!$Id: cdrag_mod.F90 5144 2024-07-29 21:01:04Z jyg $ MODULE cdrag_mod ! This module contains some procedures for calculation of the cdrag ! coefficients for turbulent diffusion at surface IMPLICIT NONE CONTAINS !**************************************************************************************** !r original routine svn3623 SUBROUTINE cdrag(knon, nsrf, & speed, t1, q1, zgeop1, & psol, pblh, tsurf, qsurf, z0m, z0h, & ri_in, iri_in, & cdm, cdh, zri, pref, prain, tsol, pat1) USE dimphy USE coare_cp_mod, ONLY: coare_cp USE coare30_flux_cnrm_mod, ONLY: coare30_flux_cnrm USE indice_sol_mod USE lmdz_print_control, ONLY: lunout, prt_level USE lmdz_ioipsl_getin_p, ONLY: getin_p USE lmdz_atke_turbulence_ini, ONLY: smmin, ric, cinf, cepsilon, pr_slope, pr_asym, pr_neut USE lmdz_clesphys USE lmdz_yoethf USE lmdz_yomcst IMPLICIT NONE ! ================================================================= c ! Objet : calcul des cdrags pour le moment (pcfm) et ! les flux de chaleur sensible et latente (pcfh) d'apr??s ! Louis 1982, Louis 1979, King et al 2001 ! ou Zilitinkevich et al 2002 pour les cas stables, Louis 1979 ! et 1982 pour les cas instables ! Modified history: ! writting on the 20/05/2016 ! modified on the 13/12/2016 to be adapted to LMDZ6 ! References: ! Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the ! atmosphere. Boundary-Layer Meteorology. 01/1979; 17(2):187-202. ! Louis, J. F., Tiedtke, M. and Geleyn, J. F., 1982: `A short history of the ! operational PBL parametrization at ECMWF'. Workshop on boundary layer ! parametrization, November 1981, ECMWF, Reading, England. ! Page: 19. Equations in Table 1. ! Mascart P, Noilhan J, Giordani H 1995.A MODIFIED PARAMETERIZATION OF FLUX-PROFILE RELATIONSHIPS ! IN THE SURFACE LAYER USING DIFFERENT ROUGHNESS LENGTH VALUES FOR HEAT AND MOMENTUM ! Boundary-Layer Meteorology 72: 331-344 ! Anton Beljaars. May 1992. The parametrization of the planetary boundary layer. ! European Centre for Medium-Range Weather Forecasts. ! Equations: 110-113. Page 40. ! Miller,M.J., A.C.M.Beljaars, T.N.Palmer. 1992. The sensitivity of the ECMWF ! model to the parameterization of evaporation from the tropical oceans. J. ! Climate, 5:418-434. ! King J.C, Connolley, W.M ad Derbyshire S.H. 2001, Sensitivity of Modelled Antarctic climate ! to surface and boundary-layer flux parametrizations ! QJRMS, 127, pp 779-794 ! ================================================================= c ! ================================================================= c ! On choisit le couple de fonctions de correction avec deux flags: ! Un pour les cas instables, un autre pour les cas stables ! iflag_corr_insta: ! 1: Louis 1979 avec les modifications de Mascart 1995 (z0/= z0h) ! 2: Louis 1982 ! 3: Laurent Li ! iflag_corr_sta: ! 1: Louis 1979 avec les modifications de Mascart 1995 (z0/= z0h) ! 2: Louis 1982 ! 3: Laurent Li ! 4: King 2001 (SHARP) ! 5: MO 1st order theory (allow collapse of turbulence) !