SUBROUTINE scm USE flux_arp_mod_h USE compbl_mod_h USE clesphys_mod_h USE ioipsl, only: ju2ymds, ymds2ju, ioconf_calendar,getin USE phys_state_var_mod, ONLY : phys_state_var_init, phys_state_var_end, & clwcon, detr_therm, & qsol, fevap, z0m, z0h, agesno, & du_gwd_rando, du_gwd_front, entr_therm, f0, fm_therm, & falb_dir, falb_dif, & ftsol, beta_aridity, pbl_tke, pctsrf, radsol, rain_fall, snow_fall, ratqs, & rnebcon, rugoro, sig1, w01, solaire_etat0, sollw, sollwdown, & solsw, solswfdiff, t_ancien, q_ancien, u_ancien, v_ancien, & wake_delta_pbl_TKE, delta_tsurf, wake_fip, wake_pe, & wake_deltaq, wake_deltat, wake_s, awake_s, wake_dens, & awake_dens, cv_gen, wake_cstar, & zgam, zmax0, zmea, zpic, zsig, & zstd, zthe, zval, ale_bl, ale_bl_trig, alp_bl, & ql_ancien, qs_ancien, qbs_ancien, cf_ancien, rvc_ancien, & prlw_ancien, prsw_ancien, prbsw_ancien, prw_ancien, & u10m,v10m,ale_wake,ale_bl_stat, ratqs_inter_ USE dimphy USE surface_data, only : type_ocean,ok_veget USE pbl_surface_mod, only : ftsoil, pbl_surface_init, & pbl_surface_final USE fonte_neige_mod, only : fonte_neige_init, fonte_neige_final USE infotrac ! new USE control_mod USE indice_sol_mod USE phyaqua_mod USE mod_1D_cases_read_std USE print_control_mod, ONLY: lunout, prt_level USE iniphysiq_mod, ONLY: iniphysiq USE mod_const_mpi, ONLY: comm_lmdz USE physiq_mod, ONLY: physiq USE comvert_mod, ONLY: presnivs, ap, bp, dpres,nivsig, nivsigs, pa, & preff, aps, bps, pseudoalt, scaleheight USE temps_mod, ONLY: annee_ref, calend, day_end, day_ini, day_ref, & itau_dyn, itau_phy, start_time, year_len USE phys_cal_mod, ONLY : year_len_phys_cal_mod => year_len USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_OUTPUTPHYSSCM USE dimensions_mod, ONLY: iim, jjm, llm, ndm USE dimsoil_mod_h, ONLY: nsoilmx USE yomcst_mod_h USE tsoilnudge_mod_h USE fcg_gcssold_mod_h USE compar1d_mod_h USE date_cas_mod_h implicit none !===================================================================== ! DECLARATIONS !===================================================================== !--------------------------------------------------------------------- ! Externals !--------------------------------------------------------------------- external fq_sat real fq_sat !--------------------------------------------------------------------- ! Arguments d' initialisations de la physique (USER DEFINE) !--------------------------------------------------------------------- integer, parameter :: ngrid=1 real :: zcufi = 1. real :: zcvfi = 1. real :: fnday real :: day, daytime real :: day1 real :: heure integer :: jour integer :: mois integer :: an !--------------------------------------------------------------------- ! Declarations related to forcing and initial profiles !--------------------------------------------------------------------- integer :: kmax = llm integer llm700,nq1,nq2,iflag_1d_vert_adv INTEGER, PARAMETER :: nlev_max=1000, nqmx=1000 real timestep, frac real height(nlev_max),tttprof(nlev_max),qtprof(nlev_max) real uprof(nlev_max),vprof(nlev_max),e12prof(nlev_max) real ugprof(nlev_max),vgprof(nlev_max),wfls(nlev_max) real dqtdxls(nlev_max),dqtdyls(nlev_max) real dqtdtls(nlev_max),thlpcar(nlev_max) real qprof(nlev_max,nqmx) ! integer :: forcing_type logical :: forcing_les = .false. logical :: forcing_armcu = .false. logical :: forcing_rico = .false. logical :: forcing_radconv = .false. logical :: forcing_toga = .false. logical :: forcing_twpice = .false. logical :: forcing_amma = .false. logical :: forcing_dice = .false. logical :: forcing_gabls4 = .false. logical :: forcing_GCM2SCM = .false. logical :: forcing_GCSSold = .false. logical :: forcing_sandu = .false. logical :: forcing_astex = .false. logical :: forcing_fire = .false. logical :: forcing_case = .false. logical :: forcing_case2 = .false. logical :: forcing_SCM = .false. !flag forcings logical :: nudge_wind=.true. logical :: nudge_thermo=.false. logical :: cptadvw=.true. !===================================================================== ! DECLARATIONS FOR EACH CASE !===================================================================== ! INCLUDE "1D_decl_cases.h" ! !--------------------------------------------------------------------- ! Declarations related to nudging !