MODULE lmdz_thermcell_plume_6A ! ! $Id: lmdz_thermcell_plume_6A.F90 5202 2024-09-20 10:32:04Z dcugnet $ ! CONTAINS SUBROUTINE thermcell_plume_6A(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & & ztla,zqla,zqta,zha,zw2,w_est,ztva_est,zqsatth,lmix,lmix_bis,linter & & ,lev_out,lunout1,igout) ! & ,lev_out,lunout1,igout,zbuoy,zbuoyjam) !-------------------------------------------------------------------------- !thermcell_plume: calcule les valeurs de qt, thetal et w dans l ascendance !-------------------------------------------------------------------------- USE lmdz_thermcell_ini, ONLY: prt_level,fact_thermals_ed_dz,iflag_thermals_ed,RLvCP,RETV,RG USE lmdz_thermcell_ini, ONLY: fact_epsilon, betalpha, afact, fact_shell USE lmdz_thermcell_ini, ONLY: detr_min, entr_min, detr_q_coef, detr_q_power USE lmdz_thermcell_ini, ONLY: mix0, thermals_flag_alim USE lmdz_thermcell_alim, ONLY : thermcell_alim USE lmdz_thermcell_qsat, ONLY : thermcell_qsat IMPLICIT NONE integer,intent(in) :: itap,lev_out,lunout1,igout,ngrid,nlay real,intent(in) :: ptimestep real,intent(in),dimension(ngrid,nlay) :: ztv real,intent(in),dimension(ngrid,nlay) :: zthl real,intent(in),dimension(ngrid,nlay) :: po real,intent(in),dimension(ngrid,nlay) :: zl real,intent(in),dimension(ngrid,nlay) :: rhobarz real,intent(in),dimension(ngrid,nlay+1) :: zlev real,intent(in),dimension(ngrid,nlay+1) :: pplev real,intent(in),dimension(ngrid,nlay) :: pphi real,intent(in),dimension(ngrid,nlay) :: zpspsk real,intent(in),dimension(ngrid) :: f0 integer,intent(out) :: lalim(ngrid) real,intent(out),dimension(ngrid,nlay) :: alim_star real,intent(out),dimension(ngrid) :: alim_star_tot real,intent(out),dimension(ngrid,nlay) :: detr_star real,intent(out),dimension(ngrid,nlay) :: entr_star real,intent(out),dimension(ngrid,nlay+1) :: f_star real,intent(out),dimension(ngrid,nlay) :: csc real,intent(out),dimension(ngrid,nlay) :: ztva real,intent(out),dimension(ngrid,nlay) :: ztla real,intent(out),dimension(ngrid,nlay) :: zqla real,intent(out),dimension(ngrid,nlay) :: zqta real,intent(out),dimension(ngrid,nlay) :: zha real,intent(out),dimension(ngrid,nlay+1) :: zw2 real,intent(out),dimension(ngrid,nlay+1) :: w_est real,intent(out),dimension(ngrid,nlay) :: ztva_est real,intent(out),dimension(ngrid,nlay) :: zqsatth integer,intent(out),dimension(ngrid) :: lmix integer,intent(out),dimension(ngrid) :: lmix_bis real,intent(out),dimension(ngrid) :: linter REAL zdw2,zdw2bis REAL zw2modif REAL zw2fact,zw2factbis REAL,dimension(ngrid,nlay) :: zeps REAL, dimension(ngrid) :: wmaxa INTEGER ig,l,k,lt,it,lm integer nbpb real,dimension(ngrid,nlay) :: detr real,dimension(ngrid,nlay) :: entr real,dimension(ngrid,nlay+1) :: wa_moy real,dimension(ngrid,nlay) :: ztv_est real,dimension(ngrid) :: ztemp,zqsat real,dimension(ngrid,nlay) :: zqla_est real,dimension(ngrid,nlay) :: zta_est real,dimension(ngrid,nlay) :: zbuoy,gamma,zdqt real zdz,zalpha,zw2m real,dimension(ngrid,nlay) :: zbuoyjam,zdqtjam real zbuoybis,zdz2,zdz3,lmel,entrbis,zdzbis real, dimension(ngrid) :: d_temp real ztv1,ztv2,factinv,zinv,zlmel real zlmelup,zlmeldwn,zlt,zltdwn,zltup real atv1,atv2,btv1,btv2 real ztv_est1,ztv_est2 real zcor,zdelta,zcvm5,qlbef real zbetalpha, coefzlmel real eps logical Zsat LOGICAL,dimension(ngrid) :: active,activetmp REAL fact_gamma,fact_gamma2,fact_epsilon2 REAL coefc REAL,dimension(ngrid,nlay) :: c2 if (ngrid==1) print*,'THERMCELL PLUME MODIFIE 2014/07/11' Zsat=.false. ! Initialisation zbetalpha=betalpha/(1.+betalpha) ! Initialisations des variables r?elles if (1==1) then ztva(:,:)=ztv(:,:) ztva_est(:,:)=ztva(:,:) ztv_est(:,:)=ztv(:,:) ztla(:,:)=zthl(:,:) zqta(:,:)=po(:,:) zqla(:,:)=0. zha(:,:) = ztva(:,:) else ztva(:,:)=0. ztv_est(:,:)=0. ztva_est(:,:)=0. ztla(:,:)=0. zqta(:,:)=0. zha(:,:) =0. endif zqla_est(:,:)=0. zqsatth(:,:)=0. zqla(:,:)=0. detr_star(:,:)=0. entr_star(:,:)=0. alim_star(:,:)=0. alim_star_tot(:)=0. csc(:,:)=0. detr(:,:)=0. entr(:,:)=0. zw2(:,:)=0. zbuoy(:,:)=0. zbuoyjam(:,:)=0. gamma(:,:)=0. zeps(:,:)=0. w_est(:,:)=0. f_star(:,:)=0. wa_moy(:,:)=0. linter(:)=1. ! linter(:)=1. ! Initialisation des variables entieres lmix(:)=1 lmix_bis(:)=2 wmaxa(:)=0. ! Initialisation a 0 en cas de sortie dans replay zqsat(:)=0. zta_est(:,:)=0. zdqt(:,:)=0. zdqtjam(:,:)=0. c2(:,:)=0. !