! ! $Id: phys_output_ctrlout_mod.F90 5491 2025-01-19 17:48:10Z fhourdin $ ! MODULE phys_output_ctrlout_mod USE phys_output_var_mod USE indice_sol_mod USE aero_mod IMPLICIT NONE INTEGER, PRIVATE :: i !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Definition pour chaque variable du niveau d ecriture dans chaque fichier, !! de son nom, de sa description, de son unité et du type d'écriture. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!/ histmth, histday, histhf, histins /),'!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! CHARACTER(len=20), dimension(nfiles) :: TEF = type_ecri_files !!! saving lon and lat as variables for CMIP6 DataRequest TYPE(ctrl_out), SAVE :: o_longitude = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'io_lon', '', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_latitude = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'io_lat', '', '', (/ ('once', i=1, 10) /)) !!! Composantes de la coordonnee sigma-hybride !!! Ap et Bp et interfaces TYPE(ctrl_out), SAVE :: o_Ahyb = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Ahyb', 'Ahyb at level interface', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Bhyb = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Bhyb', 'Bhyb at level interface', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Ahyb_bounds = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Ahyb_bounds', '', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Bhyb_bounds = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Bhyb_bounds', '', '', (/ ('once', i=1, 10) /)) !!! Composantes de la coordonnee sigma-hybride au milieu des couches !!! Aps et Bps et interfaces TYPE(ctrl_out), SAVE :: o_Ahyb_mid = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Ahyb_mid', 'Ahyb at the middle of the level', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Bhyb_mid = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Bhyb_mid', 'Bhyb at the middle of the level', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Ahyb_mid_bounds = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Ahyb_mid_bounds', '', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Bhyb_mid_bounds = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Bhyb_mid_bounds', '', '', (/ ('once', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Alt = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11, 11/), & 'Alt', '', '', (/ ('', i=1, 10) /)) !!! 1D TYPE(ctrl_out), SAVE :: o_phis = ctrl_out((/ 1, 1, 10, 5, 1, 1, 11, 11, 11, 11/), & 'phis', 'Surface geop.height', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_aire = ctrl_out((/ 1, 1, 10, 10, 1, 1, 11, 11, 11, 11/), & 'aire', 'Grid area', '-', (/ 'once', 'once', 'once', 'once', 'once', 'once', & 'once', 'once', 'once', 'once' /)) TYPE(ctrl_out), SAVE :: o_contfracATM = ctrl_out((/ 10, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'contfracATM', '% sfce ter+lic', '-', & (/ 'once', 'once', 'once', 'once', 'once', 'once', 'once', 'once', 'once', 'once' /)) TYPE(ctrl_out), SAVE :: o_contfracOR = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'contfracOR', '% sfce terre OR', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_aireTER = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'aireTER', 'Grid area CONT', '-', (/ ('', i=1, 10) /)) !!! 2D TYPE(ctrl_out), SAVE :: o_sza = ctrl_out((/ 1, 1, 10, 10, 5, 10, 11, 11, 11, 11/), & 'sza', 'Solar zenithal angle', 'degrees', (/ ('', i=1, 10) /)) ! Marine TYPE(ctrl_out), SAVE :: o_alt_tropo = ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'alt_tropo','Tropopause pressure','hPa',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_prop_hc = ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_prop_hc','Proportion of high clouds',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_prop_hist = & ctrl_out((/1,1,1,1,1,1,10,10,10,10/),& 'map_prop_hist','Proportion of high ice semi-transp clouds',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_emis_hc = & ctrl_out((/1,1,1,1,1,1,10,10,10,10/),& 'map_emis_hc','Emissivity of high clouds',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_iwp_hc = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_iwp_hc','Ice water path of high clouds','g/m2',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_deltaz_hc = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_deltaz_hc','geom thickness of high clouds','m',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_pcld_hc = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_pcld_hc','cloud pressure of high clouds','hPa',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_tcld_hc = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_tcld_hc','cloud temperature of high clouds','K',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_emis_hist = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_emis_hist','Emissivity of high ice st clouds',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_iwp_hist = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_iwp_hist','Ice water path of high ice st clouds','g/m2',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_deltaz_hist = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_deltaz_hist','geom thickness of high ice st clouds','m',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_rad_hist = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_rad_hist','ice crystals radius in high ice st clouds','µm',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_emis_Cb = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_emis_Cb','Emissivity of high Cb clouds',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_pcld_Cb = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_pcld_Cb','cloud pressure of high Cb clouds','hPa',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_tcld_Cb = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_tcld_Cb','cloud temperature of high Cb clouds','K',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_emis_Anv = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_emis_Anv','Emissivity of high Anv clouds',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_pcld_Anv = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_pcld_Anv','cloud pressure of high Anv clouds','hPa',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_tcld_Anv = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_tcld_Anv','cloud temperature of high Anv clouds','K',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_emis_ThCi = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_emis_ThCi','Emissivity of high ThCi clouds',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_pcld_ThCi = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_pcld_ThCi','cloud pressure of high ThCi clouds','hPa',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_tcld_ThCi = & ctrl_out((/10,10,1,10,10,10,10,10,10,10/),& 'map_tcld_ThCi','cloud temperature of high ThCi clouds','K',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_ntot = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_ntot','total AIRS cloud fraction',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_hc = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_hc','high clouds AIRS cloud fraction',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_hist = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_hist','high clouds ice st AIRS cloud fraction',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_Cb = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_Cb','high clouds Cb AIRS cloud fraction',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_ThCi = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_ThCi','high clouds ThCi AIRS cloud fraction',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_map_Anv = & ctrl_out((/1,1,1,1,1,10,10,10,10,10/),& 'map_Anv','high clouds Anv AIRS cloud fraction',' ',& (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)",& "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) ! Fin Marine TYPE(ctrl_out), SAVE :: o_flat = ctrl_out((/ 5, 1, 10, 10, 5, 10, 11, 11, 11, 11/), & 'flat', 'Latent heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ptstar = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'ptstar', 'Air Surface Temperature', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pt0 = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'pt0', 'Standard Air Surface Temperature', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slp = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'slp', 'Sea Level Pressure', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tsol = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'tsol', 'Surface Temperature', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_t2m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 't2m', 'Temperature 2m', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_t2m_min = ctrl_out((/ 20, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 't2m_min', 'Temp 2m min', 'K', & (/ "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", & "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)" /)) TYPE(ctrl_out), SAVE :: o_t2m_max = ctrl_out((/ 20, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 't2m_max', 'Temp 2m max', 'K', & (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", & "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)) TYPE(ctrl_out), SAVE :: o_t2m_min_mon = ctrl_out((/ 1, 20, 20, 20, 20, 20, 20, 20, 20, 20 /), & 't2m_min_mon', 'Monthly average min 2m temperature', 'K', & (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_t2m_max_mon = ctrl_out((/ 1, 20, 20, 20, 20, 20, 20, 20, 20, 20 /), & 't2m_max_mon', 'Monthly average max 2m temperature', 'K', & (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_t2m_srf = (/ & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 't2m_ter', "Temp 2m "//clnsurf(1), "K", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 't2m_lic', "Temp 2m "//clnsurf(2), "K", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 't2m_oce', "Temp 2m "//clnsurf(3), "K", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 't2m_sic', "Temp 2m "//clnsurf(4), "K", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_nt2mout = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'nt2mout', 'Nbt2m out of range complete computation', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_nq2mout = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'nq2mout', 'Nbq2m out of range complete computation', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_nu2mout = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'nu2mout', 'Nbu2m out of range complete computation', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_nt2moutfg = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'nt2moutfg', 'Nbt2m out of range complete/fgRi1 computation', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_nq2moutfg = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'nq2moutfg', 'Nbq2m out of range complete/fgRi1 computation', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_nu2moutfg = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'nu2moutfg', 'Nbu2m out of range complete/fgRi1 computation', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_gusts = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'gusts', 'surface gustiness', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wind10m = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'wind10m', '10-m wind speed', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wind100m = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wind100m', '100-m wind speed', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loadfactor_wind_onshore = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'woncfr', 'Onshore Wind Capacity factor', 'kW/kW_installed', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loadfactor_wind_offshore = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wofcfr', 'Offshore Wind Capacity factor', 'kW/kW_installed', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wind10max = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wind10max', '10m wind speed max', 'm/s', & (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", & "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)) TYPE(ctrl_out), SAVE :: o_sicf = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sicf', 'Sea-ice fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_q2m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'q2m', 'Specific humidity 2m', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ustar = ctrl_out((/ 1, 1, 10, 5, 10, 10, 11, 11, 11, 11/), & 'ustar', 'Friction velocity', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_u10m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'u10m', 'Vent zonal 10m', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_v10m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'v10m', 'Vent meridien 10m', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_psol = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11, 11/), & 'psol', 'Surface Pressure', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qsurf = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'qsurf', 'Surface Air humidity', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_ustar_srf = (/ & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'ustar_ter', & "Friction velocity "//clnsurf(1),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'ustar_lic', & "Friction velocity "//clnsurf(2),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'ustar_oce', & "Friction velocity "//clnsurf(3),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'ustar_sic', & "Friction velocity "//clnsurf(4),"m/s", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(5) :: o_wstar = (/ & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'wstar_ter', & "Friction velocity "//clnsurf(1),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'wstar_lic', & "Friction velocity "//clnsurf(2),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'wstar_oce', & "Friction velocity "//clnsurf(3),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'wstar_sic', & "Friction velocity "//clnsurf(4),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 5, 5, 10, 10, 10, 10, 11, 11, 11, 11/),'wstar', & "w* convective velocity "//clnsurf(4),"m/s", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_u10m_srf = (/ & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'u10m_ter', & "Vent Zonal 10m "//clnsurf(1),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'u10m_lic', & "Vent Zonal 10m "//clnsurf(2),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'u10m_oce', & "Vent Zonal 10m "//clnsurf(3),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'u10m_sic', & "Vent Zonal 10m "//clnsurf(4),"m/s", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_v10m_srf = (/ & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'v10m_ter', & "Vent meredien 10m "//clnsurf(1),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'v10m_lic', & "Vent meredien 10m "//clnsurf(2),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'v10m_oce', & "Vent meredien 10m "//clnsurf(3),"m/s", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'v10m_sic', & "Vent meredien 10m "//clnsurf(4),"m/s", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_qsol = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'qsol', 'Soil watter content', 'mm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ndayrain = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ndayrain', 'Number of dayrain(liq+sol)', '-', & (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_rain_fall = ctrl_out((/ 1, 1, 1, 10, 5, 10, 11, 11, 11, 11/), & 'rain_fall', 'Precip Totale liq', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rain_con = ctrl_out((/ 7, 7, 7, 10, 7, 10, 11, 11, 11, 11/), & 'rain_con', 'Precip liq conv.', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_precip = ctrl_out((/ 1, 1, 1, 10, 5, 10, 11, 11, 11, 11/), & 'precip', 'Precip Totale liq+sol', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_plul = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'plul', 'Large-scale Precip.', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_plun = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'plun', 'Numerical Precip.', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pluc = ctrl_out((/ 1, 1, 1, 10, 5, 10, 11, 11, 11, 11/), & 'pluc', 'Convective Precip.', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_snow = ctrl_out((/ 1, 1, 10, 10, 5, 10, 11, 11, 11, 11/), & 'snow', 'Snow fall', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bsfall = ctrl_out((/ 10, 10, 10, 10, 5, 10, 11, 11, 11, 11/), & 'bsfall', 'Blowing Snow fall', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_evap = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'evap', 'Evaporat', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_snowerosion = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'snowerosion', 'blowing snow flux', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_icesub_lic = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'icesub_lic', 'sublimation of ice over landice tiles, mesh-averaged', 'kg/(s*m2)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ustart_lic = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'ustart_lic', 'threshold velocity', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rhosnow_lic = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rhosnow_lic', 'snow density lic', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qsalt_lic = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qsalt_lic', 