---|
225 | ! here we initialize data that currently is not initialized |
---|
226 | ! in the input data |
---|
227 | |
---|
228 | |
---|
229 | DO j = jts, jte |
---|
230 | DO i = its, ite |
---|
231 | grid%ht(i,j) = 0. |
---|
232 | grid%msft(i,j) = 1. |
---|
233 | grid%msfu(i,j) = 1. |
---|
234 | grid%msfv(i,j) = 1. |
---|
235 | grid%msftx(i,j) = 1. |
---|
236 | grid%msfty(i,j) = 1. |
---|
237 | grid%msfux(i,j) = 1. |
---|
238 | grid%msfuy(i,j) = 1. |
---|
239 | grid%msfvx(i,j) = 1. |
---|
240 | grid%msfvy(i,j) = 1. |
---|
241 | grid%msfvx_inv(i,j)= 1. |
---|
242 | grid%sina(i,j) = 0. |
---|
243 | grid%cosa(i,j) = 1. |
---|
244 | grid%xlong(i,j) = 0.0 |
---|
245 | grid%e(i,j) = 0.0 |
---|
246 | grid%f(i,j) = fcor |
---|
247 | grid%xlat(i,j) = asin(0.5*fcor/EOMEG)/DEGRAD |
---|
248 | ! Hard-wire the ocean configuration |
---|
249 | grid%xland(i,j) = 2. |
---|
250 | grid%lu_index(i,j) = 16 |
---|
251 | grid%tsk(i,j) = 273.15 + sst |
---|
252 | ! I think tmn is not used for ocean points, but set a value anyway: |
---|
253 | grid%tmn(i,j) = grid%tsk(i,j) - 10.0 |
---|
254 | END DO |
---|
255 | END DO |
---|
256 | |
---|
257 | print *,' f = ',grid%f(its,jts) |
---|
258 | print *,' lat = ',grid%xlat(its,jts) |
---|
259 | |
---|
260 | ! for Noah LSM, additional variables need to be initialized |
---|
261 | |
---|
262 | other_masked_fields : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) |
---|
263 | |
---|
264 | CASE (SLABSCHEME) |
---|
265 | |
---|
266 | CASE (LSMSCHEME) |
---|
267 | |
---|
268 | DO j = jts , MIN(jde-1,jte) |
---|
269 | DO i = its , MIN(ide-1,ite) |
---|
270 | IF (grid%xland(i,j) .lt. 1.5) THEN |
---|
271 | grid%vegfra(i,j) = 0.5 |
---|
272 | grid%canwat(i,j) = 0. |
---|
273 | grid%ivgtyp(i,j) = 18 |
---|
274 | grid%isltyp(i,j) = 8 |
---|
275 | grid%xice(i,j) = 0. |
---|
276 | grid%snow(i,j) = 0. |
---|
277 | ELSE |
---|
278 | grid%vegfra(i,j) = 0. |
---|
279 | grid%canwat(i,j) = 0. |
---|
280 | grid%ivgtyp(i,j) = 16 |
---|
281 | grid%isltyp(i,j) = 14 |
---|
282 | grid%xice(i,j) = 0. |
---|
283 | grid%snow(i,j) = 0. |
---|
284 | ENDIF |
---|
285 | END DO |
---|
286 | END DO |
---|
287 | |
---|
288 | CASE (RUCLSMSCHEME) |
---|
289 | |
---|
290 | END SELECT other_masked_fields |
---|
291 | |
---|
292 | DO j = jts, jte |
---|
293 | DO k = kts, kte |
---|
294 | DO i = its, ite |
---|
295 | grid%ww(i,k,j) = 0. |
---|
296 | END DO |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | |
---|
300 | grid%step_number = 0 |
---|
301 | |
---|
302 | ! Process the soil; note that there are some things hard-wired into share/module_soil_pre.F |
---|
303 | CALL process_soil_ideal(grid%xland,grid%xice,grid%vegfra,grid%snow,grid%canwat, & |
---|
304 | grid%ivgtyp,grid%isltyp,grid%tslb,grid%smois, & |
---|
305 | grid%tsk,grid%tmn,grid%zs,grid%dzs,model_config_rec%num_soil_layers, & |
---|
306 | model_config_rec%sf_surface_physics(grid%id), & |
---|
307 | ids,ide, jds,jde, kds,kde,& |
---|
308 | ims,ime, jms,jme, kms,kme,& |
---|
309 | its,ite, jts,jte, kts,kte ) |
---|
310 | |
---|
311 | ! set up the grid |
---|
312 | |
---|
313 | IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz) |
---|
314 | DO k=1, kde |
---|
315 | grid%znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ & |
---|
316 | (1.-exp(-1./z_scale)) |
---|
317 | ENDDO |
---|
318 | ELSE |
---|
319 | DO k=1, kde |
---|
320 | grid%znw(k) = 1. - float(k-1)/float(kde-1) |
---|
321 | ENDDO |
---|
322 | ENDIF |
---|
323 | |
---|
324 | DO k=1, kde-1 |
---|
325 | grid%dnw(k) = grid%znw(k+1) - grid%znw(k) |
---|
326 | grid%rdnw(k) = 1./grid%dnw(k) |
---|
327 | grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) |
---|
328 | ENDDO |
---|
329 | DO k=2, kde-1 |
---|
330 | grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) |
---|
331 | grid%rdn(k) = 1./grid%dn(k) |
---|
332 | grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) |
---|
333 | grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) |
---|
334 | ENDDO |
---|
335 | |
---|
336 | cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) |
---|
337 | cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) |
---|
338 | grid%cf1 = grid%fnp(2) + cof1 |
---|
339 | grid%cf2 = grid%fnm(2) - cof1 - cof2 |
---|
340 | grid%cf3 = cof2 |
---|
341 | |
---|
342 | grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) |
---|
343 | grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) |
---|
344 | grid%rdx = 1./config_flags%dx |
---|
345 | grid%rdy = 1./config_flags%dy |
---|
346 | |
---|
347 | ! get the sounding from the ascii sounding file, first get dry sounding and |
---|
348 | ! calculate base state |
---|
349 | |
---|
350 | write(6,*) ' getting dry sounding for base state ' |
---|
351 | dry_sounding = .true. |
---|
