! ! $Header$ ! c c SUBROUTINE phystokenc ( I nlon,nlev,pdtphys,rlon,rlat, I pt,pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, I pfm_therm,pentr_therm, I pcoefh,yu1,yv1,ftsol,pctsrf, I frac_impa,frac_nucl, I pphis,paire,dtime,itap) USE ioipsl USE histcom IMPLICIT none c====================================================================== c Auteur(s) FH c Objet: Moniteur general des tendances traceurs c c====================================================================== #include "dimensions.h" #include "dimphy.h" #include "tracstoke.h" #include "indicesol.h" #include "control.h" c====================================================================== c Arguments: c c EN ENTREE: c ========== c c divers: c ------- c integer nlon ! nombre de points horizontaux integer nlev ! nombre de couches verticales real pdtphys ! pas d'integration pour la physique (seconde) c integer physid, itap save physid integer ndex2d(iim*(jjm+1)),ndex3d(iim*(jjm+1)*klev) c convection: c ----------- c REAL pmfu(klon,klev) ! flux de masse dans le panache montant REAL pmfd(klon,klev) ! flux de masse dans le panache descendant REAL pen_u(klon,klev) ! flux entraine dans le panache montant REAL pde_u(klon,klev) ! flux detraine dans le panache montant REAL pen_d(klon,klev) ! flux entraine dans le panache descendant REAL pde_d(klon,klev) ! flux detraine dans le panache descendant real pt(klon,klev),t(klon,klev) c REAL rlon(klon), rlat(klon), dtime REAL zx_tmp_3d(iim,jjm+1,klev),zx_tmp_2d(iim,jjm+1) c Couche limite: c -------------- c REAL pcoefh(klon,klev) ! coeff melange CL REAL yv1(klon) REAL yu1(klon),pphis(klon),paire(klon) c Les Thermiques : (Abderr 25 11 02) c --------------- REAL pfm_therm(klon,klev+1) real fm_therm1(klon,klev) REAL pentr_therm(klon,klev) REAL entr_therm(klon,klev) REAL fm_therm(klon,klev) c c Lessivage: c ---------- c REAL frac_impa(klon,klev) REAL frac_nucl(klon,klev) c c Arguments necessaires pour les sources et puits de traceur C real ftsol(klon,nbsrf) ! Temperature du sol (surf)(Kelvin) real pctsrf(klon,nbsrf) ! Pourcentage de sol f(nature du sol) c====================================================================== c INTEGER i, k c REAL mfu(klon,klev) ! flux de masse dans le panache montant REAL mfd(klon,klev) ! flux de masse dans le panache descendant REAL en_u(klon,klev) ! flux entraine dans le panache montant REAL de_u(klon,klev) ! flux detraine dans le panache montant REAL en_d(klon,klev) ! flux entraine dans le panache descendant REAL de_d(klon,klev) ! flux detraine dans le panache descendant REAL coefh(klon,klev) ! flux detraine dans le panache descendant REAL pyu1(klon),pyv1(klon) REAL pftsol(klon,nbsrf),ppsrf(klon,nbsrf) real pftsol1(klon),pftsol2(klon),pftsol3(klon),pftsol4(klon) real ppsrf1(klon),ppsrf2(klon),ppsrf3(klon),ppsrf4(klon) REAL dtcum integer iadvtr,irec real zmin,zmax logical ok_sync save t,mfu,mfd,en_u,de_u,en_d,de_d,coefh,dtcum save fm_therm,entr_therm save iadvtr,irec save pyu1,pyv1,pftsol,ppsrf data iadvtr,irec/0,1/ c c Couche limite: c====================================================================== ok_sync = .true. print*,'Dans phystokenc.F' print*,'iadvtr= ',iadvtr print*,'istphy= ',istphy print*,'istdyn= ',istdyn IF (iadvtr.eq.0) THEN