--------------------------------------------------------------------- integer :: nudge_max parameter (nudge_max=9) integer :: inudge_RHT=1 integer :: inudge_UV=2 logical :: nudge(nudge_max) real :: t_targ(llm) real :: rh_targ(llm) real :: u_targ(llm) real :: v_targ(llm) ! !--------------------------------------------------------------------- ! Declarations related to vertical discretization: !--------------------------------------------------------------------- real :: pzero=1.e5 real :: play (llm),zlay (llm),sig_s(llm),plev(llm+1) real :: playd(llm),zlayd(llm),ap_amma(llm+1),bp_amma(llm+1) !--------------------------------------------------------------------- ! Declarations related to variables !--------------------------------------------------------------------- real :: phi(llm) real :: teta(llm),tetal(llm),temp(llm),u(llm),v(llm),w(llm) REAL rot(1, llm) ! relative vorticity, in s-1 real :: rlat_rad(1),rlon_rad(1) real :: omega(llm),omega2(llm),rho(llm+1) real :: ug(llm),vg(llm),fcoriolis real :: sfdt, cfdt real :: du_phys(llm),dv_phys(llm),dt_phys(llm) real :: w_adv(llm),z_adv(llm) real :: d_t_vert_adv(llm),d_u_vert_adv(llm),d_v_vert_adv(llm) real :: dt_cooling(llm),d_t_adv(llm),d_t_nudge(llm) real :: d_u_nudge(llm),d_v_nudge(llm) real :: d_u_age(llm),d_v_age(llm) real :: alpha real :: ttt REAL, ALLOCATABLE, DIMENSION(:,:):: q REAL, ALLOCATABLE, DIMENSION(:,:):: dq REAL, ALLOCATABLE, DIMENSION(:,:):: d_q_vert_adv REAL, ALLOCATABLE, DIMENSION(:,:):: d_q_adv REAL, ALLOCATABLE, DIMENSION(:,:):: d_q_nudge !--------------------------------------------------------------------- ! Initialization of surface variables !--------------------------------------------------------------------- real :: run_off_lic_0(1) real :: fder(1),snsrf(1,nbsrf),qsurfsrf(1,nbsrf) real :: tsoil(1,nsoilmx,nbsrf) !--------------------------------------------------------------------- ! Call to phyredem !--------------------------------------------------------------------- logical :: ok_writedem =.true. real :: sollw_in = 0. real :: solsw_in = 0. !--------------------------------------------------------------------- ! Call to physiq !--------------------------------------------------------------------- logical :: firstcall=.true. logical :: lastcall=.false. real :: phis(1) = 0.0 real :: dpsrf(1) !--------------------------------------------------------------------- ! Initializations of boundary conditions !--------------------------------------------------------------------- real, allocatable :: phy_nat (:) ! 0=ocean libre,1=land,2=glacier,3=banquise real, allocatable :: phy_alb (:) ! Albedo land only (old value condsurf_jyg=0.3) real, allocatable :: phy_sst (:) ! SST (will not be used; cf read_tsurf1d.F) real, allocatable :: phy_bil (:) ! Ne sert que pour les slab_ocean real, allocatable :: phy_rug (:) ! Longueur rugosite utilisee sur land only real, allocatable :: phy_ice (:) ! Fraction de glace real, allocatable :: phy_fter(:) ! Fraction de terre real, allocatable :: phy_foce(:) ! Fraction de ocean real, allocatable :: phy_fsic(:) ! Fraction de glace real, allocatable :: phy_flic(:) ! Fraction de glace !--------------------------------------------------------------------- ! Fichiers et d'autres variables !--------------------------------------------------------------------- integer :: k,l,i,it=1,mxcalc integer :: nsrf integer jcode INTEGER read_climoz integer :: it_end ! iteration number of the last call integer ecrit_slab_oc !1=ecrit,-1=lit,0=no file data ecrit_slab_oc/-1/ ! if flag_inhib_forcing = 0, tendencies of forcing are added ! <> 0, tendencies of forcing are not added INTEGER :: flag_inhib_forcing = 0 print*,'VOUS ENTREZ DANS LE 1D FORMAT STANDARD' !===================================================================== ! INITIALIZATIONS !===================================================================== du_phys(:)=0. dv_phys(:)=0. dt_phys(:)=0. d_t_vert_adv(:)=0. d_u_vert_adv(:)=0. d_v_vert_adv(:)=0. dt_cooling(:)=0. d_t_adv(:)=0. d_t_nudge(:)=0. d_u_nudge(:)=0. d_v_nudge(:)=0. d_u_adv(:)=0. d_v_adv(:)=0. d_u_age(:)=0. d_v_age(:)=0. ! Initialization of Common turb_forcing dtime_frcg = 0. Turb_fcg_gcssold=.false. hthturb_gcssold = 0. hqturb_gcssold = 0. !