! ! $Id: phys_output_mod.F90 1266 2009-11-20 16:27:40Z aborella $ ! ! Abderrahmane 12 2007 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! Ecreture des Sorties du modele dans les fichiers Netcdf : ! histmth.nc : moyennes mensuelles ! histday.nc : moyennes journalieres ! histhf.nc : moyennes toutes les 3 heures ! histins.nc : valeurs instantanees !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! MODULE phys_output_mod IMPLICIT NONE private histdef2d, histdef3d, conf_physoutputs integer, parameter :: nfiles = 5 logical, dimension(nfiles), save :: clef_files integer, dimension(nfiles), save :: lev_files integer, dimension(nfiles), save :: nid_files !!$OMP THREADPRIVATE(clef_files, lev_files,nid_files) integer, dimension(nfiles), private, save :: nhorim, nvertm integer, dimension(nfiles), private, save :: nvertap, nvertbp, nvertAlt ! integer, dimension(nfiles), private, save :: nvertp0 real, dimension(nfiles), private, save :: zoutm real, private, save :: zdtime CHARACTER(len=20), dimension(nfiles), private, save :: type_ecri !$OMP THREADPRIVATE(nhorim, nvertm, zoutm,zdtime,type_ecri) ! integer, save :: nid_hf3d !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Definition pour chaque variable du niveau d ecriture dans chaque fichier !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!/ histmth, histday, histhf, histins /),'!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! integer, private:: levmin(nfiles) = 1 integer, private:: levmax(nfiles) TYPE ctrl_out integer,dimension(5) :: flag character(len=20) :: name END TYPE ctrl_out !!! Comosentes de la coordonnee sigma-hybride !!! Ap et Bp type(ctrl_out),save :: o_Ahyb = ctrl_out((/ 1, 1, 1, 1, 1 /), 'Ap') type(ctrl_out),save :: o_Bhyb = ctrl_out((/ 1, 1, 1, 1, 1 /), 'Bp') type(ctrl_out),save :: o_Alt = ctrl_out((/ 1, 1, 1, 1, 1 /), 'Alt') !!! 1D type(ctrl_out),save :: o_phis = ctrl_out((/ 1, 1, 10, 1, 1 /), 'phis') type(ctrl_out),save :: o_aire = ctrl_out((/ 1, 1, 10, 1, 1 /),'aire') type(ctrl_out),save :: o_contfracATM = ctrl_out((/ 10, 1, 1, 10, 10 /),'contfracATM') type(ctrl_out),save :: o_contfracOR = ctrl_out((/ 10, 1, 1, 10, 10 /),'contfracOR') type(ctrl_out),save :: o_aireTER = ctrl_out((/ 10, 10, 1, 10, 10 /),'aireTER') !!! 2D type(ctrl_out),save :: o_flat = ctrl_out((/ 10, 1, 10, 10, 1 /),'flat') type(ctrl_out),save :: o_slp = ctrl_out((/ 1, 1, 1, 10, 1 /),'slp') type(ctrl_out),save :: o_tsol = ctrl_out((/ 1, 1, 1, 1, 1 /),'tsol') type(ctrl_out),save :: o_t2m = ctrl_out((/ 1, 1, 1, 1, 1 /),'t2m') type(ctrl_out),save :: o_t2m_min = ctrl_out((/ 1, 1, 10, 10, 10 /),'t2m_min') type(ctrl_out),save :: o_t2m_max = ctrl_out((/ 1, 1, 10, 10, 10 /),'t2m_max') type(ctrl_out),save,dimension(4) :: o_t2m_srf = (/ ctrl_out((/ 10, 4, 10, 10, 10 /),'t2m_ter'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'t2m_lic'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'t2m_oce'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'t2m_sic') /) type(ctrl_out),save :: o_wind10m = ctrl_out((/ 1, 1, 1, 10, 10 /),'wind10m') type(ctrl_out),save :: o_wind10max = ctrl_out((/ 10, 1, 10, 10, 10 /),'wind10max') type(ctrl_out),save :: o_sicf = ctrl_out((/ 1, 1, 10, 10, 10 /),'sicf') type(ctrl_out),save :: o_q2m = ctrl_out((/ 1, 1, 1, 1, 1 /),'q2m') type(ctrl_out),save :: o_u10m = ctrl_out((/ 1, 1, 1, 1, 1 /),'u10m') type(ctrl_out),save :: o_v10m = ctrl_out((/ 1, 1, 1, 1, 1 /),'v10m') type(ctrl_out),save :: o_psol = ctrl_out((/ 1, 1, 1, 1, 1 /),'psol') type(ctrl_out),save :: o_qsurf = ctrl_out((/ 1, 10, 10, 10, 10 /),'qsurf') type(ctrl_out),save,dimension(4) :: o_u10m_srf = (/ ctrl_out((/ 10, 4, 10, 10, 10 /),'u10m_ter'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'u10m_lic'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'u10m_oce'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'u10m_sic') /) type(ctrl_out),save,dimension(4) :: o_v10m_srf = (/ ctrl_out((/ 10, 4, 10, 10, 10 /),'v10m_ter'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'v10m_lic'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'v10m_oce'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'v10m_sic') /) type(ctrl_out),save :: o_qsol = ctrl_out((/ 1, 10, 10, 1, 1 /),'qsol') type(ctrl_out),save :: o_ndayrain = ctrl_out((/ 1, 10, 10, 10, 10 /),'ndayrain') type(ctrl_out),save :: o_precip = ctrl_out((/ 1, 1, 1, 1, 1 /),'precip') type(ctrl_out),save :: o_plul = ctrl_out((/ 1, 1, 1, 1, 10 /),'plul') type(ctrl_out),save :: o_pluc = ctrl_out((/ 1, 1, 1, 1, 10 /),'pluc') type(ctrl_out),save :: o_snow = ctrl_out((/ 1, 1, 10, 1, 10 /),'snow') type(ctrl_out),save :: o_evap = ctrl_out((/ 1, 1, 10, 1, 10 /),'evap') type(ctrl_out),save :: o_tops = ctrl_out((/ 1, 1, 10, 10, 10 /),'tops') type(ctrl_out),save :: o_tops0 = ctrl_out((/ 1, 5, 10, 10, 10 /),'tops0') type(ctrl_out),save :: o_topl = ctrl_out((/ 1, 1, 10, 1, 10 /),'topl') type(ctrl_out),save :: o_topl0 = ctrl_out((/ 1, 5, 10, 10, 10 /),'topl0') type(ctrl_out),save :: o_SWupTOA = ctrl_out((/ 1, 4, 10, 10, 10 /),'SWupTOA') type(ctrl_out),save :: o_SWupTOAclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'SWupTOAclr') type(ctrl_out),save :: o_SWdnTOA = ctrl_out((/ 1, 4, 10, 10, 10 /),'SWdnTOA') type(ctrl_out),save :: o_SWdnTOAclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'SWdnTOAclr') type(ctrl_out),save :: o_SWup200 = ctrl_out((/ 1, 10, 10, 10, 10 /),'SWup200') type(ctrl_out),save :: o_SWup200clr = ctrl_out((/ 10, 1, 10, 10, 10 /),'SWup200clr') type(ctrl_out),save :: o_SWdn200 = ctrl_out((/ 1, 10, 10, 10, 10 /),'SWdn200') type(ctrl_out),save :: o_SWdn200clr = ctrl_out((/ 10, 1, 10, 10, 10 /),'SWdn200clr') ! arajouter ! type(ctrl_out),save :: o_LWupTOA = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWupTOA') ! type(ctrl_out),save :: o_LWupTOAclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWupTOAclr') ! type(ctrl_out),save :: o_LWdnTOA = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWdnTOA') ! type(ctrl_out),save :: o_LWdnTOAclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWdnTOAclr') type(ctrl_out),save :: o_LWup200 = ctrl_out((/ 1, 10, 10, 10, 10 /),'LWup200') type(ctrl_out),save :: o_LWup200clr = ctrl_out((/ 1, 10, 10, 10, 10 /),'LWup200clr') type(ctrl_out),save :: o_LWdn200 = ctrl_out((/ 1, 10, 10, 10, 10 /),'LWdn200') type(ctrl_out),save :: o_LWdn200clr = ctrl_out((/ 1, 10, 10, 10, 10 /),'LWdn200clr') type(ctrl_out),save :: o_sols = ctrl_out((/ 1, 1, 10, 1, 10 /),'sols') type(ctrl_out),save :: o_sols0 = ctrl_out((/ 1, 5, 10, 10, 10 /),'sols0') type(ctrl_out),save :: o_soll = ctrl_out((/ 1, 1, 10, 1, 10 /),'soll') type(ctrl_out),save :: o_soll0 = ctrl_out((/ 1, 5, 10, 10, 10 /),'soll0') type(ctrl_out),save :: o_radsol = ctrl_out((/ 1, 1, 10, 10, 10 /),'radsol') type(ctrl_out),save :: o_SWupSFC = ctrl_out((/ 1, 4, 10, 10, 10 /),'SWupSFC') type(ctrl_out),save :: o_SWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'SWupSFCclr') type(ctrl_out),save :: o_SWdnSFC = ctrl_out((/ 1, 1, 10, 10, 10 /),'SWdnSFC') type(ctrl_out),save :: o_SWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'SWdnSFCclr') type(ctrl_out),save :: o_LWupSFC = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWupSFC') type(ctrl_out),save :: o_LWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWupSFCclr') type(ctrl_out),save :: o_LWdnSFC = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWdnSFC') type(ctrl_out),save :: o_LWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 10 /),'LWdnSFCclr') type(ctrl_out),save :: o_bils = ctrl_out((/ 1, 2, 10, 1, 10 /),'bils') type(ctrl_out),save :: o_sens = ctrl_out((/ 1, 1, 10, 1, 1 /),'sens') type(ctrl_out),save :: o_fder = ctrl_out((/ 1, 2, 10, 1, 10 /),'fder') type(ctrl_out),save :: o_ffonte = ctrl_out((/ 1, 10, 10, 10, 10 /),'ffonte') type(ctrl_out),save :: o_fqcalving = ctrl_out((/ 1, 10, 10, 10, 10 /),'fqcalving') type(ctrl_out),save :: o_fqfonte = ctrl_out((/ 1, 10, 10, 10, 