SUBROUTINE fxhyp ( xzoomdeg,grossism,dzoom,tau , , rlonm025,xprimm025,rlonv,xprimv,rlonu,xprimu,rlonp025,xprimp025) c Auteur : P. Le Van IMPLICIT NONE c Calcule les longitudes et derivees dans la grille du GCM pour une c fonction f(x) a tangente hyperbolique . c c grossism etant le grossissement ( = 2 si 2 fois, = 3 si 3 fois,etc.) c dzoom etant la distance totale de la zone du zoom c tau la transition , normalement = 1 . c INTEGER nmax, nmax2 PARAMETER ( nmax = 50000, nmax2 = 2*nmax ) #include "dimensions.h" #include "paramet.h" c ...... arguments d'entree ....... c REAL xzoomdeg,dzoom,tau,grossism REAL rlonm025(iip1),xprimm025(iip1),rlonv(iip1),xprimv(iip1), , rlonu(iip1),xprimu(iip1),rlonp025(iip1),xprimp025(iip1) c ...... arguments de sortie ...... c REAL xlon(iip1),xprimm(iip1),xuv REAL xtild(0:nmax2) REAL fhyp(0:nmax),ffdx(0:nmax),beta,Xprimt(0:nmax2) REAL Xf(0:nmax2),xxpr(0:nmax2) REAL xvrai(iip1),xxprim(iip1) REAL pi,depi,epsilon,xzoom INTEGER i,it,ik,iter,ii,idif REAL xi,xo1,xint,xmoy,xlon2,fxm,Xprimin REAL champmin,champmax INTEGER is2 SAVE is2 REAL dlon1(iip1),dlon2(iip1),dlon3(iip1) pi = 2. * ASIN(1.) depi = 2. * pi epsilon = 1.e-6 xzoom = xzoomdeg * pi/180. DO i = 0, nmax2 xtild(i) = FLOAT(i) /nmax2 IF( xtild(i).EQ. 0.5 ) xtild(i) = xtild(i) + 1.e-6 ENDDO DO i = 1, nmax fhyp(i) = TANH ( ( xtild(i) - 0.5*(1.- dzoom) ) / , ( tau * xtild(i) * ( 0.5 -xtild(i))) ) ENDDO fhyp( 0 ) = - 1. fhyp( nmax ) = 1. cc .... Calcul de beta .... c ffdx( 0 ) = 0. DO i = 1, nmax xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) fxm = TANH ( ( xmoy - 0.5 * ( 1. - dzoom ) ) / , ( tau * xmoy * ( 0.5 -xmoy)) ) ffdx(i) = ffdx(i-1) + fxm * ( xtild(i) - xtild(i-1) ) ENDDO beta = ( grossism * ffdx(nmax) - 0.5 ) / ( ffdx(nmax) - 0.5 ) c c ..... calcul de Xprimt ..... c DO i = 0, nmax Xprimt(i) = beta + ( grossism - beta ) * fhyp(i) ENDDO c DO i = 0, nmax Xprimt( nmax2 - i ) = Xprimt( i ) ENDDO c c ..... Calcul de Xf ........ Xf(0) = 0. DO i = 1, nmax xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) fxm = TANH ( ( xmoy - 0.5 * ( 1. - dzoom ) ) / , ( tau * xmoy * ( 0.5 -xmoy)) ) xxpr(i) = beta + ( grossism - beta ) * fxm ENDDO DO i = 1,nmax xxpr(nmax2-i+1) = xxpr(i) ENDDO DO i=1,nmax2 Xf(i) = Xf(i-1) + xxpr(i) * ( xtild(i) - xtild(i-1) ) ENDDO do i=1,nmax2 xf(i)=xf(i)/xf(nmax2) enddo PRINT *,' XF ',xf(0),xf(nmax),xf(nmax2) c ***************************************************************** c c ..... xuv = 0. si calcul aux pts scalaires ........ c ..... xuv = 0.5 si calcul aux pts U ........ c c DO 5000 ik = 1, 4 IF( ik.EQ.1 ) THEN xuv = - 0.25 ELSE IF ( ik.EQ.2 ) THEN xuv = 0. ELSE IF ( ik.EQ.3 ) THEN xuv = 0.5 ELSE IF ( ik.EQ.4 ) THEN xuv = 0.25 ENDIF DO 1500 i = 1, iim xlon2 = ( FLOAT(i) + xuv - 0.75) / FLOAT(iim) xo1 = 0. xi = xlon2 c DO 500 iter = 1,300 DO 250 it = nmax2,0,-1 IF( xi.GE.xtild(it)) GO TO 350 250 CONTINUE it = 0 xi = xtild(it) 350 CONTINUE IF(it.EQ.nmax2) THEN it = nmax2 -1 xf(it+1) = 1. ENDIF c ................................................................. c .... Interpolation entre xi(it) et xi(it+1) pour avoir X(xi) c ..... et X'(xi) ..... c ................................................................. xint = ( Xf(it+1)-Xf(it) ) / ( xtild(it+1)-xtild(it) ) * + ( xi-xtild(it) ) + Xf(it) Xprimin = ( Xprimt(it+1)-Xprimt(it) )/ ( xtild(it+1)-xtild(it) ) * + ( xi-xtild(it) ) + Xprimt(it) xi = xi - (xint-xlon2)/Xprimin