352 | CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) |
---|
353 | |
---|
354 | write(6,*) ' returned from reading sounding, nl_in is ',nl_in |
---|
355 | |
---|
356 | ! find ptop for the desired ztop (ztop is input from the namelist), |
---|
357 | ! and find surface pressure |
---|
358 | |
---|
359 | grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in ) |
---|
360 | |
---|
361 | DO j=jts,jte |
---|
362 | DO i=its,ite ! flat surface |
---|
363 | grid%phb(i,1,j) = 0. |
---|
364 | grid%php(i,1,j) = 0. |
---|
365 | grid%ph0(i,1,j) = 0. |
---|
366 | grid%ht(i,j) = 0. |
---|
367 | ENDDO |
---|
368 | ENDDO |
---|
369 | |
---|
370 | DO J = jts, jte |
---|
371 | DO I = its, ite |
---|
372 | |
---|
373 | p_surf = interp_0( p_in, zk, grid%phb(i,1,j)/g, nl_in ) |
---|
374 | grid%mub(i,j) = p_surf-grid%p_top |
---|
375 | |
---|
376 | ! this is dry hydrostatic sounding (base state), so given grid%p (coordinate), |
---|
377 | ! interp theta (from interp) and compute 1/rho from eqn. of state |
---|
378 | |
---|
379 | DO K = 1, kte-1 |
---|
380 | p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
381 | grid%pb(i,k,j) = p_level |
---|
382 | grid%t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0 |
---|
383 | grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm |
---|
384 | ENDDO |
---|
385 | |
---|
386 | ! calc hydrostatic balance (alternatively we could interp the geopotential from the |
---|
387 | ! sounding, but this assures that the base state is in exact hydrostatic balance with |
---|
388 | ! respect to the model eqns. |
---|
389 | |
---|
390 | DO k = 2,kte |
---|
391 | grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) |
---|
392 | ENDDO |
---|
393 | |
---|
394 | ENDDO |
---|
395 | ENDDO |
---|
396 | |
---|
397 | write(6,*) ' ptop is ',grid%p_top |
---|
398 | write(6,*) ' base state grid%mub(1,1), p_surf is ',grid%mub(1,1),grid%mub(1,1)+grid%p_top |
---|
399 | |
---|
400 | ! calculate full state for each column - this includes moisture. |
---|
401 | |
---|
402 | write(6,*) ' getting moist sounding for full state ' |
---|
403 | dry_sounding = .false. |
---|
404 | CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) |
---|
405 | |
---|
406 | DO J = jts, min(jde-1,jte) |
---|
407 | DO I = its, min(ide-1,ite) |
---|
408 | |
---|
409 | ! At this point grid%p_top is already set. find the DRY mass in the column |
---|
410 | ! by interpolating the DRY pressure. |
---|
411 | |
---|
412 | pd_surf = interp_0( pd_in, zk, grid%phb(i,1,j)/g, nl_in ) |
---|
413 | |
---|
414 | ! compute the perturbation mass and the full mass |
---|
415 | |
---|
416 | grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j) |
---|
417 | grid%mu_2(i,j) = grid%mu_1(i,j) |
---|
418 | grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j) |
---|
419 | |
---|
420 | ! given the dry pressure and coordinate system, interp the potential |
---|
421 | ! temperature and qv |
---|
422 | |
---|
423 | do k=1,kde-1 |
---|
424 | |
---|
425 | p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top |
---|
426 | |
---|
427 | moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) |
---|
428 | grid%t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 |
---|
429 | grid%t_2(i,k,j) = grid%t_1(i,k,j) |
---|
430 | |
---|
431 | |
---|
432 | enddo |
---|
433 | |
---|
434 | ! integrate the hydrostatic equation (from the RHS of the bigstep |
---|
435 | ! vertical momentum equation) down from the top to get grid%p. |
---|
436 | ! first from the top of the model to the top pressure |
---|
437 | |
---|
438 | k = kte-1 ! top level |
---|
439 | |
---|
440 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
---|
441 | qvf2 = 1./(1.+qvf1) |
---|
442 | qvf1 = qvf1*qvf2 |
---|
443 | |
---|
444 | ! grid%p(i,k,j) = - 0.5*grid%mu_1(i,j)/grid%rdnw(k) |
---|
445 | grid%p(i,k,j) = - 0.5*(grid%mu_1(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 |
---|
446 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
447 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & |
---|
448 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
449 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
450 | |
---|
451 | ! down the column |
---|
452 | |
---|
453 | do k=kte-2,1,-1 |
---|
454 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
---|
455 | qvf2 = 1./(1.+qvf1) |
---|
456 | qvf1 = qvf1*qvf2 |
---|
457 | grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_1(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) |
---|
458 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
459 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & |
---|
460 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
461 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
462 | enddo |
---|
463 | |
---|
464 | ! this is the hydrostatic equation used in the model after the |
