! $Id: conema3.f90 5400 2024-12-10 10:35:28Z dcugnet $ SUBROUTINE conema3(dtime, paprs, pplay, t, q, u, v, tra, ntra, work1, work2, & d_t, d_q, d_u, d_v, d_tra, rain, snow, kbas, ktop, upwd, dnwd, dnwdbis, & bas, top, ma, cape, tvp, rflag, pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, & dplcldr, qcond_incld) USE dimphy USE infotrac_phy, ONLY: nbtr USE yomcst_mod_h USE conema3_mod_h USE yoethf_mod_h IMPLICIT NONE ! ====================================================================== ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 ! Objet: schema de convection de Emanuel (1991) interface ! Mai 1998: Interface modifiee pour implementation dans LMDZ ! ====================================================================== ! Arguments: ! dtime---input-R-pas d'integration (s) ! paprs---input-R-pression inter-couches (Pa) ! pplay---input-R-pression au milieu des couches (Pa) ! t-------input-R-temperature (K) ! q-------input-R-humidite specifique (kg/kg) ! u-------input-R-vitesse du vent zonal (m/s) ! v-------input-R-vitesse duvent meridien (m/s) ! tra-----input-R-tableau de rapport de melange des traceurs ! work*: input et output: deux variables de travail, ! on peut les mettre a 0 au debut ! d_t-----output-R-increment de la temperature ! d_q-----output-R-increment de la vapeur d'eau ! d_u-----output-R-increment de la vitesse zonale ! d_v-----output-R-increment de la vitesse meridienne ! d_tra---output-R-increment du contenu en traceurs ! rain----output-R-la pluie (mm/s) ! snow----output-R-la neige (mm/s) ! kbas----output-R-bas du nuage (integer) ! ktop----output-R-haut du nuage (integer) ! upwd----output-R-saturated updraft mass flux (kg/m**2/s) ! dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) ! dnwdbis-output-R-unsaturated downdraft mass flux (kg/m**2/s) ! bas-----output-R-bas du nuage (real) ! top-----output-R-haut du nuage (real) ! Ma------output-R-flux ascendant non dilue (kg/m**2/s) ! cape----output-R-CAPE ! tvp-----output-R-virtual temperature of the lifted parcel ! rflag---output-R-flag sur le fonctionnement de convect ! pbase---output-R-pression a la base du nuage (Pa) ! bbase---output-R-buoyancy a la base du nuage (K) ! dtvpdt1-output-R-derivative of parcel virtual temp wrt T1 ! dtvpdq1-output-R-derivative of parcel virtual temp wrt Q1 ! dplcldt-output-R-derivative of the PCP pressure wrt T1 ! dplcldr-output-R-derivative of the PCP pressure wrt Q1 ! ====================================================================== INTEGER i, l, m, itra INTEGER ntra ! if no tracer transport ! is needed, set ntra = 1 (or 0) REAL dtime REAL d_t2(klon, klev), d_q2(klon, klev) ! sbl REAL d_u2(klon, klev), d_v2(klon, klev) ! sbl REAL em_d_t2(klev), em_d_q2(klev) ! sbl REAL em_d_u2(klev), em_d_v2(klev) ! sbl REAL paprs(klon, klev+1), pplay(klon, klev) REAL