***************************************************************** ! Parametres d'entree !***************************************************************** INTEGER, INTENT(IN) :: knon, nsrf ! nombre de points de grille sur l'horizontal + type de surface REAL, DIMENSION(klon), INTENT(IN) :: speed ! module du vent au 1er niveau du modele REAL, DIMENSION(klon), INTENT(IN) :: zgeop1 ! geopotentiel au 1er niveau du modele REAL, DIMENSION(klon), INTENT(IN) :: tsurf ! Surface temperature (K) REAL, DIMENSION(klon), INTENT(IN) :: qsurf ! Surface humidity (Kg/Kg) REAL, DIMENSION(klon), INTENT(INOUT) :: z0m, z0h ! Rugosity at surface (m) REAL, DIMENSION(klon), INTENT(IN) :: ri_in ! Input Richardson 1st layer for first guess calculations of screen var. INTEGER, INTENT(IN) :: iri_in! iflag to activate cdrag calculation using ri1 REAL, DIMENSION(klon), INTENT(IN) :: t1 ! Temperature au premier niveau (K) REAL, DIMENSION(klon), INTENT(IN) :: q1 ! humidite specifique au premier niveau (kg/kg) REAL, DIMENSION(klon), INTENT(IN) :: psol ! pression au sol !------------------ Rajout pour COARE (OT2018) -------------------- REAL, DIMENSION(klon), INTENT(INOUT) :: pblh !hauteur de CL REAL, DIMENSION(klon), INTENT(IN) :: prain !rapport au precipitation REAL, DIMENSION(klon), INTENT(IN) :: tsol !SST imposé sur la surface oceanique REAL, DIMENSION(klon), INTENT(IN) :: pat1 !pression premier lev ! Parametres de sortie !****************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: cdm ! Drag coefficient for momentum REAL, DIMENSION(klon), INTENT(OUT) :: cdh ! Drag coefficient for heat flux REAL, DIMENSION(klon), INTENT(OUT) :: zri ! Richardson number REAL, DIMENSION(klon), INTENT(INOUT) :: pref ! Pression au niveau zgeop/RG ! Variables Locales !****************************************************************** REAL, PARAMETER :: CKAP = 0.40, CKAPT = 0.42 REAL CEPDU2 REAL ALPHA REAL CB, CC, CD, C2, C3 REAL MU, CM, CH, B, CMstar, CHstar REAL PM, PH, BPRIME INTEGER ng_q1 ! Number of grids that q1 < 0.0 INTEGER ng_qsurf ! Number of grids that qsurf < 0.0 INTEGER i, k REAL zdu2, ztsolv REAL ztvd, zscf REAL zucf, zcr REAL, DIMENSION(klon) :: FM, FH ! stability functions REAL, DIMENSION(klon) :: cdmn, cdhn ! Drag coefficient in neutral conditions REAL zzzcd REAL, DIMENSION(klon) :: sm, prandtl ! Stability function from atke turbulence scheme REAL ri0, ri1, cn ! to have dimensionless term in sm and prandtl !------------------ Rajout (OT2018) -------------------- !------------------ Rajout pour les appelles BULK (OT) -------------------- REAL, DIMENSION(klon, 2) :: rugos_itm REAL, DIMENSION(klon, 2) :: rugos_ith REAL, PARAMETER :: tol_it_rugos = 1.e-4 REAL, DIMENSION(3) :: coeffs LOGICAL :: mixte REAL :: z_0m REAL :: z_0h REAL, DIMENSION(klon) :: cdmm REAL, DIMENSION(klon) :: cdhh !