------------------------------------------------------------------------- ! On ne considere comme actif que les colonnes dont les deux premieres ! couches sont instables. !------------------------------------------------------------------------- active(:)=ztv(:,1)>ztv(:,2) d_temp(:)=0. ! Pour activer un contraste de temperature a la base ! du panache ! Cet appel pourrait ĂȘtre fait avant thermcell_plume dans thermcell_main CALL thermcell_alim(thermals_flag_alim,ngrid,nlay,ztv,d_temp,zlev,alim_star,lalim) !------------------------------------------------------------------------------ ! Calcul dans la premiere couche ! On decide dans cette version que le thermique n'est actif que si la premiere ! couche est instable. ! Pourrait etre change si on veut que le thermiques puisse se d??clencher ! dans une couche l>1 !------------------------------------------------------------------------------ do ig=1,ngrid ! Le panache va prendre au debut les caracteristiques de l'air contenu ! dans cette couche. if (active(ig)) then ztla(ig,1)=zthl(ig,1) zqta(ig,1)=po(ig,1) zqla(ig,1)=zl(ig,1) !cr: attention, prise en compte de f*(1)=1 f_star(ig,2)=alim_star(ig,1) zw2(ig,2)=2.*RG*(ztv(ig,1)-ztv(ig,2))/ztv(ig,2) & & *(zlev(ig,2)-zlev(ig,1)) & & *0.4*pphi(ig,1)/(pphi(ig,2)-pphi(ig,1)) w_est(ig,2)=zw2(ig,2) endif enddo ! !============================================================================== !boucle de calcul de la vitesse verticale dans le thermique !============================================================================== do l=2,nlay-1 !============================================================================== ! On decide si le thermique est encore actif ou non ! AFaire : Il faut sans doute ajouter entr_star a alim_star dans ce test do ig=1,ngrid active(ig)=active(ig) & & .and. zw2(ig,l)>1.e-10 & & .and. f_star(ig,l)+alim_star(ig,l)>1.e-10 enddo !--------------------------------------------------------------------------- ! calcul des proprietes thermodynamiques et de la vitesse de la couche l ! sans tenir compte du detrainement et de l'entrainement dans cette ! couche ! C'est a dire qu'on suppose ! ztla(l)=ztla(l-1) et zqta(l)=zqta(l-1) ! Ici encore, on doit pouvoir ajouter entr_star (qui peut etre calculer ! avant) a l'alimentation pour avoir un calcul plus propre !--------------------------------------------------------------------------- ztemp(:)=zpspsk(:,l)*ztla(:,l-1) call thermcell_qsat(ngrid,active,pplev(:,l),ztemp,zqta(:,l-1),zqsat(:)) do ig=1,ngrid ! print*,'active',active(ig),ig,l if(active(ig)) then zqla_est(ig,l)=max(0.,zqta(ig,l-1)-zqsat(ig)) ztva_est(ig,l) = ztla(ig,l-1)*zpspsk(ig,l)+RLvCp*zqla_est(ig,l) zta_est(ig,l)=ztva_est(ig,l) ztva_est(ig,l) = ztva_est(ig,l)/zpspsk(ig,l) ztva_est(ig,l) = ztva_est(ig,l)*(1.+RETV*(zqta(ig,l-1) & & -zqla_est(ig,l))-zqla_est(ig,l)) !Modif AJAM zbuoy(ig,l)=RG*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) zdz=zlev(ig,l+1)-zlev(ig,l) lmel=fact_thermals_ed_dz*zlev(ig,l) ! lmel=0.09*zlev(ig,l) zlmel=zlev(ig,l)+lmel zlmelup=zlmel+(zdz/2) zlmeldwn=zlmel-(zdz/2) lt=l+1 zlt=zlev(ig,lt) zdz3=zlev(ig,lt+1)-zlt zltdwn=zlt-zdz3/2 zltup=zlt+zdz3/2 !========================================================================= ! 3. Calcul de la flotabilite modifie par melange avec l'air au dessus !========================================================================= !-------------------------------------------------- if (iflag_thermals_ed.lt.8) then !-------------------------------------------------- !AJ052014: J'ai remplac?? la boucle do par un do while ! afin de faire moins de calcul dans la boucle !-------------------------------------------------- do while (zlmelup.gt.zltup) lt=lt+1 zlt=zlev(ig,lt) zdz3=zlev(ig,lt+1)-zlt zltdwn=zlt-zdz3/2 zltup=zlt+zdz3/2 enddo !-------------------------------------------------- !AJ052014: Si iflag_thermals_ed<8 (par ex 6), alors ! on cherche o?? se trouve l'altitude d'inversion ! en calculant ztv1 (interpolation de la valeur de ! theta au niveau lt en utilisant les niveaux lt-1 et ! lt-2) et ztv2 (interpolation avec les niveaux lt+1 ! et lt+2). Si theta r??ellement calcul??e au niveau lt ! comprise entre ztv1 et ztv2, alors il y a inversion ! et on calcule son altitude zinv en supposant que ztv(lt) ! est une combinaison lineaire de ztv1 et ztv2. ! Ensuite, on calcule la flottabilite en comparant ! la temperature de la couche l a celle de l'air situe ! l+lmel plus haut, ce qui necessite de savoir quel fraction ! de cet air est au-dessus ou en-dessous de l'inversion !