'qb in saltation layer lic', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sens_prec_liq_oce = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'sens_rain_oce', 'Sensible heat flux of liquid prec. over ocean', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sens_prec_liq_sic = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'sens_rain_sic', 'Sensible heat flux of liquid prec. over seaice', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sens_prec_sol_oce = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'sens_snow_oce', 'Sensible heat flux of solid prec. over ocean', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sens_prec_sol_sic = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'sens_snow_sic', 'Sensible heat flux of solid prec. over seaice', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lat_prec_liq_oce = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'lat_rain_oce', 'Latent heat flux of liquid prec. over ocean', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lat_prec_liq_sic = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'lat_rain_sic', 'Latent heat flux of liquid prec. over seaice', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lat_prec_sol_oce = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'lat_snow_oce', 'Latent heat flux of solid prec. over ocean', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lat_prec_sol_sic = ctrl_out((/ 5, 5, 10, 10, 5, 10, 11, 11, 11, 11/), & 'lat_snow_sic', 'Latent heat flux of solid prec. over seaice', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_evap_srf = (/ & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evap_ter', & "evaporation at surface "//clnsurf(1),"kg/(s*m2)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evap_lic', & "evaporation at surface "//clnsurf(2),"kg/(s*m2)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evap_oce', & "evaporation at surface "//clnsurf(3),"kg/(s*m2)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evap_sic', & "evaporation at surface "//clnsurf(4),"kg/(s*m2)", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_msnow = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'msnow', 'Surface snow amount', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fsnow = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fsnow', 'Surface snow area fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tops = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tops', 'Solar rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tops0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tops0', 'CS Solar rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_topl = ctrl_out((/ 1, 1, 10, 5, 10, 10, 11, 11, 11, 11/), & 'topl', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_topl0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'topl0', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWupTOA', 'SWup at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWupTOAclr', 'SWup clear sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupTOAcleanclr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'SWupTOAcleanclr', 'SWup clear sky clean (no aerosol) at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWdnTOA', 'SWdn at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWdnTOAclr', 'SWdn clear sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_nettop = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/), & 'nettop', 'Net dn radiatif flux at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWup200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWup200', 'SWup at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWup200clr = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWup200clr', 'SWup clear sky at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdn200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWdn200', 'SWdn at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdn200clr = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWdn200clr', 'SWdn clear sky at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWupTOA', 'LWup at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWupTOAclr', 'LWup clear sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) ! type(ctrl_out),save :: o_LWdnTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'LWdnTOA', & ! (/ ('', i=1, 10) /)) ! type(ctrl_out),save :: o_LWdnTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'LWdnTOAclr', & ! (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWup200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWup200', 'LWup at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWup200clr = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWup200clr', 'LWup clear sky at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdn200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWdn200', 'LWdn at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdn200clr = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWdn200clr', 'LWdn clear sky at 200mb', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sols = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sols', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sols0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sols0', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_soll = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'soll', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_soll0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'soll0', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_radsol = ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11, 11/), & 'radsol', 'Rayonnement au sol', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11, 11/), & 'SWupSFC', 'SWup at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11, 11/), & 'SWupSFCclr', 'SWup clear sky at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupSFCcleanclr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'SWupSFCcleanclr', 'SWup clear sky clean (no aerosol) at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fdiffSWdnSFC = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'fdiffSWdnSFC', 'Fraction of diffuse SWdn at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnSFC = ctrl_out((/ 1, 1, 1, 10, 5, 10, 11, 11, 11, 11/), & 'SWdnSFC', 'SWdn at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11, 11/), & 'SWdnSFCclr', 'SWdn clear sky at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnSFCcleanclr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'SWdnSFCcleanclr', 'SWdn clear sky clean (no aerosol) at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11, 11/), & 'LWupSFC', 'Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11, 11/), & 'LWupSFCclr', 'CS Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdnSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11, 11/), & 'LWdnSFC', 'Down. IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11, 11/), & 'LWdnSFCclr', 'Down. CS IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupTOAcleanclr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'LWupTOAcleanclr', 'Upward CS clean (no aerosol) IR rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdnSFCcleanclr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'LWdnSFCcleanclr', 'Downward CS clean (no aerosol) IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils_tke = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils_tke', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils_diss = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils_diss', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils_ec = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils_ec', 'Surf. total heat flux correction', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils_ech = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils_ech', 'Surf. total heat flux correction', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils_kinetic = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils_kinetic', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils_enthalp = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils_enthalp', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_bils_latent = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11, 11/), & 'bils_latent', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sens = ctrl_out((/ 1, 1, 10, 10, 5, 10, 11, 11, 11, 11/), & 'sens', 'Sensible heat flux', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fder = ctrl_out((/ 1, 2, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fder', 'Heat flux derivation', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ffonte = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ffonte', 'Thermal flux for snow melting', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fqcalving = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fqcalving', 'Ice Calving', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fqfonte = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fqfonte', 'Land ice melt', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_mrroli = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'mrroli', 'Runoff flux over land ice', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_runofflic = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'runofflic', 'Land ice melt to ocean', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_taux = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'taux', 'Zonal wind stress', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tauy = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tauy', 'Meridional wind stress', 'Pa', (/ ('', i=1, 10) /)) !AI Ecrad 3Deffect #ifdef CPP_ECRAD TYPE(ctrl_out), SAVE :: o_cloud_cover_sw = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cloud_cover_sw', 'Ecrad SW cloud cover', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cloud_cover_sw_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cloud_cover_sw_s2', 'Ecrad SW cloud cover 2 call', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sols_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sols_s2', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sols0_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sols0_s2', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_soll_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'soll_s2', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_soll0_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'soll0_s2', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tops_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tops_s2', 'Solar rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tops0_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tops0_s2', 'CS Solar rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_topl_s2 = ctrl_out((/ 11, 11, 10, 11, 10, 10, 11, 11, 11, 11/), & 'topl_s2', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_topl0_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'topl0_s2', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupTOA_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWupTOA_s2', 'SWup at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupTOAclr_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWupTOAclr_s2', 'SWup clear sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupTOAcleanclr_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'SWupTOAcleanclr_s2', 'SWup clear sky clean (no aerosol) at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnTOA_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWdnTOA_s2', 'SWdn at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnTOAclr_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWdnTOAclr_s2', 'SWdn clear sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_nettop_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'nettop_s2', 'Net dn radiatif flux at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdnSFC_s2 = ctrl_out((/ 11, 11, 10, 10, 11, 10, 11, 11, 11, 11/), & 'LWdnSFC_s2', 'Down. IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdnSFCclr_s2 = ctrl_out((/ 11, 11, 10, 10, 11, 10, 11, 11, 11, 11/), & 'LWdnSFCclr_s2', 'Down. CS IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupSFC_s2 = ctrl_out((/ 11, 11, 10, 10, 11, 10, 11, 11, 11, 11/), & 'SWupSFC_s2', 'SWup at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupSFCclr_s2 = ctrl_out((/ 11, 11, 10, 10, 11, 10, 11, 11, 11, 11/), & 'SWupSFCclr_s2', 'SWup clear sky at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWupSFCcleanclr_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'SWupSFCcleanclr_s2', 'SWup clear sky clean (no aerosol) at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fdiffSWdnSFC_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'fdiffSWdnSFC_s2', 'Fraction of diffuse SWdn at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnSFC_s2 = ctrl_out((/ 11, 11, 11, 10, 11, 10, 11, 11, 11, 11/), & 'SWdnSFC_s2', 'SWdn at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnSFCclr_s2 = ctrl_out((/ 11, 11, 10, 10, 11, 10, 11, 11, 11, 11/), & 'SWdnSFCclr_s2', 'SWdn clear sky at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SWdnSFCcleanclr_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'SWdnSFCcleanclr_s2', 'SWdn clear sky clean (no aerosol) at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupSFC_s2 = ctrl_out((/ 11, 11, 10, 10, 11, 10, 11, 11, 11, 11/), & 'LWupSFC_s2', 'Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupSFCclr_s2 = ctrl_out((/ 11, 11, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWupSFCclr_s2', 'CS Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWupTOAcleanclr_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'LWupTOAcleanclr_s2', 'Upward CS clean (no aerosol) IR rad. at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdnSFCcleanclr_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'LWdnSFCcleanclr_s2', 'Downward CS clean (no aerosol) IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsu_s2 = ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsu_s2', 'SW upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsd_s2 = ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsd_s2', 'SW downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlu_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rlu_s2', 'LW upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rld_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rld_s2', 'LW downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsucs_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rsucs_s2', 'SW CS upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsdcs_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rsdcs_s2', 'SW CS downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlucs_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rlucs_s2', 'LW CS upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rldcs_s2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rldcs_s2', 'LW CS downward radiation', 'W m-2', (/ ('', i=1, 10) /)) #endif TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_taux_srf = (/ & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'taux_ter', & "Zonal wind stress"//clnsurf(1), "Pa", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'taux_lic', & "Zonal wind stress"//clnsurf(2), "Pa", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'taux_oce', & "Zonal wind stress"//clnsurf(3), "Pa", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'taux_sic', & "Zonal wind stress"//clnsurf(4), "Pa", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tauy_srf = (/ & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tauy_ter', & "Meridional wind stress "//clnsurf(1),"Pa", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tauy_lic', & "Meridional wind stress "//clnsurf(2),"Pa", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tauy_oce', & "Meridional wind stress "//clnsurf(3),"Pa", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tauy_sic', & "Meridional wind stress "//clnsurf(4),"Pa", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_pourc_srf = (/ & ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11, 11/),'pourc_ter', & "% "//clnsurf(1),"%", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11, 11/),'pourc_lic', & "% "//clnsurf(2),"%", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11, 11/),'pourc_oce', & "% "//clnsurf(3),"%", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11, 11/),'pourc_sic', & "% "//clnsurf(4),"%", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_fract_srf = (/ & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'fract_ter', & "Fraction "//clnsurf(1),"1", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'fract_lic', & "Fraction "//clnsurf(2),"1", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'fract_oce', & "Fraction "//clnsurf(3),"1", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'fract_sic', & "Fraction "//clnsurf(4),"1", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tsol_srf = (/ & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tsol_ter', & "Temperature "//clnsurf(1),"K", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tsol_lic', & "Temperature "//clnsurf(2),"K", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tsol_oce', & "Temperature "//clnsurf(3),"K", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'tsol_sic', & "Temperature "//clnsurf(4),"K", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_evappot_srf = (/ & ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evappot_ter', & "Potential evaporation "//clnsurf(1),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evappot_lic', & "Potential