------------------RAJOUT POUR ECUME ------------------- REAL, DIMENSION(klon) :: PQSAT REAL, DIMENSION(klon) :: PSFTH REAL, DIMENSION(klon) :: PFSTQ REAL, DIMENSION(klon) :: PUSTAR REAL, DIMENSION(klon) :: PCD ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PCDN ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PCH ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PCE ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PRI REAL, DIMENSION(klon) :: PRESA REAL, DIMENSION(klon) :: PSSS LOGICAL :: OPRECIP LOGICAL :: OPWEBB LOGICAL :: OPERTFLUX LOGICAL :: LPRECIP LOGICAL :: LPWG LOGICAL, SAVE :: firstCALL = .TRUE. !$OMP THREADPRIVATE(firstcall) INTEGER, SAVE :: iflag_corr_sta !$OMP THREADPRIVATE(iflag_corr_sta) INTEGER, SAVE :: iflag_corr_insta !$OMP THREADPRIVATE(iflag_corr_insta) LOGICAL, SAVE :: ok_cdrag_iter !$OMP THREADPRIVATE(ok_cdrag_iter) !===================================================================c ! Valeurs numeriques des constantes !===================================================================c ! Minimum du carre du vent CEPDU2 = (0.1)**2 ! Louis 1982 CB = 5.0 CC = 5.0 CD = 5.0 ! King 2001 C2 = 0.25 C3 = 0.0625 ! Louis 1979 BPRIME = 4.7 B = 9.4 !MO ALPHA = 5.0 ! Consistent with atke scheme cn = (1. / sqrt(cepsilon))**(2. / 3.) ri0 = 2. / rpi * (cinf - cn) * ric / cn ri1 = -2. / rpi * (pr_asym - pr_neut) / pr_slope ! ================================================================= c ! Tests avant de commencer ! Fuxing WANG, 04/03/2015 ! To check if there are negative q1, qsurf values. !====================================================================c ng_q1 = 0 ! Initialization ng_qsurf = 0 ! Initialization DO i = 1, knon IF (q1(i)<0.0) ng_q1 = ng_q1 + 1 IF (qsurf(i)<0.0) ng_qsurf = ng_qsurf + 1 ENDDO IF (ng_q1>0 .AND. prt_level > 5) THEN WRITE(lunout, *)" *** Warning: Negative q1(humidity at 1st level) values in cdrag.F90 !" WRITE(lunout, *)" The total number of the grids is: ", ng_q1 WRITE(lunout, *)" The negative q1 is set to zero " ! abort_message="voir ci-dessus" ! CALL abort_physic(modname,abort_message,1) ENDIF IF (ng_qsurf>0 .AND. prt_level > 5) THEN WRITE(lunout, *)" *** Warning: Negative qsurf(humidity at surface) values in cdrag.F90 !" WRITE(lunout, *)" The total number of the grids is: ", ng_qsurf WRITE(lunout, *)" The negative qsurf is set to zero " ! abort_message="voir ci-dessus" ! CALL abort_physic(modname,abort_message,1) ENDIF !=============================================================================c ! Calcul du cdrag !=============================================================================c ! On choisit les fonctions de stabilite utilisees au premier appel !************************************************************************** IF (firstcall) THEN iflag_corr_sta = 2 iflag_corr_insta = 2 ok_cdrag_iter = .FALSE. CALL getin_p('iflag_corr_sta', iflag_corr_sta) CALL getin_p('iflag_corr_insta', iflag_corr_insta) CALL getin_p('ok_cdrag_iter', ok_cdrag_iter) firstCALL = .FALSE. ENDIF !------------------ Rajout (OT2018) -------------------- !