-------------------------------------------------- atv1=(ztv(ig,lt-1)-ztv(ig,lt-2))/(zlev(ig,lt-1)-zlev(ig,lt-2)) btv1=(ztv(ig,lt-2)*zlev(ig,lt-1)-ztv(ig,lt-1)*zlev(ig,lt-2)) & & /(zlev(ig,lt-1)-zlev(ig,lt-2)) atv2=(ztv(ig,lt+2)-ztv(ig,lt+1))/(zlev(ig,lt+2)-zlev(ig,lt+1)) btv2=(ztv(ig,lt+1)*zlev(ig,lt+2)-ztv(ig,lt+2)*zlev(ig,lt+1)) & & /(zlev(ig,lt+2)-zlev(ig,lt+1)) ztv1=atv1*zlt+btv1 ztv2=atv2*zlt+btv2 if (ztv(ig,lt).gt.ztv1.and.ztv(ig,lt).lt.ztv2) then !-------------------------------------------------- !AJ052014: D??calage de zinv qui est entre le haut ! et le bas de la couche lt !-------------------------------------------------- factinv=(ztv2-ztv(ig,lt))/(ztv2-ztv1) zinv=zltdwn+zdz3*factinv if (zlmeldwn.ge.zinv) then ztv_est(ig,l)=atv2*zlmel+btv2 zbuoyjam(ig,l)=fact_shell*RG*(ztva_est(ig,l)-ztv_est(ig,l))/ztv_est(ig,l) & & +(1.-fact_shell)*zbuoy(ig,l) elseif (zlmelup.ge.zinv) then ztv_est2=atv2*0.5*(zlmelup+zinv)+btv2 ztv_est1=atv1*0.5*(zinv+zlmeldwn)+btv1 ztv_est(ig,l)=((zlmelup-zinv)/zdz)*ztv_est2+((zinv-zlmeldwn)/zdz)*ztv_est1 zbuoyjam(ig,l)=fact_shell*RG*(((zlmelup-zinv)/zdz)*(ztva_est(ig,l)- & & ztv_est2)/ztv_est2+((zinv-zlmeldwn)/zdz)*(ztva_est(ig,l)- & & ztv_est1)/ztv_est1)+(1.-fact_shell)*zbuoy(ig,l) else ztv_est(ig,l)=atv1*zlmel+btv1 zbuoyjam(ig,l)=fact_shell*RG*(ztva_est(ig,l)-ztv_est(ig,l))/ztv_est(ig,l) & & +(1.-fact_shell)*zbuoy(ig,l) endif else ! if (ztv(ig,lt).gt.ztv1.and.ztv(ig,lt).lt.ztv2) then if (zlmeldwn.gt.zltdwn) then zbuoyjam(ig,l)=fact_shell*RG*((ztva_est(ig,l)- & & ztv(ig,lt))/ztv(ig,lt))+(1.-fact_shell)*zbuoy(ig,l) else zbuoyjam(ig,l)=fact_shell*RG*(((zlmelup-zltdwn)/zdz)*(ztva_est(ig,l)- & & ztv(ig,lt))/ztv(ig,lt)+((zltdwn-zlmeldwn)/zdz)*(ztva_est(ig,l)- & & ztv(ig,lt-1))/ztv(ig,lt-1))+(1.-fact_shell)*zbuoy(ig,l) endif ! zbuoyjam(ig,l)=fact_shell*RG*(((zlmelup-zltdwn)/zdz)*(ztva_est(ig,l)- & ! & ztv1)/ztv1+((zltdwn-zlmeldwn)/zdz)*(ztva_est(ig,l)- & ! & ztv(ig,lt-1))/ztv(ig,lt-1))+(1.-fact_shell)*zbuoy(ig,l) ! zdqt(ig,l)=Max(0.,((lmel+zdz3-zdz2)/zdz3)*(zqta(ig,l-1)- & ! & po(ig,lt))/po(ig,lt)+((zdz2-lmel)/zdz3)*(zqta(ig,l-1)- & ! & po(ig,lt-1))/po(ig,lt-1)) endif ! if (ztv(ig,lt).gt.ztv1.and.ztv(ig,lt).lt.ztv2) then else ! if (iflag_thermals_ed.lt.8) then lt=l+1 zlt=zlev(ig,lt) zdz2=zlev(ig,lt)-zlev(ig,l) do while (lmel.gt.zdz2) lt=lt+1 zlt=zlev(ig,lt) zdz2=zlt-zlev(ig,l) enddo zdz3=zlev(ig,lt+1)-zlt zltdwn=zlev(ig,lt)-zdz3/2 zlmelup=zlmel+(zdz/2) coefzlmel=Min(1.,(zlmelup-zltdwn)/zdz) zbuoyjam(ig,l)=1.*RG*(coefzlmel*(ztva_est(ig,l)- & & ztv(ig,lt))/ztv(ig,lt)+(1.-coefzlmel)*(ztva_est(ig,l)- & & ztv(ig,lt-1))/ztv(ig,lt-1))+0.*zbuoy(ig,l) endif ! if (iflag_thermals_ed.lt.8) then !------------------------------------------------ !AJAM:nouveau calcul de w? !------------------------------------------------ zdz=zlev(ig,l+1)-zlev(ig,l) zdzbis=zlev(ig,l)-zlev(ig,l-1) zbuoy(ig,l)=RG*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) zw2fact=fact_epsilon*2.*zdz/(1.+betalpha) zw2factbis=fact_epsilon*2.*zdzbis/(1.+betalpha) zdw2=afact*zbuoy(ig,l)/fact_epsilon zdw2bis=afact*zbuoy(ig,l-1)/fact_epsilon ! zdw2bis=0.5*(zdw2+zdw2bis) lm=Max(1,l-2) ! zdw2=(afact/fact_epsilon)*((zdz/zdzbis)*zbuoy(ig,l) & ! & +((zdzbis-zdz)/zdzbis)*zbuoy(ig,l-1)) ! zdw2bis=(afact/fact_epsilon)*((zdz/zdzbis)*zbuoy(ig,l-1) & ! & +((zdzbis-zdz)/zdzbis)*zbuoy(ig,l-1)) ! w_est(ig,l+1)=Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2)+zdw2) ! w_est(ig,l+1)=(zdz/zdzbis)*Max(0.0001,exp(-zw2fact)* & ! & (w_est(ig,l)-zdw2)+zdw2)+(zdzbis-zdz)/zdzbis* & ! & Max(0.0001,exp(-zw2factbis)*(w_est(ig,l-1)-zdw2bis)+zdw2) ! w_est(ig,l+1)=Max(0.0001,(1-exp(-zw2fact))*zdw2+w_est(ig,l)*exp(-zw2fact)) !-------------------------------------------------- !AJ052014: J'ai remplac? w_est(ig,l) par zw2(ig,l) !