CALL initphysto('phystoke', . rlon,rlat,dtime, dtime*istphy,dtime*istphy,nqmx,physid) write(*,*) 'apres initphysto ds phystokenc' ENDIF c ndex2d = 0 ndex3d = 0 i=itap CALL gr_fi_ecrit(1,klon,iim,jjm+1,pphis,zx_tmp_2d) CALL histwrite(physid,"phis",i,zx_tmp_2d,iim*(jjm+1),ndex2d) c i=itap CALL gr_fi_ecrit(1,klon,iim,jjm+1,paire,zx_tmp_2d) CALL histwrite(physid,"aire",i,zx_tmp_2d,iim*(jjm+1),ndex2d) iadvtr=iadvtr+1 c if (mod(iadvtr,istphy).eq.1.or.istphy.eq.1) then print*,'reinitialisation des champs cumules s a iadvtr=',iadvtr do k=1,klev do i=1,klon mfu(i,k)=0. mfd(i,k)=0. en_u(i,k)=0. de_u(i,k)=0. en_d(i,k)=0. de_d(i,k)=0. coefh(i,k)=0. t(i,k)=0. fm_therm(i,k)=0. entr_therm(i,k)=0. enddo enddo do i=1,klon pyv1(i)=0. pyu1(i)=0. end do do k=1,nbsrf do i=1,klon pftsol(i,k)=0. ppsrf(i,k)=0. enddo enddo dtcum=0. endif do k=1,klev do i=1,klon mfu(i,k)=mfu(i,k)+pmfu(i,k)*pdtphys mfd(i,k)=mfd(i,k)+pmfd(i,k)*pdtphys en_u(i,k)=en_u(i,k)+pen_u(i,k)*pdtphys de_u(i,k)=de_u(i,k)+pde_u(i,k)*pdtphys en_d(i,k)=en_d(i,k)+pen_d(i,k)*pdtphys de_d(i,k)=de_d(i,k)+pde_d(i,k)*pdtphys coefh(i,k)=coefh(i,k)+pcoefh(i,k)*pdtphys t(i,k)=t(i,k)+pt(i,k)*pdtphys fm_therm(i,k)=fm_therm(i,k)+pfm_therm(i,k)*pdtphys entr_therm(i,k)=entr_therm(i,k)+pentr_therm(i,k)*pdtphys enddo enddo do i=1,klon pyv1(i)=pyv1(i)+yv1(i)*pdtphys pyu1(i)=pyu1(i)+yu1(i)*pdtphys end do do k=1,nbsrf do i=1,klon pftsol(i,k)=pftsol(i,k)+ftsol(i,k)*pdtphys ppsrf(i,k)=ppsrf(i,k)+pctsrf(i,k)*pdtphys enddo enddo dtcum=dtcum+pdtphys IF(mod(iadvtr,istphy).eq.0) THEN c c normalisation par le temps cumule do k=1,klev do i=1,klon mfu(i,k)=mfu(i,k)/dtcum mfd(i,k)=mfd(i,k)/dtcum en_u(i,k)=en_u(i,k)/dtcum de_u(i,k)=de_u(i,k)/dtcum en_d(i,k)=en_d(i,k)/dtcum de_d(i,k)=de_d(i,k)/dtcum coefh(i,k)=coefh(i,k)/dtcum c Unitel a enlever t(i,k)=t(i,k)/dtcum fm_therm(i,k)=fm_therm(i,k)/dtcum entr_therm(i,k)=entr_therm(i,k)/dtcum enddo enddo do i=1,klon pyv1(i)=pyv1(i)/dtcum pyu1(i)=pyu1(i)/dtcum end do do k=1,nbsrf do i=1,klon pftsol(i,k)=pftsol(i,k)/dtcum pftsol1(i) = pftsol(i,1) pftsol2(i) = pftsol(i,2) pftsol3(i) = pftsol(i,3) pftsol4(i) = pftsol(i,4) ppsrf(i,k)=ppsrf(i,k)/dtcum ppsrf1(i) = ppsrf(i,1) ppsrf2(i) = ppsrf(i,2) ppsrf3(i) = ppsrf(i,3) ppsrf4(i) = ppsrf(i,4) enddo enddo c c ecriture des champs c irec=irec+1 ccccc CALL gr_fi_ecrit(klev,klon,iim,jjm+1, t, zx_tmp_3d) CALL histwrite(physid,"t",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1, mfu, zx_tmp_3d) CALL histwrite(physid,"mfu",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1, mfd, zx_tmp_3d) CALL histwrite(physid,"mfd",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1, en_u, zx_tmp_3d) CALL histwrite(physid,"en_u",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1, de_u, zx_tmp_3d) CALL histwrite(physid,"de_u",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1, en_d, zx_tmp_3d) CALL histwrite(physid,"en_d",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1, de_d, zx_tmp_3d) CALL histwrite(physid,"de_d",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1, coefh, zx_tmp_3d) CALL histwrite(physid,"coefh",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) c ajou... do k=1,klev do i=1,klon fm_therm1(i,k)=fm_therm(i,k) enddo enddo CALL