--------- Rajout pour itération sur rugosité ---------------- rugos_itm(:, 2) = z0m rugos_itm(:, 1) = 3. * tol_it_rugos * z0m rugos_ith(:, 2) = z0h !cp nouveau rugos_it rugos_ith(:, 1) = 3. * tol_it_rugos * z0h !-------------------------------------------------------------------- !xxxxxxxxxxxxxxxxxxxxxxx DO i = 1, knon ! Boucle sur l'horizontal !xxxxxxxxxxxxxxxxxxxxxxx ! calculs preliminaires: !*********************** zdu2 = MAX(CEPDU2, speed(i)**2) pref(i) = EXP(LOG(psol(i)) - zgeop1(i) / (RD * t1(i) * & (1. + RETV * max(q1(i), 0.0)))) ! negative q1 set to zero ztsolv = tsurf(i) * (1.0 + RETV * max(qsurf(i), 0.0)) ! negative qsurf set to zero ztvd = (t1(i) + zgeop1(i) / RCPD / (1. + RVTMP2 * q1(i))) & * (1. + RETV * max(q1(i), 0.0)) ! negative q1 set to zero !------------------ Rajout (OT2018) -------------------- !-------------- ON DUPLIQUE POUR METTRE ITERATION SUR OCEAN ------------------------ IF (iri_in==1) THEN zri(i) = ri_in(i) ENDIF IF (nsrf == is_oce) THEN !------------------ Pour Core 2 choix Core Pur ou Core Mixte -------------------- IF ((choix_bulk > 1 .AND. choix_bulk < 4) .AND. (nsrf == is_oce)) THEN IF(choix_bulk == 2) THEN mixte = .FALSE. ELSE mixte = .TRUE. ENDIF CALL clc_core_cp (sqrt(zdu2), t1(i) - tsurf(i), q1(i) - qsurf(i), t1(i), q1(i), & zgeop1(i) / RG, zgeop1(i) / RG, zgeop1(i) / RG, & psol(i), nit_bulk, mixte, & coeffs, z_0m, z_0h) cdmm(i) = coeffs(1) cdhh(i) = coeffs(2) cdm(i) = cdmm(i) cdh(i) = cdhh(i) WRITE(*, *) "clc_core cd ch", cdmm(i), cdhh(i) !------------------ Pour ECUME -------------------- ELSE IF ((choix_bulk == 4) .AND. (nsrf == is_oce)) THEN OPRECIP = .FALSE. OPWEBB = .FALSE. OPERTFLUX = .FALSE. IF (nsrf == is_oce) THEN PSSS = 0.0 ENDIF CALL ini_csts CALL ecumev6_flux(z_0m, t1(i), tsurf(i), & q1(i), qsurf(i), sqrt(zdu2), zgeop1(i) / RG, PSSS, zgeop1(i) / RG, & psol(i), pat1(i), OPRECIP, OPWEBB, & PSFTH, PFSTQ, PUSTAR, PCD, PCDN, & PCH, PCE, PRI, PRESA, prain, & z_0h, OPERTFLUX, coeffs) cdmm(i) = coeffs(1) cdhh(i) = coeffs(2) cdm(i) = cdmm(i) cdh(i) = cdhh(i) WRITE(*, *) "ecume cd ch", cdmm(i), cdhh(i) !------------------ Pour COARE CNRM -------------------- ELSE IF ((choix_bulk == 5) .AND. (nsrf == is_oce)) THEN LPRECIP = .FALSE. LPWG = .FALSE. CALL ini_csts block REAL, DIMENSION(1) :: z0m_1d, z_0h_1d, sqrt_zdu2_1d, zgeop1_rg_1d ! convert scalar to 1D for call z0m_1d = z0m z_0h_1d = z0h sqrt_zdu2_1d = sqrt(zdu2) zgeop1_rg_1d = zgeop1(i) / RG CALL coare30_flux_cnrm(z0m_1d, t1(i), tsurf(i), q1(i), & sqrt_zdu2_1d, zgeop1_rg_1d, zgeop1_rg_1d, psol(i), qsurf(i), PQSAT, & PSFTH, PFSTQ, PUSTAR, PCD, PCDN, PCH, PCE, PRI, & PRESA, prain, pat1(i), z_0h_1d, LPRECIP, LPWG, coeffs) end block cdmm(i) = coeffs(1) cdhh(i) = coeffs(2) cdm(i) = cdmm(i) cdh(i) = cdhh(i) WRITE(*, *) "coare CNRM cd ch", cdmm(i), cdhh(i) !