evaporation "//clnsurf(2),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evappot_oce', & "Potential evaporation "//clnsurf(3),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'evappot_sic', & "Potential evaporation "//clnsurf(4),"kg/(m2*s)", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_sens_srf = (/ & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'sens_ter', & "Sensible heat flux "//clnsurf(1),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'sens_lic', & "Sensible heat flux "//clnsurf(2),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'sens_oce', & "Sensible heat flux "//clnsurf(3),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'sens_sic', & "Sensible heat flux "//clnsurf(4),"W/m2", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_lat_srf = (/ & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'lat_ter', & "Latent heat flux "//clnsurf(1),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'lat_lic', & "Latent heat flux "//clnsurf(2),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'lat_oce', & "Latent heat flux "//clnsurf(3),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11, 11/),'lat_sic', & "Latent heat flux "//clnsurf(4),"W/m2", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_flw_srf = (/ & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'flw_ter', & "LW "//clnsurf(1),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'flw_lic', & "LW "//clnsurf(2),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'flw_oce', & "LW "//clnsurf(3),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'flw_sic', & "LW "//clnsurf(4),"W/m2", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_fsw_srf = (/ & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'fsw_ter', & "SW "//clnsurf(1),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'fsw_lic', & "SW "//clnsurf(2),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'fsw_oce', & "SW "//clnsurf(3),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'fsw_sic', & "SW "//clnsurf(4),"W/m2", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wbils_srf = (/ & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbils_ter', & "Bilan sol "//clnsurf(1),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbils_lic', & "Bilan sol "//clnsurf(2),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbils_oce', & "Bilan sol "//clnsurf(3),"W/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbils_sic', & "Bilan sol "//clnsurf(4),"W/m2", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wbilo_srf = (/ & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbilo_ter', & "Bilan eau "//clnsurf(1),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbilo_lic', & "Bilan eau "//clnsurf(2),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbilo_oce', & "Bilan eau "//clnsurf(3),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wbilo_sic', & "Bilan eau "//clnsurf(4),"kg/(m2*s)", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wevap_srf = (/ & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wevap_ter', & "Evap eau "//clnsurf(1),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wevap_lic', & "Evap eau "//clnsurf(2),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wevap_oce', & "Evap eau "//clnsurf(3),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wevap_sic', & "Evap eau "//clnsurf(4),"kg/(m2*s)", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wrain_srf = (/ & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wrain_ter', & "Pluie eau "//clnsurf(1),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wrain_lic', & "Pluie eau "//clnsurf(2),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wrain_oce', & "Pluie eau "//clnsurf(3),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wrain_sic', & "Pluie eau "//clnsurf(4),"kg/(m2*s)", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wsnow_srf = (/ & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wsnow_ter', & "Neige eau "//clnsurf(1),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wsnow_lic', & "Neige eau "//clnsurf(2),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wsnow_oce', & "Neige eau "//clnsurf(3),"kg/(m2*s)", (/ ('', i=1, 10) /)), & ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'wsnow_sic', & "Neige eau "//clnsurf(4),"kg/(m2*s)", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_cdrm = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cdrm', 'Momentum drag coef.', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cdrh = ctrl_out((/ 1, 10, 10, 7, 10, 10, 11, 11, 11, 11/), & 'cdrh', 'Heat drag coef.', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldl = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldl', 'Low-level cloudiness', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldm = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldm', 'Mid-level cloudiness', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldh = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldh', 'High-level cloudiness', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldt = ctrl_out((/ 1, 1, 2, 10, 5, 10, 11, 11, 11, 11/), & 'cldt', 'Total cloudiness', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_JrNt = ctrl_out((/ 1, 1, 10, 7, 10, 10, 11, 11, 11, 11/), & 'JrNt', '1 if Day 0 if Night', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldhjn = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldhjn', 'High-level cloudiness Day', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldmjn = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldmjn', 'Mid-level cloudiness day', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldljn = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldljn', 'Low-level cloudiness day', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldtjn = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldtjn', 'Total cloudiness day', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldq = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldq', 'Cloud water path', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lwp = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lwp', 'Cloud liquid water path', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_iwp = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'iwp', 'Cloud ice water path', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ue = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ue', 'Zonal dry static energy transport', 'J/m/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ve = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 've', 'Merid dry static energy transport', 'J/m/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_uq = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'uq', 'Zonal humidity transport', 'kg/m/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_vq = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'vq', 'Merid humidity transport', 'kg/m/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_uwat = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'uwat', 'Zonal total water transport', 'kg/m/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_vwat = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'vwat', 'Merid total water transport', 'kg/m/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cape = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cape', 'Conv avlbl pot ener', 'J/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pbase = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'pbase', 'Cld base pressure', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ptop = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ptop', 'Cld top pressure', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fbase = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fbase', 'Cld base mass flux', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_plcl = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'plcl', 'Lifting Condensation Level', 'hPa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_plfc = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'plfc', 'Level of Free Convection', 'hPa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wbeff = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wbeff', 'Conv. updraft velocity at LFC (<100)', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_convoccur = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'convoccur', 'Convective occurence', '', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_prw = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'prw', 'Precipitable water', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_prlw = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'prlw', 'Precipitable liquid water', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_prsw = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'prsw', 'Precipitable solid water', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_prbsw = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'prbsw', 'Precipitable blowing snow', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_water_budget = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'water_budget', 'Water budget', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_s_pblh = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 's_pblh', 'Boundary Layer Height', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_s_pblt = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 's_pblt', 't at Boundary Layer Height', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_s_lcl = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 's_lcl', 'Condensation level', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_s_therm = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 's_therm', 'Exces du thermique', 'K', (/ ('', i=1, 10) /)) !IM : Les champs suivants (s_capCL, s_oliqCL, s_cteiCL, s_trmb1, s_trmb2, s_trmb3) ne sont pas definis dans HBTM.F ! type(ctrl_out),save :: o_s_capCL = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'s_capCL', & ! (/ ('', i=1, 10) /)) ! type(ctrl_out),save :: o_s_oliqCL = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'s_oliqCL', & ! (/ ('', i=1, 10) /)) ! type(ctrl_out),save :: o_s_cteiCL = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'s_cteiCL', & ! (/ ('', i=1, 10) /)) ! type(ctrl_out),save :: o_s_trmb1 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'s_trmb1', & ! (/ ('', i=1, 10) /)) ! type(ctrl_out),save :: o_s_trmb2 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'s_trmb2', & ! (/ ('', i=1, 10) /)) ! type(ctrl_out),save :: o_s_trmb3 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'s_trmb3', & !(/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_bils = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'slab_bils', 'flux atmos - slab ponderes foce', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_bilg = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'slab_bilg', 'flux glace - slab ponderes fsic', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_qflux = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'slab_qflux', 'Correction flux slab', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tslab = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tslab', 'Temperature ocean slab', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tslab1 = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11 /), & 'tslab1', 'Temperature ocean slab', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tslab2 = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11 /), & 'tslab2', 'Temperature ocean slab', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_tice = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'slab_tice', 'Temperature banquise slab', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_sic = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'seaice', 'Epaisseur banquise slab', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_hdiff = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'slab_hdiff', 'Horizontal diffusion', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_gm = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11 /), & 'slab_gm', 'GM eddy advection', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_slab_ekman = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'slab_ekman', 'Ekman heat transport', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ale_bl = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'ale_bl', 'ALE BL', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alp_bl = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp_bl', 'ALP BL', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ale_wk = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'ale_wk', 'ALE WK', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alp_wk = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp_wk', 'ALP WK', 'W/m2', (/ ('', i=1, 10) /)) !!! !nrlmd+jyg< type(ctrl_out),save :: o_dtvdf_x = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtvdf_x', ' dtvdf off_wake','K/s', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_dtvdf_w = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtvdf_w', ' dtvdf within_wake','K/s', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_dqvdf_x = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqvdf_x', ' dqvdf off_wake','kg/kg/s', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_dqvdf_w = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqvdf_w', ' dqvdf within_wake','kg/kg/s', (/ ('', i=1, 10) /)) !! type(ctrl_out),save :: o_sens_x = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sens_x', 'sens off_wake', 'W/m2', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_sens_w = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sens_w', 'sens within_wake', 'W/m2', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_flat_x = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'flat_x', 'flat off_wake', 'W/m2', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_flat_w = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'flat_w', 'flat within_wake', 'W/m2', (/ ('', i=1, 10) /)) !! type(ctrl_out),save :: o_cdragh_x = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cdragh_x', 'cdragh off-wake', '', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_cdragh_w = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cdragh_w', 'cdragh within-wake', '', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_cdragm_x = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cdragm_x', 'cdragm off-wake', '', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_cdragm_w = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cdragm_w', 'cdrgam within-wake', '', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_kh = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'kh', 'Kh', 'kg/s/m2', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_kh_x = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'kh_x', 'Kh off-wake', 'kg/s/m2', (/ ('', i=1, 10) /)) type(ctrl_out),save :: o_kh_w = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'kh_w', 'Kh within-wake', 'kg/s/m2', (/ ('', i=1, 10) /)) !>nrlmd+jyg !!! TYPE(ctrl_out), SAVE :: o_ale = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'ale', 'ALE', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alp = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp', 'ALP', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cin = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'cin', 'Convective INhibition', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wape = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'wape', '', 'm2/s2', (/ ('', i=1, 10) /)) !! TYPE(ctrl_out), SAVE :: o_coef_clos = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'coef_clos', 'closure coefficient', '', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_coef_clos_eff = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'coef_clos_eff', 'effective closure coefficient', '', (/ ('', i=1, 10) /)) !!! nrlmd le 10/04/2012 !-------Spectre de thermiques de type 2 au LCL TYPE(ctrl_out), SAVE :: o_n2 = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'n2', 'Nombre de panaches de type 2', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_s2 = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 's2', 'Surface moyenne des panaches de type 2', 'm2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_strig = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'strig', 'Surface moyenne pour atteindre niveau de congelation', 'm2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_zcong = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'zcong', 'niveau de congelation', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_zlcl_th = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'zlcl_th', 'niveau de condensation', 'm', (/ ('', i=1, 10) /)) !-------Déclenchement stochastique TYPE(ctrl_out), SAVE :: o_proba_notrig = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'proba_notrig', 'Probabilite de non-declenchement', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_random_notrig = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'random_notrig', 'Tirage aleatoire de non-declenchement', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ale_bl_stat = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'ale_bl_stat', 'ALE_BL_STAT', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ale_bl_trig = ctrl_out((/ 1, 6, 6, 6, 10, 10, 11, 11, 11, 11/), & 'ale_bl_trig', 'ALE_BL_STAT + Condition S>Sthreshold', 'm2/s2', (/ ('', i=1, 10) /)) !