--------------------------------------------------------------------- ! OPTIONS OF THE 1D SIMULATION (lmdz1d.def => unicol.def) !--------------------------------------------------------------------- call conf_unicol !Al1 moves this gcssold var from common fcg_gcssold to Turb_fcg_gcssold = xTurb_fcg_gcssold ! -------------------------------------------------------------------- close(1) write(*,*) 'lmdz1d.def lu => unicol.def' forcing_SCM = .true. year_ini_cas=1997 ! It is possible that those parameters are run twice. ! A REVOIR : LIRE PEUT ETRE AN MOIS JOUR DIRECETEMENT call getin('anneeref',year_ini_cas) call getin('dayref',day_deb) mth_ini_cas=1 ! pour le moment on compte depuis le debut de l'annee call getin('time_ini',heure_ini_cas) print*,'NATURE DE LA SURFACE ',nat_surf ! Initialization of the logical switch for nudging jcode = iflag_nudge do i = 1,nudge_max nudge(i) = mod(jcode,10) .ge. 1 jcode = jcode/10 enddo ! numerical scheme for vertical advection iflag_1d_vert_adv=1 call getin('iflag_1d_vert_adv',iflag_1d_vert_adv) !----------------------------------------------------------------------- ! Definition of the run !----------------------------------------------------------------------- call conf_gcm( 99, .TRUE. ) !----------------------------------------------------------------------- allocate( phy_nat (year_len)) ! 0=ocean libre,1=land,2=glacier,3=banquise phy_nat(:)=0.0 allocate( phy_alb (year_len)) ! Albedo land only (old value condsurf_jyg=0.3) allocate( phy_sst (year_len)) ! SST (will not be used; cf read_tsurf1d.F) allocate( phy_bil (year_len)) ! Ne sert que pour les slab_ocean phy_bil(:)=1.0 allocate( phy_rug (year_len)) ! Longueur rugosite utilisee sur land only allocate( phy_ice (year_len)) ! Fraction de glace phy_ice(:)=0.0 allocate( phy_fter(year_len)) ! Fraction de terre phy_fter(:)=0.0 allocate( phy_foce(year_len)) ! Fraction de ocean phy_foce(:)=0.0 allocate( phy_fsic(year_len)) ! Fraction de glace phy_fsic(:)=0.0 allocate( phy_flic(year_len)) ! Fraction de glace phy_flic(:)=0.0 !----------------------------------------------------------------------- ! Choix du calendrier ! ------------------- ! calend = 'earth_365d' if (calend == 'earth_360d') then call ioconf_calendar('360_day') write(*,*)'CALENDRIER CHOISI: Terrestre a 360 jours/an' else if (calend == 'earth_365d') then call ioconf_calendar('noleap') write(*,*)'CALENDRIER CHOISI: Terrestre a 365 jours/an' else if (calend == 'earth_366d') then call ioconf_calendar('all_leap') write(*,*)'CALENDRIER CHOISI: Terrestre bissextile' else if (calend == 'gregorian') then stop 'gregorian calend should not be used by normal user' call ioconf_calendar('gregorian') ! not to be used by normal users write(*,*)'CALENDRIER CHOISI: Gregorien' else write (*,*) 'ERROR : unknown calendar ', calend stop 'calend should be 360d,earth_365d,earth_366d,gregorian' endif !----------------------------------------------------------------------- ! !c Date : ! La date est supposee donnee sous la forme [annee, numero du jour dans ! l annee] ; l heure est donnee dans time_ini, lu dans lmdz1d.def. ! On appelle ymds2ju pour convertir [annee, jour] en [jour Julien]. ! Le numero du jour est dans "day". L heure est traitee separement. ! La date complete est dans "daytime" (l'unite est le jour). if (nday>0) then fnday=nday else fnday=-nday/float(day_step) endif print *,'fnday=',fnday ! start_time doit etre en FRACTION DE JOUR start_time=time_ini/24. annee_ref = anneeref mois = 1 day_ref = dayref heure = 0. itau_dyn = 0 itau_phy = 0 call ymds2ju(annee_ref,mois,day_ref,heure,day) day_ini = int(day) day_end = day_ini + int(fnday) ! Convert the initial date to Julian day day_ini_cas=day_deb print*,'time case',year_ini_cas,mth_ini_cas,day_ini_cas call ymds2ju & & (year_ini_cas,mth_ini_cas,day_ini_cas,heure_ini_cas*3600 & & ,day_ju_ini_cas) print*,'time case 2',day_ini_cas,day_ju_ini_cas daytime = day + heure_ini_cas/24. ! 1st day and initial time of the simulation ! Print out the actual date of the beginning of the simulation : call ju2ymds(daytime,year_print, month_print,day_print,sec_print) print *,' Time of beginning : ', & & year_print, month_print, day_print, sec_print !--------------------------------------------------------------------- ! Initialization of dimensions, geometry and initial state !