10 /),'fqfonte') type(ctrl_out),save,dimension(4) :: o_taux_srf = (/ ctrl_out((/ 1, 4, 10, 1, 10 /),'taux_ter'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'taux_lic'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'taux_oce'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'taux_sic') /) type(ctrl_out),save,dimension(4) :: o_tauy_srf = (/ ctrl_out((/ 1, 4, 10, 1, 10 /),'tauy_ter'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'tauy_lic'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'tauy_oce'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'tauy_sic') /) type(ctrl_out),save,dimension(4) :: o_pourc_srf = (/ ctrl_out((/ 1, 4, 10, 1, 10 /),'pourc_ter'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'pourc_lic'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'pourc_oce'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'pourc_sic') /) type(ctrl_out),save,dimension(4) :: o_fract_srf = (/ ctrl_out((/ 1, 4, 10, 1, 10 /),'fract_ter'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'fract_lic'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'fract_oce'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'fract_sic') /) type(ctrl_out),save,dimension(4) :: o_tsol_srf = (/ ctrl_out((/ 1, 4, 10, 1, 10 /),'tsol_ter'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'tsol_lic'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'tsol_oce'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'tsol_sic') /) type(ctrl_out),save,dimension(4) :: o_sens_srf = (/ ctrl_out((/ 1, 4, 10, 1, 10 /),'sens_ter'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'sens_lic'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'sens_oce'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'sens_sic') /) type(ctrl_out),save,dimension(4) :: o_lat_srf = (/ ctrl_out((/ 1, 4, 10, 1, 10 /),'lat_ter'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'lat_lic'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'lat_oce'), & ctrl_out((/ 1, 4, 10, 1, 10 /),'lat_sic') /) type(ctrl_out),save,dimension(4) :: o_flw_srf = (/ ctrl_out((/ 1, 10, 10, 10, 10 /),'flw_ter'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'flw_lic'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'flw_oce'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'flw_sic') /) type(ctrl_out),save,dimension(4) :: o_fsw_srf = (/ ctrl_out((/ 1, 10, 10, 10, 10 /),'fsw_ter'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'fsw_lic'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'fsw_oce'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'fsw_sic') /) type(ctrl_out),save,dimension(4) :: o_wbils_srf = (/ ctrl_out((/ 1, 10, 10, 10, 10 /),'wbils_ter'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'wbils_lic'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'wbils_oce'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'wbils_sic') /) type(ctrl_out),save,dimension(4) :: o_wbilo_srf = (/ ctrl_out((/ 1, 10, 10, 10, 10 /),'wbilo_ter'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'wbilo_lic'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'wbilo_oce'), & ctrl_out((/ 1, 10, 10, 10, 10 /),'wbilo_sic') /) type(ctrl_out),save :: o_cdrm = ctrl_out((/ 1, 10, 10, 1, 10 /),'cdrm') type(ctrl_out),save :: o_cdrh = ctrl_out((/ 1, 10, 10, 1, 10 /),'cdrh') type(ctrl_out),save :: o_cldl = ctrl_out((/ 1, 1, 10, 10, 10 /),'cldl') type(ctrl_out),save :: o_cldm = ctrl_out((/ 1, 1, 10, 10, 10 /),'cldm') type(ctrl_out),save :: o_cldh = ctrl_out((/ 1, 1, 10, 10, 10 /),'cldh') type(ctrl_out),save :: o_cldt = ctrl_out((/ 1, 1, 2, 10, 10 /),'cldt') type(ctrl_out),save :: o_cldq = ctrl_out((/ 1, 1, 10, 10, 10 /),'cldq') type(ctrl_out),save :: o_lwp = ctrl_out((/ 1, 5, 10, 10, 10 /),'lwp') type(ctrl_out),save :: o_iwp = ctrl_out((/ 1, 5, 10, 10, 10 /),'iwp') type(ctrl_out),save :: o_ue = ctrl_out((/ 1, 10, 10, 10, 10 /),'ue') type(ctrl_out),save :: o_ve = ctrl_out((/ 1, 10, 10, 10, 10 /),'ve') type(ctrl_out),save :: o_uq = ctrl_out((/ 1, 10, 10, 10, 10 /),'uq') type(ctrl_out),save :: o_vq = ctrl_out((/ 1, 10, 10, 10, 10 /),'vq') type(ctrl_out),save :: o_cape = ctrl_out((/ 1, 10, 10, 10, 10 /),'cape') type(ctrl_out),save :: o_pbase = ctrl_out((/ 1, 10, 10, 10, 10 /),'pbase') type(ctrl_out),save :: o_ptop = ctrl_out((/ 1, 4, 10, 10, 10 /),'ptop') type(ctrl_out),save :: o_fbase = ctrl_out((/ 1, 10, 10, 10, 10 /),'fbase') type(ctrl_out),save :: o_prw = ctrl_out((/ 1, 1, 10, 10, 10 /),'prw') type(ctrl_out),save :: o_s_pblh = ctrl_out((/ 1, 10, 10, 1, 1 /),'s_pblh') type(ctrl_out),save :: o_s_pblt = ctrl_out((/ 1, 10, 10, 1, 1 /),'s_pblt') type(ctrl_out),save :: o_s_lcl = ctrl_out((/ 1, 10, 10, 1, 10 /),'s_lcl') type(ctrl_out),save :: o_s_capCL = ctrl_out((/ 1, 10, 10, 1, 10 /),'s_capCL') type(ctrl_out),save :: o_s_oliqCL = ctrl_out((/ 1, 10, 10, 1, 10 /),'s_oliqCL') type(ctrl_out),save :: o_s_cteiCL = ctrl_out((/ 1, 10, 10, 1, 1 /),'s_cteiCL') type(ctrl_out),save :: o_s_therm = ctrl_out((/ 1, 10, 10, 1, 1 /),'s_therm') type(ctrl_out),save :: o_s_trmb1 = ctrl_out((/ 1, 10, 10, 1, 10 /),'s_trmb1') type(ctrl_out),save :: o_s_trmb2 = ctrl_out((/ 1, 10, 10, 1, 10 /),'s_trmb2') type(ctrl_out),save :: o_s_trmb3 = ctrl_out((/ 1, 10, 10, 1, 10 /),'s_trmb3') type(ctrl_out),save :: o_slab_bils = ctrl_out((/ 1, 1, 10, 10, 10 /),'slab_bils_oce') type(ctrl_out),save :: o_ale_bl = ctrl_out((/ 1, 1, 1, 1, 10 /),'ale_bl') type(ctrl_out),save :: o_alp_bl = ctrl_out((/ 1, 1, 1, 1, 10 /),'alp_bl') type(ctrl_out),save :: o_ale_wk = ctrl_out((/ 1, 1, 1, 1, 10 /),'ale_wk') type(ctrl_out),save :: o_alp_wk = ctrl_out((/ 1, 1, 1, 1, 10 /),'alp_wk') type(ctrl_out),save :: o_ale = ctrl_out((/ 1, 1, 1, 1, 10 /),'ale') type(ctrl_out),save :: o_alp = ctrl_out((/ 1, 1, 1, 1, 10 /),'alp') type(ctrl_out),save :: o_cin = ctrl_out((/ 1, 1, 1, 1, 10 /),'cin') type(ctrl_out),save :: o_wape = ctrl_out((/ 1, 1, 1, 1, 10 /),'wape') ! Champs interpolles sur des niveaux de pression ??? a faire correctement type(ctrl_out),save,dimension(6) :: o_uSTDlevs = (/ ctrl_out((/ 1, 1, 3, 10, 10 /),'u850'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'u700'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'u500'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'u200'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'u50'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'u10') /) type(ctrl_out),save,dimension(6) :: o_vSTDlevs = (/ ctrl_out((/ 1, 1, 3, 10, 10 /),'v850'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'v700'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'v500'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'v200'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'v50'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'v10') /) type(ctrl_out),save,dimension(6) :: o_wSTDlevs = (/ ctrl_out((/ 1, 1, 3, 10, 10 /),'w850'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'w700'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'w500'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'w200'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'w50'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'w10') /) type(ctrl_out),save,dimension(6) :: o_tSTDlevs = (/ ctrl_out((/ 1, 1, 3, 10, 10 /),'t850'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'t700'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'t500'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'t200'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'t50'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'t10') /) type(ctrl_out),save,dimension(6) :: o_qSTDlevs = (/ ctrl_out((/ 1, 1, 3, 10, 10 /),'q850'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'q700'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'q500'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'q200'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'q50'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'q10') /) type(ctrl_out),save,dimension(6) :: o_phiSTDlevs = (/ ctrl_out((/ 1, 1, 3, 10, 10 /),'phi850'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'phi700'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'phi500'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'phi200'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'phi50'), & ctrl_out((/ 1, 1, 3, 10, 10 /),'phi10') /) type(ctrl_out),save :: o_t_oce_sic = ctrl_out((/ 1, 10, 10, 10, 10 /),'t_oce_sic') type(ctrl_out),save :: o_weakinv = ctrl_out((/ 10, 1, 10, 10, 10 /),'weakinv') type(ctrl_out),save :: o_dthmin = ctrl_out((/ 10, 1, 10, 10, 10 /),'dthmin') type(ctrl_out),save,dimension(4) :: o_u10_srf = (/ ctrl_out((/ 10, 4, 10, 10, 10 /),'u10_ter'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'u10_lic'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'u10_oce'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'u10_sic') /) type(ctrl_out),save,dimension(4) :: o_v10_srf = (/ ctrl_out((/ 10, 4, 10, 10, 10 /),'v10_ter'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'v10_lic'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'v10_oce'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'v10_sic') /) type(ctrl_out),save :: o_cldtau = ctrl_out((/ 10, 5, 10, 10, 10 /),'cldtau') type(ctrl_out),save :: o_cldemi = ctrl_out((/ 10, 5, 10, 10, 10 /),'cldemi') type(ctrl_out),save :: o_rh2m = ctrl_out((/ 10, 5, 10, 10, 10 /),'rh2m') type(ctrl_out),save :: o_qsat2m = ctrl_out((/ 10, 5, 10, 10, 10 /),'qsat2m') type(ctrl_out),save :: o_tpot = ctrl_out((/ 10, 5, 10, 10, 10 /),'tpot') type(ctrl_out),save :: o_tpote = ctrl_out((/ 10, 5, 10, 10, 10 /),'tpote') type(ctrl_out),save :: o_tke = ctrl_out((/ 4, 10, 10, 10, 10 /),'tke ') type(ctrl_out),save :: o_tke_max = ctrl_out((/ 4, 10, 10, 10, 10 /),'tke_max') type(ctrl_out),save,dimension(4) :: o_tke_srf = (/ ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_ter'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_lic'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_oce'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_sic') /) type(ctrl_out),save,dimension(4) :: o_tke_max_srf = (/ ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_max_ter'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_max_lic'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_max_oce'), & ctrl_out((/ 10, 4, 10, 10, 10 /),'tke_max_sic') /) type(ctrl_out),save :: o_kz = ctrl_out((/ 4, 10, 10, 10, 10 /),'kz') type(ctrl_out),save :: o_kz_max = ctrl_out((/ 4, 10, 10, 10, 10 /),'kz_max') type(ctrl_out),save :: o_SWnetOR = ctrl_out((/ 10, 10, 2, 10, 10 /),'SWnetOR') type(ctrl_out),save :: o_SWdownOR = ctrl_out((/ 10, 10, 2, 10, 10 /),'SWdownOR') type(ctrl_out),save :: o_LWdownOR = ctrl_out((/ 10, 10, 2, 10, 10 /),'LWdownOR') type(ctrl_out),save :: o_snowl = ctrl_out((/ 10, 1, 10, 10, 10 /),'snowl') type(ctrl_out),save :: o_cape_max = ctrl_out((/ 10, 1, 10, 10, 10 /),'cape_max') type(ctrl_out),save :: o_solldown = ctrl_out((/ 10, 1, 10, 1, 10 /),'solldown') type(ctrl_out),save :: o_dtsvdfo = ctrl_out((/ 10, 10, 10, 1, 10 /),'dtsvdfo') type(ctrl_out),save :: o_dtsvdft = ctrl_out((/ 10, 10, 10, 1, 10 /),'dtsvdft') type(ctrl_out),save :: o_dtsvdfg = ctrl_out((/ 10, 10, 10, 1, 10 /),'dtsvdfg') type(ctrl_out),save :: o_dtsvdfi = ctrl_out((/ 10, 10, 10, 1, 10 /),'dtsvdfi') type(ctrl_out),save :: o_rugs = ctrl_out((/ 10, 10, 10, 1, 1 /),'rugs') type(ctrl_out),save :: o_topswad = ctrl_out((/ 4, 10, 10, 10, 10 /),'topswad') type(ctrl_out),save :: o_topswai = ctrl_out((/ 4, 10, 10, 10, 10 /),'topswai') type(ctrl_out),save :: o_solswad = ctrl_out((/ 4, 10, 10, 10, 10 /),'solswad') type(ctrl_out),save :: o_solswai = ctrl_out((/ 4, 10, 10, 10, 10 /),'solswai') type(ctrl_out),save,dimension(10) :: o_tausumaero = (/ ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_ASBCM'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_ASPOMM'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_ASSO4M'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_CSSO4M'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_SSSSM'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_ASSSM'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_CSSSM'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_CIDUSTM'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_AIBCM'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'OD550_AIPOMM') /) type(ctrl_out),save :: o_swtoaas_nat = ctrl_out((/ 4, 10, 10, 10, 10 /),'swtoaas_nat') type(ctrl_out),save :: o_swsrfas_nat = ctrl_out((/ 4, 10, 10, 10, 10 /),'swsrfas_nat') type(ctrl_out),save :: o_swtoacs_nat = ctrl_out((/ 4, 10, 10, 10, 10 /),'swtoacs_nat') type(ctrl_out),save :: o_swsrfcs_nat = ctrl_out((/ 4, 10, 10, 10, 10 /),'swsrfcs_nat') type(ctrl_out),save :: o_swtoaas_ant = ctrl_out((/ 4, 10, 10, 10, 10 /),'swtoaas_ant') type(ctrl_out),save :: o_swsrfas_ant = ctrl_out((/ 4, 10, 10, 10, 10 /),'swsrfas_ant') type(ctrl_out),save :: o_swtoacs_ant = ctrl_out((/ 4, 10, 10, 10, 10 /),'swtoacs_ant') type(ctrl_out),save :: o_swsrfcs_ant = ctrl_out((/ 4, 10, 10, 10, 10 /),'swsrfcs_ant') type(ctrl_out),save :: o_swtoacf_nat = ctrl_out((/ 4, 10, 10, 10, 10 /),'swtoacf_nat') type(ctrl_out),save :: o_swsrfcf_nat = ctrl_out((/ 4, 10, 10, 10, 10 /),'swsrfcf_nat') type(ctrl_out),save :: o_swtoacf_ant = ctrl_out((/ 4, 10, 10, 10, 10 /),'swtoacf_ant') type(ctrl_out),save :: o_swsrfcf_ant = ctrl_out((/ 4, 10, 10, 10, 10 /),'swsrfcf_ant') type(ctrl_out),save :: o_swtoacf_zero = ctrl_out((/ 4, 10, 10, 10, 10 /),'swtoacf_zero') type(ctrl_out),save :: o_swsrfcf_zero = ctrl_out((/ 4, 10, 10, 10, 10 /),'swsrfcf_zero') !!!!!!!!!!!!!!!!!!!!!! 3D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! type(ctrl_out),save :: o_lwcon = ctrl_out((/ 2, 5, 10, 10, 1 /),'lwcon') type(ctrl_out),save :: o_iwcon = ctrl_out((/ 2, 5, 10, 10, 10 /),'iwcon') type(ctrl_out),save :: o_temp = ctrl_out((/ 2, 3, 4, 1, 1 /),'temp') type(ctrl_out),save :: o_theta = ctrl_out((/ 2, 3, 4, 1, 1 /),'theta') type(ctrl_out),save :: o_ovap = ctrl_out((/ 2, 3, 4, 1, 1 /),'ovap') type(ctrl_out),save :: o_ovapinit = ctrl_out((/ 2, 3, 4, 1, 1 /),'ovapinit') type(ctrl_out),save :: o_wvapp = ctrl_out((/ 2, 10, 10, 10, 10 /),'wvapp') type(ctrl_out),save :: o_geop = ctrl_out((/ 2, 3, 10, 1, 1 /),'geop') type(ctrl_out),save :: o_vitu = ctrl_out((/ 2, 3, 4, 1, 1 /),'vitu') type(ctrl_out),save :: o_vitv = ctrl_out((/ 2, 3, 4, 1, 1 /),'vitv') type(ctrl_out),save :: o_vitw = ctrl_out((/ 2, 3, 10, 10, 1 /),'vitw') type(ctrl_out),save :: o_pres = ctrl_out((/ 2, 3, 10, 1, 1 /),'pres') type(ctrl_out),save :: o_rneb = ctrl_out((/ 2, 5, 10, 10, 1 /),'rneb') type(ctrl_out),save :: o_rnebcon = ctrl_out((/ 2, 5, 10, 10, 1 /),'rnebcon') type(ctrl_out),save :: o_rhum = ctrl_out((/ 2, 10, 10, 10, 10 /),'rhum') type(ctrl_out),save :: o_ozone = ctrl_out((/ 2, 10, 10, 10, 10 /),'ozone') type(ctrl_out),save :: o_ozone_light = ctrl_out((/ 2, 10, 10, 10, 10 /),'ozone_daylight') type(ctrl_out),save :: o_upwd = ctrl_out((/ 2, 10, 10, 10, 10 /),'upwd') type(ctrl_out),save :: o_dtphy = ctrl_out((/ 2, 10, 10, 10, 1 /),'dtphy') type(ctrl_out),save :: o_dqphy = ctrl_out((/ 2, 10, 10, 10, 1 /),'dqphy') type(ctrl_out),save :: o_pr_con_l = ctrl_out((/ 2, 10, 10, 10, 10 /),'pr_con_l') type(ctrl_out),save :: o_pr_con_i = ctrl_out((/ 2, 10, 10, 10, 10 /),'pr_con_i') type(ctrl_out),save :: o_pr_lsc_l = ctrl_out((/ 2, 10, 10, 10, 10 /),'pr_lsc_l') type(ctrl_out),save :: o_pr_lsc_i = ctrl_out((/ 2, 10, 10, 10, 10 /),'pr_lsc_i') !