-------------------------------------------------- if (iflag_thermals_ed==8) then ! Ancienne version ! w_est(ig,l+1)=Max(0.0001,(zdz/zdzbis)*(exp(-zw2fact)* & ! & (w_est(ig,l)-zdw2)+zdw2)+(zdzbis-zdz)/zdzbis* & ! & (exp(-zw2factbis)*(w_est(ig,l-1)-zdw2bis)+zdw2)) w_est(ig,l+1)=Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2)+zdw2) ! Nouvelle version Arnaud else ! w_est(ig,l+1)=Max(0.0001,(zdz/zdzbis)*(exp(-zw2fact)* & ! & (w_est(ig,l)-zdw2)+zdw2)+(zdzbis-zdz)/zdzbis* & ! & (exp(-zw2factbis)*(w_est(ig,l-1)-zdw2bis)+zdw2)) w_est(ig,l+1)=Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2bis)+zdw2) ! w_est(ig,l+1)=Max(0.0001,(zdz/(zdzbis+zdz))*(exp(-zw2fact)* & ! & (w_est(ig,l)-zdw2bis)+zdw2)+(zdzbis/(zdzbis+zdz))* & ! & (exp(-zw2factbis)*(w_est(ig,l-1)-zdw2bis)+zdw2bis)) ! w_est(ig,l+1)=Max(0.0001,(w_est(ig,l)+zdw2bis*zw2fact)*exp(-zw2fact)) ! w_est(ig,l+1)=Max(0.0001,(zdz/zdzbis)*(zw2(ig,l)+zdw2*zw2fact)*exp(-zw2fact)+ & ! & (zdzbis-zdz)/zdzbis*(zw2(ig,l-1)+zdw2bis*zw2factbis)*exp(-zw2factbis)) ! w_est(ig,l+1)=Max(0.0001,exp(-zw2factbis)*(w_est(ig,l-1)-zdw2bis)+zdw2) endif if (iflag_thermals_ed<6) then zalpha=f0(ig)*f_star(ig,l)/sqrt(w_est(ig,l+1))/rhobarz(ig,l) ! fact_epsilon=0.0005/(zalpha+0.025)**0.5 ! fact_epsilon=Min(0.003,0.0004/(zalpha)**0.5) fact_epsilon=0.0002/(zalpha+0.1) zw2fact=fact_epsilon*2.*zdz/(1.+betalpha) zw2factbis=fact_epsilon*2.*zdzbis/(1.+betalpha) zdw2=afact*zbuoy(ig,l)/fact_epsilon zdw2bis=afact*zbuoy(ig,l-1)/fact_epsilon ! w_est(ig,l+1)=Max(0.0001,(zw2(ig,l)+zdw2*zw2fact)*exp(-zw2fact)) ! w_est(ig,l+1)=Max(0.0001,(zdz/zdzbis)*(exp(-zw2fact)* & ! & (zw2(ig,l)-zdw2)+zdw2)+(zdzbis-zdz)/zdzbis* & ! & (exp(-zw2factbis)*(zw2(ig,l-1)-zdw2bis)+zdw2)) w_est(ig,l+1)=Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2bis)+zdw2) endif !-------------------------------------------------- !AJ052014: J'ai comment? ce if plus n?cessaire puisqu' !on fait max(0.0001,.....) !-------------------------------------------------- ! if (w_est(ig,l+1).lt.0.) then ! w_est(ig,l+1)=zw2(ig,l) ! w_est(ig,l+1)=0.0001 ! endif endif enddo !------------------------------------------------- !calcul des taux d'entrainement et de detrainement !------------------------------------------------- do ig=1,ngrid if (active(ig)) then ! zw2m=max(0.5*(w_est(ig,l)+w_est(ig,l+1)),0.1) zw2m=w_est(ig,l+1) ! zw2m=zw2(ig,l) zdz=zlev(ig,l+1)-zlev(ig,l) zbuoy(ig,l)=RG*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) ! zbuoybis=zbuoy(ig,l)+RG*0.1/300. zbuoybis=zbuoy(ig,l) zalpha=f0(ig)*f_star(ig,l)/sqrt(w_est(ig,l+1))/rhobarz(ig,l) zdqt(ig,l)=max(zqta(ig,l-1)-po(ig,l),0.)/po(ig,l) ! entr_star(ig,l)=f_star(ig,l)*zdz*zbetalpha*MAX(0., & ! & afact*zbuoybis/zw2m - fact_epsilon ) ! entr_star(ig,l)=MAX(0.,f_star(ig,l)*zdz*zbetalpha* & ! & afact*zbuoybis/zw2m - fact_epsilon ) ! zbuoyjam(ig,l)=RG*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) !========================================================================= ! 4. Calcul de l'entrainement et du detrainement !========================================================================= ! entr_star(ig,l)=f_star(ig,l)*zdz*zbetalpha*MAX(0., & ! & afact*zbuoyjam(ig,l)/zw2m - fact_epsilon ) ! entrbis=entr_star(ig,l) if (iflag_thermals_ed.lt.6) then fact_epsilon=0.0002/(zalpha+0.1) endif detr_star(ig,l)=f_star(ig,l)*zdz & & *( mix0 * 0.1 / (zalpha+0.001) & & + MAX(detr_min, -afact*zbetalpha*zbuoyjam(ig,l)/zw2m & & + detr_q_coef*(zdqt(ig,l)/zw2m)**detr_q_power)) ! detr_star(ig,l)=(zdz/zdzbis)*detr_star(ig,l)+ & ! & ((zdzbis-zdz)/zdzbis)*detr_star(ig,l-1) zbuoy(ig,l)=RG*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) entr_star(ig,l)=f_star(ig,l)*zdz* ( & & mix0 * 0.1 / (zalpha+0.001) & & + zbetalpha*MAX(entr_min, & & afact*zbuoyjam(ig,l)/zw2m - fact_epsilon)) ! entr_star(ig,l)=f_star(ig,l)*zdz* ( & ! & mix0 * 0.1 / (zalpha+0.001) & ! & + MAX(entr_min, & ! & zbetalpha*afact*zbuoyjam(ig,l)/zw2m - fact_epsilon + & ! & detr_q_coef*(zdqt(ig,l)/zw2m)**detr_q_power)) ! entr_star(ig,l)=(zdz/zdzbis)*entr_star(ig,l)+ & ! & ((zdzbis-zdz)/zdzbis)*entr_star(ig,l-1) ! entr_star(ig,l)=Max(0.,f_star(ig,l)*zdz*zbetalpha* & ! & afact*zbuoy(ig,l)/zw2m & ! & - 1.