---|
465 | ! small timesteps. In the model, grid%al (inverse density) |
---|
466 | ! is computed from the geopotential. |
---|
467 | |
---|
468 | |
---|
469 | grid%ph_1(i,1,j) = 0. |
---|
470 | DO k = 2,kte |
---|
471 | grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (1./grid%rdnw(k-1))*( & |
---|
472 | (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & |
---|
473 | grid%mu_1(i,j)*grid%alb(i,k-1,j) ) |
---|
474 | |
---|
475 | grid%ph_2(i,k,j) = grid%ph_1(i,k,j) |
---|
476 | grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) |
---|
477 | ENDDO |
---|
478 | |
---|
479 | if((i==2) .and. (j==2)) then |
---|
480 | write(6,*) ' grid%ph_1 calc ',grid%ph_1(2,1,2),grid%ph_1(2,2,2),& |
---|
481 | grid%mu_1(2,2)+grid%mub(2,2),grid%mu_1(2,2), & |
---|
482 | grid%alb(2,1,2),grid%al(1,2,1),grid%rdnw(1) |
---|
483 | endif |
---|
484 | |
---|
485 | ENDDO |
---|
486 | ENDDO |
---|
487 | |
---|
488 | !----------------------------------------------------------------------- |
---|
489 | ! Analytic vortex. |
---|
490 | ! Reference: Rotunno and Emanuel, 1987, JAS, p. 549 |
---|
491 | |
---|
492 | dd2 = 2.0 * rmax / ( r0 + rmax ) |
---|
493 | |
---|
494 | nref = 1 + int( float(ide-ids+1)/2.0 ) |
---|
495 | kref = kte-1 |
---|
496 | |
---|
497 | print *,' ids,ide,kds,kds = ',ids,ide,kds,kde |
---|
498 | print *,' its,ite,kts,kts = ',its,ite,kts,kte |
---|
499 | print *,' nref,fcor = ',nref,fcor |
---|
500 | print *,' r0,rmax,vmax,zdd = ',r0,rmax,vmax,zdd |
---|
501 | |
---|
502 | allocate( rref(nref) ) |
---|
503 | allocate( zref(0:kref+1) ) |
---|
504 | allocate( th0(0:kref+1) ) |
---|
505 | allocate( qv0(0:kref+1) ) |
---|
506 | allocate( thv0(0:kref+1) ) |
---|
507 | allocate( prs0(0:kref+1) ) |
---|
508 | allocate( pi0(0:kref+1) ) |
---|
509 | allocate( rh0(0:kref+1) ) |
---|
510 | allocate( vref(nref,0:kref+1)) |
---|
511 | allocate( piref(nref,0:kref+1)) |
---|
512 | allocate( pref(nref,0:kref+1)) |
---|
513 | allocate( thref(nref,0:kref+1)) |
---|
514 | allocate(thvref(nref,0:kref+1)) |
---|
515 | allocate( qvref(nref,0:kref+1)) |
---|
516 | |
---|
517 | ! get base state: |
---|
518 | print *,' zref,th0,qv0,thv0:' |
---|
519 | do k=1,kref |
---|
520 | th0(k) = t0+grid%t_1(1,k,1) |
---|
521 | qv0(k) = moist(1,k,1,P_QV) |
---|
522 | thv0(k) = th0(k)*(1.0+(r_v/r_d)*qv0(k))/(1.0+qv0(k)) |
---|
523 | zref(k) = 0.5*(grid%phb(1,k,1)+grid%phb(1,k+1,1)+grid%ph_1(1,k,1)+grid%ph_1(1,k+1,1))/g |
---|
524 | print *,k,zref(k),th0(k),qv0(k),thv0(k) |
---|
525 | enddo |
---|
526 | |
---|
527 | print *,' prs0,pi0,rh0:' |
---|
528 | do k=1,kref |
---|
529 | prs0(k) = grid%p(1,k,1)+grid%pb(1,k,1) |
---|
530 | pi0(k) = (prs0(k)/p0)**(r_d/cp) |
---|
531 | E1=1000.0*SVP1*EXP(SVP2*(th0(k)*pi0(k)-SVPT0)/(th0(k)*pi0(k)-SVP3)) |
---|
532 | qvs = EP_2*E1/(prs0(k)-E1) |
---|
533 | rh0(k) = qv0(k)/qvs |
---|
534 | print *,k,prs0(k),pi0(k),rh0(k) |
---|
535 | enddo |
---|
536 | |
---|
537 | zref(0) = -zref(1) |
---|
538 | zref(kref+1) = zref(kref)+(zref(kref)-zref(kref-1)) |
---|
539 | |
---|
540 | rref=0.0 |
---|
541 | vref=0.0 |
---|
542 | piref=0.0 |
---|
543 | pref=0.0 |
---|
544 | thref=0.0 |
---|
545 | thvref=0.0 |
---|
546 | qvref=0.0 |
---|
547 | |
---|
548 | do i=1,nref |
---|
549 | rref(i) = config_flags%dx*(float(i-1)+0.5) |
---|
550 | enddo |
---|
551 | |
---|
552 | print *,' zref:' |
---|
553 | do k=0,kref+1 |
---|
554 | print *,k,zref(k) |
---|
555 | enddo |
---|
556 | |
---|
557 | print *,' vref:' |
---|
558 | do k=1,kref |
---|
559 | do i=1,nref |
---|
560 | if(rref(i).lt.r0)then |
---|
561 | dd1 = 2.0 * rmax / ( rref(i) + rmax ) |
---|
562 | vr = sqrt( vmax**2 * (rref(i)/rmax)**2 & |
---|
563 | * ( dd1 ** 3 - dd2 ** 3 ) + 0.25*fcor*fcor*rref(i)*rref(i) ) & |
---|
564 | - 0.5 * fcor * rref(i) |
---|
565 | else |
---|
566 | vr = 0.0 |
---|
567 | endif |
---|
568 | if(zref(k).lt.zdd)then |
---|
569 | vref(i,k) = vr * (zdd-zref(k))/(zdd-0.0) |
---|
570 | else |
---|
571 | vref(i,k) = 0.0 |
---|
572 | endif |
---|
573 | if(k.eq.1) print *,i,rref(i),vref(i,k) |
---|
574 | enddo |
---|
575 | enddo |
---|
576 | |
---|
577 | print *,' Iterate:' |
---|
578 | DO nloop=1,20 |
---|
579 | |
---|
580 | ! get qv and thv from rh and th: |
---|
581 | do k=1,kref |
---|
582 | do i=1,nref |
---|
583 | tx = (pi0(k)+piref(i,k))*(th0(k)+thref(i,k)) |
---|
584 | px = p0*((pi0(k)+piref(i,k))**(cp/r_d)) |
---|
585 | E1 = 1000.0*SVP1*EXP(SVP2*(tx-SVPT0)/(tx-SVP3)) |
---|
586 | qvs = EP_2*E1/(px-E1) |
---|
587 | qvref(i,k) = rh0(k)*qvs |
---|
588 | thvref(i,k)=(th0(k)+thref(i,k))*(1.0+(r_v/r_d)*qvref(i,k)) & |
---|
589 | /(1.0+qvref(i,k)) |
---|
590 | enddo |
---|
591 | enddo |
---|
592 | |
---|
593 | ! get nondimensional pressure perturbation (piref): |
---|
594 | do k=1,kref |
---|