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! type(ctrl_out),save,dimension(4) :: o_albe_srf = (/ ctrl_out((/ 3, 4, 10, 1, 10 /),'albe_ter'), & ctrl_out((/ 3, 4, 10, 1, 10 /),'albe_lic'), & ctrl_out((/ 3, 4, 10, 1, 10 /),'albe_oce'), & ctrl_out((/ 3, 4, 10, 1, 10 /),'albe_sic') /) type(ctrl_out),save,dimension(4) :: o_ages_srf = (/ ctrl_out((/ 3, 10, 10, 10, 10 /),'ages_ter'), & ctrl_out((/ 3, 10, 10, 10, 10 /),'ages_lic'), & ctrl_out((/ 3, 10, 10, 10, 10 /),'ages_oce'), & ctrl_out((/ 3, 10, 10, 10, 10 /),'ages_sic') /) type(ctrl_out),save,dimension(4) :: o_rugs_srf = (/ ctrl_out((/ 3, 4, 10, 1, 10 /),'rugs_ter'), & ctrl_out((/ 3, 4, 10, 1, 10 /),'rugs_lic'), & ctrl_out((/ 3, 4, 10, 1, 10 /),'rugs_oce'), & ctrl_out((/ 3, 4, 10, 1, 10 /),'rugs_sic') /) type(ctrl_out),save :: o_albs = ctrl_out((/ 3, 10, 10, 1, 10 /),'albs') type(ctrl_out),save :: o_albslw = ctrl_out((/ 3, 10, 10, 1, 10 /),'albslw') type(ctrl_out),save :: o_clwcon = ctrl_out((/ 4, 10, 10, 10, 10 /),'clwcon') type(ctrl_out),save :: o_Ma = ctrl_out((/ 4, 10, 10, 10, 10 /),'Ma') type(ctrl_out),save :: o_dnwd = ctrl_out((/ 4, 10, 10, 10, 10 /),'dnwd') type(ctrl_out),save :: o_dnwd0 = ctrl_out((/ 4, 10, 10, 10, 10 /),'dnwd0') type(ctrl_out),save :: o_dtdyn = ctrl_out((/ 4, 10, 10, 10, 1 /),'dtdyn') type(ctrl_out),save :: o_dqdyn = ctrl_out((/ 4, 10, 10, 10, 1 /),'dqdyn') type(ctrl_out),save :: o_dudyn = ctrl_out((/ 4, 10, 10, 10, 1 /),'dudyn') !AXC type(ctrl_out),save :: o_dvdyn = ctrl_out((/ 4, 10, 10, 10, 1 /),'dvdyn') !AXC type(ctrl_out),save :: o_dtcon = ctrl_out((/ 4, 5, 10, 10, 10 /),'dtcon') type(ctrl_out),save :: o_ducon = ctrl_out((/ 4, 10, 10, 10, 10 /),'ducon') type(ctrl_out),save :: o_dqcon = ctrl_out((/ 4, 5, 10, 10, 10 /),'dqcon') type(ctrl_out),save :: o_dtwak = ctrl_out((/ 4, 5, 10, 10, 10 /),'dtwak') type(ctrl_out),save :: o_dqwak = ctrl_out((/ 4, 5, 10, 10, 10 /),'dqwak') type(ctrl_out),save :: o_wake_h = ctrl_out((/ 4, 5, 10, 10, 10 /),'wake_h') type(ctrl_out),save :: o_wake_s = ctrl_out((/ 4, 5, 10, 10, 10 /),'wake_s') type(ctrl_out),save :: o_wake_deltat = ctrl_out((/ 4, 5, 10, 10, 10 /),'wake_deltat') type(ctrl_out),save :: o_wake_deltaq = ctrl_out((/ 4, 5, 10, 10, 10 /),'wake_deltaq') type(ctrl_out),save :: o_wake_omg = ctrl_out((/ 4, 5, 10, 10, 10 /),'wake_omg') type(ctrl_out),save :: o_Vprecip = ctrl_out((/ 10, 10, 10, 10, 10 /),'Vprecip') type(ctrl_out),save :: o_ftd = ctrl_out((/ 4, 5, 10, 10, 10 /),'ftd') type(ctrl_out),save :: o_fqd = ctrl_out((/ 4, 5, 10, 10, 10 /),'fqd') type(ctrl_out),save :: o_dtlsc = ctrl_out((/ 4, 10, 10, 10, 10 /),'dtlsc') type(ctrl_out),save :: o_dtlschr = ctrl_out((/ 4, 10, 10, 10, 10 /),'dtlschr') type(ctrl_out),save :: o_dqlsc = ctrl_out((/ 4, 10, 10, 10, 10 /),'dqlsc') type(ctrl_out),save :: o_dtvdf = ctrl_out((/ 4, 10, 10, 1, 10 /),'dtvdf') type(ctrl_out),save :: o_dqvdf = ctrl_out((/ 4, 10, 10, 1, 10 /),'dqvdf') type(ctrl_out),save :: o_dteva = ctrl_out((/ 4, 10, 10, 10, 10 /),'dteva') type(ctrl_out),save :: o_dqeva = ctrl_out((/ 4, 10, 10, 10, 10 /),'dqeva') type(ctrl_out),save :: o_ptconv = ctrl_out((/ 4, 10, 10, 10, 10 /),'ptconv') type(ctrl_out),save :: o_ratqs = ctrl_out((/ 4, 10, 10, 10, 10 /),'ratqs') type(ctrl_out),save :: o_dtthe = ctrl_out((/ 4, 10, 10, 10, 10 /),'dtthe') type(ctrl_out),save :: o_f_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'f_th') type(ctrl_out),save :: o_e_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'e_th') type(ctrl_out),save :: o_w_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'w_th') type(ctrl_out),save :: o_lambda_th = ctrl_out((/ 10, 10, 10, 10, 10 /),'lambda_th') type(ctrl_out),save :: o_q_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'q_th') type(ctrl_out),save :: o_a_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'a_th') type(ctrl_out),save :: o_d_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'d_th') type(ctrl_out),save :: o_f0_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'f0_th') type(ctrl_out),save :: o_zmax_th = ctrl_out((/ 4, 10, 10, 10, 10 /),'zmax_th') type(ctrl_out),save :: o_dqthe = ctrl_out((/ 4, 10, 10, 10, 1 /),'dqthe') type(ctrl_out),save :: o_dtajs = ctrl_out((/ 4, 10, 10, 10, 10 /),'dtajs') type(ctrl_out),save :: o_dqajs = ctrl_out((/ 4, 10, 10, 10, 10 /),'dqajs') type(ctrl_out),save :: o_dtswr = ctrl_out((/ 4, 10, 10, 10, 1 /),'dtswr') type(ctrl_out),save :: o_dtsw0 = ctrl_out((/ 4, 10, 10, 10, 10 /),'dtsw0') type(ctrl_out),save :: o_dtlwr = ctrl_out((/ 4, 10, 10, 10, 1 /),'dtlwr') type(ctrl_out),save :: o_dtlw0 = ctrl_out((/ 4, 10, 10, 10, 10 /),'dtlw0') type(ctrl_out),save :: o_dtec = ctrl_out((/ 4, 10, 10, 10, 10 /),'dtec') type(ctrl_out),save :: o_duvdf = ctrl_out((/ 4, 10, 10, 10, 10 /),'duvdf') type(ctrl_out),save :: o_dvvdf = ctrl_out((/ 4, 10, 10, 10, 10 /),'dvvdf') type(ctrl_out),save :: o_duoro = ctrl_out((/ 4, 10, 10, 10, 10 /),'duoro') type(ctrl_out),save :: o_dvoro = ctrl_out((/ 4, 10, 10, 10, 10 /),'dvoro') type(ctrl_out),save :: o_dulif = ctrl_out((/ 4, 10, 10, 10, 10 /),'dulif') type(ctrl_out),save :: o_dvlif = ctrl_out((/ 4, 10, 10, 10, 10 /),'dvlif') ! Attention a refaire correctement type(ctrl_out),save,dimension(2) :: o_trac = (/ ctrl_out((/ 4, 10, 10, 10, 10 /),'trac01'), & ctrl_out((/ 4, 10, 10, 10, 10 /),'trac02') /) CONTAINS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!! Ouverture des fichier et definition des variable de sortie !!!!!!!! !! histbeg, histvert et histdef !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE phys_output_open(jjmp1,nlevSTD,clevSTD,nbteta, & ctetaSTD,dtime, ok_veget, & type_ocean, iflag_pbl,ok_mensuel,ok_journe, & ok_hf,ok_instan,ok_LES,ok_ade,ok_aie, read_climoz, & new_aod, aerosol_couple) USE iophy USE dimphy USE infotrac USE ioipsl USE mod_phys_lmdz_para USE aero_mod, only : naero_spc,name_aero IMPLICIT NONE include "dimensions.h" include "temps.h" include "indicesol.h" include "clesphys.h" include "thermcell.h" include "comvert.h" integer :: jjmp1 integer :: nbteta, nlevSTD, radpas logical :: ok_mensuel, ok_journe, ok_hf, ok_instan logical :: ok_LES,ok_ade,ok_aie logical :: new_aod, aerosol_couple integer, intent(in):: read_climoz ! read ozone climatology ! Allowed values are 0, 1 and 2 ! 0: do not read an ozone climatology ! 1: read a single ozone climatology that will be used day and night ! 2: read two ozone climatologies, the average day and night ! climatology and the daylight climatology real :: dtime integer :: idayref real :: zjulian real, dimension(klev) :: Ahyb, Bhyb, Alt character(len=4), dimension(nlevSTD) :: clevSTD integer :: nsrf, k, iq, iiq, iff, i, j, ilev integer :: naero logical :: ok_veget integer :: iflag_pbl CHARACTER(len=4) :: bb2 CHARACTER(len=2) :: bb3 character(len=6) :: type_ocean CHARACTER(len=3) :: ctetaSTD(nbteta) real, dimension(nfiles) :: ecrit_files CHARACTER(len=20), dimension(nfiles) :: phys_out_filenames INTEGER, dimension(iim*jjmp1) :: ndex2d INTEGER, dimension(iim*jjmp1*klev) :: ndex3d integer :: imin_ins, imax_ins integer :: jmin_ins, jmax_ins integer, dimension(nfiles) :: phys_out_levmin, phys_out_levmax integer, dimension(nfiles) :: phys_out_filelevels CHARACTER(len=20), dimension(nfiles) :: type_ecri_files, phys_out_filetypes character(len=20), dimension(nfiles) :: chtimestep = (/ 'DefFreq', 'DefFreq','DefFreq', 'DefFreq', 'DefFreq' /) logical, dimension(nfiles) :: phys_out_filekeys !!!!!!!!!! stockage dans une region limitee pour chaque fichier !