! ! $Id: iniacademic.F90 5203 2024-09-20 11:10:18Z aborella $ ! SUBROUTINE iniacademic(vcov,ucov,teta,q,masse,ps,phis,time_0) USE filtreg_mod, ONLY: inifilr USE infotrac, ONLY: nqtot, niso, iqIsoPha, tracers, getKey, isoName, addPhase USE control_mod, ONLY: day_step,planet_type use exner_hyb_m, only: exner_hyb use exner_milieu_m, only: exner_milieu #ifdef CPP_IOIPSL USE IOIPSL, ONLY: getin #else ! if not using IOIPSL, we still need to use (a local version of) getin USE ioipsl_getincom, ONLY: getin #endif USE Write_Field USE comconst_mod, ONLY: cpp, kappa, g, daysec, dtvr, pi, im, jm USE logic_mod, ONLY: iflag_phys, read_start USE comvert_mod, ONLY: ap, bp, preff, pa, presnivs, pressure_exner USE temps_mod, ONLY: annee_ref, day_ini, day_ref USE ener_mod, ONLY: etot0,ptot0,ztot0,stot0,ang0 use netcdf, only : NF90_NOWRITE,NF90_OPEN,NF90_NOERR,NF90_INQ_VARID use netcdf, only : NF90_CLOSE, NF90_GET_VAR ! Author: Frederic Hourdin original: 15/01/93 ! The forcing defined here is from Held and Suarez, 1994, Bulletin ! of the American Meteorological Society, 75, 1825. IMPLICIT NONE ! Declararations: ! --------------- include "dimensions.h" include "paramet.h" include "comgeom.h" include "academic.h" include "iniprint.h" ! Arguments: ! ---------- REAL,INTENT(OUT) :: time_0 ! fields REAL,INTENT(OUT) :: vcov(ip1jm,llm) ! meridional covariant wind REAL,INTENT(OUT) :: ucov(ip1jmp1,llm) ! zonal covariant wind REAL,INTENT(OUT) :: teta(ip1jmp1,llm) ! potential temperature (K) REAL,INTENT(OUT) :: q(ip1jmp1,llm,nqtot) ! advected tracers (.../kg_of_air) REAL,INTENT(OUT) :: ps(ip1jmp1) ! surface pressure (Pa) REAL,INTENT(OUT) :: masse(ip1jmp1,llm) ! air mass in grid cell (kg) REAL,INTENT(OUT) :: phis(ip1jmp1) ! surface geopotential ! Local: ! ------ REAL p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches REAL pks(ip1jmp1) ! exner au sol REAL pk(ip1jmp1,llm) ! exner au milieu des couches REAL phi(ip1jmp1,llm) ! geopotentiel REAL ddsin,zsig,tetapv,w_pv ! variables auxiliaires real tetastrat ! potential temperature in the stratosphere, in K real tetajl(jjp1,llm) INTEGER i,j,l,lsup,ij, iq, iName, iPhase, iqParent integer :: nid_relief,varid,ierr real, dimension(iip1,jjp1) :: relief REAL teta0,ttp,delt_y,delt_z,eps ! Constantes pour profil de T REAL k_f,k_c_a,k_c_s ! Constantes de rappel LOGICAL ok_geost ! Initialisation vent geost. ou nul LOGICAL ok_pv ! Polar Vortex REAL phi_pv,dphi_pv,gam_pv,tetanoise ! Constantes pour polar vortex real zz,ran1 integer idum REAL zdtvr, tnat, alpha_ideal LOGICAL :: ltnat1 character(len=*),parameter :: modname="iniacademic" character(len=80) :: abort_message ! Sanity check: verify that options selected by user are not incompatible if ((iflag_phys==1).and. .not. read_start) then write(lunout,*) trim(modname)," error: if read_start is set to ", & " false then iflag_phys should not be 1" write(lunout,*) "You most likely want an aquaplanet initialisation", & " (iflag_phys >= 100)" call abort_gcm(modname,"incompatible iflag_phys==1 and read_start==.false.",1) endif !----------------------------------------------------------------------- ! 