--------------------------------------------------------------------- ! call init_phys_lmdz(1,1,llm,1,(/1/)) ! job now done via iniphysiq ! but we still need to initialize dimphy module (klon,klev,etc.) here. call init_dimphy1D(1,llm) call suphel call init_infotrac if (nqtot>nqmx) STOP 'Augmenter nqmx dans lmdz1d.F' allocate(q(llm,nqtot)) ; q(:,:)=0. allocate(dq(llm,nqtot)) allocate(d_q_vert_adv(llm,nqtot)) allocate(d_q_adv(llm,nqtot)) allocate(d_q_nudge(llm,nqtot)) q(:,:) = 0. dq(:,:) = 0. d_q_vert_adv(:,:) = 0. d_q_adv(:,:) = 0. d_q_nudge(:,:) = 0. ! No ozone climatology need be read in this pre-initialization ! (phys_state_var_init is called again in physiq) read_climoz = 0 nsw=6 call phys_state_var_init(read_climoz) if (ngrid.ne.klon) then print*,'stop in inifis' print*,'Probleme de dimensions :' print*,'ngrid = ',ngrid print*,'klon = ',klon stop endif !!!===================================================================== !!! Feedback forcing values for Gateaux differentiation (al1) !!!===================================================================== qsol = qsolinp qsurf = fq_sat(tsurf,psurf/100.) beta_aridity(:,:) = beta_surf day1= day_ini time=daytime-day ts_toga(1)=tsurf ! needed by read_tsurf1d.F rho(1)=psurf/(rd*tsurf*(1.+(rv/rd-1.)*qsurf)) !! mpl et jyg le 22/08/2012 : !! pour que les cas a flux de surface imposes marchent IF(.NOT.ok_flux_surf.or.max(abs(wtsurf),abs(wqsurf))>0.) THEN fsens=-wtsurf*rcpd*rho(1) flat=-wqsurf*rlvtt*rho(1) print *,'Flux: ok_flux wtsurf wqsurf',ok_flux_surf,wtsurf,wqsurf ENDIF print*,'Flux sol ',fsens,flat ! Vertical discretization and pressure levels at half and mid levels: pa = 5e4 !! preff= 1.01325e5 preff = psurf IF (ok_old_disvert) THEN call disvert0(pa,preff,ap,bp,dpres,presnivs,nivsigs,nivsig) print *,'On utilise disvert0' aps(1:llm)=0.5*(ap(1:llm)+ap(2:llm+1)) bps(1:llm)=0.5*(bp(1:llm)+bp(2:llm+1)) scaleheight=8. pseudoalt(1:llm)=-scaleheight*log(presnivs(1:llm)/preff) ELSE call disvert() print *,'On utilise disvert' ! Nouvelle version disvert permettant d imposer ap,bp (modif L.Guez) MPL 18092012 ! Dans ce cas, on lit ap,bp dans le fichier hybrid.txt ENDIF sig_s=presnivs/preff plev =ap+bp*psurf play = 0.5*(plev(1:llm)+plev(2:llm+1)) zlay=-rd*300.*log(play/psurf)/rg ! moved after reading profiles. IF (forcing_type .eq. 59) THEN ! pour forcing_sandu, on cherche l'indice le plus proche de 700hpa#3000m write(*,*) '***********************' do l = 1, llm write(*,*) 'l,play(l),presnivs(l): ',l,play(l),presnivs(l) if (trouve_700 .and. play(l).le.70000) then llm700=l print *,'llm700,play=',llm700,play(l)/100. trouve_700= .false. endif enddo write(*,*) '***********************' ENDIF ! !===================================================================== ! EVENTUALLY, READ FORCING DATA : !===================================================================== INCLUDE "1D_read_forc_cases.h" if (forcing_GCM2SCM) then write (*,*) 'forcing_GCM2SCM not yet implemented' stop 'in initialization' endif ! forcing_GCM2SCM !===================================================================== ! Initialisation de la physique : !===================================================================== ! Rq: conf_phys.F90 lit tous les flags de physiq.def; conf_phys appele depuis physiq.F ! ! day_step, iphysiq lus dans gcm.def ci-dessus ! timestep: calcule ci-dessous from rday et day_step ! ngrid=1 ! llm: defini dans .../modipsl/modeles/LMDZ4/libf/grid/dimension ! rday: defini dans suphel.F (86400.) ! day_ini: lu dans run.def (dayref) ! rlat_rad,rlon-rad: transformes en radian de rlat,rlon lus dans lmdz1d.def (en degres) ! airefi,zcufi,zcvfi initialises au debut de ce programme ! rday,ra,rg,rd,rcpd declares dans YOMCST.h et calcules dans suphel.F day_step = float(nsplit_phys)*day_step/float(iphysiq) write (*,*) 'Time step divided by nsplit_phys (=',nsplit_phys,')' timestep =rday/day_step dtime_frcg = timestep ! zcufi=airefi zcvfi=airefi ! rlat_rad(1)=xlat*rpi/180. rlon_rad(1)=xlon*rpi/180. ! iniphysiq will call iniaqua who needs year_len from phys_cal_mod year_len_phys_cal_mod=year_len ! Ehouarn: iniphysiq requires arrays related to (3D) dynamics grid, ! e.g. for cell boundaries, which are meaningless in 1D; so pad these ! with '0.' when necessary call iniphysiq(iim,jjm,llm, & 1,comm_lmdz, & rday,day_ini,timestep, & (/rlat_rad(1),0./),(/0./), & (/0.,0./),(/rlon_rad(1),0./), & (/ (/airefi,0./),(/0.,0./) /), & (/zcufi,0.,0.,0./), & (/zcvfi,0./), & ra,rg,rd,rcpd,1) print*,'apres iniphysiq' ! 