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! entre [phys_out_lonmin,phys_out_lonmax] et [phys_out_latmin,phys_out_latmax] logical, dimension(nfiles), save :: phys_out_regfkey = (/ .false., .false., .false., .false., .false. /) real, dimension(nfiles), save :: phys_out_lonmin = (/ -180., -180., -180., -180., -180. /) real, dimension(nfiles), save :: phys_out_lonmax = (/ 180., 180., 180., 180., 180. /) real, dimension(nfiles), save :: phys_out_latmin = (/ -90., -90., -90., -90., -90. /) real, dimension(nfiles), save :: phys_out_latmax = (/ 90., 90., 90., 90., 90. /) ! print*,'Debut phys_output_mod.F90' ! Initialisations (Valeurs par defaut levmax = (/ klev, klev, klev, klev, klev /) phys_out_filenames(1) = 'histmth' phys_out_filenames(2) = 'histday' phys_out_filenames(3) = 'histhf' phys_out_filenames(4) = 'histins' phys_out_filenames(5) = 'histLES' type_ecri(1) = 'ave(X)' type_ecri(2) = 'ave(X)' type_ecri(3) = 'ave(X)' type_ecri(4) = 'inst(X)' type_ecri(5) = 'inst(X)' clef_files(1) = ok_mensuel clef_files(2) = ok_journe clef_files(3) = ok_hf clef_files(4) = ok_instan clef_files(5) = ok_LES lev_files(1) = lev_histmth lev_files(2) = lev_histday lev_files(3) = lev_histhf lev_files(4) = lev_histins lev_files(5) = lev_histLES ecrit_files(1) = ecrit_mth ecrit_files(2) = ecrit_day ecrit_files(3) = ecrit_hf ecrit_files(4) = ecrit_ins ecrit_files(5) = ecrit_LES !! Lectures des parametres de sorties dans physiq.def call getin('phys_out_regfkey',phys_out_regfkey) call getin('phys_out_lonmin',phys_out_lonmin) call getin('phys_out_lonmax',phys_out_lonmax) call getin('phys_out_latmin',phys_out_latmin) call getin('phys_out_latmax',phys_out_latmax) phys_out_levmin(:)=levmin(:) call getin('phys_out_levmin',levmin) phys_out_levmax(:)=levmax(:) call getin('phys_out_levmax',levmax) call getin('phys_out_filenames',phys_out_filenames) phys_out_filekeys(:)=clef_files(:) call getin('phys_out_filekeys',clef_files) phys_out_filelevels(:)=lev_files(:) call getin('phys_out_filelevels',lev_files) call getin('phys_out_filetimesteps',chtimestep) phys_out_filetypes(:)=type_ecri(:) call getin('phys_out_filetypes',type_ecri) type_ecri_files(:)=type_ecri(:) print*,'phys_out_lonmin=',phys_out_lonmin print*,'phys_out_lonmax=',phys_out_lonmax print*,'phys_out_latmin=',phys_out_latmin print*,'phys_out_latmax=',phys_out_latmax print*,'phys_out_filenames=',phys_out_filenames print*,'phys_out_filetypes=',type_ecri print*,'phys_out_filekeys=',clef_files print*,'phys_out_filelevels=',lev_files !!!!!!!!!!!!!!!!!!!!!!! Boucle sur les fichiers !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Appel de histbeg et histvert pour creer le fichier et les niveaux verticaux !! ! Appel des histbeg pour definir les variables (nom, moy ou inst, freq de sortie .. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! zdtime = dtime ! Frequence ou l on moyenne ! Calcul des Ahyb, Bhyb et Alt do k=1,klev Ahyb(k)=(ap(k)+ap(k+1))/2. Bhyb(k)=(bp(k)+bp(k+1))/2. Alt(k)=log(preff/presnivs(k))*8. enddo ! if(prt_level.ge.1) then print*,'Ap Hybrid = ',Ahyb(1:klev) print*,'Bp Hybrid = ',Bhyb(1:klev) print*,'Alt approx des couches pour une haut d echelle de 8km = ',Alt(1:klev) ! endif DO iff=1,nfiles IF (clef_files(iff)) THEN if ( chtimestep(iff).eq.'DefFreq' ) then ! Par defaut ecrit_files = (ecrit_mensuel ecrit_jour ecrit_hf ...)*86400. ecrit_files(iff)=ecrit_files(iff)*86400. else call convers_timesteps(chtimestep(iff),ecrit_files(iff)) endif print*,'ecrit_files(',iff,')= ',ecrit_files(iff) zoutm(iff) = ecrit_files(iff) ! Frequence ou l on ecrit en seconde idayref = day_ref CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian) !!!!!!!!!!!!!!!!! Traitement dans le cas ou l'on veut stocker sur un domaine limite !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! if (phys_out_regfkey(iff)) then imin_ins=1 imax_ins=iim jmin_ins=1 jmax_ins=jjmp1 ! correction abderr do i=1,iim print*,'io_lon(i)=',io_lon(i) if (io_lon(i).le.phys_out_lonmin(iff)) imin_ins=i if (io_lon(i).le.phys_out_lonmax(iff)) imax_ins=i+1 enddo do j=1,jjmp1 print*,'io_lat(j)=',io_lat(j) if (io_lat(j).ge.phys_out_latmin(iff)) jmax_ins=j+1 if (io_lat(j).ge.phys_out_latmax(iff)) jmin_ins=j enddo print*,'On stoke le fichier histoire numero ',iff,' sur ', & imin_ins,imax_ins,jmin_ins,jmax_ins print*,'longitudes : ', & io_lon(imin_ins),io_lon(imax_ins), & 'latitudes : ', & io_lat(jmax_ins),io_lat(jmin_ins) CALL histbeg(phys_out_filenames(iff),iim,io_lon,jjmp1,io_lat, & imin_ins,imax_ins-imin_ins+1, & jmin_ins,jmax_ins-jmin_ins+1, & itau_phy,zjulian,dtime,nhorim(iff),nid_files(iff)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! else CALL histbeg_phy(phys_out_filenames(iff),itau_phy,zjulian,dtime,nhorim(iff),nid_files(iff)) endif CALL histvert(nid_files(iff), "presnivs", "Vertical levels", "mb", & levmax(iff) - levmin(iff) + 1, & presnivs(levmin(iff):levmax(iff))/100., nvertm(iff)) !!!!!!!!!!!!! Traitement des champs 3D pour histhf !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!! A Revoir plus tard !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! IF (iff.eq.3.and.lev_files(iff).ge.4) THEN ! CALL histbeg_phy("histhf3d",itau_phy, & ! & zjulian, dtime, & ! & nhorim, nid_hf3d) ! CALL histvert(nid_hf3d, "presnivs", & ! & "Vertical levels", "mb", & ! & klev, presnivs/100., nvertm) ! ENDIF ! !!!! Composentes de la coordonnee sigma-hybride CALL histvert(nid_files(iff), "Ahyb","Ahyb comp of Hyb Cord ", "Pa", & levmax(iff) - levmin(iff) + 1,Ahyb,nvertap(iff)) CALL histvert(nid_files(iff), "Bhyb","Bhyb comp of Hyb Cord", " ", & levmax(iff) - levmin(iff) + 1,Bhyb,nvertbp(iff)) CALL histvert(nid_files(iff), "Alt","Height approx for scale heigh of 8km at levels", "Km", & levmax(iff) - levmin(iff) + 1,Alt,nvertAlt(iff)) ! CALL histvert(nid_files(iff), "preff","Reference pressure", "Pa", & ! 1,preff,nvertp0(iff)) !!! Champs 1D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL histdef2d(iff,o_phis%flag,o_phis%name,"Surface geop.height", "m2/s2") type_ecri(1) = 'once' type_ecri(2) = 'once' type_ecri(3) = 'once' type_ecri(4) = 'once' type_ecri(5) = 'once' CALL histdef2d(iff,o_aire%flag,o_aire%name,"Grid area", "-") CALL histdef2d(iff,o_contfracATM%flag,o_contfracATM%name,"% sfce ter+lic", "-") type_ecri(:) = type_ecri_files(:) !!! Champs 2D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL histdef2d(iff,o_contfracOR%flag,o_contfracOR%name,"% sfce terre OR", "-" ) CALL histdef2d(iff,o_aireTER%flag,o_aireTER%name,"Grid area CONT", "-" ) CALL histdef2d(iff,o_flat%flag,o_flat%name, "Latent heat flux", "W/m2") CALL histdef2d(iff,o_slp%flag,o_slp%name, "Sea Level Pressure", "Pa" ) CALL histdef2d(iff,o_tsol%flag,o_tsol%name, "Surface Temperature", "K") CALL histdef2d(iff,o_t2m%flag,o_t2m%name, "Temperature 2m", "K" ) type_ecri(1) = 't_min(X)' type_ecri(2) = 't_min(X)' type_ecri(3) = 't_min(X)' type_ecri(4) = 't_min(X)' type_ecri(5) = 't_min(X)' CALL histdef2d(iff,o_t2m_min%flag,o_t2m_min%name, "Temp 2m min", "K" ) type_ecri(1) = 't_max(X)' type_ecri(2) = 't_max(X)' type_ecri(3) = 't_max(X)' type_ecri(4) = 't_max(X)' type_ecri(5) = 't_max(X)' CALL histdef2d(iff,o_t2m_max%flag,o_t2m_max%name, "Temp 2m max", "K" ) type_ecri(:) = type_ecri_files(:) CALL histdef2d(iff,o_wind10m%flag,o_wind10m%name, "10-m wind speed", "m/s") CALL histdef2d(iff,o_wind10max%flag,o_wind10max%name, "10m wind speed max", "m/s") CALL histdef2d(iff,o_sicf%flag,o_sicf%name, "Sea-ice fraction", "-" ) CALL histdef2d(iff,o_q2m%flag,o_q2m%name, "Specific humidity 2m", "kg/kg") CALL histdef2d(iff,o_u10m%flag,o_u10m%name, "Vent zonal 10m", "m/s" ) CALL histdef2d(iff,o_v10m%flag,o_v10m%name, "Vent meridien 10m", "m/s") CALL histdef2d(iff,o_psol%flag,o_psol%name, "Surface Pressure", "Pa" ) CALL histdef2d(iff,o_qsurf%flag,o_qsurf%name, "Surface Air humidity", "kg/kg") if (.not. ok_veget) then CALL histdef2d(iff,o_qsol%flag,o_qsol%name, "Soil watter content", "mm" ) endif CALL histdef2d(iff,o_ndayrain%flag,o_ndayrain%name, "Number of dayrain(liq+sol)", "-") CALL histdef2d(iff,o_precip%flag,o_precip%name, "Precip Totale liq+sol", "kg/(s*m2)" ) CALL histdef2d(iff,o_plul%flag,o_plul%name, "Large-scale Precip.", "kg/(s*m2)") CALL histdef2d(iff,o_pluc%flag,o_pluc%name, "Convective Precip.", "kg/(s*m2)") CALL histdef2d(iff,o_snow%flag,o_snow%name, "Snow fall", "kg/(s*m2)" ) CALL histdef2d(iff,o_evap%flag,o_evap%name, "Evaporat", "kg/(s*m2)" ) CALL histdef2d(iff,o_tops%flag,o_tops%name, "Solar rad. at TOA", "W/m2") CALL histdef2d(iff,o_tops0%flag,o_tops0%name, "CS Solar rad. at TOA", "W/m2") CALL histdef2d(iff,o_topl%flag,o_topl%name, "IR rad. at TOA", "W/m2" ) CALL histdef2d(iff,o_topl0%flag,o_topl0%name, "IR rad. at TOA", "W/m2") CALL histdef2d(iff,o_SWupTOA%flag,o_SWupTOA%name, "SWup