------------------ Pour COARE Maison -------------------- ELSE IF ((choix_bulk == 1) .AND. (nsrf == is_oce)) THEN IF (pblh(i) == 0.) THEN pblh(i) = 1500. ENDIF WRITE(*, *) "debug size", size(coeffs) CALL coare_cp(sqrt(zdu2), t1(i) - tsurf(i), q1(i) - qsurf(i), & t1(i), q1(i), & zgeop1(i) / RG, zgeop1(i) / RG, zgeop1(i) / RG, & psol(i), pblh(i), & nit_bulk, & coeffs, z_0m, z_0h) cdmm(i) = coeffs(1) cdhh(i) = coeffs(3) cdm(i) = cdmm(i) cdh(i) = cdhh(i) WRITE(*, *) "coare cd ch", cdmm(i), cdhh(i) ELSE !------------------ Pour La param LMDZ (ocean) -------------------- zri(i) = zgeop1(i) * (ztvd - ztsolv) / (zdu2 * ztvd) IF (iri_in==1) THEN zri(i) = ri_in(i) ENDIF ENDIF !----------------------- Rajout des itérations -------------- DO k = 1, nit_bulk ! Coefficients CD neutres : k^2/ln(z/z0) et k^2/(ln(z/z0)*ln(z/z0h)): !******************************************************************** zzzcd = CKAP / LOG(1. + zgeop1(i) / (RG * rugos_itm(i, 2))) cdmn(i) = zzzcd * zzzcd cdhn(i) = zzzcd * (CKAP / LOG(1. + zgeop1(i) / (RG * rugos_ith(i, 2)))) ! Calcul des fonctions de stabilite FMs, FHs, FMi, FHi : !******************************************************* IF (zri(i) < 0.) THEN SELECT CASE (iflag_corr_insta) CASE (1) ! Louis 1979 + Mascart 1995 MU = LOG(MAX(z0m(i) / z0h(i), 0.01)) CMstar = 6.8741 + 2.6933 * MU - 0.3601 * (MU**2) + 0.0154 * (MU**3) PM = 0.5233 - 0.0815 * MU + 0.0135 * (MU**2) - 0.001 * (MU**3) CHstar = 3.2165 + 4.3431 * MU + 0.536 * (MU**2) - 0.0781 * (MU**3) PH = 0.5802 - 0.1571 * MU + 0.0327 * (MU**2) - 0.0026 * (MU**3) CH = CHstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & * CKAPT / LOG(z0h(i) + zgeop1(i) / (RG * z0h(i))) & * ((zgeop1(i) / (RG * z0h(i)))**PH) CM = CMstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & * ((zgeop1(i) / (RG * z0m(i)))**PM) FM(i) = 1. - B * zri(i) / (1. + CM * SQRT(ABS(zri(i)))) FH(i) = 1. - B * zri(i) / (1. + CH * SQRT(ABS(zri(i)))) CASE (2) ! Louis 1982 zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & * (1.0 + zgeop1(i) / (RG * z0m(i))))) FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) CASE (3) ! Laurent Li FM(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) FH(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = 2. / rpi * (cinf - cn) * atan(-zri(i) / ri0) + cn prandtl(i) = -2. / rpi * (pr_asym - pr_neut) * atan(zri(i) / ri1) + pr_neut FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & * (1.0 + zgeop1(i) / (RG * z0m(i))))) FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) END SELECT ! Calcul des drags cdmm(i) = cdmn(i) * FM(i) cdhh(i) = f_cdrag_ter * cdhn(i) * FH(i) ! Traitement particulier des cas oceaniques ! on applique Miller et al 1992 en l'absence de gustiness IF (nsrf == is_oce) THEN ! cdh(i)=f_cdrag_oce*cdhn(i)*FH(i) IF (iflag_gusts==0) THEN zcr = (0.0016 / (cdmn(i) * SQRT(zdu2))) * ABS(ztvd - ztsolv)**(1. / 3.) cdhh(i) = f_cdrag_oce * cdhn(i) * (1.0 + zcr**1.25)**(1. / 1.25) ENDIF cdmm(i) = MIN(cdmm(i), cdmmax) cdhh(i) = MIN(cdhh(i), cdhmax) ! WRITE(*,*) "LMDZ cd ch",cdmm(i),cdhh(i) END IF ELSE !''''''''''''''' ! Cas stables : !''''''''''''''' zri(i) = MIN(20., zri(i)) SELECT CASE (iflag_corr_sta) CASE (1) ! Louis 1979 + Mascart 1995 FM(i) = MAX(1. / ((1 + BPRIME * zri(i))**2), f_ri_cd_min) FH(i) = FM(i) CASE (2) ! Louis 1982 zscf = SQRT(1. + CD * ABS(zri(i))) FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) CASE (3) ! Laurent Li FM(i) = MAX(1.0 / (1.0 + 10.0 * zri(i) * (1 + 8.0 * zri(i))), f_ri_cd_min) FH(i) = FM(i) CASE (4) ! King 2001 IF (zri(i) < C2 / 2.) THEN FM(i) = MAX((1. - zri(i) / C2)**2, f_ri_cd_min) FH(i) = FM(i) ELSE FM(i) = MAX(C3 * ((C2 / zri(i))**2), f_ri_cd_min) FH(i) = FM(i) ENDIF CASE (5) ! MO IF (zri(i) < 1. / alpha) THEN FM(i) = MAX((1. - alpha * zri(i))**2, f_ri_cd_min) FH(i) = FM(i) else FM(i) = MAX(1E-7, f_ri_cd_min) FH(i) = FM(i) endif CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = MAX(smmin, cn * (1. - zri(i) / ric)) ! prandlt expression from venayagamoorthy and stretch 2010, Li et al 2019 prandtl(i) = pr_neut * exp(-pr_slope / pr_neut * zri(i) + zri(i) / pr_neut) & + zri(i) * pr_slope FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zscf = SQRT(1. + CD * ABS(zri(i))) FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) END SELECT ! Calcul des drags cdmm(i) = cdmn(i) * FM(i) cdhh(i) = f_cdrag_ter * cdhn(i) * FH(i) IF (choix_bulk == 0) THEN cdm(i) = cdmn(i) * FM(i) cdh(i) = f_cdrag_ter * cdhn(i) * FH(i) ENDIF IF (nsrf==is_oce) THEN cdhh(i) = f_cdrag_oce * cdhn(i) * FH(i) cdmm(i) = MIN(cdmm(i), cdmmax) cdhh(i) = MIN(cdhh(i), cdhmax) ENDIF IF (ok_cdrag_iter) THEN rugos_itm(i, 1) = rugos_itm(i, 2) rugos_ith(i, 1) = rugos_ith(i, 2) rugos_itm(i, 2) = 0.018 * cdmm(i) * (speed(i)) / RG & + 0.11 * 14e-6 / SQRT(cdmm(i) * zdu2) !---------- Version SEPARATION DES Z0 ---------------------- IF (iflag_z0_oce==0) THEN rugos_ith(i, 2) = rugos_itm(i, 2) ELSE IF (iflag_z0_oce==1) THEN rugos_ith(i, 2) = 0.40 * 14e-6 / SQRT(cdmm(i) * zdu2) ENDIF ENDIF ENDIF IF (ok_cdrag_iter) THEN rugos_itm(i, 2) = MAX(1.5e-05, rugos_itm(i, 2)) rugos_ith(i, 2) = MAX(1.5e-05, rugos_ith(i, 2)) ENDIF ENDDO IF (nsrf==is_oce) THEN cdm(i) = MIN(cdmm(i), cdmmax) cdh(i) = MIN(cdhh(i), cdhmax) ENDIF z0m = rugos_itm(:, 2) z0h = rugos_ith(:, 2) ELSE ! (nsrf == is_oce) zri(i) = zgeop1(i) * (ztvd - ztsolv) / (zdu2 * ztvd) IF (iri_in==1) THEN zri(i) = ri_in(i) ENDIF ! Coefficients CD neutres : k^2/ln(z/z0) et k^2/(ln(z/z0)*ln(z/z0h)): !******************************************************************** zzzcd = CKAP / LOG(1. + zgeop1(i) / (RG * z0m(i))) cdmn(i) = zzzcd * zzzcd cdhn(i) = zzzcd * (CKAP / LOG(1. + zgeop1(i) / (RG * z0h(i)))) ! Calcul des fonctions de stabilit?? FMs, FHs, FMi, FHi : !