595 | piref(nref,k)=0.0 |
---|
596 | do i=nref,2,-1 |
---|
597 | piref(i-1,k) = piref(i,k) & |
---|
598 | + (rref(i-1)-rref(i))/(cp*0.5*(thvref(i-1,k)+thvref(i,k))) * 0.5 * & |
---|
599 | ( vref(i ,k)*vref(i ,k)/rref(i) & |
---|
600 | +vref(i-1,k)*vref(i-1,k)/rref(i-1) & |
---|
601 | + fcor * ( vref(i,k) + vref(i-1,k) ) ) |
---|
602 | enddo |
---|
603 | enddo |
---|
604 | |
---|
605 | do i=1,nref |
---|
606 | piref(i, 0) = piref(i, 1) |
---|
607 | piref(i,kref+1) = piref(i,kref) |
---|
608 | enddo |
---|
609 | |
---|
610 | ! get potential temperature perturbation (thref): |
---|
611 | do k=2,kref |
---|
612 | do i=1,nref |
---|
613 | thref(i,k) = 0.5*( cp*0.5*(thvref(i,k)+thvref(i,k+1))*(piref(i,k+1)-piref(i,k))/(zref(k+1)-zref(k)) & |
---|
614 | +cp*0.5*(thvref(i,k)+thvref(i,k-1))*(piref(i,k)-piref(i,k-1))/(zref(k)-zref(k-1)) ) & |
---|
615 | *thv0(k)/g |
---|
616 | thref(i,k)=(thv0(k)+thref(i,k))*(1.0+qvref(i,k))/(1.0+(r_v/r_d)*qvref(i,k))-th0(k) |
---|
617 | enddo |
---|
618 | enddo |
---|
619 | |
---|
620 | k=1 |
---|
621 | do i=1,nref |
---|
622 | thref(i,k) = ( cp*0.5*(thvref(i,k)+thvref(i,k+1))*(piref(i,k+1)-piref(i,k))/(zref(k+1)-zref(k)) ) & |
---|
623 | *thv0(k)/g |
---|
624 | thref(i,k)=(thv0(k)+thref(i,k))*(1.0+qvref(i,k))/(1.0+(r_v/r_d)*qvref(i,k))-th0(k) |
---|
625 | enddo |
---|
626 | |
---|
627 | print *,' th,qv,pi = ',nloop,thref(1,1),qvref(1,1),piref(1,1) |
---|
628 | |
---|
629 | ENDDO ! enddo for iteration |
---|
630 | |
---|
631 | ! reference (total) pressure: |
---|
632 | do k=1,kref |
---|
633 | do i=1,nref |
---|
634 | pref(i,k) = p0*( ( pi0(k)+piref(i1,k)+(piref(i2,k)-piref(i1,k))*frac )**(cp/r_d) ) |
---|
635 | enddo |
---|
636 | enddo |
---|
637 | |
---|
638 | ! analytic axisymmetric vortex is ready ... now interpolate to 3D grid: |
---|
639 | ! (note: vortex is placed in center of domain) |
---|
640 | |
---|
641 | ric = float(ide-ids+1)/2.0 |
---|
642 | rjc = float(jde-jds+1)/2.0 |
---|
643 | |
---|
644 | print *,' ids,ide,jds,jde = ',ids,ide,jds,jde |
---|
645 | print *,' ric,rjc = ',ric,rjc |
---|
646 | |
---|
647 | print *,' zk:' |
---|
648 | do k=1,kte |
---|
649 | zk(k) = zref(k) |
---|
650 | print *,k,zk(k) |
---|
651 | enddo |
---|
652 | |
---|
653 | nl_in = kte-1 |
---|
654 | print *,' nl_in = ',nl_in |
---|
655 | |
---|
656 | DO J = jts, min(jde-1,jte) |
---|
657 | DO I = its, min(ide-1,ite) |
---|
658 | rr = sqrt( ( (float(i)-ric)*config_flags%dx )**2 + ( (float(j)-rjc)*config_flags%dy )**2 ) |
---|
659 | rr = min( rr , rref(nref) ) |
---|
660 | diff = -1.0e20 |
---|
661 | ii = 0 |
---|
662 | do while( diff.lt.0.0 ) |
---|
663 | ii = ii + 1 |
---|
664 | diff = rref(ii)-rr |
---|
665 | enddo |
---|
666 | i2 = max( ii , 2 ) |
---|
667 | i1 = i2-1 |
---|
668 | frac = ( rr-rref(i1)) & |
---|
669 | /(rref(i2)-rref(i1)) |
---|
670 | do k=1,kte |
---|
671 | px = p0*( ( pi0(k)+piref(i1,k)+(piref(i2,k)-piref(i1,k))*frac )**(cp/r_d) ) |
---|
672 | qx = qvref(i1,k)+(qvref(i2,k)-qvref(i1,k))*frac |
---|
673 | qv(k) = qx |
---|
674 | theta(k) = th0(k)+thref(i1,k)+(thref(i2,k)-thref(i1,k))*frac |
---|
675 | pd_in(k) = px/(1.0+((r_v/r_d)*qx)) |
---|
676 | enddo |
---|
677 | |
---|
678 | ! At this point grid%p_top is already set. find the DRY mass in the column |
---|
679 | ! by interpolating the DRY pressure. |
---|
680 | |
---|
681 | pd_surf = interp_0( pd_in, zk, grid%phb(i,1,j)/g, nl_in ) |
---|
682 | |
---|
683 | ! compute the perturbation mass and the full mass |
---|
684 | |
---|
685 | grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j) |
---|
686 | grid%mu_2(i,j) = grid%mu_1(i,j) |
---|
687 | grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j) |
---|
688 | |
---|
689 | ! given the dry pressure and coordinate system, interp the potential |
---|
690 | ! temperature and qv |
---|
691 | |
---|
692 | do k=1,kde-1 |
---|
693 | |
---|
694 | p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top |
---|
695 | |
---|
696 | moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) |
---|
697 | grid%t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 |
---|
698 | grid%t_2(i,k,j) = grid%t_1(i,k,j) |
---|
699 | |
---|
700 | |
---|
701 | enddo |
---|
702 | |
---|
703 | |
---|
704 | |
---|
705 | ! integrate the hydrostatic equation (from the RHS of the bigstep |
---|
706 | ! vertical momentum equation) down from the top to get grid%p. |
---|
707 | ! first from the top of the model to the top pressure |
---|
708 | |
---|
709 | k = kte-1 ! top level |
---|
710 | |
---|
711 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) |
---|
712 | qvf2 = 1./(1.+qvf1) |
---|
713 | qvf1 = qvf1*qvf2 |
---|
714 | |
---|
715 | ! grid%p(i,k,j) = - 0.5*grid%mu_1(i,j)/grid%rdnw(k) |
---|
716 | grid%p(i,k,j) = - 0.5*(grid%mu_1(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 |