at TOA", "W/m2") CALL histdef2d(iff,o_SWupTOAclr%flag,o_SWupTOAclr%name, "SWup clear sky at TOA", "W/m2") CALL histdef2d(iff,o_SWdnTOA%flag,o_SWdnTOA%name, "SWdn at TOA", "W/m2" ) CALL histdef2d(iff,o_SWdnTOAclr%flag,o_SWdnTOAclr%name, "SWdn clear sky at TOA", "W/m2") CALL histdef2d(iff,o_SWup200%flag,o_SWup200%name, "SWup at 200mb", "W/m2" ) CALL histdef2d(iff,o_SWup200clr%flag,o_SWup200clr%name, "SWup clear sky at 200mb", "W/m2") CALL histdef2d(iff,o_SWdn200%flag,o_SWdn200%name, "SWdn at 200mb", "W/m2" ) CALL histdef2d(iff,o_SWdn200clr%flag,o_SWdn200clr%name, "SWdn clear sky at 200mb", "W/m2") CALL histdef2d(iff,o_LWup200%flag,o_LWup200%name, "LWup at 200mb", "W/m2") CALL histdef2d(iff,o_LWup200clr%flag,o_LWup200clr%name, "LWup clear sky at 200mb", "W/m2") CALL histdef2d(iff,o_LWdn200%flag,o_LWdn200%name, "LWdn at 200mb", "W/m2") CALL histdef2d(iff,o_LWdn200clr%flag,o_LWdn200clr%name, "LWdn clear sky at 200mb", "W/m2") CALL histdef2d(iff,o_sols%flag,o_sols%name, "Solar rad. at surf.", "W/m2") CALL histdef2d(iff,o_sols0%flag,o_sols0%name, "Solar rad. at surf.", "W/m2") CALL histdef2d(iff,o_soll%flag,o_soll%name, "IR rad. at surface", "W/m2") CALL histdef2d(iff,o_radsol%flag,o_radsol%name, "Rayonnement au sol", "W/m2") CALL histdef2d(iff,o_soll0%flag,o_soll0%name, "IR rad. at surface", "W/m2") CALL histdef2d(iff,o_SWupSFC%flag,o_SWupSFC%name, "SWup at surface", "W/m2") CALL histdef2d(iff,o_SWupSFCclr%flag,o_SWupSFCclr%name, "SWup clear sky at surface", "W/m2") CALL histdef2d(iff,o_SWdnSFC%flag,o_SWdnSFC%name, "SWdn at surface", "W/m2") CALL histdef2d(iff,o_SWdnSFCclr%flag,o_SWdnSFCclr%name, "SWdn clear sky at surface", "W/m2") CALL histdef2d(iff,o_LWupSFC%flag,o_LWupSFC%name, "Upwd. IR rad. at surface", "W/m2") CALL histdef2d(iff,o_LWdnSFC%flag,o_LWdnSFC%name, "Down. IR rad. at surface", "W/m2") CALL histdef2d(iff,o_LWupSFCclr%flag,o_LWupSFCclr%name, "CS Upwd. IR rad. at surface", "W/m2") CALL histdef2d(iff,o_LWdnSFCclr%flag,o_LWdnSFCclr%name, "Down. CS IR rad. at surface", "W/m2") CALL histdef2d(iff,o_bils%flag,o_bils%name, "Surf. total heat flux", "W/m2") CALL histdef2d(iff,o_sens%flag,o_sens%name, "Sensible heat flux", "W/m2") CALL histdef2d(iff,o_fder%flag,o_fder%name, "Heat flux derivation", "W/m2") CALL histdef2d(iff,o_ffonte%flag,o_ffonte%name, "Thermal flux for snow melting", "W/m2") CALL histdef2d(iff,o_fqcalving%flag,o_fqcalving%name, "Ice Calving", "kg/m2/s") CALL histdef2d(iff,o_fqfonte%flag,o_fqfonte%name, "Land ice melt", "kg/m2/s") DO nsrf = 1, nbsrf CALL histdef2d(iff,o_pourc_srf(nsrf)%flag,o_pourc_srf(nsrf)%name,"% "//clnsurf(nsrf),"%") CALL histdef2d(iff,o_fract_srf(nsrf)%flag,o_fract_srf(nsrf)%name,"Fraction "//clnsurf(nsrf),"1") CALL histdef2d(iff,o_taux_srf(nsrf)%flag,o_taux_srf(nsrf)%name,"Zonal wind stress"//clnsurf(nsrf),"Pa") CALL histdef2d(iff,o_tauy_srf(nsrf)%flag,o_tauy_srf(nsrf)%name,"Meridional wind stress "//clnsurf(nsrf),"Pa") CALL histdef2d(iff,o_tsol_srf(nsrf)%flag,o_tsol_srf(nsrf)%name,"Temperature "//clnsurf(nsrf),"K") CALL histdef2d(iff,o_u10m_srf(nsrf)%flag,o_u10m_srf(nsrf)%name,"Vent Zonal 10m "//clnsurf(nsrf),"m/s") CALL histdef2d(iff,o_v10m_srf(nsrf)%flag,o_v10m_srf(nsrf)%name,"Vent meredien 10m "//clnsurf(nsrf),"m/s") CALL histdef2d(iff,o_t2m_srf(nsrf)%flag,o_t2m_srf(nsrf)%name,"Temp 2m "//clnsurf(nsrf),"K") CALL histdef2d(iff,o_sens_srf(nsrf)%flag,o_sens_srf(nsrf)%name,"Sensible heat flux "//clnsurf(nsrf),"W/m2") CALL histdef2d(iff,o_lat_srf(nsrf)%flag,o_lat_srf(nsrf)%name,"Latent heat flux "//clnsurf(nsrf),"W/m2") CALL histdef2d(iff,o_flw_srf(nsrf)%flag,o_flw_srf(nsrf)%name,"LW "//clnsurf(nsrf),"W/m2") CALL histdef2d(iff,o_fsw_srf(nsrf)%flag,o_fsw_srf(nsrf)%name,"SW "//clnsurf(nsrf),"W/m2") CALL histdef2d(iff,o_wbils_srf(nsrf)%flag,o_wbils_srf(nsrf)%name,"Bilan sol "//clnsurf(nsrf),"W/m2" ) CALL histdef2d(iff,o_wbilo_srf(nsrf)%flag,o_wbilo_srf(nsrf)%name,"Bilan eau "//clnsurf(nsrf),"kg/(m2*s)") if (iflag_pbl>1 .and. lev_files(iff).gt.10 ) then CALL histdef2d(iff,o_tke_srf(nsrf)%flag,o_tke_srf(nsrf)%name,"Max Turb. Kinetic Energy "//clnsurf(nsrf),"-") type_ecri(1) = 't_max(X)' type_ecri(2) = 't_max(X)' type_ecri(3) = 't_max(X)' type_ecri(4) = 't_max(X)' type_ecri(5) = 't_max(X)' CALL histdef2d(iff,o_tke_max_srf(nsrf)%flag,o_tke_max_srf(nsrf)%name,"Max Turb. Kinetic Energy "//clnsurf(nsrf),"-") type_ecri(:) = type_ecri_files(:) endif CALL histdef2d(iff,o_albe_srf(nsrf)%flag,o_albe_srf(nsrf)%name,"Albedo surf. "//clnsurf(nsrf),"-") CALL histdef2d(iff,o_rugs_srf(nsrf)%flag,o_rugs_srf(nsrf)%name,"Latent heat flux "//clnsurf(nsrf),"W/m2") CALL histdef2d(iff,o_ages_srf(nsrf)%flag,o_ages_srf(nsrf)%name,"Snow age", "day") END DO IF (new_aod .AND. (.NOT. aerosol_couple)) THEN DO naero = 1, naero_spc CALL histdef2d(iff,o_tausumaero(naero)%flag,o_tausumaero(naero)%name,"Aerosol Optical depth at 550 nm "//name_aero(naero),"1") END DO ENDIF IF (ok_ade) THEN CALL histdef2d(iff,o_topswad%flag,o_topswad%name, "ADE at TOA", "W/m2") CALL histdef2d(iff,o_solswad%flag,o_solswad%name, "ADE at SRF", "W/m2") CALL histdef2d(iff,o_swtoaas_nat%flag,o_swtoaas_nat%name, "Natural aerosol radiative forcing all-sky at TOA", "W/m2") CALL histdef2d(iff,o_swsrfas_nat%flag,o_swsrfas_nat%name, "Natural aerosol radiative forcing all-sky at SRF", "W/m2") CALL histdef2d(iff,o_swtoacs_nat%flag,o_swtoacs_nat%name, "Natural aerosol radiative forcing clear-sky at TOA", "W/m2") CALL histdef2d(iff,o_swsrfcs_nat%flag,o_swsrfcs_nat%name, "Natural aerosol radiative forcing clear-sky at SRF", "W/m2") CALL histdef2d(iff,o_swtoaas_ant%flag,o_swtoaas_ant%name, "Anthropogenic aerosol radiative forcing all-sky at TOA", "W/m2") CALL histdef2d(iff,o_swsrfas_ant%flag,o_swsrfas_ant%name, "Anthropogenic aerosol radiative forcing all-sky at SRF", "W/m2") CALL histdef2d(iff,o_swtoacs_ant%flag,o_swtoacs_ant%name, "Anthropogenic aerosol radiative forcing clear-sky at TOA", "W/m2") CALL histdef2d(iff,o_swsrfcs_ant%flag,o_swsrfcs_ant%name, "Anthropogenic aerosol radiative forcing clear-sky at SRF", "W/m2") IF (.NOT. aerosol_couple) THEN CALL histdef2d(iff,o_swtoacf_nat%flag,o_swtoacf_nat%name, "Natural aerosol impact on cloud radiative forcing at TOA", "W/m2") CALL histdef2d(iff,o_swsrfcf_nat%flag,o_swsrfcf_nat%name, "Natural aerosol impact on cloud radiative forcing at SRF", "W/m2") CALL histdef2d(iff,o_swtoacf_ant%flag,o_swtoacf_ant%name, "Anthropogenic aerosol impact on cloud radiative forcing at TOA", "W/m2") CALL histdef2d(iff,o_swsrfcf_ant%flag,o_swsrfcf_ant%name, "Anthropogenic aerosol impact on cloud radiative forcing at SRF", "W/m2") CALL histdef2d(iff,o_swtoacf_zero%flag,o_swtoacf_zero%name, "Cloud radiative forcing (allsky-clearsky fluxes) at TOA", "W/m2") CALL histdef2d(iff,o_swsrfcf_zero%flag,o_swsrfcf_zero%name, "Cloud radiative forcing (allsky-clearsky fluxes) at SRF", "W/m2") ENDIF ENDIF IF (ok_aie) THEN CALL histdef2d(iff,o_topswai%flag,o_topswai%name, "AIE at TOA", "W/m2") CALL histdef2d(iff,o_solswai%flag,o_solswai%name, "AIE at SFR", "W/m2") ENDIF CALL histdef2d(iff,o_albs%flag,o_albs%name, "Surface albedo", "-") CALL histdef2d(iff,o_albslw%flag,o_albslw%name, "Surface albedo LW", "-") CALL histdef2d(iff,o_cdrm%flag,o_cdrm%name, "Momentum drag coef.", "-") CALL histdef2d(iff,o_cdrh%flag,o_cdrh%name, "Heat drag coef.", "-" ) CALL histdef2d(iff,o_cldl%flag,o_cldl%name, "Low-level cloudiness", "-") CALL histdef2d(iff,o_cldm%flag,o_cldm%name, "Mid-level cloudiness", "-") CALL histdef2d(iff,o_cldh%flag,o_cldh%name, "High-level cloudiness", "-") CALL histdef2d(iff,o_cldt%flag,o_cldt%name, "Total cloudiness", "%") CALL histdef2d(iff,o_cldq%flag,o_cldq%name, "Cloud liquid water path", "kg/m2") CALL histdef2d(iff,o_lwp%flag,o_lwp%name, "Cloud water path", "kg/m2") CALL histdef2d(iff,o_iwp%flag,o_iwp%name, "Cloud ice water path", "kg/m2" ) CALL histdef2d(iff,o_ue%flag,o_ue%name, "Zonal energy transport", "-") CALL