*fact_epsilon) ! En dessous de lalim, on prend le max de alim_star et entr_star pour ! alim_star et 0 sinon if (l.lt.lalim(ig)) then alim_star(ig,l)=max(alim_star(ig,l),entr_star(ig,l)) entr_star(ig,l)=0. endif ! if (l.lt.lalim(ig).and.alim_star(ig,l)>alim_star(ig,l-1)) then ! alim_star(ig,l)=entrbis ! endif ! print*,'alim0',zlev(ig,l),entr_star(ig,l),detr_star(ig,l),zw2m,zbuoy(ig,l),f_star(ig,l) ! Calcul du flux montant normalise f_star(ig,l+1)=f_star(ig,l)+alim_star(ig,l)+entr_star(ig,l) & & -detr_star(ig,l) endif enddo !============================================================================ ! 5. calcul de la vitesse verticale en melangeant Tl et qt du thermique !=========================================================================== activetmp(:)=active(:) .and. f_star(:,l+1)>1.e-10 do ig=1,ngrid if (activetmp(ig)) then Zsat=.false. ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ & & (alim_star(ig,l)+entr_star(ig,l))*zthl(ig,l)) & & /(f_star(ig,l+1)+detr_star(ig,l)) zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ & & (alim_star(ig,l)+entr_star(ig,l))*po(ig,l)) & & /(f_star(ig,l+1)+detr_star(ig,l)) endif enddo ztemp(:)=zpspsk(:,l)*ztla(:,l) call thermcell_qsat(ngrid,activetmp,pplev(:,l),ztemp,zqta(:,l),zqsatth(:,l)) do ig=1,ngrid if (activetmp(ig)) then ! on ecrit de maniere conservative (sat ou non) ! T = Tl +Lv/Cp ql zqla(ig,l)=max(0.,zqta(ig,l)-zqsatth(ig,l)) ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) !on rajoute le calcul de zha pour diagnostiques (temp potentielle) zha(ig,l) = ztva(ig,l) ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) & & -zqla(ig,l))-zqla(ig,l)) zbuoy(ig,l)=RG*(ztva(ig,l)-ztv(ig,l))/ztv(ig,l) zdz=zlev(ig,l+1)-zlev(ig,l) zdzbis=zlev(ig,l)-zlev(ig,l-1) zeps(ig,l)=(entr_star(ig,l)+alim_star(ig,l))/(f_star(ig,l)*zdz) !!!!!!! fact_epsilon=0.002 zw2fact=fact_epsilon*2.*zdz/(1.+betalpha) zw2factbis=fact_epsilon*2.*zdzbis/(1.+betalpha) zdw2= afact*zbuoy(ig,l)/(fact_epsilon) zdw2bis= afact*zbuoy(ig,l-1)/(fact_epsilon) ! zdw2=(afact/fact_epsilon)*((zdz/zdzbis)*zbuoy(ig,l) & ! & +((zdzbis-zdz)/zdzbis)*zbuoy(ig,l-1)) ! lm=Max(1,l-2) ! zdw2bis=(afact/fact_epsilon)*((zdz/zdzbis)*zbuoy(ig,l-1) & ! & +((zdzbis-zdz)/zdzbis)*zbuoy(ig,l-1)) ! zw2(ig,l+1)=Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2bis)+zdw2) ! zw2(ig,l+1)=Max(0.0001,(zdz/zdzbis)*(zw2(ig,l)+zdw2*zw2fact)*exp(-zw2fact)+ & ! & (zdzbis-zdz)/zdzbis*(zw2(ig,l-1)+zdw2bis*zw2factbis)*exp(-zw2factbis)) ! zw2(ig,l+1)=Max(0.0001,(zw2(ig,l)+zdw2*zw2fact)*exp(-zw2fact)) ! zw2(ig,l+1)=Max(0.0001,(zdz/zdzbis)*(exp(-zw2fact)* & ! & (zw2(ig,l)-zdw2)+zdw2)+(zdzbis-zdz)/zdzbis* & ! & (exp(-zw2factbis)*(zw2(ig,l-1)-zdw2bis)+zdw2)) if (iflag_thermals_ed==8) then zw2(ig,l+1)=Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2)+zdw2) else zw2(ig,l+1)=Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2bis)+zdw2) endif ! zw2(ig,l+1)=Max(0.0001,(zdz/(zdz+zdzbis))*(exp(-zw2fact)* & ! & (zw2(ig,l)-zdw2)+zdw2bis)+(zdzbis/(zdz+zdzbis))* & ! & (exp(-zw2factbis)*(zw2(ig,l-1)-zdw2bis)+zdw2bis)) if (iflag_thermals_ed.lt.6) then zalpha=f0(ig)*f_star(ig,l)/sqrt(zw2(ig,l+1))/rhobarz(ig,l) ! fact_epsilon=0.0005/(zalpha+0.025)**0.5 ! fact_epsilon=Min(0.003,0.0004/(zalpha)**0.5) fact_epsilon=0.0002/(zalpha+0.1)**1 zw2fact=fact_epsilon*2.*zdz/(1.+betalpha) zw2factbis=fact_epsilon*2.*zdzbis/(1.+betalpha) zdw2= afact*zbuoy(ig,l)/(fact_epsilon) zdw2bis= afact*zbuoy(ig,l-1)/(fact_epsilon) ! zw2(ig,l+1)=Max(0.0001,(zdz/zdzbis)*(exp(-zw2fact)* & ! & (zw2(ig,l)-zdw2)+zdw2)+(zdzbis-zdz)/zdzbis* & ! & (exp(-zw2factbis)*(zw2(ig,l-1)-zdw2bis)+zdw2)) ! zw2(ig,l+1)=Max(0.0001,(zw2(ig,l)+zdw2*zw2fact)*exp(-zw2fact)) zw2(ig,l+1)=Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2bis)+zdw2) endif endif enddo if (prt_level.ge.20) print*,'coucou calcul detr 460: ig, l',ig, l ! !=========================================================================== ! 6. initialisations pour le calcul de la hauteur du thermique, de l'inversion et de la vitesse verticale max !=========================================================================== nbpb=0 do ig=1,ngrid if (zw2(ig,l+1)>0. .and. zw2(ig,l+1).lt.1.e-10) then ! stop'On tombe sur le cas particulier de thermcell_dry' ! print*,'On tombe sur le cas particulier de thermcell_plume' nbpb=nbpb+1 zw2(ig,l+1)=0. linter(ig)=l+1 endif if (zw2(ig,l+1).lt.0.) then linter(ig)=(l*(zw2(ig,l+1)-zw2(ig,l)) & & -zw2(ig,l))/(zw2(ig,l+1)-zw2(ig,l)) zw2(ig,l+1)=0. !