---|
717 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
718 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & |
---|
719 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
720 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
721 | |
---|
722 | ! down the column |
---|
723 | |
---|
724 | do k=kte-2,1,-1 |
---|
725 | qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) |
---|
726 | qvf2 = 1./(1.+qvf1) |
---|
727 | qvf1 = qvf1*qvf2 |
---|
728 | grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_1(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) |
---|
729 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
730 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & |
---|
731 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
732 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
733 | enddo |
---|
734 | |
---|
735 | ! this is the hydrostatic equation used in the model after the |
---|
736 | ! small timesteps. In the model, grid%al (inverse density) |
---|
737 | ! is computed from the geopotential. |
---|
738 | |
---|
739 | |
---|
740 | grid%ph_1(i,1,j) = 0. |
---|
741 | DO k = 2,kte |
---|
742 | grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (1./grid%rdnw(k-1))*( & |
---|
743 | (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & |
---|
744 | grid%mu_1(i,j)*grid%alb(i,k-1,j) ) |
---|
745 | |
---|
746 | grid%ph_2(i,k,j) = grid%ph_1(i,k,j) |
---|
747 | grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) |
---|
748 | ENDDO |
---|
749 | |
---|
750 | ENDDO ! do loop for i |
---|
751 | ENDDO ! do loop for j |
---|
752 | |
---|
753 | !------------------------------------------- |
---|
754 | ! Done with mass fields, now get winds: |
---|
755 | |
---|
756 | ! interp v |
---|
757 | |
---|
758 | DO J = jts, jte |
---|
759 | DO I = its, min(ide-1,ite) |
---|
760 | |
---|
761 | rr = sqrt( ( (float(i)-ric)*config_flags%dx )**2 + ( (float(j)-0.5-rjc)*config_flags%dy )**2 ) |
---|
762 | rr = min( rr , rref(nref) ) |
---|
763 | diff = -1.0e20 |
---|
764 | ii = 0 |
---|
765 | do while( diff.lt.0.0 ) |
---|
766 | ii = ii + 1 |
---|
767 | diff = rref(ii)-rr |
---|
768 | enddo |
---|
769 | i2 = max( ii , 2 ) |
---|
770 | i1 = i2-1 |
---|
771 | frac = ( rr-rref(i1)) & |
---|
772 | /(rref(i2)-rref(i1)) |
---|
773 | angle = datan2(dble( (float(j)-0.5-rjc)*config_flags%dy ), & |
---|
774 | dble( (float(i)-ric)*config_flags%dx ) ) |
---|
775 | do k=1,kte |
---|
776 | v(k) = (vref(i1,k)+( vref(i2,k)- vref(i1,k))*frac )*cos(angle) |
---|
777 | p_in(k) = pref(i1,k)+(pref(i2,k)-pref(i1,k))*frac |
---|
778 | enddo |
---|
779 | |
---|
780 | IF (j == jds) THEN |
---|
781 | z_at_v = grid%phb(i,1,j)/g |
---|
782 | ELSE IF (j == jde) THEN |
---|
783 | z_at_v = grid%phb(i,1,j-1)/g |
---|
784 | ELSE |
---|
785 | z_at_v = 0.5*(grid%phb(i,1,j)+grid%phb(i,1,j-1))/g |
---|
786 | END IF |
---|
787 | |
---|
788 | p_surf = interp_0( p_in, zk, z_at_v, nl_in ) |
---|
789 | |
---|
790 | DO K = 1, kte |
---|
791 | p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
792 | grid%v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in ) |
---|
793 | grid%v_2(i,k,j) = grid%v_1(i,k,j) |
---|
794 | ENDDO |
---|
795 | |
---|
796 | ENDDO |
---|
797 | ENDDO |
---|
798 | |
---|
799 | ! interp u |
---|
800 | |
---|
801 | DO J = jts, min(jde-1,jte) |
---|
802 | DO I = its, ite |
---|
803 | |
---|
804 | rr = sqrt( ( (float(i)-ric-0.5)*config_flags%dx )**2 + ( (float(j)-rjc)*config_flags%dy )**2 ) |
---|
805 | rr = min( rr , rref(nref) ) |
---|
806 | diff = -1.0e20 |
---|
807 | ii = 0 |
---|
808 | do while( diff.lt.0.0 ) |
---|
809 | ii = ii + 1 |
---|
810 | diff = rref(ii)-rr |
---|
811 | enddo |
---|
812 | i2 = max( ii , 2 ) |
---|
813 | i1 = i2-1 |
---|
814 | frac = ( rr-rref(i1)) & |
---|
815 | /(rref(i2)-rref(i1)) |
---|
816 | angle = datan2(dble( (float(j)-rjc)*config_flags%dy ), & |
---|
817 | dble( (float(i)-0.5-ric)*config_flags%dx ) ) |
---|
818 | do k=1,kte |
---|
819 | u(k) = -(vref(i1,k)+( vref(i2,k)- vref(i1,k))*frac )*sin(angle) |
---|
820 | p_in(k) = pref(i1,k)+(pref(i2,k)-pref(i1,k))*frac |
---|
821 | enddo |
---|
822 | |
---|
823 | IF (i == ids) THEN |
---|
824 | z_at_u = grid%phb(i,1,j)/g |
---|
825 | ELSE IF (i == ide) THEN |
---|
826 | z_at_u = grid%phb(i-1,1,j)/g |
---|
827 | ELSE |
---|
828 | z_at_u = 0.5*(grid%phb(i,1,j)+grid%phb(i-1,1,j))/g |
---|
829 | END IF |
---|
830 | |
---|
831 | p_surf = interp_0( p_in, zk, z_at_u, nl_in ) |
---|
832 | |
---|
833 | DO K = 1, kte |
---|
834 | p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
835 | grid%u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) |
---|
836 | grid%u_2(i,k,j) = grid%u_1(i,k,j) |
---|
837 | ENDDO |
---|
838 | |
---|
839 | ENDDO |
---|
840 | ENDDO |
---|