******************************************************* !'''''''''''''' ! Cas instables !'''''''''''''' IF (zri(i) < 0.) THEN SELECT CASE (iflag_corr_insta) CASE (1) ! Louis 1979 + Mascart 1995 MU = LOG(MAX(z0m(i) / z0h(i), 0.01)) CMstar = 6.8741 + 2.6933 * MU - 0.3601 * (MU**2) + 0.0154 * (MU**3) PM = 0.5233 - 0.0815 * MU + 0.0135 * (MU**2) - 0.001 * (MU**3) CHstar = 3.2165 + 4.3431 * MU + 0.536 * (MU**2) - 0.0781 * (MU**3) PH = 0.5802 - 0.1571 * MU + 0.0327 * (MU**2) - 0.0026 * (MU**3) CH = CHstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & * CKAPT / LOG(z0h(i) + zgeop1(i) / (RG * z0h(i))) & * ((zgeop1(i) / (RG * z0h(i)))**PH) CM = CMstar * B * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & * CKAP / LOG(z0m(i) + zgeop1(i) / (RG * z0m(i))) & * ((zgeop1(i) / (RG * z0m(i)))**PM) FM(i) = 1. - B * zri(i) / (1. + CM * SQRT(ABS(zri(i)))) FH(i) = 1. - B * zri(i) / (1. + CH * SQRT(ABS(zri(i)))) CASE (2) ! Louis 1982 zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & * (1.0 + zgeop1(i) / (RG * z0m(i))))) FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) CASE (3) ! Laurent Li FM(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) FH(i) = MAX(SQRT(1.0 - 18.0 * zri(i)), f_ri_cd_min) CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = 2. / rpi * (cinf - cn) * atan(-zri(i) / ri0) + cn prandtl(i) = -2. / rpi * (pr_asym - pr_neut) * atan(zri(i) / ri1) + pr_neut FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zucf = 1. / (1. + 3.0 * CB * CC * cdmn(i) * SQRT(ABS(zri(i)) & * (1.0 + zgeop1(i) / (RG * z0m(i))))) FM(i) = AMAX1((1. - 2.0 * CB * zri(i) * zucf), f_ri_cd_min) FH(i) = AMAX1((1. - 3.0 * CB * zri(i) * zucf), f_ri_cd_min) END SELECT ! Calcul des drags cdm(i) = cdmn(i) * FM(i) cdh(i) = f_cdrag_ter * cdhn(i) * FH(i) ELSE !''''''''''''''' ! Cas stables : !''''''''''''''' zri(i) = MIN(20., zri(i)) SELECT CASE (iflag_corr_sta) CASE (1) ! Louis 1979 + Mascart 1995 FM(i) = MAX(1. / ((1 + BPRIME * zri(i))**2), f_ri_cd_min) FH(i) = FM(i) CASE (2) ! Louis 1982 zscf = SQRT(1. + CD * ABS(zri(i))) FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) CASE (3) ! Laurent Li FM(i) = MAX(1.0 / (1.0 + 10.0 * zri(i) * (1 + 8.0 * zri(i))), f_ri_cd_min) FH(i) = FM(i) CASE (4) ! King 2001 IF (zri(i) < C2 / 2.) THEN FM(i) = MAX((1. - zri(i) / C2)**2, f_ri_cd_min) FH(i) = FM(i) else FM(i) = MAX(C3 * ((C2 / zri(i))**2), f_ri_cd_min) FH(i) = FM(i) endif CASE (5) ! MO IF (zri(i) < 1. / alpha) THEN FM(i) = MAX((1. - alpha * zri(i))**2, f_ri_cd_min) FH(i) = FM(i) else FM(i) = MAX(1E-7, f_ri_cd_min) FH(i) = FM(i) endif CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = MAX(0., cn * (1. - zri(i) / ric)) prandtl(i) = pr_neut + zri(i) * pr_slope FM(i) = MAX((sm(i)**(3. / 2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1. / 2.)), f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zscf = SQRT(1. + CD * ABS(zri(i))) FM(i) = AMAX1(1. / (1. + 2. * CB * zri(i) / zscf), f_ri_cd_min) FH(i) = AMAX1(1. / (1. + 3. * CB * zri(i) * zscf), f_ri_cd_min) END SELECT ! Calcul des drags cdm(i) = cdmn(i) * FM(i) cdh(i) = f_cdrag_ter * cdhn(i) * FH(i) ENDIF ENDIF ! fin du if (nsrf == is_oce) END DO ! Fin de la boucle sur l'horizontal END SUBROUTINE cdrag END MODULE cdrag_mod