gr_fi_ecrit(klev,klon,iim,jjm+1, fm_therm1, zx_tmp_3d) CALL histwrite(physid,"fm_th",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) c CALL gr_fi_ecrit(klev,klon,iim,jjm+1, entr_therm, zx_tmp_3d) CALL histwrite(physid,"en_th",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) cccc CALL gr_fi_ecrit(klev,klon,iim,jjm+1,frac_impa,zx_tmp_3d) CALL histwrite(physid,"frac_impa",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(klev,klon,iim,jjm+1,frac_nucl,zx_tmp_3d) CALL histwrite(physid,"frac_nucl",itap,zx_tmp_3d, . iim*(jjm+1)*klev,ndex3d) CALL gr_fi_ecrit(1, klon,iim,jjm+1, pyu1,zx_tmp_2d) CALL histwrite(physid,"pyu1",itap,zx_tmp_2d,iim*(jjm+1), . ndex2d) CALL gr_fi_ecrit(1, klon,iim,jjm+1, pyv1,zx_tmp_2d) CALL histwrite(physid,"pyv1",itap,zx_tmp_2d,iim*(jjm+1) . ,ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, pftsol1, zx_tmp_2d) CALL histwrite(physid,"ftsol1",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, pftsol2, zx_tmp_2d) CALL histwrite(physid,"ftsol2",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, pftsol3, zx_tmp_2d) CALL histwrite(physid,"ftsol3",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, pftsol4, zx_tmp_2d) CALL histwrite(physid,"ftsol4",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, ppsrf1, zx_tmp_2d) CALL histwrite(physid,"psrf1",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, ppsrf2, zx_tmp_2d) CALL histwrite(physid,"psrf2",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, ppsrf3, zx_tmp_2d) CALL histwrite(physid,"psrf3",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) CALL gr_fi_ecrit(1,klon,iim,jjm+1, ppsrf4, zx_tmp_2d) CALL histwrite(physid,"psrf4",itap,zx_tmp_2d, . iim*(jjm+1),ndex2d) if (ok_sync) call histsync(physid) c if (ok_sync) call histsync c cAA Test sur la valeur des coefficients de lessivage c zmin=1e33 zmax=-1e33 do k=1,klev do i=1,klon zmax=max(zmax,frac_nucl(i,k)) zmin=min(zmin,frac_nucl(i,k)) enddo enddo Print*,'------ coefs de lessivage (min et max) --------' Print*,'facteur de nucleation ',zmin,zmax zmin=1e33 zmax=-1e33 do k=1,klev do i=1,klon zmax=max(zmax,frac_impa(i,k)) zmin=min(zmin,frac_impa(i,k)) enddo enddo Print*,'facteur d impaction ',zmin,zmax ENDIF c reinitialisation des champs cumules go to 768 if (mod(iadvtr,istphy).eq.1) then do k=1,klev do i=1,klon mfu(i,k)=0. mfd(i,k)=0. en_u(i,k)=0. de_u(i,k)=0. en_d(i,k)=0. de_d(i,k)=0. coefh(i,k)=0. t(i,k)=0. fm_therm(i,k)=0. entr_therm(i,k)=0. enddo enddo do i=1,klon pyv1(i)=0. pyu1(i)=0. end do do k=1,nbsrf do i=1,klon pftsol(i,k)=0. ppsrf(i,k)=0. enddo enddo dtcum=0. endif do k=1,klev do i=1,klon mfu(i,k)=mfu(i,k)+pmfu(i,k)*pdtphys mfd(i,k)=mfd(i,k)+pmfd(i,k)*pdtphys en_u(i,k)=en_u(i,k)+pen_u(i,k)*pdtphys de_u(i,k)=de_u(i,k)+pde_u(i,k)*pdtphys en_d(i,k)=en_d(i,k)+pen_d(i,k)*pdtphys de_d(i,k)=de_d(i,k)+pde_d(i,k)*pdtphys coefh(i,k)=coefh(i,k)+pcoefh(i,k)*pdtphys t(i,k)=t(i,k)+pt(i,k)*pdtphys fm_therm(i,k)=fm_therm(i,k)+pfm_therm(i,k)*pdtphys entr_therm(i,k)=entr_therm(i,k)+pentr_therm(i,k)*pdtphys enddo enddo do i=1,klon pyv1(i)=pyv1(i)+yv1(i)*pdtphys pyu1(i)=pyu1(i)+yu1(i)*pdtphys end do do k=1,nbsrf do i=1,klon pftsol(i,k)=pftsol(i,k)+ftsol(i,k)*pdtphys ppsrf(i,k)=ppsrf(i,k)+pctsrf(i,k)*pdtphys enddo enddo dtcum=dtcum+pdtphys 768 continue RETURN END