2 PARAMETRES QUI DEVRAIENT ETRE LUS DANS run.def MAIS NE LE SONT PAS ICI: co2_ppm= 330.0 solaire=1370.0 ! Ecriture du startphy avant le premier appel a la physique. ! On le met juste avant pour avoir acces a tous les champs if (ok_writedem) then !-------------------------------------------------------------------------- ! pbl_surface_init (called here) and pbl_surface_final (called by phyredem) ! need : qsol fder snow qsurf evap rugos agesno ftsoil !-------------------------------------------------------------------------- type_ocean = "force" run_off_lic_0(1) = restart_runoff call fonte_neige_init(run_off_lic_0) fder=0. snsrf(1,:)=snowmass ! masse de neige des sous surface qsurfsrf(1,:)=qsurf ! humidite de l'air des sous surface fevap=0. z0m(1,:)=rugos ! couverture de neige des sous surface z0h(1,:)=rugosh ! couverture de neige des sous surface agesno = xagesno tsoil(:,:,:)=tsurf !----------------------------------------------------------------------- call pbl_surface_init(fder, snsrf, qsurfsrf, tsoil) !------------------ prepare limit conditions for limit.nc ----------------- !-- Ocean force print*,'avant phyredem' pctsrf(1,:)=0. if (nat_surf.eq.0.) then pctsrf(1,is_oce)=1. pctsrf(1,is_ter)=0. pctsrf(1,is_lic)=0. pctsrf(1,is_sic)=0. else if (nat_surf .eq. 1) then pctsrf(1,is_oce)=0. pctsrf(1,is_ter)=1. pctsrf(1,is_lic)=0. pctsrf(1,is_sic)=0. else if (nat_surf .eq. 2) then pctsrf(1,is_oce)=0. pctsrf(1,is_ter)=0. pctsrf(1,is_lic)=1. pctsrf(1,is_sic)=0. else if (nat_surf .eq. 3) then pctsrf(1,is_oce)=0. pctsrf(1,is_ter)=0. pctsrf(1,is_lic)=0. pctsrf(1,is_sic)=1. end if print*,'nat_surf,pctsrf(1,is_oce),pctsrf(1,is_ter)',nat_surf & & ,pctsrf(1,is_oce),pctsrf(1,is_ter) zmasq=pctsrf(1,is_ter)+pctsrf(1,is_lic) zpic = zpicinp ftsol=tsurf falb_dir=albedo falb_dif=albedo rugoro=rugos t_ancien(1,:)=temp(:) q_ancien(1,:)=q(:,1) ql_ancien = 0. qs_ancien = 0. prlw_ancien = 0. prsw_ancien = 0. prw_ancien = 0. IF ( ok_bs ) THEN qbs_ancien = 0. prbsw_ancien = 0. ENDIF IF ( ok_ice_supersat ) THEN cf_ancien = 0. rvc_ancien = 0. ENDIF rain_fall=0. snow_fall=0. solsw=0. solswfdiff=0. sollw=0. sollwdown=rsigma*tsurf**4 radsol=0. rnebcon=0. ratqs=0. clwcon=0. zmax0 = 0. zmea=zsurf zstd=0. zsig=0. zgam=0. zval=0. zthe=0. sig1=0. w01=0. ! wake_deltaq = 0. wake_deltat = 0. wake_delta_pbl_TKE(:,:,:) = 0. delta_tsurf = 0. wake_fip = 0. wake_pe = 0. wake_s = 0. awake_s = 0. wake_dens = 0. awake_dens = 0. cv_gen = 0. wake_cstar = 0. ale_bl = 0. ale_bl_trig = 0. alp_bl = 0. IF (ALLOCATED(du_gwd_rando)) du_gwd_rando = 0. IF (ALLOCATED(du_gwd_front)) du_gwd_front = 0. entr_therm = 0. detr_therm = 0. f0 = 0. fm_therm = 0. u_ancien(1,:)=u(:) v_ancien(1,:)=v(:) u10m=0. v10m=0. ale_wake=0. ale_bl_stat=0. ratqs_inter_(:,:)= 0.002 !------------------------------------------------------------------------ ! Make file containing restart for the physics (startphy.nc) ! ! NB: List of the variables to be written by phyredem (via put_field): ! rlon,rlat,zmasq,pctsrf(:,is_ter),pctsrf(:,is_lic),pctsrf(:,is_oce) ! pctsrf(:,is_sic),ftsol(:,nsrf),tsoil(:,isoil,nsrf),qsurf(:,nsrf) ! qsol,falb_dir(:,nsrf),falb_dif(:,nsrf),evap(:,nsrf),snow(:,nsrf) ! radsol,solsw,solswfdiff,sollw, sollwdown,fder,rain_fall,snow_fall,frugs(:,nsrf) ! agesno(:,nsrf),zmea,zstd,zsig,zgam,zthe,zpic,zval,rugoro ! t_ancien,q_ancien,,frugs(:,is_oce),clwcon(:,1),rnebcon(:,1),ratqs(:,1) ! run_off_lic_0,pbl_tke(:,1:klev,nsrf), zmax0,f0,sig1,w01 ! wake_deltat,wake_deltaq,wake_s,awake_s,wake_dens,awake_dens,cv_gen,wake_cstar, ! wake_fip,wake_delta_pbl_tke(:,1:klev,nsrf) ! ! NB2: The content of the startphy.nc file depends on some flags defined in ! the ".def" files. However, since conf_phys is not called in lmdz1d.F90, these flags have ! to be set at some arbitratry convenient values. !------------------------------------------------------------------------ !Al1 =============== restart option ====================================== iflag_physiq=0 call getin('iflag_physiq',iflag_physiq) if (.not.restart) then iflag_pbl = 5 call phyredem ("startphy.nc") else ! (desallocations) print*,'callin surf final' call pbl_surface_final( fder, snsrf, qsurfsrf, tsoil) print*,'after surf final' CALL fonte_neige_final(run_off_lic_0) endif ok_writedem=.false. print*,'apres phyredem' endif ! ok_writedem !