1. Initializations for Earth-like case ! -------------------------------------- ! ! initialize planet radius, rotation rate,... call conf_planete time_0=0. day_ref=1 annee_ref=0 im = iim jm = jjm day_ini = 1 dtvr = daysec/REAL(day_step) zdtvr=dtvr etot0 = 0. ptot0 = 0. ztot0 = 0. stot0 = 0. ang0 = 0. if (llm == 1) then ! specific initializations for the shallow water case kappa=1 endif CALL iniconst CALL inigeom CALL inifilr !------------------------------------------------------------------ ! Initialize pressure and mass field if read_start=.false. !------------------------------------------------------------------ IF (.NOT. read_start) THEN !------------------------------------------------------------------ ! Lecture eventuelle d'un fichier de relief interpollee sur la grille ! du modele. ! On suppose que le fichier relief_in.nc est stoké sur une grille ! iim*jjp1 ! Facile a créer à partir de la commande ! cdo remapcon,fichier_output_phys.nc Relief.nc relief_in.nc !------------------------------------------------------------------ relief=0. ierr = NF90_OPEN ('relief_in.nc', NF90_NOWRITE,nid_relief) if (ierr.EQ.NF90_NOERR) THEN ierr=NF90_INQ_VARID(nid_relief,'RELIEF',varid) if (ierr==NF90_NOERR) THEN ierr=NF90_GET_VAR(nid_relief,varid,relief(1:iim,1:jjp1)) relief(iip1,:)=relief(1,:) else CALL abort_gcm ('iniacademic','variable RELIEF pas la',1) endif endif ierr = NF90_CLOSE (nid_relief) !------------------------------------------------------------------ ! Initialisation du geopotentiel au sol et de la pression !------------------------------------------------------------------ print*,'relief=',minval(relief),maxval(relief),'g=',g do j=1,jjp1 do i=1,iip1 phis((j-1)*iip1+i)=g*relief(i,j) enddo enddo print*,'phis=',minval(phis),maxval(phis),'g=',g ! ground geopotential !phis(:)=0. ps(:)=preff CALL pression ( ip1jmp1, ap, bp, ps, p ) if (pressure_exner) then CALL exner_hyb( ip1jmp1, ps, p, pks, pk) else call exner_milieu(ip1jmp1,ps,p,pks,pk) endif CALL massdair(p,masse) ENDIF if (llm == 1) then ! initialize fields for the shallow water case, if required if (.not.read_start) then phis(:)=0. q(:,:,:)=0 CALL sw_case_williamson91_6(vcov,ucov,teta,masse,ps) endif endif academic_case: if (iflag_phys >= 2) then ! initializations ! 1. local parameters ! by convention, winter is in the southern hemisphere ! Geostrophic wind or no wind? ok_geost=.TRUE. CALL getin('ok_geost',ok_geost) ! Constants for Newtonian relaxation and friction k_f=1. !friction CALL getin('k_j',k_f) k_f=1./(daysec*k_f) k_c_s=4. !cooling surface CALL getin('k_c_s',k_c_s) k_c_s=1./(daysec*k_c_s) k_c_a=40. !cooling free atm CALL getin('k_c_a',k_c_a) k_c_a=1./(daysec*k_c_a) ! Constants for Teta equilibrium profile teta0=315. ! mean Teta (S.H. 315K) CALL getin('teta0',teta0) ttp=200. ! Tropopause temperature (S.H. 200K) CALL getin('ttp',ttp) eps=0. ! Deviation to N-S symmetry(~0-20K) CALL getin('eps',eps) delt_y=60. ! Merid Temp. Gradient (S.H. 60K) CALL getin('delt_y',delt_y) delt_z=10. ! Vertical Gradient (S.H. 10K) CALL getin('delt_z',delt_z) ! Polar vortex ok_pv=.false. CALL getin('ok_pv',ok_pv) phi_pv=-50. ! Latitude of edge of vortex CALL getin('phi_pv',phi_pv) phi_pv=phi_pv*pi/180. dphi_pv=5. ! Width of the edge CALL getin('dphi_pv',dphi_pv) dphi_pv=dphi_pv*pi/180. gam_pv=4. ! -dT/dz vortex (in K/km) CALL getin('gam_pv',gam_pv) tetanoise=0.005 CALL getin('tetanoise',tetanoise) ! 