841 | |
---|
842 | ! All done ... deallocate arrays: |
---|
843 | |
---|
844 | deallocate( rref ) |
---|
845 | deallocate( zref ) |
---|
846 | deallocate( th0 ) |
---|
847 | deallocate( qv0 ) |
---|
848 | deallocate( thv0 ) |
---|
849 | deallocate( prs0 ) |
---|
850 | deallocate( pi0 ) |
---|
851 | deallocate( rh0 ) |
---|
852 | deallocate( vref ) |
---|
853 | deallocate( piref ) |
---|
854 | deallocate( pref ) |
---|
855 | deallocate( thref ) |
---|
856 | deallocate(thvref ) |
---|
857 | deallocate( qvref ) |
---|
858 | |
---|
859 | print *,' completed vortex init successfully ' |
---|
860 | |
---|
861 | !----------------------------------------------------------------------- |
---|
862 | |
---|
863 | if (0.gt.1) then |
---|
864 | !#if 0 |
---|
865 | ! The tropical_cyclone case is adapted from the squall line case |
---|
866 | ! so we just turn off the thermal perturbation |
---|
867 | |
---|
868 | ! thermal perturbation to kick off convection |
---|
869 | call random_seed |
---|
870 | write(6,*) ' nxc, nyc for perturbation ',nxc,nyc |
---|
871 | write(6,*) ' delt for perturbation ',delt |
---|
872 | |
---|
873 | DO J = jts, min(jde-1,jte) |
---|
874 | ! yrad = config_flags%dy*float(j-nyc)/4000. |
---|
875 | yrad = 0. |
---|
876 | DO I = its, min(ide-1,ite) |
---|
877 | xrad = config_flags%dx*float(i-nxc)/10000. |
---|
878 | ! xrad = 0. |
---|
879 | DO K = 1, 35 |
---|
880 | |
---|
881 | ! put in preturbation theta (bubble) and recalc density. note, |
---|
882 | ! the mass in the column is not changing, so when theta changes, |
---|
883 | ! we recompute density and geopotential |
---|
884 | zrad = 0.5*(grid%ph_1(i,k,j)+grid%ph_1(i,k+1,j) & |
---|
885 | +grid%phb(i,k,j)+grid%phb(i,k+1,j))/g |
---|
886 | zrad = (zrad-1500.)/1500. |
---|
887 | RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad) |
---|
888 | ! IF(RAD <= 1.) THEN |
---|
889 | call RANDOM_NUMBER(rnd) |
---|
890 | grid%t_1(i,k,j)=grid%t_1(i,k,j)+delt*(rnd-0.5) |
---|
891 | ! grid%t_1(i,k,j)=grid%t_1(i,k,j)+delt*COS(.5*PI*RAD)**2 |
---|
892 | grid%t_2(i,k,j)=grid%t_1(i,k,j) |
---|
893 | qvf = 1. + rvovrd*moist(i,k,j,P_QV) |
---|
894 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & |
---|
895 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
896 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
897 | ! ENDIF |
---|
898 | ENDDO |
---|
899 | |
---|
900 | ! rebalance hydrostatically |
---|
901 | |
---|
902 | DO k = 2,kte |
---|
903 | grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (1./grid%rdnw(k-1))*( & |
---|
904 | (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & |
---|
905 | grid%mu_1(i,j)*grid%alb(i,k-1,j) ) |
---|
906 | |
---|
907 | grid%ph_2(i,k,j) = grid%ph_1(i,k,j) |
---|
908 | grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) |
---|
909 | ENDDO |
---|
910 | |
---|
911 | ENDDO |
---|
912 | ENDDO |
---|
913 | endif |
---|
914 | !#endif |
---|
915 | |
---|
916 | write(6,*) ' grid%mu_1 from comp ', grid%mu_1(1,1) |
---|
917 | write(6,*) ' full state sounding from comp, ph, grid%p, grid%al, grid%t_1, qv ' |
---|
918 | do k=1,kde-1 |
---|
919 | write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1)+grid%phb(1,k,1), & |
---|
920 | grid%p(1,k,1)+grid%pb(1,k,1), grid%alt(1,k,1), & |
---|
921 | grid%t_1(1,k,1)+t0, moist(1,k,1,P_QV) |
---|
922 | enddo |
---|
923 | |
---|
924 | write(6,*) ' pert state sounding from comp, grid%ph_1, pp, alp, grid%t_1, qv ' |
---|
925 | do k=1,kde-1 |
---|
926 | write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1), & |
---|
927 | grid%p(1,k,1), grid%al(1,k,1), & |
---|
928 | grid%t_1(1,k,1), moist(1,k,1,P_QV) |
---|
929 | enddo |
---|
930 | |
---|
931 | !! interp v |
---|
932 | ! |
---|
933 | ! DO J = jts, jte |
---|
934 | ! DO I = its, min(ide-1,ite) |
---|
935 | ! |
---|
936 | ! IF (j == jds) THEN |
---|
937 | ! z_at_v = grid%phb(i,1,j)/g |
---|
938 | ! ELSE IF (j == jde) THEN |
---|
939 | ! z_at_v = grid%phb(i,1,j-1)/g |
---|
940 | ! ELSE |
---|
941 | ! z_at_v = 0.5*(grid%phb(i,1,j)+grid%phb(i,1,j-1))/g |
---|
942 | ! END IF |
---|
943 | ! |
---|
944 | ! p_surf = interp_0( p_in, zk, z_at_v, nl_in ) |
---|
945 | ! |
---|
946 | ! DO K = 1, kte |
---|
947 | ! p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
948 | ! grid%v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in ) |
---|
949 | ! grid%v_2(i,k,j) = grid%v_1(i,k,j) |
---|
950 | ! ENDDO |
---|
951 | ! |
---|
952 | ! ENDDO |
---|
953 | ! ENDDO |
---|
954 | ! |
---|
955 | !! interp u |
---|
956 | ! |
---|
957 | ! DO J = jts, min(jde-1,jte) |
---|
958 | ! DO I = its, ite |
---|
959 | ! |
---|
960 | ! IF (i == ids) THEN |
---|
961 | ! z_at_u = grid%phb(i,1,j)/g |
---|
962 | ! ELSE IF (i == ide) THEN |
---|
963 | ! z_at_u = grid%phb(i-1,1,j)/g |
---|
964 | ! ELSE |
---|