IF( ABS(xi-xo1).LE.epsilon) GO TO 550 xo1 = xi c 500 CONTINUE PRINT *,' *** PAS DE SOLUTION **** ',i,xlon2 STOP 4 550 CONTINUE xxprim(i) = depi/( FLOAT(iim) * Xprimin) xvrai(i) = depi * (xi - 0.5) + xzoom 1500 CONTINUE DO i = 1 , iim xlon (i) = xvrai(i) xprimm(i) = xxprim(i) cc xxlon(i) = xlon(i)*180./pi ENDDO cc PRINT *,' XLON avant ' cc PRINT 68,(xxlon(i),i=1,iim) DO i = 1, iim -1 IF( xvrai(i+1). LT. xvrai(i) ) THEN PRINT *,' PBS. avec rlonu(',i+1,' plus petit que rlonu(',i, , ')' STOP ENDIF ENDDO c c ... Reorganisation des longitudes pour les avoir entre - pi et pi .. c ........................................................................ champmin = 1.e12 champmax = -1.e12 DO i = 1, iim champmin = MIN( champmin,xvrai(i) ) champmax = MAX( champmax,xvrai(i) ) ENDDO PRINT *,' LONGITUDES min max ',champmin,champmax IF(champmin .GE. - pi .AND. champmax.LE. pi ) THEN GO TO 1600 ELSE PRINT 18 PRINT *,'Reorganisation des longitudes pour avoir entre - pi ', , ' et pi ' c IF( xzoom.LE.0.) THEN IF( ik.EQ. 1 ) THEN DO i = 1, iim IF( xvrai(i).GE. - pi ) GO TO 80 ENDDO PRINT *, ' PBS. 1 ' STOP 80 CONTINUE is2 = i ENDIF IF( is2.NE. 1 ) THEN DO ii = is2 , iim xlon (ii-is2+1) = xvrai(ii) xprimm(ii-is2+1) = xxprim(ii) ENDDO DO ii = 1 , is2 -1 xlon (ii+iim-is2+1) = xvrai(ii) + depi xprimm(ii+iim-is2+1) = xxprim(ii) ENDDO ENDIF ELSE IF( ik.EQ.1 ) THEN DO i = iim,1,-1 IF( xvrai(i).LE. pi ) GO TO 90 ENDDO PRINT *,' PBS. 2 ' STOP 90 CONTINUE is2 = i ENDIF cc PRINT *,' IS2 ',is2 idif = iim -is2 DO ii = 1, is2 xlon (ii+idif) = xvrai(ii) xprimm(ii+idif) = xxprim(ii) ENDDO DO ii = 1, idif xlon (ii) = xvrai (ii+is2) - depi xprimm(ii) = xxprim(ii+is2) ENDDO ENDIF ENDIF c c ......... Fin de la reorganisation ............................ 1600 CONTINUE xlon ( iip1) = xlon(1) + depi xprimm( iip1 ) = xprimm (1 ) DO i = 1, iim+1 xvrai(i) = xlon(i)*180./pi ENDDO IF( ik.EQ.1 ) THEN PRINT *, ' XLON aux pts. V-0.25 apres ( en deg. ) ' PRINT 18 PRINT 68,xvrai PRINT *,' XPRIM ' PRINT 68, xprimm DO i = 1,iim + 1 rlonm025(i) = xlon( i ) xprimm025(i) = xprimm(i) ENDDO ELSE IF( ik.EQ.2 ) THEN PRINT 18 PRINT *, ' XLON aux pts. V apres ( en deg. ) ' PRINT 68,xvrai PRINT *,' XPRIM ' PRINT 68, xprimm DO i = 1,iim + 1 rlonv(i) = xlon( i ) xprimv(i) = xprimm(i) ENDDO ELSE IF( ik.EQ.3 ) THEN PRINT 18 PRINT *, ' XLON aux pts. U apres ( en deg. ) ' PRINT 68,xvrai PRINT *,' XPRIM ' PRINT 68, xprimm DO i = 1,iim + 1 rlonu(i) = xlon( i ) xprimu(i) = xprimm(i) ENDDO ELSE IF( ik.EQ.4 ) THEN PRINT 18 PRINT *, ' XLON aux pts. V+0.25 apres ( en deg. ) ' PRINT 68,xvrai PRINT *,' XPRIM ' PRINT 68, xprimm DO i = 1,iim + 1 rlonp025(i) = xlon( i ) xprimp025(i) = xprimm(i) ENDDO ENDIF 5000 CONTINUE c c ........... fin de la boucle do 5000 ............ c DO i = 1, iim + 1 dlon1(i) = rlonm025(i) - rlonv(i) dlon2(i) = rlonm025(i) - rlonp025(i) dlon3(i) = rlonm025(i) - rlonu(i) ENDDO DO i = 1, iim + 1 rlonm025(i) = rlonm025(i) + dlon1(i) ENDDO DO i = 1, iim + 1 rlonv(i) = rlonm025(i) - dlon1(i) rlonp025(i) = rlonm025(i) - dlon2(i) rlonu(i) = rlonm025(i) - dlon3(i) ENDDO DO i = 1, iim xprimu (i) = rlonu(i+1) - rlonu(i) xprimv (i) = rlonv(i+1) - rlonv(i) xprimm025(i) = rlonm025(i+1) - rlonm025(i) xprimp025(i) = rlonp025(i+1) - rlonp025(i) ENDDO xprimu (iip1) = xprimu (1) xprimv (iip1) = xprimv (1) xprimm025(iip1) = xprimm025(1) xprimp025(iip1) = xprimp025(1) 18 FORMAT(/) 68 FORMAT(1x,7f9.2) RETURN END