-------Fermeture statistique TYPE(ctrl_out), SAVE :: o_alp_bl_det = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp_bl_det', 'ALP_BL_DET', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alp_bl_fluct_m = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp_bl_fluct_m', 'ALP_BL_FLUCT_M', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alp_bl_fluct_tke = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp_bl_fluct_tke', 'ALP_BL_FLUCT_TKE', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alp_bl_conv = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp_bl_conv', 'ALP_BL_CONV', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alp_bl_stat = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11, 11/), & 'alp_bl_stat', 'ALP_BL_STAT', 'W/m2', (/ ('', i=1, 10) /)) !!! fin nrlmd le 10/04/2012 ! Champs interpolles sur des niveaux de pression ??? a faire correctement TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_uSTDlevs = (/ & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'u850', "Zonal wind 850hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'u700', "Zonal wind 700hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'u500', "Zonal wind 500hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'u200', "Zonal wind 200hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'u100', "Zonal wind 100hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'u50', "Zonal wind 50hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'u10', "Zonal wind 10hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /) TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_vSTDlevs = (/ & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'v850', "Meridional wind 850hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'v700', "Meridional wind 700hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'v500', "Meridional wind 500hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'v200', "Meridional wind 200hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'v100', "Meridional wind 100hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'v50', "Meridional wind 50hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'v10', "Meridional wind 10hPa", "m/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /) TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_wSTDlevs = (/ & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'w850', "Vertical wind 850hPa", "Pa/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'w700', "Vertical wind 700hPa", "Pa/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'w500', "Vertical wind 500hPa", "Pa/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'w200', "Vertical wind 200hPa", "Pa/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'w100', "Vertical wind 100hPa", "Pa/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'w50', "Vertical wind 50hPa", "Pa/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'w10', "Vertical wind 10hPa", "Pa/s", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /) TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_tSTDlevs = (/ & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'t850', "Temperature 850hPa", "K", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'t700', "Temperature 700hPa", "K", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'t500', "Temperature 500hPa", "K", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'t200', "Temperature 200hPa", "K", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'t100', "Temperature 100hPa", "K", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'t50', "Temperature 50hPa", "K", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'t10', "Temperature 10hPa", "K", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /) TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_qSTDlevs = (/ & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'q850', & "Specific humidity 850hPa", "kg/kg", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'q700', & "Specific humidity 700hPa", "kg/kg", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'q500', & "Specific humidity 500hPa", "kg/kg", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'q200', & "Specific humidity 200hPa", "kg/kg", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'q100', & "Specific humidity 100hPa", "kg/kg", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'q50', & "Specific humidity 50hPa", "kg/kg", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'q10', & "Specific humidity 10hPa", "kg/kg", & (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /) TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_zSTDlevs = (/ & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'z850', "Geopotential height 850hPa", & "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'z700', "Geopotential height 700hPa", & "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'z500', "Geopotential height 500hPa", & "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'z200', "Geopotential height 200hPa", & "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'z100', "Geopotential height 100hPa", & "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'z50', "Geopotential height 50hPa", & "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), & ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11, 11/),'z10', "Geopotential height 10hPa", & "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /) TYPE(ctrl_out), SAVE :: o_t_oce_sic = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 't_oce_sic', 'Temp mixte oce-sic', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_weakinv = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'weakinv', 'Weak inversion', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dthmin = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dthmin', 'dTheta mini', 'K/m', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_u10_srf = (/ & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'u10_ter', "", "", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'u10_lic', "", "", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'u10_oce', "", "", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'u10_sic', "", "", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_v10_srf = (/ & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'v10_ter', "", "", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'v10_lic', "", "", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'v10_oce', "", "", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'v10_sic', "", "", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_cldtau = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldtau', 'Cloud optical thickness', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldemi = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldemi', 'Cloud optical emissivity', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rh2m = ctrl_out((/ 5, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rh2m', 'Relative humidity at 2m', '%', (/ ('', i=1, 10) /)) ! TYPE(ctrl_out), SAVE :: o_rh2m_min = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & ! 'rh2m_min', 'Min Relative humidity at 2m', '%', & ! (/ 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', & ! 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)' /)) ! TYPE(ctrl_out), SAVE :: o_rh2m_max = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & ! 'rh2m_max', 'Max Relative humidity at 2m', '%', & ! (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', & ! 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)' /)) TYPE(ctrl_out), SAVE :: o_qsat2m = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'qsat2m', 'Saturant humidity at 2m', '%', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tpot = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tpot', 'Surface air potential temperature', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tpote = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tpote', 'Surface air equivalent potential temperature', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tke = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tke ', 'TKE', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tke_shear = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'tke_shear ', 'TKE shear term', 'm2/s3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tke_buoy = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'tke_buoy ', 'TKE buoyancy term', 'm2/s3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tke_trans = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'tke_trans ', 'TKE transport term', 'm2/s3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tke_dissip = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tke_dissip ', 'TKE dissipation term', 'm2/s3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tke_max = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tke_max', 'TKE max', 'm2/s2', & (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', & 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)' /)) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tke_srf = (/ & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_ter', & "Max Turb. Kinetic Energy "//clnsurf(1),"m2/s2", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_lic', & "Max Turb. Kinetic Energy "//clnsurf(2),"m2/s2", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_oce', & "Max Turb. Kinetic Energy "//clnsurf(3),"m2/s2", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_sic', & "Max Turb. Kinetic Energy "//clnsurf(4),"m2/s2", (/ ('', i=1, 10) /)) /) !FC ! TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_treedrg_srf = (/ & ! ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'treedrg_ter', & ! "Drag from trees "//clnsurf(1),"-", (/ ('', i=1, 10) /)), & ! ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'treedrg_lic', & ! "Drag from trees "//clnsurf(2),"-", (/ ('', i=1, 10) /)), & ! ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'treedrg_oce', & ! "Drag from trees "//clnsurf(3),"-", (/ ('', i=1, 10) /)), & ! ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'treedrg_sic', & ! "Drag from trees "//clnsurf(4),"-", (/ ('', i=1, 10) /)) /) !FC TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_l_mixmin = (/ & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mixmin_ter', & "PBL mixing length "//clnsurf(1),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mixmin_lic', & "PBL mixing length "//clnsurf(2),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mixmin_oce', & "PBL mixing length "//clnsurf(3),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mixmin_sic', & "PBL mixing length "//clnsurf(4),"m", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_l_mix = (/ & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mix_ter', & "min PBL mixing length "//clnsurf(1),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mix_lic', & "min PBL mixing length "//clnsurf(2),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mix_oce', & "min PBL mixing length "//clnsurf(3),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'l_mix_sic', & "min PBL mixing length "//clnsurf(4),"m", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tke_max_srf = (/ & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_max_ter', & "Max Turb. Kinetic Energy "//clnsurf(1),"-", & (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", & "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_max_lic', & "Max Turb. Kinetic Energy "//clnsurf(2),"-", & (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", & "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_max_oce', & "Max Turb. Kinetic Energy "//clnsurf(3),"-", & (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", & "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'tke_max_sic', & "Max Turb. Kinetic Energy "//clnsurf(4),"-", & (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", & "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_dltpbltke_srf = (/ & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'dltpbltke_ter', & "TKE difference (w - x) "//clnsurf(1),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'dltpbltke_lic', & "TKE difference (w - x) "//clnsurf(2),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'dltpbltke_oce', & "TKE difference (w - x) "//clnsurf(3),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'dltpbltke_sic', & "TKE difference (w - x) "//clnsurf(4),"-", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_delta_tsurf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'delta_tsurf ', 'T_surf difference (w - x)', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_delta_tsurf_srf = (/ & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'delta_tsurf_ter', & "T_surf difference (w - x) "//clnsurf(1),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'delta_tsurf_lic', & "T_surf difference (w - x) "//clnsurf(2),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'delta_tsurf_oce', & "T_surf difference (w - x) "//clnsurf(3),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11, 11/),'delta_tsurf_sic', & "T_surf difference (w - x) "//clnsurf(4),"-", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_kz = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'kz', 'Kz melange', 'm2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_kz_max = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'kz_max', 'Kz melange max', 'm2/s', & (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', & 't_max(X)', "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)) TYPE(ctrl_out), SAVE :: o_SWnetOR = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'SWnetOR', 'Sfce net SW radiation OR', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_LWdownOR = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'LWdownOR', 'Sfce incident LW radiation OR', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_snowl = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'snowl', 'Solid Large-scale Precip.', 'kg/(m2*s)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cape_max = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cape_max', 'CAPE max.', 'J/kg', & (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", & "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)) TYPE(ctrl_out), SAVE :: o_solldown = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11, 11/), & 'solldown', 'Down. IR rad. at surface', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtsvdfo = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtsvdfo', 'Boundary-layer dTs(o)', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtsvdft = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtsvdft', 'Boundary-layer dTs(t)', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtsvdfg = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtsvdfg', 'Boundary-layer dTs(g)', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtsvdfi = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtsvdfi', 'Boundary-layer dTs(g)', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_z0m = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'z0m', 'roughness length, momentum', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_z0h = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'z0h', 'roughness length, enthalpy', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_topswad = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'topswad', 'ADE at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_topswad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'topswad0', 'ADE clear-sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_topswai = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'topswai', 'AIE at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_solswad = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'solswad', 'ADE at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_solswad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'solswad0', 'ADE clear-sky at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_solswai = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'solswai', 'AIE at SFR', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_toplwad = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'toplwad', 'LW-ADE at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_toplwad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'toplwad0', 'LW-ADE clear-sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_toplwai = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'toplwai', 'LW-AIE at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sollwad = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sollwad', 'LW-ADE at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sollwad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sollwad0', 'LW-ADE clear-sky at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sollwai = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sollwai', 'LW-AIE at SFR', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out),SAVE,DIMENSION(naero_tot) :: o_tausumaero = & (/ ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(1), & "Aerosol Optical depth at 550 nm "//name_aero_tau(1),"1", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(2), & "Aerosol Optical depth at 550 nm "//name_aero_tau(2),"2", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(3), & "Aerosol Optical depth at 550 nm "//name_aero_tau(3),"3", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(4), & "Aerosol Optical depth at 550 nm "//name_aero_tau(4),"4", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(5), & "Aerosol Optical depth at 550 nm "//name_aero_tau(5),"5", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(6), & "Aerosol Optical depth at 550 nm "//name_aero_tau(6),"6", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(7), & "Aerosol Optical depth at 550 nm "//name_aero_tau(7),"7", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(8), & "Aerosol Optical depth at 550 nm "//name_aero_tau(8),"8", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(9), & "Aerosol Optical depth at 550 nm "//name_aero_tau(9),"9", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(10), & "Aerosol Optical depth at 550 nm "//name_aero_tau(10),"10", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(11), & "Aerosol Optical depth at 550 nm "//name_aero_tau(11),"11", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(12), & "Aerosol Optical depth at 550 nm "//name_aero_tau(12),"12", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(13), & "Aerosol Optical depth at 550 nm "//name_aero_tau(13),"13", (/ ('', i=1, 10) /)), & ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'od550_'//name_aero_tau(14), & "Aerosol Optical depth at 550 nm "//name_aero_tau(14),"14", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out),SAVE,DIMENSION(naero_tot-1) :: o_drytausumaero = & (/ ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(1), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(1),"1", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(2), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(2),"2", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(3), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(3),"3", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(4), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(4),"4", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(5), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(5),"5", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(6), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(6),"6", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(7), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(7),"7", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(8), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(8),"8", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(9), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(9),"9", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(10), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(10),"10", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(11), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(11),"11", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(12), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(12),"12", (/ ('', i=1, 10) /)), & ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'dryod550_'//name_aero_tau(13), & "Dry aerosol Optical depth at 550 nm "//name_aero_tau(13),"13", (/ ('', i=1, 10) /)) /) ! TYPE(ctrl_out), SAVE :: o_tausumaero_lw = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'od_10um_STRAT', 'Stratospheric Aerosol Optical depth at 10 um ', '1', (/ ('', i=1, 10) /)) ! TYPE(ctrl_out), SAVE :: o_od443aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'od443aer', 'Total aerosol optical depth at 440nm', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_od550aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'od550aer', 'Total aerosol optical depth at 550nm', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dryod550aer = ctrl_out((/ 11, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dryod550aer', 'Total dry aerosol optical depth at 550nm', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_od865aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'od865aer', 'Total aerosol optical depth at 870nm', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_abs550aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'abs550aer', 'Absorption aerosol optical depth at 550nm', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_od550lt1aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'od550lt1aer', 'Fine mode optical depth', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sconcso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sconcso4', 'Surface Concentration of Sulfate ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sconcno3 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sconcno3', 'Surface Concentration of Nitrate ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sconcoa = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sconcoa', 'Surface Concentration of Organic Aerosol ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sconcbc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sconcbc', 'Surface Concentration of Black Carbon ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sconcss = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sconcss', 'Surface Concentration of Sea Salt ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sconcdust = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sconcdust', 'Surface Concentration of Dust ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_concso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'concso4', 'Concentration of Sulfate ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_concno3 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'concno3', 'Concentration of Nitrate ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_concoa = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'concoa', 'Concentration of Organic Aerosol ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_concbc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'concbc', 'Concentration of Black Carbon ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_concss = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'concss', 'Concentration of Sea Salt ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_concdust = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'concdust', 'Concentration of Dust ', 'kg/m3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loadso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'loadso4', 'Column Load of Sulfate ', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loadoa = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'loadoa', 'Column Load of Organic Aerosol ', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loadbc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'loadbc', 'Column Load of Black Carbon ', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loadss = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'loadss', 'Column Load of Sea Salt ', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loaddust = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'loaddust', 'Column Load of Dust ', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_loadno3 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'loadno3', 'Column Load of Nitrate ', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swtoaas_nat = ctrl_out((/ 11, 11, 1, 11, 11, 11, 11, 11, 11, 11/), & 'swtoaas_nat', 'Natural aerosol radiative forcing all-sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swsrfas_nat = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swsrfas_nat', 'Natural aerosol radiative forcing all-sky at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swtoacs_nat = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swtoacs_nat', 'Natural aerosol radiative forcing clear-sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swsrfcs_nat = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swsrfcs_nat', 'Natural aerosol radiative forcing clear-sky at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swtoaas_ant = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swtoaas_ant', 'Anthropogenic aerosol radiative forcing all-sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swsrfas_ant = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swsrfas_ant', 'Anthropogenic aerosol radiative forcing all-sky at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swtoacs_ant = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swtoacs_ant', 'Anthropogenic aerosol radiative forcing clear-sky at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swsrfcs_ant = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swsrfcs_ant', 'Anthropogenic aerosol radiative forcing clear-sky at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swtoacf_nat = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swtoacf_nat', 'Natural aerosol impact on cloud radiative forcing at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swsrfcf_nat = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swsrfcf_nat', 'Natural aerosol impact on cloud radiative forcing at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swtoacf_ant = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swtoacf_ant', 'Anthropogenic aerosol impact on cloud radiative forcing at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swsrfcf_ant = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swsrfcf_ant', 'Anthropogenic aerosol impact on cloud radiative forcing at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swtoacf_zero = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swtoacf_zero', 'Cloud radiative forcing (allsky-clearsky fluxes) at TOA', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_swsrfcf_zero = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'swsrfcf_zero', 'Cloud radiative forcing (allsky-clearsky fluxes) at SRF', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldncl = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldncl', 'CDNC at top of liquid water cloud', 'm-3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_reffclwtop = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'reffclwtop', 'Droplet effective radius at top of liquid water cloud', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldnvi = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldnvi', 'Column Integrated Cloud Droplet Number', 'm-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lcc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lcc', 'Cloud liquid fraction at top of cloud', '1', (/ ('', i=1, 10) /)) !--tropopause pressure TYPE(ctrl_out), SAVE :: o_p_tropopause = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'p_tropopause', 'Tropopause pressure', 'Pa', (/ ('', i=1, 10) /)) !--tropopause height TYPE(ctrl_out), SAVE :: o_z_tropopause = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'z_tropopause', 'Tropopause height', 'm', (/ ('', i=1, 10) /)) !--tropopause temperature TYPE(ctrl_out), SAVE :: o_t_tropopause = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 't_tropopause', 'Tropopause temperature', 'K', (/ ('', i=1, 10) /)) !--Added ThL TYPE(ctrl_out), SAVE :: o_col_O3_strato = ctrl_out((/2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'colO3_strat','Ozone stratospheric column', 'DU', (/('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_col_O3_tropo = ctrl_out((/2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'colO3_trop','Ozone tropospheric column', 'DU', (/('', i=1, 10) /)) !--end add ThL !---CO2 fluxes for interactive CO2 configuration TYPE(ctrl_out), SAVE :: o_flx_co2_ff = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'flx_co2_ff', 'CO2 flux from fossil fuel and cement', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_flx_co2_bb = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'flx_co2_bb', 'CO2 flux from biomass burning', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_flx_co2_ocean = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'flx_co2_ocean', 'CO2 flux from the ocean', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_flx_co2_land = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'flx_co2_land', 'CO2 flux from the land', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_flx_co2_ocean_cor = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'flx_co2_ocean_cor', 'correction of the CO2 flux from the ocean', 'kg CO2 m-2 s-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_flx_co2_land_cor = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'flx_co2_land_cor', 'correction of the CO2 flux from the land', 'kg CO2 m-2 s-1', (/ ('', i=1, 10) /)) !--extinction coefficient TYPE(ctrl_out), SAVE :: o_ext_strat_550 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'ext_strat_550', 'Strat. aerosol extinction coefficient at 550 nm', '1/m', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ext_strat_1020 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'ext_strat_1020', 'Strat. aerosol extinction coefficient at 1020 nm', '1/m', (/ ('', i=1, 10) /)) !--strat aerosol optical depth TYPE(ctrl_out), SAVE :: o_tau_strat_550 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'OD550_strat_only', 'Stratospheric Aerosol Optical depth at 550 nm ', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tau_strat_1020 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'OD1020_strat_only', 'Stratospheric Aerosol Optical depth at 1020 nm ', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SAD_sulfate = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'SAD_sulfate', 'SAD WET sulfate aerosols', 'cm2/cm3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_reff_sulfate = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'reff_sulfate', 'Effective radius of WET sulfate aerosols', 'cm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sulfmmr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'sulfMMR', 'Sulfate aerosol concentration (dry mass mixing ratio)', 'kg(H2SO4)/kg(air)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_nd_mode(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_sulfmmr_mode(:) !--chemistry TYPE(ctrl_out), SAVE :: o_R2SO4 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'R2SO4', 'H2SO4 mass fraction in aerosol', '%', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_OCS_lifetime = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'OCS_lifetime', 'OCS lifetime', 's', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_SO2_lifetime = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'SO2_lifetime', 'SO2 lifetime', 's', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_f_r_wet = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'f_r_wet', 'Conversion factor dry to wet aerosol radius', '-', (/ ('', i=1, 10) /)) !--budget 3D TYPE(ctrl_out), SAVE :: o_budg_3D_nucl = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_3D_nucl', 'H2SO4 nucleation mass flux', 'kg(S)/m2/layer/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_3D_cond_evap = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_3D_cond_evap', 'H2SO4 condensation/evaporation mass flux', 'kg(S)/m2/layer/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_3D_ocs_to_so2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_3D_ocs_to_so2', 'OCS mass flux converted to SO2', 'kg(S)/m2/layer/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_3D_so2_to_h2so4 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_3D_so2_to_h2so4', 'SO2 mass flux converted to H2SO4', 'kg(S)/m2/layer/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_3D_backgr_ocs = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_3D_backgr_ocs', 'OCS background tendency', 'kg(S)/m2/layer/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_3D_backgr_so2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_3D_backgr_so2', 'SO2 background tendency', 'kg(S)/m2/layer/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_vsed_aer = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'vsed_aer', 'Strat. aerosol sedimentation velocity (mass-weighted)', 'm/s', (/ ('', i=1, 10) /)) !--budget 2D TYPE(ctrl_out), SAVE :: o_budg_dep_dry_ocs = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_dry_ocs', 'OCS dry deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_dep_wet_ocs = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_wet_ocs', 'OCS wet deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_dep_dry_so2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_dry_so2', 'SO2 dry deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_dep_wet_so2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_wet_so2', 'SO2 wet deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_dep_dry_h2so4 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_dry_h2so4', 'H2SO4 dry deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_dep_wet_h2so4 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_wet_h2so4', 'H2SO4 wet deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_dep_dry_part = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_dry_part', 'particle dry deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_dep_wet_part = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_dep_wet_part', 'particle wet deposition flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_emi_ocs = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_emi_ocs', 'OCS emission flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_emi_so2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_emi_so2', 'SO2 emission flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_emi_h2so4 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_emi_h2so4', 'H2SO4 emission flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_emi_part = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_emi_part', 'Particle emission flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_ocs_to_so2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_ocs_to_so2', 'OCS to SO2 flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_so2_to_h2so4 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_so2_to_h2so4', 'SO2 to H2SO4 flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_h2so4_to_part = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_h2so4_to_part', 'H2SO4 to part flux', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_budg_sed_part = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'budg_sed_part', 'Ground sedimentation flux of strat. particles', 'kg(S)/m2/s', (/ ('', i=1, 10) /)) !