965 | ! z_at_u = 0.5*(grid%phb(i,1,j)+grid%phb(i-1,1,j))/g |
---|
966 | ! END IF |
---|
967 | ! |
---|
968 | ! p_surf = interp_0( p_in, zk, z_at_u, nl_in ) |
---|
969 | ! |
---|
970 | ! DO K = 1, kte |
---|
971 | ! p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
972 | ! grid%u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) |
---|
973 | ! grid%u_2(i,k,j) = grid%u_1(i,k,j) |
---|
974 | ! ENDDO |
---|
975 | ! |
---|
976 | ! ENDDO |
---|
977 | ! ENDDO |
---|
978 | |
---|
979 | ! set w |
---|
980 | |
---|
981 | DO J = jts, min(jde-1,jte) |
---|
982 | DO K = kts, kte |
---|
983 | DO I = its, min(ide-1,ite) |
---|
984 | grid%w_1(i,k,j) = 0. |
---|
985 | grid%w_2(i,k,j) = 0. |
---|
986 | ENDDO |
---|
987 | ENDDO |
---|
988 | ENDDO |
---|
989 | |
---|
990 | ! set a few more things |
---|
991 | |
---|
992 | DO J = jts, min(jde-1,jte) |
---|
993 | DO K = kts, kte-1 |
---|
994 | DO I = its, min(ide-1,ite) |
---|
995 | grid%h_diabatic(i,k,j) = 0. |
---|
996 | ENDDO |
---|
997 | ENDDO |
---|
998 | ENDDO |
---|
999 | |
---|
1000 | DO k=1,kte-1 |
---|
1001 | grid%t_base(k) = grid%t_1(1,k,1) |
---|
1002 | grid%qv_base(k) = moist(1,k,1,P_QV) |
---|
1003 | grid%u_base(k) = grid%u_1(1,k,1) |
---|
1004 | grid%v_base(k) = grid%v_1(1,k,1) |
---|
1005 | grid%z_base(k) = 0.5*(grid%phb(1,k,1)+grid%phb(1,k+1,1)+grid%ph_1(1,k,1)+grid%ph_1(1,k+1,1))/g |
---|
1006 | ENDDO |
---|
1007 | |
---|
1008 | DO J = jts, min(jde-1,jte) |
---|
1009 | DO I = its, min(ide-1,ite) |
---|
1010 | thtmp = grid%t_2(i,1,j)+t0 |
---|
1011 | ptmp = grid%p(i,1,j)+grid%pb(i,1,j) |
---|
1012 | temp(1) = thtmp * (ptmp/p1000mb)**rcp |
---|
1013 | thtmp = grid%t_2(i,2,j)+t0 |
---|
1014 | ptmp = grid%p(i,2,j)+grid%pb(i,2,j) |
---|
1015 | temp(2) = thtmp * (ptmp/p1000mb)**rcp |
---|
1016 | thtmp = grid%t_2(i,3,j)+t0 |
---|
1017 | ptmp = grid%p(i,3,j)+grid%pb(i,3,j) |
---|
1018 | temp(3) = thtmp * (ptmp/p1000mb)**rcp |
---|
1019 | |
---|
1020 | ! grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3) |
---|
1021 | ! I don't know why this is here, so I have commented it out: |
---|
1022 | !!! grid%tmn(I,J)=grid%tsk(I,J)-0.5 |
---|
1023 | ENDDO |
---|
1024 | ENDDO |
---|
1025 | |
---|
1026 | RETURN |
---|
1027 | |
---|
1028 | END SUBROUTINE init_domain_rk |
---|
1029 | |
---|
1030 | SUBROUTINE init_module_initialize |
---|
1031 | END SUBROUTINE init_module_initialize |
---|
1032 | |
---|
1033 | !--------------------------------------------------------------------- |
---|
1034 | |
---|
1035 | ! test driver for get_sounding |
---|
1036 | ! |
---|
1037 | ! implicit none |
---|
1038 | ! integer n |
---|
1039 | ! parameter(n = 1000) |
---|
1040 | ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n) |
---|
1041 | ! logical dry |
---|
1042 | ! integer nl,k |
---|
1043 | ! |
---|
1044 | ! dry = .false. |
---|
1045 | ! dry = .true. |
---|
1046 | ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl ) |
---|
1047 | ! write(6,*) ' input levels ',nl |
---|
1048 | ! write(6,*) ' sounding ' |
---|
1049 | ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' |
---|
1050 | ! do k=1,nl |
---|
1051 | ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k) |
---|
1052 | ! enddo |
---|
1053 | ! end |
---|
1054 | ! |
---|
1055 | !--------------------------------------------------------------------------- |
---|
1056 | |
---|
1057 | subroutine get_sounding( zk, p, p_dry, theta, rho, & |
---|
1058 | u, v, qv, dry, nl_max, nl_in ) |
---|
1059 | implicit none |
---|
1060 | |
---|
1061 | integer nl_max, nl_in |
---|
1062 | real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), & |
---|
1063 | u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max) |
---|
1064 | logical dry |
---|
1065 | |
---|
1066 | integer n |
---|
1067 | parameter(n=3000) |
---|
1068 | logical debug |
---|
1069 | parameter( debug = .true.) |
---|
1070 | |
---|
1071 | ! input sounding data |
---|
1072 | |
---|
1073 | real p_surf, th_surf, qv_surf |
---|
1074 | real pi_surf, pi(n) |
---|
1075 | real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n) |
---|
1076 | |
---|
1077 | ! diagnostics |
---|
1078 | |
---|
1079 | real rho_surf, p_input(n), rho_input(n) |
---|
1080 | real pm_input(n) ! this are for full moist sounding |
---|
1081 | |
---|
1082 | ! local data |
---|
1083 | |
---|
1084 | real r |
---|
1085 | parameter (r = r_d) |
---|
1086 | integer k, it, nl |
---|
1087 | real qvf, qvf1, dz |
---|
1088 | |
---|
1089 | ! first, read the sounding |
---|
1090 | |
---|
1091 | call read_sounding( p_surf, th_surf, qv_surf, & |
---|
1092 | h_input, th_input, qv_input, u_input, v_input,n, nl, debug ) |
---|
1093 | |
---|
1094 | if(dry) then |
---|
1095 | do k=1,nl |
---|
1096 | qv_input(k) = 0. |
---|
1097 | enddo |
---|
1098 | endif |
---|
1099 | |
---|