2. Initialize fields towards which to relax ! Friction knewt_g=k_c_a DO l=1,llm zsig=presnivs(l)/preff knewt_t(l)=(k_c_s-k_c_a)*MAX(0.,(zsig-0.7)/0.3) kfrict(l)=k_f*MAX(0.,(zsig-0.7)/0.3) ENDDO DO j=1,jjp1 clat4((j-1)*iip1+1:j*iip1)=cos(rlatu(j))**4 ENDDO ! Potential temperature DO l=1,llm zsig=presnivs(l)/preff tetastrat=ttp*zsig**(-kappa) tetapv=tetastrat IF ((ok_pv).AND.(zsig.LT.0.1)) THEN tetapv=tetastrat*(zsig*10.)**(kappa*cpp*gam_pv/1000./g) ENDIF DO j=1,jjp1 ! Troposphere ddsin=sin(rlatu(j)) tetajl(j,l)=teta0-delt_y*ddsin*ddsin+eps*ddsin & -delt_z*(1.-ddsin*ddsin)*log(zsig) if (planet_type=="giant") then tetajl(j,l)=teta0+(delt_y* & ((sin(rlatu(j)*3.14159*eps+0.0001))**2) & / ((rlatu(j)*3.14159*eps+0.0001)**2)) & -delt_z*log(zsig) endif ! Profil stratospherique isotherme (+vortex) w_pv=(1.-tanh((rlatu(j)-phi_pv)/dphi_pv))/2. tetastrat=tetastrat*(1.-w_pv)+tetapv*w_pv tetajl(j,l)=MAX(tetajl(j,l),tetastrat) ENDDO ENDDO ! CALL writefield('theta_eq',tetajl) do l=1,llm do j=1,jjp1 do i=1,iip1 ij=(j-1)*iip1+i tetarappel(ij,l)=tetajl(j,l) enddo enddo enddo ! 3. Initialize fields (if necessary) IF (.NOT. read_start) THEN ! bulk initialization of temperature IF (iflag_phys>10000) THEN ! Particular case to impose a constant temperature T0=0.01*iflag_physx teta(:,:)= 0.01*iflag_phys/(pk(:,:)/cpp) ELSE teta(:,:)=tetarappel(:,:) ENDIF ! geopotential CALL geopot(ip1jmp1,teta,pk,pks,phis,phi) DO l=1,llm print*,'presnivs,play,l',presnivs(l),(pk(1,l)/cpp)**(1./kappa)*preff !pks(ij) = (cpp/preff) * ps(ij) !pk(ij,1) = .5*pks(ij) ! pk = cpp * (p/preff)^kappa ENDDO ! winds if (ok_geost) then call ugeostr(phi,ucov) else ucov(:,:)=0. endif vcov(:,:)=0. ! bulk initialization of tracers if (planet_type=="earth") then ltnat1 = .TRUE.; CALL getin('tnateq1', ltnat1) ! Earth: first two tracers will be water do iq=1,nqtot q(:,:,iq)=0. IF(tracers(iq)%name == addPhase('H2O', 'g')) q(:,:,iq)=1.e-10 IF(tracers(iq)%name == addPhase('H2O', 'l')) q(:,:,iq)=1.e-15 ! CRisi: init des isotopes ! distill de Rayleigh très simplifiée iName = tracers(iq)%iso_iName if (niso <= 0 .OR. iName <= 0) CYCLE iPhase = tracers(iq)%iso_iPhase iqParent = tracers(iq)%iqParent IF(tracers(iq)%iso_iZone == 0) THEN IF(ltnat1) THEN tnat = 1.0 alpha_ideal = 1.0 WRITE(lunout, *)'In '//TRIM(modname)//': !!! Beware: alpha_ideal put to 1 !!!' ELSE IF(getKey('tnat', tnat, isoName(iName)) .OR. getKey('alpha', alpha_ideal, isoName(iName))) & CALL abort_gcm(TRIM(modname), 'missing isotopic parameters', 1) END IF q(:,:,iq) = q(:,:,iqParent)*tnat*(q(:,:,iqParent)/30.e-3)**(alpha_ideal-1.) ELSE !IF(tracers(iq)%iso_iZone == 0) THEN IF(tracers(iq)%iso_iZone == 1) THEN ! correction le 14 mai 2024 pour que tous les traceurs soient de la couleur 1. ! Sinon, on va avoir des porblèmes de conservation de masse de traceurs. q(:,:,iq) = q(:,:,iqIsoPha(iName,iPhase)) else !IF(tracers(iq)%iso_iZone == 1) THEN q(:,:,iq) = 0. endif !IF(tracers(iq)%iso_iZone == 1) THEN END IF !IF(tracers(iq)%iso_iZone == 0) THEN enddo else q(:,:,:)=0 endif ! of if (planet_type=="earth") call check_isotopes_seq(q,1,ip1jmp1,'iniacademic_loc') ! add random perturbation to temperature idum = -1 zz = ran1(idum) idum = 0 do l=1,llm do ij=iip2,ip1jm teta(ij,l)=teta(ij,l)*(1.+tetanoise*ran1(idum)) enddo enddo ! maintain periodicity in longitude do l=1,llm do ij=1,ip1jmp1,iip1 teta(ij+iim,l)=teta(ij,l) enddo enddo ENDIF ! of IF (.NOT. read_start) endif academic_case END SUBROUTINE iniacademic