--surface PM25 due to strat aerosol TYPE(ctrl_out), SAVE :: o_surf_PM25_sulf = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 1/), & 'surf_PM25_sulf', 'Sulfate PM2.5 concentration at the surface', 'ug/m3', (/ ('', i=1, 10) /)) !!!!!!!!!!!!!!!!!!!!!! 3D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TYPE(ctrl_out), SAVE :: o_ec550aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ec550aer', 'Extinction at 550nm', 'm^-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lwcon = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lwcon', 'Cloud liquid water content seen by radiation', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_iwcon = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'iwcon', 'Cloud ice water content seen by radiation', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_temp = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11, 11/), & 'temp', 'Air temperature', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_heat_volc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'heat_volc', 'SW heating rate due to volcano', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cool_volc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cool_volc', 'LW cooling rate due to volcano', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_theta = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11, 11/), & 'theta', 'Potential air temperature', 'K', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ovap = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11, 11/), & 'ovap', 'Specific humidity', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ovapinit = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ovapinit', 'Specific humidity (begin of timestep)', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_oliq = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11, 11/), & 'oliq', 'Liquid water', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ocond = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11, 11/), & 'ocond', 'Condensed water', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_oice = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11, 11/), & 'oice', 'Ice water', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qbs = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'qbs', 'Specific content of blowing snow', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wvapp = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wvapp', '', '', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_geop = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11, 11/), & 'geop', 'Geopotential height', 'm2/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_vitu = ctrl_out((/ 2, 3, 4, 6, 10, 10, 11, 11, 11, 11/), & 'vitu', 'Zonal wind', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_vitv = ctrl_out((/ 2, 3, 4, 6, 10, 10, 11, 11, 11, 11/), & 'vitv', 'Meridional wind', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_vitw = ctrl_out((/ 2, 3, 10, 6, 10, 10, 11, 11, 11, 11/), & 'vitw', 'Vertical wind', 'Pa/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pres = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11, 11/), & 'pres', 'Air pressure', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_paprs = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11, 11/), & 'paprs', 'Air pressure Inter-Couches', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_mass = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11, 11/), & 'mass', 'Masse Couches', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_zfull = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11, 11/), & 'zfull', 'Altitude of full pressure levels', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_zhalf = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11, 11/), & 'zhalf', 'Altitude of half pressure levels', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rneb = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rneb', 'Cloud fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldfraliq = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'cldfraliq', 'Liquid fraction of the cloud', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sigma2_icefracturb = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'sigma2_icefracturb', 'Variance of the diagnostic supersaturation distribution (icefrac_turb) [-]', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_mean_icefracturb = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'mean_icefracturb', 'Mean of the diagnostic supersaturation distribution (icefrac_turb) [-]', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rnebjn = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11,11, 11/), & 'rnebjn', 'Cloud fraction in day', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rnebcon = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rnebcon', 'Convective Cloud Fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rnebls = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rnebls', 'LS Cloud fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rneblsvol = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rneblsvol', 'LS Cloud fraction by volume', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pfraclr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'pfraclr', 'LS precipitation fraction clear-sky part', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pfracld = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'pfracld', 'LS precipitation fraction cloudy part', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qrainlsc = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qrainlsc', 'LS specific rain content', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qsnowlsc = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qsnowlsc', 'LS specific snow content', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqreva = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqreva', 'LS rain tendency due to evaporation', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqrauto = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqrauto', 'LS rain tendency due to autoconversion', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqrcol = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqrcol', 'LS rain tendency due to collection', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqrmelt = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqrmelt', 'LS rain tendency due to melting', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqrfreez = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqrfreez', 'LS rain tendency due to freezing', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqssub = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqssub', 'LS snow tendency due to sublimation', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsauto = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqsauto', 'LS snow tendency due to autoconversion', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsagg = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqsagg', 'LS snow tendency due to aggregation', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsrim = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqsrim', 'LS snow tendency due to riming', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsmelt = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqsmelt', 'LS snow tendency due to melting', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsfreez = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqsfreez', 'LS snow tendency due to freezing', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rhum = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rhum', 'Relative humidity', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rhl = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rhl', 'Relative humidity wrt liquid', '%', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rhi = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rhi', 'Relative humidity wrt ice', '%', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ozone = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ozone', 'Ozone mole fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ozone_light = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ozone_daylight', 'Daylight ozone mole fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_upwd = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'upwd', 'saturated updraft', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_epmax_diag = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'epmax', 'epmax en fn cape', 'su', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ep = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ep', 'ep', 'su', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_duphy = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'duphy', 'Physics du', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtphy = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtphy', 'Physics dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqphy = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqphy', 'Physics dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqphy2d = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqphy2d', 'Physics dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqlphy = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlphy', 'Physics dQL', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqlphy2d = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlphy2d', 'Physics dQL', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsphy = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqsphy', 'Physics dQS', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsphy2d = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqsphy2d', 'Physics dQS', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqbsphy = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqbsphy', 'Physics dQBS', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqbsphy2d = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqbsphy2d', 'Physics dQBS', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pr_con_l = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'pr_con_l', 'Convective precipitation lic', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pr_con_i = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'pr_con_i', 'Convective precipitation ice', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pr_lsc_l = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'pr_lsc_l', 'Large scale precipitation lic', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pr_lsc_i = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'pr_lsc_i', 'Large scale precipitation ice', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_pr_bs = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'pr_bs', 'profile of blowing snow flux', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_re = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 're', 'Cloud droplet effective radius', 'um', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fl = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fl', 'Denominator of Cloud droplet effective radius', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_scdnc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'scdnc', 'Cloud droplet number concentration', 'm-3', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_reffclws = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'reffclws', 'Stratiform Cloud Droplet Effective Radius (aerosol diags.)', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_reffclwc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'reffclwc', 'Convective Cloud Droplet Effective Radius (aerosol diags.)', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lcc3d = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lcc3d', 'Cloud liquid fraction', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lcc3dcon = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lcc3dcon', 'Convective cloud liquid fraction', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lcc3dstra = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lcc3dstra', 'Stratiform cloud liquid fraction', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_icc3dcon = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'icc3dcon', 'Convective cloud ice fraction', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_icc3dstra = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'icc3dstra', 'Stratiform cloud ice fraction', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldicemxrat = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldicemxrat', 'Cloud Ice Mixing Ratio', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cldwatmxrat = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cldwatmxrat', 'Cloud Water Mixing Ratio', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_solbnd = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'solbnd', 'Top-of-Atmosphere Solar Insolation for each band', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_stratomask = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'stratomask', 'Stratospheric fraction', '1', (/ ('', i=1, 10) /)) !FC TYPE(ctrl_out), SAVE :: o_zxfluxt = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fluxt', 'flux h ', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_zxfluxq = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fluxq', 'flux q ', 'kg/(s*m2)', (/ ('', i=1, 10) /)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_albe_srf = (/ & ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11, 11/),'albe_ter', "Albedo VIS surf. "//clnsurf(1),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11, 11/),'albe_lic', "Albedo VIS surf. "//clnsurf(2),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11, 11/),'albe_oce', "Albedo VIS surf. "//clnsurf(3),"-", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11, 11/),'albe_sic', "Albedo VIS surf. "//clnsurf(4),"-", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_ages_srf = (/ & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'ages_ter', "Snow age", "day", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'ages_lic', "Snow age", "day", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'ages_oce',"Snow age", "day", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'ages_sic',"Snow age", "day", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_snow_srf = (/ & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'snow_ter', "Snow", "kg/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'snow_lic', "Snow", "kg/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'snow_oce',"Snow", "kg/m2", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11, 11/),'snow_sic',"Snow", "kg/m2", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_z0m_srf = (/ & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0m_ter', "Surface roughness "//clnsurf(1),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0m_lic', "Surface roughness "//clnsurf(2),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0m_oce', "Surface roughness "//clnsurf(3),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0m_sic', "Surface roughness "//clnsurf(4),"m", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_z0h_srf = (/ & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0h_ter', "Surface roughness "//clnsurf(1),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0h_lic', "Surface roughness "//clnsurf(2),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0h_oce', "Surface roughness "//clnsurf(3),"m", (/ ('', i=1, 10) /)), & ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11, 11/),'z0h_sic', "Surface roughness "//clnsurf(4),"m", (/ ('', i=1, 10) /)) /) TYPE(ctrl_out), SAVE :: o_alb1 = ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'alb1', 'Surface VIS albedo', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_alb2 = ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'alb2', 'Surface Near IR albedo', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_clwcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'clwcon', 'Convective Cloud Liquid water content', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Mipsh = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'Mipsh', 'mass flux shed from adiab. ascents', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Ma = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'Ma', 'undilute adiab updraft mass flux', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dnwd = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dnwd', 'saturated downdraft', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dnwd0 = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dnwd0', 'unsat. downdraft', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_mc = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'mc', 'Convective mass flux', 'kg/m2/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ftime_deepcv = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ftime_deepcv', 'Fraction of time deep convection Occurs', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ftime_con = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ftime_con', 'Fraction of time convection Occurs', ' ', (/ ('', i=1, 10) /)) !!jyg 'ftime_con', 'Fraction of time convection Occurs', ' ', & !!jyg (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', & !!jyg 