+CR:04/05/12:correction calcul linter pour calcul de zmax continu elseif (f_star(ig,l+1).lt.0.) then linter(ig)=(l*(f_star(ig,l+1)-f_star(ig,l)) & & -f_star(ig,l))/(f_star(ig,l+1)-f_star(ig,l)) zw2(ig,l+1)=0. !fin CR:04/05/12 endif wa_moy(ig,l+1)=sqrt(zw2(ig,l+1)) if (wa_moy(ig,l+1).gt.wmaxa(ig)) then ! lmix est le niveau de la couche ou w (wa_moy) est maximum !on rajoute le calcul de lmix_bis if (zqla(ig,l).lt.1.e-10) then lmix_bis(ig)=l+1 endif lmix(ig)=l+1 wmaxa(ig)=wa_moy(ig,l+1) endif enddo if (nbpb>0) then print*,'WARNING on tombe ',nbpb,' x sur un pb pour l=',l,' dans thermcell_plume' endif !========================================================================= ! FIN DE LA BOUCLE VERTICALE enddo !========================================================================= !on recalcule alim_star_tot do ig=1,ngrid alim_star_tot(ig)=0. enddo do ig=1,ngrid do l=1,lalim(ig)-1 alim_star_tot(ig)=alim_star_tot(ig)+alim_star(ig,l) enddo enddo if (prt_level.ge.20) print*,'coucou calcul detr 470: ig, l', ig, l #undef wrgrads_thermcell #ifdef wrgrads_thermcell call wrgradsfi(1,nlay,entr_star(igout,1:nlay),'esta ','esta ') call wrgradsfi(1,nlay,detr_star(igout,1:nlay),'dsta ','dsta ') call wrgradsfi(1,nlay,zbuoy(igout,1:nlay),'buoy ','buoy ') call wrgradsfi(1,nlay,zdqt(igout,1:nlay),'dqt ','dqt ') call wrgradsfi(1,nlay,w_est(igout,1:nlay),'w_est ','w_est ') call wrgradsfi(1,nlay,w_est(igout,2:nlay+1),'w_es2 ','w_es2 ') call wrgradsfi(1,nlay,zw2(igout,1:nlay),'zw2A ','zw2A ') #endif RETURN end !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE thermcell_plume_5B(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & & ztla,zqla,zqta,zha,zw2,w_est,ztva_est,zqsatth,lmix,lmix_bis,linter & & ,lev_out,lunout1,igout) !& ,lev_out,lunout1,igout,zbuoy,zbuoyjam) !-------------------------------------------------------------------------- !thermcell_plume: calcule les valeurs de qt, thetal et w dans l ascendance ! Version conforme a l'article de Rio et al. 2010. ! Code ecrit par Catherine Rio, Arnaud Jam et Frederic Hourdin !-------------------------------------------------------------------------- USE lmdz_thermcell_ini, ONLY: prt_level,fact_thermals_ed_dz,iflag_thermals_ed,RLvCP,RETV,RG USE lmdz_thermcell_qsat, ONLY : thermcell_qsat IMPLICIT NONE INTEGER itap INTEGER lunout1,igout INTEGER ngrid,nlay REAL ptimestep REAL ztv(ngrid,nlay) REAL zthl(ngrid,nlay) REAL, INTENT(IN) :: po(ngrid,nlay) REAL zl(ngrid,nlay) REAL rhobarz(ngrid,nlay) REAL zlev(ngrid,nlay+1) REAL pplev(ngrid,nlay+1) REAL pphi(ngrid,nlay) REAL zpspsk(ngrid,nlay) REAL alim_star(ngrid,nlay) REAL f0(ngrid) INTEGER lalim(ngrid) integer lev_out ! niveau pour les print integer nbpb real alim_star_tot(ngrid) REAL ztva(ngrid,nlay) REAL ztla(ngrid,nlay) REAL zqla(ngrid,nlay) REAL zqta(ngrid,nlay) REAL zha(ngrid,nlay) REAL detr_star(ngrid,nlay) REAL coefc REAL entr_star(ngrid,nlay) REAL detr(ngrid,nlay) REAL entr(ngrid,nlay) REAL csc(ngrid,nlay) REAL zw2(ngrid,nlay+1) REAL w_est(ngrid,nlay+1) REAL f_star(ngrid,nlay+1) REAL wa_moy(ngrid,nlay+1) REAL ztva_est(ngrid,nlay) REAL zqla_est(ngrid,nlay) REAL zqsatth(ngrid,nlay) REAL zta_est(ngrid,nlay) REAL zbuoyjam(ngrid,nlay) REAL ztemp(ngrid),zqsat(ngrid) REAL zdw2 REAL zw2modif REAL zw2fact REAL zeps(ngrid,nlay) REAL linter(ngrid) INTEGER lmix(ngrid) INTEGER lmix_bis(ngrid) REAL wmaxa(ngrid) INTEGER ig,l,k real zdz,zbuoy(ngrid,nlay),zalpha,gamma(ngrid,nlay),zdqt(ngrid,nlay),zw2m real zbuoybis real zcor,zdelta,zcvm5,qlbef,zdz2 real betalpha,zbetalpha real eps, afact logical Zsat LOGICAL active(ngrid),activetmp(ngrid) REAL fact_gamma,fact_epsilon,fact_gamma2,fact_epsilon2 REAL c2(ngrid,nlay) Zsat=.false. ! Initialisation fact_epsilon=0.002 betalpha=0.9 afact=2./3. zbetalpha=betalpha/(1.+betalpha) ! Initialisations des variables reeles if (1==1) then ztva(:,:)=ztv(:,:) ztva_est(:,:)=ztva(:,:) ztla(:,:)=zthl(:,:) zqta(:,:)=po(:,:) zha(:,:) = ztva(:,:) else ztva(:,:)=0. ztva_est(:,:)=0. ztla(:,:)=0. zqta(:,:)=0. zha(:,:) =0. endif zqla_est(:,:)=0. zqsatth(:,:)=0. zqla(:,:)=0. detr_star(:,:)=0. entr_star(:,:)=0. alim_star(:,:)=0. alim_star_tot(:)=0. csc(:,:)=0. detr(:,:)=0. entr(:,:)=0. zw2(:,:)=0. zbuoy(:,:)=0. zbuoyjam(:,:)=0. gamma(:,:)=0. zeps(:,:)=0. w_est(:,:)=0. f_star(:,:)=0. wa_moy(:,:)=0. linter(:)=1. ! linter(:)=1. ! Initialisation des variables entieres lmix(:)=1 lmix_bis(:)=2 wmaxa(:)=0. lalim(:)=1 !