histdef2d(iff,o_ve%flag,o_ve%name, "Merid energy transport", "-") CALL histdef2d(iff,o_uq%flag,o_uq%name, "Zonal humidity transport", "-") CALL histdef2d(iff,o_vq%flag,o_vq%name, "Merid humidity transport", "-") IF(iflag_con.GE.3) THEN ! sb CALL histdef2d(iff,o_cape%flag,o_cape%name, "Conv avlbl pot ener", "J/kg") CALL histdef2d(iff,o_pbase%flag,o_pbase%name, "Cld base pressure", "mb") CALL histdef2d(iff,o_ptop%flag,o_ptop%name, "Cld top pressure", "mb") CALL histdef2d(iff,o_fbase%flag,o_fbase%name, "Cld base mass flux", "kg/m2/s") CALL histdef2d(iff,o_prw%flag,o_prw%name, "Precipitable water", "kg/m2") type_ecri(1) = 't_max(X)' type_ecri(2) = 't_max(X)' type_ecri(3) = 't_max(X)' type_ecri(4) = 't_max(X)' type_ecri(5) = 't_max(X)' CALL histdef2d(iff,o_cape_max%flag,o_cape_max%name, "CAPE max.", "J/kg") type_ecri(:) = type_ecri_files(:) CALL histdef3d(iff,o_upwd%flag,o_upwd%name, "saturated updraft", "kg/m2/s") CALL histdef3d(iff,o_Ma%flag,o_Ma%name, "undilute adiab updraft", "kg/m2/s") CALL histdef3d(iff,o_dnwd%flag,o_dnwd%name, "saturated downdraft", "kg/m2/s") CALL histdef3d(iff,o_dnwd0%flag,o_dnwd0%name, "unsat. downdraft", "kg/m2/s") ENDIF !iflag_con .GE. 3 CALL histdef2d(iff,o_s_pblh%flag,o_s_pblh%name, "Boundary Layer Height", "m") CALL histdef2d(iff,o_s_pblt%flag,o_s_pblt%name, "t at Boundary Layer Height", "K") CALL histdef2d(iff,o_s_lcl%flag,o_s_lcl%name, "Condensation level", "m") CALL histdef2d(iff,o_s_capCL%flag,o_s_capCL%name, "Conv avlbl pot enerfor ABL", "J/m2" ) CALL histdef2d(iff,o_s_oliqCL%flag,o_s_oliqCL%name, "Liq Water in BL", "kg/m2") CALL histdef2d(iff,o_s_cteiCL%flag,o_s_cteiCL%name, "Instability criteria(ABL)", "K") CALL histdef2d(iff,o_s_therm%flag,o_s_therm%name, "Exces du thermique", "K") CALL histdef2d(iff,o_s_trmb1%flag,o_s_trmb1%name, "deep_cape(HBTM2)", "J/m2") CALL histdef2d(iff,o_s_trmb2%flag,o_s_trmb2%name, "inhibition (HBTM2)", "J/m2") CALL histdef2d(iff,o_s_trmb3%flag,o_s_trmb3%name, "Point Omega (HBTM2)", "m") ! Champs interpolles sur des niveaux de pression type_ecri(1) = 'inst(X)' type_ecri(2) = 'inst(X)' type_ecri(3) = 'inst(X)' type_ecri(4) = 'inst(X)' type_ecri(5) = 'inst(X)' ! Attention a reverifier ilev=0 DO k=1, nlevSTD ! IF(k.GE.2.AND.k.LE.12) bb2=clevSTD(k) bb2=clevSTD(k) IF(bb2.EQ."850".OR.bb2.EQ."700".OR.bb2.EQ."500".OR.bb2.EQ."200".OR.bb2.EQ."50".OR.bb2.EQ."10")THEN ilev=ilev+1 print*,'ilev k bb2 flag name ',ilev,k, bb2,o_uSTDlevs(ilev)%flag,o_uSTDlevs(ilev)%name CALL histdef2d(iff,o_uSTDlevs(ilev)%flag,o_uSTDlevs(ilev)%name,"Zonal wind "//bb2//"mb", "m/s") CALL histdef2d(iff,o_vSTDlevs(ilev)%flag,o_vSTDlevs(ilev)%name,"Meridional wind "//bb2//"mb", "m/s") CALL histdef2d(iff,o_wSTDlevs(ilev)%flag,o_wSTDlevs(ilev)%name,"Vertical wind "//bb2//"mb", "Pa/s") CALL histdef2d(iff,o_phiSTDlevs(ilev)%flag,o_phiSTDlevs(ilev)%name,"Geopotential "//bb2//"mb", "m") CALL histdef2d(iff,o_qSTDlevs(ilev)%flag,o_qSTDlevs(ilev)%name,"Specific humidity "//bb2//"mb", "kg/kg" ) CALL histdef2d(iff,o_tSTDlevs(ilev)%flag,o_tSTDlevs(ilev)%name,"Temperature "//bb2//"mb", "K") ENDIF !(bb2.EQ."850".OR.bb2.EQ."700".OR."500".OR.bb2.EQ."200".OR.bb2.EQ."50".OR.bb2.EQ."10") ENDDO type_ecri(:) = type_ecri_files(:) CALL histdef2d(iff,o_t_oce_sic%flag,o_t_oce_sic%name, "Temp mixte oce-sic", "K") IF (type_ocean=='slab') & CALL histdef2d(iff,o_slab_bils%flag, o_slab_bils%name,"Bilan au sol sur ocean slab", "W/m2") ! Couplage conv-CL IF (iflag_con.GE.3) THEN IF (iflag_coupl.EQ.1) THEN CALL histdef2d(iff,o_ale_bl%flag,o_ale_bl%name, "ALE BL", "m2/s2") CALL histdef2d(iff,o_alp_bl%flag,o_alp_bl%name, "ALP BL", "m2/s2") ENDIF ENDIF !(iflag_con.GE.3) CALL histdef2d(iff,o_weakinv%flag,o_weakinv%name, "Weak inversion", "-") CALL histdef2d(iff,o_dthmin%flag,o_dthmin%name, "dTheta mini", "K/m") CALL histdef2d(iff,o_rh2m%flag,o_rh2m%name, "Relative humidity at 2m", "%" ) CALL histdef2d(iff,o_qsat2m%flag,o_qsat2m%name, "Saturant humidity at 2m", "%") CALL histdef2d(iff,o_tpot%flag,o_tpot%name, "Surface air potential temperature", "K") CALL histdef2d(iff,o_tpote%flag,o_tpote%name, "Surface air equivalent potential temperature", "K") CALL histdef2d(iff,o_SWnetOR%flag,o_SWnetOR%name, "Sfce net SW radiation OR", "W/m2") CALL histdef2d(iff,o_SWdownOR%flag,o_SWdownOR%name, "Sfce incident SW radiation OR", "W/m2") CALL histdef2d(iff,o_LWdownOR%flag,o_LWdownOR%name, "Sfce incident LW radiation OR", "W/m2") CALL histdef2d(iff,o_snowl%flag,o_snowl%name, "Solid Large-scale Precip.", "kg/(m2*s)") CALL histdef2d(iff,o_solldown%flag,o_solldown%name, "Down. IR rad. at surface", "W/m2") CALL histdef2d(iff,o_dtsvdfo%flag,o_dtsvdfo%name, "Boundary-layer dTs(o)", "K/s") CALL histdef2d(iff,o_dtsvdft%flag,o_dtsvdft%name, "Boundary-layer dTs(t)", "K/s") CALL histdef2d(iff,o_dtsvdfg%flag,o_dtsvdfg%name, "Boundary-layer dTs(g)", "K/s") CALL histdef2d(iff,o_dtsvdfi%flag,o_dtsvdfi%name, "Boundary-layer dTs(g)", "K/s") CALL histdef2d(iff,o_rugs%flag,o_rugs%name, "rugosity", "-" ) ! Champs 3D: CALL histdef3d(iff,o_lwcon%flag,o_lwcon%name, "Cloud liquid water content", "kg/kg") CALL histdef3d(iff,o_iwcon%flag,o_iwcon%name, "Cloud ice water content", "kg/kg") CALL histdef3d(iff,o_temp%flag,o_temp%name, "Air temperature", "K" ) CALL histdef3d(iff,o_theta%flag,o_theta%name, "Potential air temperature", "K" ) CALL histdef3d(iff,o_ovap%flag,o_ovap%name, "Specific humidity + dqphy", "kg/kg" ) CALL histdef3d(iff,o_ovapinit%flag,o_ovapinit%name, "Specific humidity", "kg/kg" ) CALL histdef3d(iff,o_geop%flag,o_geop%name, "Geopotential height", "m2/s2") CALL histdef3d(iff,o_vitu%flag,o_vitu%name, "Zonal wind", "m/s" ) CALL histdef3d(iff,o_vitv%flag,o_vitv%name, "Meridional wind", "m/s" ) CALL histdef3d(iff,o_vitw%flag,o_vitw%name, "Vertical wind", "Pa/s" ) CALL histdef3d(iff,o_pres%flag,o_pres%name, "Air pressure", "Pa" ) CALL histdef3d(iff,o_rneb%flag,o_rneb%name, "Cloud fraction", "-") CALL histdef3d(iff,o_rnebcon%flag,o_rnebcon%name, "Convective Cloud Fraction", "-") CALL histdef3d(iff,o_rhum%flag,o_rhum%name, "Relative humidity", "-") CALL histdef3d(iff,o_ozone%flag,o_ozone%name, "Ozone mole fraction", "-") if (read_climoz == 2) & CALL histdef3d(iff,o_ozone_light%flag,o_ozone_light%name, & "Daylight ozone mole fraction", "-") CALL histdef3d(iff,o_dtphy%flag,o_dtphy%name, "Physics dT", "K/s") CALL histdef3d(iff,o_dqphy%flag,o_dqphy%name, "Physics dQ", "(kg/kg)/s") CALL histdef3d(iff,o_cldtau%flag,o_cldtau%name, "Cloud optical thickness", "1") CALL histdef3d(iff,o_cldemi%flag,o_cldemi%name, "Cloud optical emissivity", "1") !IM: bug ?? dimensionnement variables (klon,klev+1) pmflxr, pmflxs, prfl, psfl CALL histdef3d(iff,o_pr_con_l%flag,o_pr_con_l%name, "Convective precipitation lic", " ") CALL histdef3d(iff,o_pr_con_i%flag,o_pr_con_i%name, "Convective precipitation ice", " ") CALL histdef3d(iff,o_pr_lsc_l%flag,o_pr_lsc_l%name, "Large scale precipitation lic", " ") CALL histdef3d(iff,o_pr_lsc_i%flag,o_pr_lsc_i%name, "Large scale precipitation ice", " ") !FH Sorties pour la couche limite if (iflag_pbl>1) then CALL histdef3d(iff,o_tke%flag,o_tke%name, "TKE", "m2/s2") type_ecri(1) = 't_max(X)' type_ecri(2) = 't_max(X)' type_ecri(3) = 't_max(X)' type_ecri(4) = 't_max(X)' type_ecri(5) = 't_max(X)' CALL histdef3d(iff,o_tke_max%flag,o_tke_max%name, "TKE max", "m2/s2") type_ecri(:) = type_ecri_files(:) endif CALL histdef3d(iff,o_kz%flag,o_kz%name, "Kz melange", "m2/s") type_ecri(1) = 't_max(X)' type_ecri(2) = 't_max(X)' type_ecri(3) = 't_max(X)' type_ecri(4) = 't_max(X)' type_ecri(5) = 't_max(X)' CALL histdef3d(iff,o_kz_max%flag,o_kz_max%name, "Kz melange max", "m2/s" ) type_ecri(:) = type_ecri_files(:) CALL histdef3d(iff,o_clwcon%flag,o_clwcon%name, "Convective Cloud Liquid water content", "kg/kg") CALL histdef3d(iff,o_dtdyn%flag,o_dtdyn%name, "Dynamics dT", "K/s") CALL histdef3d(iff,o_dqdyn%flag,o_dqdyn%name, "Dynamics dQ", "(kg/kg)/s") CALL