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) TYPE(ctrl_out), SAVE :: o_dtdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtdyn', 'Dynamics dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqdyn', 'Dynamics dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqdyn2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqdyn2d', 'Dynamics dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqldyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqldyn', 'Dynamics dQL', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqldyn2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqldyn2d', 'Dynamics dQL', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqsdyn', 'Dynamics dQS', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqsdyn2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqsdyn2d', 'Dynamics dQS', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqbsdyn = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqbsdyn', 'Dynamics dQBS', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqbsdyn2d = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqbsdyn2d', 'Dynamics dQBS', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dudyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dudyn', 'Dynamics dU', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dvdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dvdyn', 'Dynamics dV', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtcon', 'Convection dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ducon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ducon', 'Convection du', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dvcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dvcon', 'Convection dv', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqcon', 'Convection dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqcon2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqcon2d', 'Convection dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtwak = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtwak', 'Wake dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqwak = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqwak', 'Wake dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqwak2d = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqwak2d', 'Wake dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cv_gen = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'cv_gen', 'Cumulonimbus genesis', '1/(m2 s)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wake_h = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wake_h', 'wake_h', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wake_dens = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wake_dens', 'number of wakes per m2', '1/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wake_s = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wake_s', 'wake_s', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wake_deltat = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wake_deltat', 'wake_deltat', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wake_deltaq = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wake_deltaq', 'wake_deltaq', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wake_omg = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'wake_omg', 'wake_omg', 'Pa/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wdtrainA = ctrl_out((/ 4, 5, 10, 4, 10, 10, 11, 11, 11, 11 /), & 'wdtrainA', 'precipitation from AA', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wdtrainS = ctrl_out((/ 4, 5, 10, 4, 10, 10, 11, 11, 11, 11 /), & 'wdtrainS', 'precipitation from shedding of AA', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_wdtrainM = ctrl_out((/ 4, 5, 10, 4, 10, 10, 11, 11, 11, 11 /), & 'wdtrainM', 'precipitation from mixture', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_Vprecip = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'Vprecip', 'precipitation vertical profile', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qtaa = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'qtaa', 'specific total water in adiabatic ascents', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_clwaa = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'Clwaa', 'specific condensed water in adiabatic ascents', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ftd = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ftd', 'tend temp due aux descentes precip', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fqd = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11, 11/), & 'fqd', 'tend vap eau due aux descentes precip', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtlsc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtlsc', 'Condensation dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtlschr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtlschr', 'Large-scale condensational heating rate', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqlsc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlsc', 'Condensation dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqlsc2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlsc2d', 'Condensation dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_beta_prec = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'beta_prec', 'LS Conversion rate to prec', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtvdf', 'Boundary-layer dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtdis = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtdis', 'TKE dissipation dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqvdf', 'Boundary-layer dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqvdf2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqvdf2d', 'Boundary-layer dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dteva = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dteva', 'Reevaporation dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqeva = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqeva', 'Reevaporation dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqeva2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqeva2d', 'Reevaporation dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqbsvdf = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqbsvdf', 'Boundary-layer dQBS', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqbsbs = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqbsbs', 'Blowing snow dQBS', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtbs = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtbs', 'Blowing snow dT', '(K)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqbs = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqbs', 'Blowing snow dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) !!!!!!!!!!!!!!!! Specifique thermiques TYPE(ctrl_out), SAVE :: o_dqlscth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlscth', 'dQ therm.', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqlscth2d = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlscth2d', 'dQ therm.', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqlscst = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlscst', 'dQ strat.', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqlscst2d = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqlscst2d', 'dQ strat.', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtlscth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtlscth', 'dQ therm.', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtlscst = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtlscst', 'dQ strat.', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_plulth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'plulth', 'Rainfall therm.', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_plulst = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'plulst', 'Rainfall strat.', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lmaxth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lmaxth', "Upper level thermals", "", (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ptconvth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ptconvth', 'POINTS CONVECTIFS therm.', ' ', (/ ('', i=1, 10) /)) !!!!!!!!!!!!!!!!!!!!!!!! TYPE(ctrl_out), SAVE :: o_ptconv = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ptconv', 'POINTS CONVECTIFS', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ratqs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ratqs', 'RATQS', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtthe = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtthe', 'Thermal dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_duthe = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'duthe', 'Thermal du', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dvthe = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dvthe', 'Thermal dv', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_f_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'f_th', 'Thermal plume mass flux', 'kg/(m2*s)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_e_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'e_th', 'Thermal plume entrainment', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_w_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'w_th', 'Thermal plume vertical velocity', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_lambda_th = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'lambda_th', 'Thermal plume vertical velocity', 'm/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ftime_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ftime_th', 'Fraction of time Shallow convection occurs', ' ', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_q_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'q_th', 'Thermal plume total humidity', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_a_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'a_th', "Thermal plume fraction", "", (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cloudth_sth = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 's_th', "Thermal plume saturation deficit", "kg/kg", (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cloudth_senv = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 's_env', "Environment saturation deficit", "kg/kg", (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cloudth_sigmath = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sigma_th', "Thermal plume gauss variance", "kg/kg", (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_cloudth_sigmaenv = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'sigma_env', "Environment gauss variance", "kg/kg", (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_d_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'd_th', 'Thermal plume detrainment', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_f0_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'f0_th', 'Thermal closure mass flux', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_zmax_th = ctrl_out((/ 4, 4, 4, 5, 10, 10, 11, 11, 11, 11/), & 'zmax_th', 'Thermal plume height', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqthe = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqthe', 'Thermal dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqthe2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqthe2d', 'Thermal dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtajs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtajs', 'Dry adjust. dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqajs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqajs', 'Dry adjust. dQ', '(kg/kg)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqajs2d = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqajs2d', 'Dry adjust. dQ', '(kg/m2)/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtswr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtswr', 'SW radiation dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtsw0 = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtsw0', 'CS SW radiation dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtlwr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtlwr', 'LW radiation dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtlw0 = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtlw0', 'CS LW radiation dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtec = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtec', 'Cinetic dissip dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_duvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'duvdf', 'Boundary-layer dU', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dvvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dvvdf', 'Boundary-layer dV', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_duoro = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'duoro', 'Orography dU', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dvoro = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dvoro', 'Orography dV', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dulif = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dulif', 'Orography dU', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dvlif = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dvlif', 'Orography dV', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_du_gwd_hines = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'du_gwd_hines', 'Hines GWD dU', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dv_gwd_hines = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dv_gwd_hines', 'Hines GWD dV', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_du_gwd_front = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'du_gwd_front', 'Fronts GWD dU', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dv_gwd_front = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dv_gwd_front', 'Fronts GWD dV', 'm/s2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_east_gwstress = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'east_gwstress', 'Eastward GW Stress', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_west_gwstress = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'west_gwstress', 'Westward GW Stress', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtoro = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtoro', 'Orography dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dtlif = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dtlif', 'Orography dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dthin = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dthin', 'Hines GWD dT', 'K/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqch4 = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dqch4', 'H2O due to CH4 oxidation & photolysis', '(kg/kg)/s', (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_du_gwd_rando & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'du_gwd_rando', & "Random gravity waves dU/dt", "m/s2", (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_dv_gwd_rando & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'dv_gwd_rando', & "Random gravity waves dV/dt", "m/s2", (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_ustr_gwd_hines & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'ustr_gwd_hines', & "zonal wind stress Hines gravity waves", "Pa", (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_vstr_gwd_hines & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'vstr_gwd_hines', & "meridional wind stress Hines gravity waves", "Pa", (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_ustr_gwd_front & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'ustr_gwd_front', & "zonal wind stress fronts gravity waves", "Pa", (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_vstr_gwd_front & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'vstr_gwd_front', & "meridional wind stress fronts gravity waves", "Pa", (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_ustr_gwd_rando & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'ustr_gwd_rando', & "zonal wind stress random gravity waves", "Pa", (/ ('', i=1, 10) /)) type(ctrl_out), save:: o_vstr_gwd_rando & = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), 'vstr_gwd_rando', & "meridional wind stress random gravity waves", "Pa", (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_trac(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_trac_cum(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_vdf(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_the(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_con(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_lessi_impa(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_lessi_nucl(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_insc(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_bcscav(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_evapls(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_ls(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_trsp(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_sscav(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_sat(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_uscav(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_wet_cv(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_wet(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_dry(:) #ifdef ISO TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtprecip(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtevap(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtevap_srf(:,:) ! ajout