------------------------------------------------------------------------ ! Make file containing boundary conditions (limit.nc) **Al1->restartdyn*** ! -------------------------------------------------- ! NB: List of the variables to be written in limit.nc ! (by writelim.F, subroutine of 1DUTILS.h): ! phy_nat,phy_alb,phy_sst,phy_bil,phy_rug,phy_ice, ! phy_fter,phy_foce,phy_flic,phy_fsic) !------------------------------------------------------------------------ do i=1,year_len phy_nat(i) = nat_surf phy_alb(i) = albedo phy_sst(i) = tsurf ! read_tsurf1d will be used instead phy_rug(i) = rugos phy_fter(i) = pctsrf(1,is_ter) phy_foce(i) = pctsrf(1,is_oce) phy_fsic(i) = pctsrf(1,is_sic) phy_flic(i) = pctsrf(1,is_lic) enddo ! fabrication de limit.nc call writelim (1,phy_nat,phy_alb,phy_sst,phy_bil,phy_rug, & & phy_ice,phy_fter,phy_foce,phy_flic,phy_fsic) call phys_state_var_end if (restart) then print*,'call to restart dyn 1d' Call dyn1deta0("start1dyn.nc",plev,play,phi,phis,presnivs, & & u,v,temp,q,omega2) print*,'fnday,annee_ref,day_ref,day_ini', & & fnday,annee_ref,day_ref,day_ini day = day_ini day_end = day_ini + nday daytime = day + time_ini/24. ! 1st day and initial time of the simulation ! Print out the actual date of the beginning of the simulation : call ju2ymds(daytime, an, mois, jour, heure) print *,' Time of beginning : y m d h',an, mois,jour,heure/3600. day = int(daytime) time=daytime-day print*,'****** intialised fields from restart1dyn *******' print*,'plev,play,phi,phis,presnivs,u,v,temp,q,omega2' print*,'temp(1),q(1,1),u(1),v(1),plev(1),phis :' print*,temp(1),q(1,1),u(1),v(1),plev(1),phis(1) ! raz for safety do l=1,llm d_q_vert_adv(l,:) = 0. enddo endif !====================== end restart ================================= IF (ecrit_slab_oc.eq.1) then open(97,file='div_slab.dat',STATUS='UNKNOWN') elseif (ecrit_slab_oc.eq.0) then open(97,file='div_slab.dat',STATUS='OLD') endif ! !===================================================================== IF (CPPKEY_OUTPUTPHYSSCM) THEN CALL iophys_ini(timestep) END IF !===================================================================== ! START OF THE TEMPORAL LOOP : !===================================================================== it_end = nint(fnday*day_step) do while(it.le.it_end) if (prt_level.ge.1) then print*,'XXXXXXXXXXXXXXXXXXX ITAP,day,time=', & & it,day,time,it_end,day_step print*,'PAS DE TEMPS ',timestep endif if (it.eq.it_end) lastcall=.True. !--------------------------------------------------------------------- ! Interpolation of forcings in time and onto model levels !--------------------------------------------------------------------- INCLUDE "1D_interp_cases.h" !--------------------------------------------------------------------- ! Geopotential : !--------------------------------------------------------------------- phis(1)=zsurf*RG ! Calculate geopotential from the ground surface since phi and phis are added in physiq_mod phi(1)=RD*temp(1)*(plev(1)-play(1))/(.5*(plev(1)+play(1))) do l = 1, llm-1 phi(l+1)=phi(l)+RD*(temp(l)+temp(l+1))* & & (play(l)-play(l+1))/(play(l)+play(l+1)) enddo !--------------------------------------------------------------------- ! Vertical advection !--------------------------------------------------------------------- IF ( forc_w+forc_omega > 0 ) THEN IF ( forc_w == 1 ) THEN w_adv=w_mod_cas z_adv=phi/RG ELSE w_adv=omega z_adv=play ENDIF ! calculation of potential temperature for the advection teta=temp*(pzero/play)**rkappa ! vertical tendencies computed as d X / d t = -W d X / d z IF (iflag_1d_vert_adv .EQ. 0) THEN ! old centered numerical scheme do l=2,llm-1 d_u_vert_adv(l)=-w_adv(l)*(u(l+1)-u(l-1))/(z_adv(l+1)-z_adv(l-1)) d_v_vert_adv(l)=-w_adv(l)*(v(l+1)-v(l-1))/(z_adv(l+1)-z_adv(l-1)) ! d theta / dt = -W d theta / d z, transformed into d temp / d t dividing by (pzero/play(l))**rkappa d_t_vert_adv(l)=-w_adv(l)*(teta(l+1)-teta(l-1))/(z_adv(l+1)-z_adv(l-1)) / (pzero/play(l))**rkappa d_q_vert_adv(l,:)=-w_adv(l)*(q(l+1,:)-q(l-1,:))/(z_adv(l+1)-z_adv(l-1)) enddo