histdef3d(iff,o_dudyn%flag,o_dudyn%name, "Dynamics dU", "m/s2") CALL histdef3d(iff,o_dvdyn%flag,o_dvdyn%name, "Dynamics dV", "m/s2") CALL histdef3d(iff,o_dtcon%flag,o_dtcon%name, "Convection dT", "K/s") CALL histdef3d(iff,o_ducon%flag,o_ducon%name, "Convection du", "m/s2") CALL histdef3d(iff,o_dqcon%flag,o_dqcon%name, "Convection dQ", "(kg/kg)/s") ! Wakes IF(iflag_con.EQ.3) THEN IF (iflag_wake == 1) THEN CALL histdef2d(iff,o_ale_wk%flag,o_ale_wk%name, "ALE WK", "m2/s2") CALL histdef2d(iff,o_alp_wk%flag,o_alp_wk%name, "ALP WK", "m2/s2") CALL histdef2d(iff,o_ale%flag,o_ale%name, "ALE", "m2/s2") CALL histdef2d(iff,o_alp%flag,o_alp%name, "ALP", "W/m2") CALL histdef2d(iff,o_cin%flag,o_cin%name, "Convective INhibition", "m2/s2") CALL histdef2d(iff,o_wape%flag,o_WAPE%name, "WAPE", "m2/s2") CALL histdef2d(iff,o_wake_h%flag,o_wake_h%name, "wake_h", "-") CALL histdef2d(iff,o_wake_s%flag,o_wake_s%name, "wake_s", "-") CALL histdef3d(iff,o_dtwak%flag,o_dtwak%name, "Wake dT", "K/s") CALL histdef3d(iff,o_dqwak%flag,o_dqwak%name, "Wake dQ", "(kg/kg)/s") CALL histdef3d(iff,o_wake_deltat%flag,o_wake_deltat%name, "wake_deltat", " ") CALL histdef3d(iff,o_wake_deltaq%flag,o_wake_deltaq%name, "wake_deltaq", " ") CALL histdef3d(iff,o_wake_omg%flag,o_wake_omg%name, "wake_omg", " ") ENDIF CALL histdef3d(iff,o_Vprecip%flag,o_Vprecip%name, "precipitation vertical profile", "-") CALL histdef3d(iff,o_ftd%flag,o_ftd%name, "tend temp due aux descentes precip", "-") CALL histdef3d(iff,o_fqd%flag,o_fqd%name,"tend vap eau due aux descentes precip", "-") ENDIF !(iflag_con.EQ.3) CALL histdef3d(iff,o_dtlsc%flag,o_dtlsc%name, "Condensation dT", "K/s") CALL histdef3d(iff,o_dtlschr%flag,o_dtlschr%name,"Large-scale condensational heating rate","K/s") CALL histdef3d(iff,o_dqlsc%flag,o_dqlsc%name, "Condensation dQ", "(kg/kg)/s") CALL histdef3d(iff,o_dtvdf%flag,o_dtvdf%name, "Boundary-layer dT", "K/s") CALL histdef3d(iff,o_dqvdf%flag,o_dqvdf%name, "Boundary-layer dQ", "(kg/kg)/s") CALL histdef3d(iff,o_dteva%flag,o_dteva%name, "Reevaporation dT", "K/s") CALL histdef3d(iff,o_dqeva%flag,o_dqeva%name, "Reevaporation dQ", "(kg/kg)/s") CALL histdef3d(iff,o_ptconv%flag,o_ptconv%name, "POINTS CONVECTIFS", " ") CALL histdef3d(iff,o_ratqs%flag,o_ratqs%name, "RATQS", " ") CALL histdef3d(iff,o_dtthe%flag,o_dtthe%name, "Dry adjust. dT", "K/s") if(iflag_thermals.gt.1) THEN CALL histdef3d(iff,o_f_th%flag,o_f_th%name, "Thermal plume mass flux", "K/s") CALL histdef3d(iff,o_e_th%flag,o_e_th%name,"Thermal plume entrainment","K/s") CALL histdef3d(iff,o_w_th%flag,o_w_th%name,"Thermal plume vertical velocity","m/s") CALL histdef3d(iff,o_lambda_th%flag,o_lambda_th%name,"Thermal plume vertical velocity","m/s") CALL histdef3d(iff,o_q_th%flag,o_q_th%name, "Thermal plume total humidity", "kg/kg") CALL histdef3d(iff,o_a_th%flag,o_a_th%name, "Thermal plume fraction", "") CALL histdef3d(iff,o_d_th%flag,o_d_th%name, "Thermal plume detrainment", "K/s") endif !iflag_thermals.gt.1 CALL histdef2d(iff,o_f0_th%flag,o_f0_th%name, "Thermal closure mass flux", "K/s") CALL histdef2d(iff,o_zmax_th%flag,o_zmax_th%name, "Thermal plume height", "K/s") CALL histdef3d(iff,o_dqthe%flag,o_dqthe%name, "Dry adjust. dQ", "(kg/kg)/s") CALL histdef3d(iff,o_dtajs%flag,o_dtajs%name, "Dry adjust. dT", "K/s") CALL histdef3d(iff,o_dqajs%flag,o_dqajs%name, "Dry adjust. dQ", "(kg/kg)/s") CALL histdef3d(iff,o_dtswr%flag,o_dtswr%name, "SW radiation dT", "K/s") CALL histdef3d(iff,o_dtsw0%flag,o_dtsw0%name, "CS SW radiation dT", "K/s") CALL histdef3d(iff,o_dtlwr%flag,o_dtlwr%name, "LW radiation dT", "K/s") CALL histdef3d(iff,o_dtlw0%flag,o_dtlw0%name, "CS LW radiation dT", "K/s") CALL histdef3d(iff,o_dtec%flag,o_dtec%name, "Cinetic dissip dT", "K/s") CALL histdef3d(iff,o_duvdf%flag,o_duvdf%name, "Boundary-layer dU", "m/s2") CALL histdef3d(iff,o_dvvdf%flag,o_dvvdf%name, "Boundary-layer dV", "m/s2") IF (ok_orodr) THEN CALL histdef3d(iff,o_duoro%flag,o_duoro%name, "Orography dU", "m/s2") CALL histdef3d(iff,o_dvoro%flag,o_dvoro%name, "Orography dV", "m/s2") ENDIF IF (ok_orolf) THEN CALL histdef3d(iff,o_dulif%flag,o_dulif%name, "Orography dU", "m/s2") CALL histdef3d(iff,o_dvlif%flag,o_dvlif%name, "Orography dV", "m/s2") ENDIF if (nqtot>=3) THEN !Attention DO iq=3,nqtot DO iq=3,4 iiq=niadv(iq) ! CALL histdef3d (iff, o_trac%flag,'o_'//tnom(iq)%name,ttext(iiq), "-" ) CALL histdef3d (iff, o_trac(iq-2)%flag,o_trac(iq-2)%name,ttext(iiq), "-" ) ENDDO endif CALL histend(nid_files(iff)) ndex2d = 0 ndex3d = 0 ENDIF ! clef_files ENDDO ! iff print*,'Fin phys_output_mod.F90' end subroutine phys_output_open SUBROUTINE histdef2d (iff,flag_var,nomvar,titrevar,unitvar) use ioipsl USE dimphy USE mod_phys_lmdz_para IMPLICIT NONE include "dimensions.h" include "temps.h" include "indicesol.h" include "clesphys.h" integer :: iff integer, dimension(nfiles) :: flag_var character(len=20) :: nomvar character(len=*) :: titrevar character(len=*) :: unitvar real zstophym if (type_ecri(iff)=='inst(X)'.OR.type_ecri(iff)=='once') then zstophym=zoutm(iff) else zstophym=zdtime endif ! Appel a la lecture des noms et niveau d'ecriture des variables dans output.def call conf_physoutputs(nomvar,flag_var) if ( flag_var(iff)<=lev_files(iff) ) then call histdef (nid_files(iff),nomvar,titrevar,unitvar, & iim,jj_nb,nhorim(iff), 1,1,1, -99, 32, & type_ecri(iff), zstophym,zoutm(iff)) endif end subroutine histdef2d SUBROUTINE histdef3d (iff,flag_var,nomvar,titrevar,unitvar) use ioipsl USE dimphy USE mod_phys_lmdz_para IMPLICIT NONE include "dimensions.h" include "temps.h" include "indicesol.h" include "clesphys.h" integer :: iff integer, dimension(nfiles) :: flag_var character(len=20) :: nomvar character(len=*) :: titrevar character(len=*) :: unitvar real zstophym ! Appel a la lecture des noms et niveau d'ecriture des variables dans output.def call conf_physoutputs(nomvar,flag_var) if (type_ecri(iff)=='inst(X)'.OR.type_ecri(iff)=='once') then zstophym=zoutm(iff) else zstophym=zdtime endif if ( flag_var(iff)<=lev_files(iff) ) then call histdef (nid_files(iff), nomvar, titrevar, unitvar, & iim, jj_nb, nhorim(iff), klev, levmin(iff), & levmax(iff)-levmin(iff)+1, nvertm(iff), 32, type_ecri(iff), & zstophym, zoutm(iff)) endif end subroutine histdef3d SUBROUTINE conf_physoutputs(nam_var,flag_var) !!! Lecture des noms et niveau de sortie des variables dans output.def ! en utilisant les routines getin de IOIPSL use ioipsl IMPLICIT NONE include 'iniprint.h' character(len=20) :: nam_var integer, dimension(nfiles) :: flag_var IF(prt_level>10) WRITE(lunout,*)'Avant getin: nam_var flag_var ',nam_var,flag_var(:) call getin('flag_'//nam_var,flag_var) call getin('name_'//nam_var,nam_var) IF(prt_level>10) WRITE(lunout,*)'Apres getin: nam_var flag_var ',nam_var,flag_var(:) END SUBROUTINE conf_physoutputs SUBROUTINE convers_timesteps(str,timestep) use ioipsl IMPLICIT NONE character(len=20) :: str character(len=10) :: type integer :: ipos,il real :: ttt,xxx,timestep,dayseconde parameter (dayseconde=86400.) include "temps.h" include "comconst.h" ipos=scan(str,'0123456789.',.true.) ! il=len_trim(str) print*,ipos,il read(str(1:ipos),*) ttt print*,ttt type=str(ipos+1:il) if ( il == ipos ) then type='day' endif if ( type == 'day'.or.type == 'days'.or.type == 'jours'.or.type == 'jour' ) timestep = ttt * dayseconde if ( type == 'mounths'.or.type == 'mth'.or.type == 'mois' ) then print*,'annee_ref,day_ref mon_len',annee_ref,day_ref,ioget_mon_len(annee_ref,day_ref) timestep = ttt * dayseconde * ioget_mon_len(annee_ref,day_ref) endif if ( type == 'hours'.or.type == 'hr'.or.type == 'heurs') timestep = ttt * dayseconde / 24. if ( type == 'mn'.or.type == 'minutes' ) timestep = ttt * 60. if ( type == 's'.or.type == 'sec'.or.type == 'secondes' ) timestep = ttt if ( type == 'TS' ) timestep = dtphys print*,'type = ',type print*,'nb j/h/m = ',ttt print*,'timestep(s)=',timestep END SUBROUTINE convers_timesteps END MODULE phys_output_mod