Camille 8 mai 2023 TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtplul(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtpluc(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtovap(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtoliq(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtcond(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_xtrunoff_diag(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtdyn(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtldyn(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtvdf(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtcon(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtlsc(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxteva(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtajs(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtthe(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtch4(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtprod_nucl(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtcosmo(:) TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dxtdecroiss(:) #endif TYPE(ctrl_out), SAVE :: o_rsu = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsu', 'SW upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsd = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsd', 'SW downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlu = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rlu', 'LW upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rld = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rld', 'LW downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsucs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsucs', 'SW CS upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsucsaf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsucsaf', 'SW CS clean (no aerosol) upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsdcs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsdcs', 'SW CS downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsdcsaf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsdcsaf', 'SW CS clean (no aerosol) downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlucs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rlucs', 'LW CS upward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rldcs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rldcs', 'LW CS downward radiation', 'W m-2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tnt = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tnt', 'Tendency of air temperature', 'K s-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tntc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tntc', 'Tendency of air temperature due to Moist Convection', 'K s-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tntr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tntr', 'Air temperature tendency due to Radiative heating', 'K s-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tntscpbl = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tntscpbl', 'Air temperature tendency due to St cloud and precipitation and BL mixing', & 'K s-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tnhus = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tnhus', 'Tendency of specific humidity', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tnhusc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tnhusc', 'Tendency of specific humidity due to convection', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_tnhusscpbl = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'tnhusscpbl', 'Tendency of Specific humidity due to ST cl, precip and BL mixing', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_evu = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'evu', 'Eddy viscosity coefficient for Momentum Variables', 'm2 s-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_h2o = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'h2o', 'Mass Fraction of Water', '1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_mcd = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'mcd', 'Downdraft COnvective Mass Flux', 'kg/(m2*s)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dmc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'dmc', 'Deep COnvective Mass Flux', 'kg/(m2*s)', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ref_liq = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ref_liq', 'Effective radius of convective cloud liquid water particle', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_ref_ice = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'ref_ice', 'Effective radius of startiform cloud ice particle', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsut4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsut4co2', 'TOA Out SW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlut4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rlut4co2', 'TOA Out LW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsutcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsutcs4co2', 'TOA Out CS SW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlutcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rlutcs4co2', 'TOA Out CS LW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsu4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsu4co2', 'Upwelling SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlu4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rlu4co2', 'Upwelling LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsucs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsucs4co2', 'Upwelling CS SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rlucs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rlucs4co2', 'Upwelling CS LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsd4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsd4co2', 'Downwelling SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rld4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rld4co2', 'Downwelling LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rsdcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rsdcs4co2', 'Downwelling CS SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rldcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11, 11/), & 'rldcs4co2', 'Downwelling CS LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_snowsrf = ctrl_out((/ 1, 1, 10, 1, 10, 10, 11, 11, 11, 11/), & 'snowsrf', 'Snow mass at surface', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qsnow = ctrl_out((/ 1, 1, 10, 1, 10, 10, 11, 11, 11, 11/), & 'qsnow', 'Water contained in snow', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_snowhgt = ctrl_out((/ 1, 1, 10, 1, 10, 10, 11, 11, 11, 11/), & 'snowhgt', 'Snow height at surface', 'm', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_toice = ctrl_out((/ 1, 1, 10, 1, 10, 10, 11, 11, 11, 11/), & 'to_ice', 'Snow passed to ice model', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_sissnow = ctrl_out((/ 1, 1, 10, 1, 10, 10, 11, 11, 11, 11/), & 'sissnow', 'Snow in snow model', 'kg/m2', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_runoff = ctrl_out((/ 1, 1, 10, 1, 10, 10, 11, 11, 11, 11/), & 'runoff', 'Run-off rate land ice', 'kg/m2/s', (/ ('', i=1, 10) /)) ! SN add runoff_diag !#ifdef ISO TYPE(ctrl_out), SAVE :: o_runoff_diag = ctrl_out((/ 1, 1, 10, 1, 10, 10, 11, 11, 11, 11/), & 'runoffland', 'Run-off rate land for bucket', 'kg/m2/s', (/ ('', i=1, 10) /)) !#endif TYPE(ctrl_out), SAVE :: o_albslw3 = ctrl_out((/ 1, 1, 1, 1, 10, 10, 11, 11, 11, 11/), & 'albslw3', 'Surface albedo LW3', '-', (/ ('', i=1, 10) /)) !-- LSCP - condensation and ice supersaturation variables TYPE(ctrl_out), SAVE :: o_cfseri = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'cfseri', 'Cloud fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dcfdyn = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dcfdyn', 'Dynamics cloud fraction tendency', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_rvcseri = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'rvcseri', 'Cloudy water vapor to total water vapor ratio', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_drvcdyn = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'drvcdyn', 'Dynamics cloudy water vapor to total water vapor ratio tendency', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qsub = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qsub', 'Subsaturated clear sky total water', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qissr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qissr', 'Supersaturated clear sky total water', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qcld = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qcld', 'Cloudy sky total water', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_subfra = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'subfra', 'Subsaturated clear sky fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_issrfra = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'issrfra', 'Supersaturated clear sky fraction', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_gammacond = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'gammacond', 'Condensation threshold w.r.t. saturation', '-', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dcfsub = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dcfsub', 'Sublimation cloud fraction tendency', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dcfcon = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dcfcon', 'Condensation cloud fraction tendency', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dcfmix = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dcfmix', 'Cloud mixing cloud fraction tendency', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqiadj = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqiadj', 'Temperature adjustment ice tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqisub = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqisub', 'Sublimation ice tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqicon = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqicon', 'Condensation ice tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqimix = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqimix', 'Cloud mixing ice tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqvcadj = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqvcadj', 'Temperature adjustment cloudy water vapor tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqvcsub = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqvcsub', 'Sublimation cloudy water vapor tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqvccon = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqvccon', 'Condensation cloudy water vapor tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqvcmix = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqvcmix', 'Cloud mixing cloudy water vapor tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qsatl = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qsatl', 'Saturation with respect to liquid', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qsati = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'qsati', 'Saturation with respect to ice', 'kg/kg', (/ ('', i=1, 10) /)) !-- LSCP - aviation variables TYPE(ctrl_out), SAVE :: o_Tcontr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/),& 'Tcontr', 'Temperature threshold for contrail formation', 'K', (/ ('',i=1,10) /)) TYPE(ctrl_out), SAVE :: o_qcontr = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/),& 'qcontr', 'Specific humidity threshold for contrail formation', 'Pa', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_qcontr2 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/),& 'qcontr2', 'Specific humidity threshold for contrail formation', 'kg/kg', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_fcontrN = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/),& 'fcontrN', 'Fraction with non-persistent contrail in clear-sky', '-', (/ ('', i=1,10)/)) TYPE(ctrl_out), SAVE :: o_fcontrP = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/),& 'fcontrP', 'Fraction with persistent contrail in ISSR', '-', (/ ('', i=1,10)/)) TYPE(ctrl_out), SAVE :: o_dcfavi = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dcfavi', 'Aviation cloud fraction tendency', 's-1', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqiavi = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqiavi', 'Aviation ice tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_dqvcavi = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'dqvcavi', 'Aviation cloudy water vapor tendency', 'kg/kg/s', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_flight_dist = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'flightdist', 'Aviation flown distance', 'm/s/mesh', (/ ('', i=1, 10) /)) TYPE(ctrl_out), SAVE :: o_flight_h2o = ctrl_out((/ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11/), & 'flighth2o', 'Aviation H2O flight emission', 'kg H2O/s/mesh', (/ ('', i=1, 10) /)) !!!!!!!!!!!!! Sorties niveaux standards de pression NMC TYPE(ctrl_out), SAVE :: o_tnondef = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'tnondef', 'Undefined value of T', 'K', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_ta = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'ta', 'Air temperature', 'K', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_zg = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'zg', 'Geopotential height', 'm', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_hus = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'hus', 'Specific humidity', '1', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_hur = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'hur', 'Relative humidity', '%', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_ua = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'ua', 'Eastward wind', 'm s-1', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_va = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'va', 'Northward wind', 'm s-1', (/ ('', i=1, 10)/)) TYPE(ctrl_out), SAVE :: o_wap = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'wap', 'Lagrangian tendency of air pressure', 'Pa s-1', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_psbg = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'psbg', 'Pressure sfce below ground', '%', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_tro3 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'tro3', 'Ozone mole fraction', '1e-9', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_tro3_daylight = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5, 11/), & 'tro3_daylight', 'Daylight ozone mole fraction', '1e-9', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_uxv = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'uv', 'uv', 'm2/s2', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_vxq = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'vxq', 'vxq', 'm/s * (kg/kg)', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_vxT = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'vT', 'vT', 'mK/s', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_wxq = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'wq', 'wq', '(Pa/s)*(kg/kg)', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_vxphi = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'vphi', 'vphi', 'm2/s', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_wxT = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'wT', 'wT', '"K*Pa/s', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_uxu = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'u2', 'u2', 'm2/s2', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_vxv = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'v2', 'v2', 'm2/s2', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) TYPE(ctrl_out), SAVE :: o_TxT = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6, 11/), & 'T2', 'T2', 'K2', (/ "inst(X)", "inst(X)", "inst(X)", & "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /)) INCLUDE 'spla_output_dat.h' type(ctrl_out), save:: o_delta_sst & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'delta_SST', & "ocean-air interface temperature minus bulk SST", "K", '') type(ctrl_out), save:: o_delta_sal & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'delta_sal', & "ocean-air interface salinity minus bulk salinity", "ppt", '') type(ctrl_out), save:: o_ds_ns & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'dS_ns', & "subskin salinity minus foundation salinity", "ppt", '') type(ctrl_out), save:: o_dt_ns & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'dT_ns', & "subskin temperature minus foundation temperature", "K", '') type(ctrl_out), save:: o_dter & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'dTer', & "ocean-air interface temperature minus sub-skin temperature", "K", '') type(ctrl_out), save:: o_dser & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'dSer', & "ocean-air interface salinity minus sub-skin salinity", "ppt", '') type(ctrl_out), save:: o_tkt & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'tkt', & "thickness of thermal microlayer", "m", '') type(ctrl_out), save:: o_tks & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'tks', & "thickness of salinity microlayer", "m", '') type(ctrl_out), save:: o_taur & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'taur', & "momentum flux due to rain", "Pa", '') type(ctrl_out), save:: o_sss & = ctrl_out([1, 10, 10, 1, 10, 10, 11, 11, 11, 11], 'SSS', & "bulk sea-surface salinity", "ppt", '') END MODULE phys_output_ctrlout_mod