ELSE IF (iflag_1d_vert_adv .EQ. 1) THEN ! upstream numerical scheme do l=2,llm-1 IF ( ( ( forc_w .EQ. 1 ) .AND. ( w_adv(l) .GT. 0. ) ) .OR. & ( ( forc_w .NE. 1 ) .AND. ( w_adv(l) .LT. 0. ) ) ) THEN d_u_vert_adv(l)=-w_adv(l)*(u(l)-u(l-1))/(z_adv(l)-z_adv(l-1)) d_v_vert_adv(l)=-w_adv(l)*(v(l)-v(l-1))/(z_adv(l)-z_adv(l-1)) ! d theta / dt = -W d theta / d z, transformed into d temp / d t dividing by (pzero/play(l))**rkappa d_t_vert_adv(l)=-w_adv(l)*(teta(l)-teta(l-1))/(z_adv(l)-z_adv(l-1)) / (pzero/play(l))**rkappa d_q_vert_adv(l,:)=-w_adv(l)*(q(l,:)-q(l-1,:))/(z_adv(l)-z_adv(l-1)) ELSE d_u_vert_adv(l)=-w_adv(l)*(u(l+1)-u(l))/(z_adv(l+1)-z_adv(l)) d_v_vert_adv(l)=-w_adv(l)*(v(l+1)-v(l))/(z_adv(l+1)-z_adv(l)) ! d theta / dt = -W d theta / d z, transformed into d temp / d t dividing by (pzero/play(l))**rkappa d_t_vert_adv(l)=-w_adv(l)*(teta(l+1)-teta(l))/(z_adv(l+1)-z_adv(l)) / (pzero/play(l))**rkappa d_q_vert_adv(l,:)=-w_adv(l)*(q(l+1,:)-q(l,:))/(z_adv(l+1)-z_adv(l)) ENDIF enddo ENDIF ! numerical scheme for vertical advection IF (flag_inhib_forcing == 0) then ! if tendency of forcings should be added u(1:mxcalc)=u(1:mxcalc) + timestep * d_u_vert_adv(1:mxcalc) v(1:mxcalc)=v(1:mxcalc) + timestep * d_v_vert_adv(1:mxcalc) q(1:mxcalc,:)=q(1:mxcalc,:) + timestep * d_q_vert_adv(1:mxcalc,:) temp(1:mxcalc)=temp(1:mxcalc) + timestep * d_t_vert_adv(1:mxcalc) teta=temp*(pzero/play)**rkappa ENDIF ENDIF !--------------------------------------------------------------------- ! Listing output for debug prt_level>=1 !--------------------------------------------------------------------- if (prt_level>=1) then print *,' avant physiq : -------- day time ',day,time write(*,*) 'firstcall,lastcall,phis', & & firstcall,lastcall,phis end if if (prt_level>=5) then write(*,'(a10,2a4,4a13)') 'BEFOR1 IT=','it','l', & & 'presniv','plev','play','phi' write(*,'(a10,2i4,4f13.2)') ('BEFOR1 IT= ',it,l, & & presnivs(l),plev(l),play(l),phi(l),l=1,llm) write(*,'(a11,2a4,a11,6a8)') 'BEFOR2','it','l', & & 'presniv','u','v','temp','q1','q2','omega2' write(*,'(a11,2i4,f11.2,5f8.2,e10.2)') ('BEFOR2 IT= ',it,l, & & presnivs(l),u(l),v(l),temp(l),q(l,1),q(l,2),omega2(l),l=1,llm) endif !--------------------------------------------------------------------- ! Call physiq : !--------------------------------------------------------------------- call physiq(ngrid,llm, & firstcall,lastcall,timestep, & plev,play,phi,phis,presnivs, & u,v, rot, temp,q,omega2, & du_phys,dv_phys,dt_phys,dq,dpsrf) firstcall=.false. !--------------------------------------------------------------------- ! Listing output for debug !--------------------------------------------------------------------- if (prt_level>=5) then write(*,'(a11,2a4,4a13)') 'AFTER1 IT=','it','l', & & 'presniv','plev','play','phi' write(*,'(a11,2i4,4f13.2)') ('AFTER1 it= ',it,l, & & presnivs(l),plev(l),play(l),phi(l),l=1,llm) write(*,'(a11,2a4,a11,6a8)') 'AFTER2','it','l', & & 'presniv','u','v','temp','q1','q2','omega2' write(*,'(a11,2i4,f11.2,5f8.2,e10.2)') ('AFTER2 it= ',it,l, & & presnivs(l),u(l),v(l),temp(l),q(l,1),q(l,2),omega2(l),l=1,llm) write(*,'(a11,2a4,a11,5a8)') 'AFTER3','it','l', & & 'presniv','du_phys','dv_phys','dt_phys','dq1','dq2' write(*,'(a11,2i4,f11.2,5f8.2)') ('AFTER3 it= ',it,l, & & presnivs(l),86400*du_phys(l),86400*dv_phys(l), & & 86400*dt_phys(l),86400*dq(l,1),dq(l,2),l=1,llm) write(*,*) 'dpsrf',dpsrf endif !--------------------------------------------------------------------- ! Add physical tendencies : !--------------------------------------------------------------------- fcoriolis=2.*sin(rpi*xlat/180.)*romega IF (prt_level >= 5) print*, 'fcoriolis, xlat,mxcalc ', & fcoriolis, xlat,mxcalc !--------------------------------------------------------------------- ! Geostrophic forcing !--------------------------------------------------------------------- IF ( forc_geo == 0 ) THEN d_u_age(1:mxcalc)=0. d_v_age(1:mxcalc)=0. ELSE sfdt = sin(0.5*fcoriolis*timestep) cfdt = cos(0.5*fcoriolis*timestep) d_u_age(1:mxcalc)= -2.*sfdt/timestep* & & (sfdt*(u(1:mxcalc)-ug(1:mxcalc)) - & & cfdt*(v(1:mxcalc)-vg(1:mxcalc)) ) !! : fcoriolis*(v(1:mxcalc)-vg(1:mxcalc)) ! d_v_age(1:mxcalc)= -2.*sfdt/timestep* & & (cfdt*(u(1:mxcalc)-ug(1:mxcalc)) + & & sfdt*(v(1:mxcalc)-vg(1:mxcalc)) ) !! : -fcoriolis*(u(1:mxcalc)-ug(1:mxcalc)) ENDIF ! !