------------------------------------------------------------------------- ! On ne considere comme actif que les colonnes dont les deux premieres ! couches sont instables. !------------------------------------------------------------------------- active(:)=ztv(:,1)>ztv(:,2) !------------------------------------------------------------------------- ! Definition de l'alimentation !------------------------------------------------------------------------- do l=1,nlay-1 do ig=1,ngrid if (ztv(ig,l)> ztv(ig,l+1) .and. ztv(ig,1)>=ztv(ig,l) ) then alim_star(ig,l)=MAX((ztv(ig,l)-ztv(ig,l+1)),0.) & & *sqrt(zlev(ig,l+1)) lalim(ig)=l+1 alim_star_tot(ig)=alim_star_tot(ig)+alim_star(ig,l) endif enddo enddo do l=1,nlay do ig=1,ngrid if (alim_star_tot(ig) > 1.e-10 ) then alim_star(ig,l)=alim_star(ig,l)/alim_star_tot(ig) endif enddo enddo alim_star_tot(:)=1. !------------------------------------------------------------------------------ ! Calcul dans la premiere couche ! On decide dans cette version que le thermique n'est actif que si la premiere ! couche est instable. ! Pourrait etre change si on veut que le thermiques puisse se d??clencher ! dans une couche l>1 !------------------------------------------------------------------------------ do ig=1,ngrid ! Le panache va prendre au debut les caracteristiques de l'air contenu ! dans cette couche. if (active(ig)) then ztla(ig,1)=zthl(ig,1) zqta(ig,1)=po(ig,1) zqla(ig,1)=zl(ig,1) !cr: attention, prise en compte de f*(1)=1 f_star(ig,2)=alim_star(ig,1) zw2(ig,2)=2.*RG*(ztv(ig,1)-ztv(ig,2))/ztv(ig,2) & & *(zlev(ig,2)-zlev(ig,1)) & & *0.4*pphi(ig,1)/(pphi(ig,2)-pphi(ig,1)) w_est(ig,2)=zw2(ig,2) endif enddo ! !============================================================================== !boucle de calcul de la vitesse verticale dans le thermique !============================================================================== do l=2,nlay-1 !============================================================================== ! On decide si le thermique est encore actif ou non ! AFaire : Il faut sans doute ajouter entr_star a alim_star dans ce test do ig=1,ngrid active(ig)=active(ig) & & .and. zw2(ig,l)>1.e-10 & & .and. f_star(ig,l)+alim_star(ig,l)>1.e-10 enddo !--------------------------------------------------------------------------- ! calcul des proprietes thermodynamiques et de la vitesse de la couche l ! sans tenir compte du detrainement et de l'entrainement dans cette ! couche ! C'est a dire qu'on suppose ! ztla(l)=ztla(l-1) et zqta(l)=zqta(l-1) ! Ici encore, on doit pouvoir ajouter entr_star (qui peut etre calculer ! avant) a l'alimentation pour avoir un calcul plus propre !--------------------------------------------------------------------------- ztemp(:)=zpspsk(:,l)*ztla(:,l-1) call thermcell_qsat(ngrid,active,pplev(:,l),ztemp,zqta(:,l-1),zqsat(:)) do ig=1,ngrid ! print*,'active',active(ig),ig,l if(active(ig)) then zqla_est(ig,l)=max(0.,zqta(ig,l-1)-zqsat(ig)) ztva_est(ig,l) = ztla(ig,l-1)*zpspsk(ig,l)+RLvCp*zqla_est(ig,l) zta_est(ig,l)=ztva_est(ig,l) ztva_est(ig,l) = ztva_est(ig,l)/zpspsk(ig,l) ztva_est(ig,l) = ztva_est(ig,l)*(1.+RETV*(zqta(ig,l-1) & & -zqla_est(ig,l))-zqla_est(ig,l)) !------------------------------------------------ !AJAM:nouveau calcul de w? !------------------------------------------------ zdz=zlev(ig,l+1)-zlev(ig,l) zbuoy(ig,l)=RG*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) zw2fact=fact_epsilon*2.*zdz/(1.+betalpha) zdw2=(afact)*zbuoy(ig,l)/(fact_epsilon) w_est(ig,l+1)=Max(0.0001,exp(-zw2fact)*(w_est(ig,l)-zdw2)+zdw2) if (w_est(ig,l+1).lt.0.) then w_est(ig,l+1)=zw2(ig,l) endif endif enddo !------------------------------------------------- !calcul des taux d'entrainement et de detrainement !------------------------------------------------- do ig=1,ngrid if (active(ig)) then zw2m=max(0.5*(w_est(ig,l)+w_est(ig,l+1)),0.1) zw2m=w_est(ig,l+1) zdz=zlev(ig,l+1)-zlev(ig,l) zbuoy(ig,l)=RG*(ztva_est(ig,l)-ztv(ig,l))/ztv(ig,l) ! zbuoybis=zbuoy(ig,l)+RG*0.1/300. zbuoybis=zbuoy(ig,l) zalpha=f0(ig)*f_star(ig,l)/sqrt(w_est(ig,l+1))/rhobarz(ig,l) zdqt(ig,l)=max(zqta(ig,l-1)-po(ig,l),0.)