! ! $Header$ ! subroutine spline(x,y,n,yp1,ypn,y2) c c Routine to set up the interpolating function for a cubic spline c interpolation (see "Numerical Recipes" for details). c implicit real (a-h,o-z) implicit integer (i-n) parameter(nllm=4096) dimension x(n),y(n),y2(n),u(nllm) c c write(6,*)(x(i),i=1,n) c write(6,*)(y(i),i=1,n) if(yp1.gt.0.99E30) then c the lower boundary condition is set y2(1)=0. c either to be "natural" u(1)=0. else c or else to have a specified first y2(1)=-0.5 c derivative u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1) end if do 11 i=2,n-1 c decomposition loop of the tridiagonal sig=(x(i)-x(i-1))/(x(i+1)-x(i-1)) c algorithm. Y2 and U are used p=sig*y2(i-1)+2. c for temporary storage of the decompo- y2(i)=(sig-1.)/p c sed factors u(i)=(6.*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1)) . /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-1))/p 11 continue if(ypn.gt.0.99E30) then c the upper boundary condition is set qn=0. c either to be "natural" un=0. else c or else to have a specified first qn=0.5 c derivative un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) end if y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.) do 12 k=n-1,1,-1 c this is the backsubstitution loop of y2(k)=y2(k)*y2(k+1)+u(k) c the tridiagonal algorithm 12 continue c return end