1100 | if(debug) write(6,*) ' number of input levels = ',nl |
---|
1101 | |
---|
1102 | nl_in = nl |
---|
1103 | if(nl_in .gt. nl_max ) then |
---|
1104 | write(6,*) ' too many levels for input arrays ',nl_in,nl_max |
---|
1105 | call wrf_error_fatal ( ' too many levels for input arrays ' ) |
---|
1106 | end if |
---|
1107 | |
---|
1108 | ! compute diagnostics, |
---|
1109 | ! first, convert qv(g/kg) to qv(g/g) |
---|
1110 | |
---|
1111 | do k=1,nl |
---|
1112 | qv_input(k) = 0.001*qv_input(k) |
---|
1113 | enddo |
---|
1114 | |
---|
1115 | p_surf = 100.*p_surf ! convert to pascals |
---|
1116 | qvf = 1. + rvovrd*qv_input(1) |
---|
1117 | rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm)) |
---|
1118 | pi_surf = (p_surf/p1000mb)**(r/cp) |
---|
1119 | |
---|
1120 | if(debug) then |
---|
1121 | write(6,*) ' surface density is ',rho_surf |
---|
1122 | write(6,*) ' surface pi is ',pi_surf |
---|
1123 | end if |
---|
1124 | |
---|
1125 | |
---|
1126 | ! integrate moist sounding hydrostatically, starting from the |
---|
1127 | ! specified surface pressure |
---|
1128 | ! -> first, integrate from surface to lowest level |
---|
1129 | |
---|
1130 | qvf = 1. + rvovrd*qv_input(1) |
---|
1131 | qvf1 = 1. + qv_input(1) |
---|
1132 | rho_input(1) = rho_surf |
---|
1133 | dz = h_input(1) |
---|
1134 | do it=1,10 |
---|
1135 | pm_input(1) = p_surf & |
---|
1136 | - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1 |
---|
1137 | rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm)) |
---|
1138 | enddo |
---|
1139 | |
---|
1140 | ! integrate up the column |
---|
1141 | |
---|
1142 | do k=2,nl |
---|
1143 | rho_input(k) = rho_input(k-1) |
---|
1144 | dz = h_input(k)-h_input(k-1) |
---|
1145 | qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k))) |
---|
1146 | qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here |
---|
1147 | |
---|
1148 | do it=1,10 |
---|
1149 | pm_input(k) = pm_input(k-1) & |
---|
1150 | - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1 |
---|
1151 | rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm)) |
---|
1152 | enddo |
---|
1153 | enddo |
---|
1154 | |
---|
1155 | ! we have the moist sounding |
---|
1156 | |
---|
1157 | ! next, compute the dry sounding using p at the highest level from the |
---|
1158 | ! moist sounding and integrating down. |
---|
1159 | |
---|
1160 | p_input(nl) = pm_input(nl) |
---|
1161 | |
---|
1162 | do k=nl-1,1,-1 |
---|
1163 | dz = h_input(k+1)-h_input(k) |
---|
1164 | p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g |
---|
1165 | enddo |
---|
1166 | |
---|
1167 | |
---|
1168 | do k=1,nl |
---|
1169 | zk(k) = h_input(k) |
---|
1170 | p(k) = pm_input(k) |
---|
1171 | p_dry(k) = p_input(k) |
---|
1172 | theta(k) = th_input(k) |
---|
1173 | rho(k) = rho_input(k) |
---|
1174 | u(k) = u_input(k) |
---|
1175 | v(k) = v_input(k) |
---|
1176 | qv(k) = qv_input(k) |
---|
1177 | |
---|
1178 | enddo |
---|
1179 | |
---|
1180 | if(debug) then |
---|
1181 | write(6,*) ' sounding ' |
---|
1182 | write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' |
---|
1183 | do k=1,nl |
---|
1184 | write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k) |
---|
1185 | enddo |
---|
1186 | |
---|
1187 | end if |
---|
1188 | |
---|
1189 | end subroutine get_sounding |
---|
1190 | |
---|
1191 | !------------------------------------------------------- |
---|
1192 | |
---|
1193 | subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug ) |
---|
1194 | implicit none |
---|
1195 | integer n,nl |
---|
1196 | real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n) |
---|
1197 | logical end_of_file |
---|
1198 | logical debug |
---|
1199 | |
---|
1200 | integer k |
---|
1201 | |
---|
1202 | open(unit=10,file='input_sounding',form='formatted',status='old') |
---|
1203 | rewind(10) |
---|
1204 | read(10,*) ps, ts, qvs |
---|
1205 | if(debug) then |
---|
1206 | write(6,*) ' input sounding surface parameters ' |
---|
1207 | write(6,*) ' surface pressure (mb) ',ps |
---|
1208 | write(6,*) ' surface pot. temp (K) ',ts |
---|
1209 | write(6,*) ' surface mixing ratio (g/kg) ',qvs |
---|
1210 | end if |
---|
1211 | |
---|
1212 | end_of_file = .false. |
---|
1213 | k = 0 |
---|
1214 | |
---|
1215 | do while (.not. end_of_file) |
---|
1216 | |
---|
1217 | read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1) |
---|
1218 | k = k+1 |
---|
1219 | if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k) |
---|
1220 | go to 110 |
---|
1221 | 100 end_of_file = .true. |
---|
1222 | 110 continue |
---|
1223 | enddo |
---|
1224 | |
---|
1225 | nl = k |
---|
1226 | |
---|
1227 | close(unit=10,status = 'keep') |
---|
1228 | |
---|
1229 | end subroutine read_sounding |
---|
1230 | |
---|
1231 | END MODULE module_initialize_ideal |
---|