/po(ig,l) entr_star(ig,l)=f_star(ig,l)*zdz* zbetalpha*MAX(0., & & afact*zbuoybis/zw2m - fact_epsilon ) detr_star(ig,l)=f_star(ig,l)*zdz & & *MAX(1.e-3, -afact*zbetalpha*zbuoy(ig,l)/zw2m & & + 0.012*(zdqt(ig,l)/zw2m)**0.5 ) ! En dessous de lalim, on prend le max de alim_star et entr_star pour ! alim_star et 0 sinon if (l.lt.lalim(ig)) then alim_star(ig,l)=max(alim_star(ig,l),entr_star(ig,l)) entr_star(ig,l)=0. endif ! Calcul du flux montant normalise f_star(ig,l+1)=f_star(ig,l)+alim_star(ig,l)+entr_star(ig,l) & & -detr_star(ig,l) endif enddo !---------------------------------------------------------------------------- !calcul de la vitesse verticale en melangeant Tl et qt du thermique !--------------------------------------------------------------------------- activetmp(:)=active(:) .and. f_star(:,l+1)>1.e-10 do ig=1,ngrid if (activetmp(ig)) then Zsat=.false. ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ & & (alim_star(ig,l)+entr_star(ig,l))*zthl(ig,l)) & & /(f_star(ig,l+1)+detr_star(ig,l)) zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ & & (alim_star(ig,l)+entr_star(ig,l))*po(ig,l)) & & /(f_star(ig,l+1)+detr_star(ig,l)) endif enddo ztemp(:)=zpspsk(:,l)*ztla(:,l) call thermcell_qsat(ngrid,activetmp,pplev(:,l),ztemp,zqta(:,l),zqsatth(:,l)) do ig=1,ngrid if (activetmp(ig)) then ! on ecrit de maniere conservative (sat ou non) ! T = Tl +Lv/Cp ql zqla(ig,l)=max(0.,zqta(ig,l)-zqsatth(ig,l)) ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) !on rajoute le calcul de zha pour diagnostiques (temp potentielle) zha(ig,l) = ztva(ig,l) ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) & & -zqla(ig,l))-zqla(ig,l)) zbuoy(ig,l)=RG*(ztva(ig,l)-ztv(ig,l))/ztv(ig,l) zdz=zlev(ig,l+1)-zlev(ig,l) zeps(ig,l)=(entr_star(ig,l)+alim_star(ig,l))/(f_star(ig,l)*zdz) zw2fact=fact_epsilon*2.*zdz/(1.+betalpha) zdw2=afact*zbuoy(ig,l)/(fact_epsilon) zw2(ig,l+1)=Max(0.0001,exp(-zw2fact)*(zw2(ig,l)-zdw2)+zdw2) endif enddo if (prt_level.ge.20) print*,'coucou calcul detr 460: ig, l',ig, l ! !--------------------------------------------------------------------------- !initialisations pour le calcul de la hauteur du thermique, de l'inversion et de la vitesse verticale max !--------------------------------------------------------------------------- nbpb=0 do ig=1,ngrid if (zw2(ig,l+1)>0. .and. zw2(ig,l+1).lt.1.e-10) then ! stop'On tombe sur le cas particulier de thermcell_dry' ! print*,'On tombe sur le cas particulier de thermcell_plume' nbpb=nbpb+1 zw2(ig,l+1)=0. linter(ig)=l+1 endif if (zw2(ig,l+1).lt.0.) then linter(ig)=(l*(zw2(ig,l+1)-zw2(ig,l)) & & -zw2(ig,l))/(zw2(ig,l+1)-zw2(ig,l)) zw2(ig,l+1)=0. elseif (f_star(ig,l+1).lt.0.) then linter(ig)=(l*(f_star(ig,l+1)-f_star(ig,l)) & & -f_star(ig,l))/(f_star(ig,l+1)-f_star(ig,l)) ! print*,"linter plume", linter(ig) zw2(ig,l+1)=0. endif wa_moy(ig,l+1)=sqrt(zw2(ig,l+1)) if (wa_moy(ig,l+1).gt.wmaxa(ig)) then ! lmix est le niveau de la couche ou w (wa_moy) est maximum !on rajoute le calcul de lmix_bis if (zqla(ig,l).lt.1.e-10) then lmix_bis(ig)=l+1 endif lmix(ig)=l+1 wmaxa(ig)=wa_moy(ig,l+1) endif enddo if (nbpb>0) then print*,'WARNING on tombe ',nbpb,' x sur un pb pour l=',l,' dans thermcell_plume' endif !========================================================================= ! FIN DE LA BOUCLE VERTICALE enddo !========================================================================= !on recalcule alim_star_tot do ig=1,ngrid alim_star_tot(ig)=0. enddo do ig=1,ngrid do l=1,lalim(ig)-1 alim_star_tot(ig)=alim_star_tot(ig)+alim_star(ig,l) enddo enddo if (prt_level.ge.20) print*,'coucou calcul detr 470: ig, l', ig, l #undef wrgrads_thermcell #ifdef wrgrads_thermcell call wrgradsfi(1,nlay,entr_star(igout,1:nlay),'esta ','esta ') call wrgradsfi(1,nlay,detr_star(igout,1:nlay),'dsta ','dsta ') call wrgradsfi(1,nlay,zbuoy(igout,1:nlay),'buoy ','buoy ') call wrgradsfi(1,nlay,zdqt(igout,1:nlay),'dqt ','dqt ') call wrgradsfi(1,nlay,w_est(igout,1:nlay),'w_est ','w_est ') call wrgradsfi(1,nlay,w_est(igout,2:nlay+1),'w_es2 ','w_es2 ') call wrgradsfi(1,nlay,zw2(igout,1:nlay),'zw2A ','zw2A ') #endif return end END MODULE lmdz_thermcell_plume_6A