t(klon, klev), q(klon, klev), d_t(klon, klev), d_q(klon, klev) REAL u(klon, klev), v(klon, klev), tra(klon, klev, ntra) REAL d_u(klon, klev), d_v(klon, klev), d_tra(klon, klev, ntra) REAL work1(klon, klev), work2(klon, klev) REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) REAL rain(klon) REAL snow(klon) REAL cape(klon), tvp(klon, klev), rflag(klon) REAL pbase(klon), bbase(klon) REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) REAL dplcldt(klon), dplcldr(klon) INTEGER kbas(klon), ktop(klon) REAL wd(klon) REAL qcond_incld(klon, klev) LOGICAL, SAVE :: first = .TRUE. !$OMP THREADPRIVATE(first) ! ym REAL em_t(klev) REAL, ALLOCATABLE, SAVE :: em_t(:) !$OMP THREADPRIVATE(em_t) ! ym REAL em_q(klev) REAL, ALLOCATABLE, SAVE :: em_q(:) !$OMP THREADPRIVATE(em_q) ! ym REAL em_qs(klev) REAL, ALLOCATABLE, SAVE :: em_qs(:) !$OMP THREADPRIVATE(em_qs) ! ym REAL em_u(klev), em_v(klev), em_tra(klev,nbtr) REAL, ALLOCATABLE, SAVE :: em_u(:), em_v(:), em_tra(:, :) !$OMP THREADPRIVATE(em_u,em_v,em_tra) ! ym REAL em_ph(klev+1), em_p(klev) REAL, ALLOCATABLE, SAVE :: em_ph(:), em_p(:) !$OMP THREADPRIVATE(em_ph,em_p) ! ym REAL em_work1(klev), em_work2(klev) REAL, ALLOCATABLE, SAVE :: em_work1(:), em_work2(:) !$OMP THREADPRIVATE(em_work1,em_work2) ! ym REAL em_precip, em_d_t(klev), em_d_q(klev) REAL, SAVE :: em_precip !$OMP THREADPRIVATE(em_precip) REAL, ALLOCATABLE, SAVE :: em_d_t(:), em_d_q(:) !$OMP THREADPRIVATE(em_d_t,em_d_q) ! ym REAL em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr) REAL, ALLOCATABLE, SAVE :: em_d_u(:), em_d_v(:), em_d_tra(:, :) !$OMP THREADPRIVATE(em_d_u,em_d_v,em_d_tra) ! ym REAL em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev) REAL, ALLOCATABLE, SAVE :: em_upwd(:), em_dnwd(:), em_dnwdbis(:) !$OMP THREADPRIVATE(em_upwd,em_dnwd,em_dnwdbis) REAL em_dtvpdt1(klev), em_dtvpdq1(klev) REAL em_dplcldt, em_dplcldr ! ym SAVE em_t,em_q, em_qs, em_ph, em_p, em_work1, em_work2 ! ym SAVE em_u,em_v, em_tra ! ym SAVE em_d_u,em_d_v, em_d_tra ! ym SAVE em_precip, em_d_t, em_d_q, em_upwd, em_dnwd, em_dnwdbis INTEGER em_bas, em_top SAVE em_bas, em_top !$OMP THREADPRIVATE(em_bas,em_top) REAL em_wd REAL em_qcond(klev) REAL em_qcondc(klev) REAL zx_t, zx_qs, zdelta, zcor INTEGER iflag REAL sigsum ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! VARIABLES A SORTIR ! ccccccccccccccccccccccccccccccccccccccccccccccccc ! ym REAL emmip(klev) !variation de flux ascnon dilue i et i+1 REAL, ALLOCATABLE, SAVE :: emmip(:) !$OMP THREADPRIVATE(emmip) ! ym SAVE emmip ! ym real emMke(klev) REAL, ALLOCATABLE, SAVE :: emmke(:) !$OMP THREADPRIVATE(emmke) ! ym save emMke REAL top REAL bas ! ym real emMa(klev) REAL, ALLOCATABLE, SAVE :: emma(:) !