--------------------------------------------------------------------- ! Nudging !--------------------------------------------------------------------- d_t_nudge(:) = 0. d_u_nudge(:) = 0. d_v_nudge(:) = 0. d_q_nudge(:,:) = 0. DO l=1,llm IF (nudging_u .LT. 0) THEN d_u_nudge(l)=(u_nudg_mod_cas(l)-u(l))*invtau_u_nudg_mod_cas(l) ELSE IF ( play(l) < p_nudging_u .AND. nint(nudging_u) /= 0 ) & & d_u_nudge(l)=(u_nudg_mod_cas(l)-u(l))/nudging_u ENDIF IF (nudging_v .LT. 0) THEN d_v_nudge(l)=(v_nudg_mod_cas(l)-v(l))*invtau_v_nudg_mod_cas(l) ELSE IF ( play(l) < p_nudging_v .AND. nint(nudging_v) /= 0 ) & & d_v_nudge(l)=(v_nudg_mod_cas(l)-v(l))/nudging_v ENDIF IF (nudging_t .LT. 0) THEN d_t_nudge(l)=(temp_nudg_mod_cas(l)-temp(l))*invtau_temp_nudg_mod_cas(l) ELSE IF ( play(l) < p_nudging_t .AND. nint(nudging_t) /= 0 ) & & d_t_nudge(l)=(temp_nudg_mod_cas(l)-temp(l))/nudging_t ENDIF IF (nudging_qv .LT. 0) THEN d_q_nudge(l,1)=(qv_nudg_mod_cas(l)-q(l,1))*invtau_qv_nudg_mod_cas(l) ELSE IF ( play(l) < p_nudging_qv .AND. nint(nudging_qv) /= 0 ) & & d_q_nudge(l,1)=(qv_nudg_mod_cas(l)-q(l,1))/nudging_qv ENDIF ENDDO !----------------------------------------------------------- ! horizontal forcings (advection) and nudging !----------------------------------------------------------- IF (flag_inhib_forcing == 0) then ! if tendency of forcings should be added u(1:mxcalc)=u(1:mxcalc) + timestep*( & & du_phys(1:mxcalc) & & +d_u_age(1:mxcalc)+d_u_adv(1:mxcalc) & & +d_u_nudge(1:mxcalc) ) v(1:mxcalc)=v(1:mxcalc) + timestep*( & & dv_phys(1:mxcalc) & & +d_v_age(1:mxcalc)+d_v_adv(1:mxcalc) & & +d_v_nudge(1:mxcalc) ) q(1:mxcalc,:)=q(1:mxcalc,:)+timestep*( & & dq(1:mxcalc,:) & & +d_q_adv(1:mxcalc,:) & & +d_q_nudge(1:mxcalc,:) ) temp(1:mxcalc)=temp(1:mxcalc)+timestep*( & & dt_phys(1:mxcalc) & & +d_t_adv(1:mxcalc) & & +d_t_nudge(1:mxcalc) & & +dt_cooling(1:mxcalc)) ! Taux de chauffage ou refroid. !--------------------------------------------------------------------- ! Optional outputs !--------------------------------------------------------------------- IF (CPPKEY_OUTPUTPHYSSCM) THEN CALL iophys_ecrit('w_adv',klev,'w_adv','K/day',w_adv) CALL iophys_ecrit('z_adv',klev,'z_adv','K/day',z_adv) CALL iophys_ecrit('dtadv',klev,'dtadv','K/day',86400*d_t_adv) CALL iophys_ecrit('dtdyn',klev,'dtdyn','K/day',86400*d_t_vert_adv) CALL iophys_ecrit('qv',klev,'qv','g/kg',1000*q(:,1)) CALL iophys_ecrit('qvnud',klev,'qvnud','g/kg',1000*u_nudg_mod_cas) CALL iophys_ecrit('u',klev,'u','m/s',u) CALL iophys_ecrit('unud',klev,'unud','m/s',u_nudg_mod_cas) CALL iophys_ecrit('v',klev,'v','m/s',v) CALL iophys_ecrit('vnud',klev,'vnud','m/s',v_nudg_mod_cas) CALL iophys_ecrit('temp',klev,'temp','K',temp) CALL iophys_ecrit('tempnud',klev,'temp_nudg_mod_cas','K',temp_nudg_mod_cas) CALL iophys_ecrit('dtnud',klev,'dtnud','K/day',86400*d_t_nudge) CALL iophys_ecrit('dqnud',klev,'dqnud','K/day',1000*86400*d_q_nudge(:,1)) END IF ! CONSERVE EN ATTENDANT QUE LE CAS EN QUESTION FONCTIONNE EN STD !! teta=temp*(pzero/play)**rkappa !--------------------------------------------------------------------- ! Nudge soil temperature if requested !--------------------------------------------------------------------- IF (nudge_tsoil .AND. .NOT. lastcall) THEN ftsoil(1,isoil_nudge,:) = ftsoil(1,isoil_nudge,:) & & -timestep/tau_soil_nudge*(ftsoil(1,isoil_nudge,:)-Tsoil_nudge) ENDIF END IF ! end if in case tendency should be added !--------------------------------------------------------------------- ! Air temperature : !--------------------------------------------------------------------- if (lastcall) then print*,'Pas de temps final ',it call ju2ymds(daytime, an, mois, jour, heure) print*,'a la date : a m j h',an, mois, jour ,heure/3600. endif ! incremente day time daytime = daytime+1./day_step day = int(daytime+0.1/day_step) time = time_ini/24.+real(mod(it,day_step))/day_step it=it+1 enddo if (ecrit_slab_oc.ne.-1) close(97) !Al1 Call to 1D equivalent of dynredem (an,mois,jour,heure ?) ! --------------------------------------------------------------------------- call dyn1dredem("restart1dyn.nc", & & plev,play,phi,phis,presnivs, & & u,v,temp,q,omega2) CALL abort_gcm ('lmdz1d ','The End ',0) END SUBROUTINE scm