$OMP THREADPRIVATE(emma) ! ym save emMa REAL ma(klon, klev) REAL ment(klev, klev) REAL qent(klev, klev) REAL tps(klev), tls(klev) REAL sij(klev, klev) REAL em_cape, em_tvp(klev) REAL em_pbase, em_bbase INTEGER iw, j, k, ix, iy ! -- sb: pour schema nuages: INTEGER iflagcon INTEGER em_ifc(klev) REAL em_pradj REAL em_cldf(klev), em_cldq(klev) REAL em_ftadj(klev), em_fradj(klev) INTEGER ifc(klon, klev) REAL pradj(klon) REAL cldf(klon, klev), cldq(klon, klev) REAL ftadj(klon, klev), fqadj(klon, klev) ! sb -- ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc include "FCTTRE.h" IF (first) THEN ALLOCATE (em_t(klev)) ALLOCATE (em_q(klev)) ALLOCATE (em_qs(klev)) ALLOCATE (em_u(klev), em_v(klev), em_tra(klev,nbtr)) ALLOCATE (em_ph(klev+1), em_p(klev)) ALLOCATE (em_work1(klev), em_work2(klev)) ALLOCATE (em_d_t(klev), em_d_q(klev)) ALLOCATE (em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr)) ALLOCATE (em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev)) ALLOCATE (emmip(klev)) ALLOCATE (emmke(klev)) ALLOCATE (emma(klev)) first = .FALSE. END IF qcond_incld(:, :) = 0. ! @$$ print*,'debut conema' DO i = 1, klon DO l = 1, klev + 1 em_ph(l) = paprs(i, l)/100.0 END DO DO l = 1, klev em_p(l) = pplay(i, l)/100.0 em_t(l) = t(i, l) em_q(l) = q(i, l) em_u(l) = u(i, l) em_v(l) = v(i, l) DO itra = 1, ntra em_tra(l, itra) = tra(i, l, itra) END DO ! @$$ print*,'em_t',em_t ! @$$ print*,'em_q',em_q ! @$$ print*,'em_qs',em_qs ! @$$ print*,'em_u',em_u ! @$$ print*,'em_v',em_v ! @$$ print*,'em_tra',em_tra ! @$$ print*,'em_p',em_p zx_t = em_t(l) zdelta = max(0., sign(1.,rtt-zx_t)) zx_qs = r2es*foeew(zx_t, zdelta)/em_p(l)/100.0 zx_qs = min(0.5, zx_qs) ! @$$ print*,'zx_qs',zx_qs zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor em_qs(l) = zx_qs ! @$$ print*,'em_qs',em_qs em_work1(l) = work1(i, l) em_work2(l) = work2(i, l) emmke(l) = 0 ! emMa(l)=0 ! Ma(i,l)=0 em_dtvpdt1(l) = 0. em_dtvpdq1(l) = 0. dtvpdt1(i, l) = 0. dtvpdq1(i, l) = 0. END DO em_dplcldt = 0. em_dplcldr = 0. rain(i) = 0.0 snow(i) = 0.0 kbas(i) = 1 ktop(i) = 1 ! ajout SB: bas = 1 top = 1 ! sb3d write(*,1792) (em_work1(m),m=1,klev) 1792 FORMAT ('sig avant convect ', /, 10(1X,E13.5)) ! sb d write(*,1793) (em_work2(m),m=1,klev) 1793 FORMAT ('w avant convect ', /, 10(1X,E13.5)) ! @$$ print*,'avant convect' ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! print*,'avant convect i=',i CALL convect3(dtime, epmax, ok_adj_ema, em_t, em_q, em_qs, em_u, em_v, & em_tra, em_p, em_ph, klev, klev+1, klev-1, ntra, dtime, iflag, em_d_t, & em_d_q, em_d_u, em_d_v, em_d_tra, em_precip, em_bas, em_top, em_upwd, & em_dnwd, em_dnwdbis, em_work1, em_work2, emmip, emmke, emma, ment, & qent, tps, tls, sij, em_cape, em_tvp, em_pbase, em_bbase, em_dtvpdt1, & em_dtvpdq1, em_dplcldt, em_dplcldr, & ! sbl em_d_t2, em_d_q2, em_d_u2, em_d_v2, em_wd, em_qcond, em_qcondc) !sbl ! print*,'apres convect ' ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! -- sb: Appel schema statistique de nuages couple a la convection ! (Bony et Emanuel 2001): ! -- creer cvthermo.h qui contiendra les cstes thermo de LMDZ: iflagcon = 3 ! CALL cv_thermo(iflagcon) ! -- appel schema de nuages: ! CALL CLOUDS_SUB_LS(klev,em_q,em_qs,em_t ! i ,em_p,em_ph,dtime,em_qcondc ! o ,em_cldf,em_cldq,em_pradj,em_ftadj,em_fradj,em_ifc) DO k = 1, klev cldf(i, k) = em_cldf(k) ! cloud fraction (0-1) cldq(i, k) = em_cldq(k) ! in-cloud water content (kg/kg) ftadj(i, k) = em_ftadj(k) ! (dT/dt)_{LS adj} (K/s) fqadj(i, k) = em_fradj(k) ! (dq/dt)_{LS adj} (kg/kg/s) ifc(i, k) = em_ifc(k) ! flag convergence clouds_gno (1 ou 2) END DO pradj(i) = em_pradj ! precip from LS supersat adj (mm/day) ! sb -- ! SB: IF (iflag/=1 .AND. iflag/=4) THEN em_cape = 0. DO l = 1, klev em_upwd(l) = 0. em_dnwd(l) = 0. em_dnwdbis(l) = 0. emma(l) = 0. em_tvp(l) = 0. END DO END IF ! fin SB ! If sig has been set to zero, then set Ma to zero sigsum = 0. DO k = 1, klev sigsum = sigsum + em_work1(k) END DO IF (sigsum==0.0) THEN DO k = 1, klev emma(k) = 0. END DO END IF ! sb3d print*,'i, iflag=',i,iflag ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! SORTIE DES ICB ET INB ! en fait inb et icb correspondent au niveau ou se trouve ! le nuage,le numero d'interface ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! modif SB: IF (iflag==1 .OR. iflag==4) THEN top = em_top bas = em_bas kbas(i) = em_bas ktop(i) = em_top END IF pbase(i) = em_pbase bbase(i) = em_bbase rain(i) = em_precip/86400.0 snow(i) = 0.0 cape(i) = em_cape wd(i) = em_wd rflag(i) = real(iflag) ! SB kbas(i) = em_bas ! SB ktop(i) = em_top dplcldt(i) = em_dplcldt dplcldr(i) = em_dplcldr DO l = 1, klev d_t2(i, l) = dtime*em_d_t2(l) d_q2(i, l) = dtime*em_d_q2(l) d_u2(i, l) = dtime*em_d_u2(l) d_v2(i, l) = dtime*em_d_v2(l) d_t(i, l) = dtime*em_d_t(l) d_q(i, l) = dtime*em_d_q(l) d_u(i, l) = dtime*em_d_u(l) d_v(i, l) = dtime*em_d_v(l) DO itra = 1, ntra d_tra(i, l, itra) = dtime*em_d_tra(l, itra) END DO upwd(i, l) = em_upwd(l) dnwd(i, l) = em_dnwd(l) dnwdbis(i, l) = em_dnwdbis(l) work1(i, l) = em_work1(l) work2(i, l) = em_work2(l) ma(i, l) = emma(l) tvp(i, l) = em_tvp(l) dtvpdt1(i, l) = em_dtvpdt1(l) dtvpdq1(i, l) = em_dtvpdq1(l) IF (iflag_clw==0) THEN qcond_incld(i, l) = em_qcondc(l) ELSE IF (iflag_clw==1) THEN qcond_incld(i, l) = em_qcond(l) END IF END DO END DO ! On calcule une eau liquide diagnostique en fonction de la ! precip. IF (iflag_clw==2) THEN DO l = 1, klev DO i = 1, klon IF (ktop(i)-kbas(i)>0 .AND. l>=kbas(i) .AND. l<=ktop(i)) THEN qcond_incld(i, l) = rain(i)*8.E4 & ! s *(pplay(i,l ! )-paprs(i,ktop(i)+1)) /(pplay(i,kbas(i))-pplay(i,ktop(i))) ! s **2 ELSE qcond_incld(i, l) = 0. END IF END DO PRINT *, 'l=', l, ', qcond_incld=', qcond_incld(1, l) END DO END IF RETURN END SUBROUTINE conema3