! ! $Id: friction.F 1910 2013-11-29 08:40:25Z aborella $ ! c======================================================================= SUBROUTINE friction(ucov,vcov,pdt) USE control_mod #ifdef CPP_IOIPSL USE IOIPSL #else ! if not using IOIPSL, we still need to use (a local version of) getin USE ioipsl_getincom #endif IMPLICIT NONE !======================================================================= ! ! Friction for the Newtonian case: ! -------------------------------- ! 2 possibilities (depending on flag 'friction_type' ! friction_type=0 : A friction that is only applied to the lowermost ! atmospheric layer ! friction_type=1 : Friction applied on all atmospheric layer (but ! (default) with stronger magnitude near the surface; see ! iniacademic.F) !======================================================================= #include "dimensions.h" #include "paramet.h" #include "comgeom2.h" #include "comconst.h" #include "iniprint.h" #include "academic.h" ! arguments: REAL,INTENT(out) :: ucov( iip1,jjp1,llm ) REAL,INTENT(out) :: vcov( iip1,jjm,llm ) REAL,INTENT(in) :: pdt ! time step ! local variables: REAL modv(iip1,jjp1),zco,zsi REAL vpn,vps,upoln,upols,vpols,vpoln REAL u2(iip1,jjp1),v2(iip1,jjm) INTEGER i,j,l REAL,PARAMETER :: cfric=1.e-5 LOGICAL,SAVE :: firstcall=.true. INTEGER,SAVE :: friction_type=1 CHARACTER(len=20) :: modname="friction" CHARACTER(len=80) :: abort_message IF (firstcall) THEN ! set friction type call getin("friction_type",friction_type) if ((friction_type.lt.0).or.(friction_type.gt.1)) then abort_message="wrong friction type" write(lunout,*)'Friction: wrong friction type',friction_type call abort_gcm(modname,abort_message,42) endif firstcall=.false. ENDIF if (friction_type.eq.0) then c calcul des composantes au carre du vent naturel do j=1,jjp1 do i=1,iip1 u2(i,j)=ucov(i,j,1)*ucov(i,j,1)*unscu2(i,j) enddo enddo do j=1,jjm do i=1,iip1 v2(i,j)=vcov(i,j,1)*vcov(i,j,1)*unscv2(i,j) enddo enddo c calcul du module de V en dehors des poles do j=2,jjm do i=2,iip1 modv(i,j)=sqrt(0.5*(u2(i-1,j)+u2(i,j)+v2(i,j-1)+v2(i,j))) enddo modv(1,j)=modv(iip1,j) enddo c les deux composantes du vent au pole sont obtenues comme c premiers modes de fourier de v pres du pole upoln=0. vpoln=0. upols=0. vpols=0. do i=2,iip1 zco=cos(rlonv(i))*(rlonu(i)-rlonu(i-1)) zsi=sin(rlonv(i))*(rlonu(i)-rlonu(i-1)) vpn=vcov(i,1,1)/cv(i,1) vps=vcov(i,jjm,1)/cv(i,jjm) upoln=upoln+zco*vpn vpoln=vpoln+zsi*vpn upols=upols+zco*vps vpols=vpols+zsi*vps enddo vpn=sqrt(upoln*upoln+vpoln*vpoln)/pi vps=sqrt(upols*upols+vpols*vpols)/pi do i=1,iip1 c modv(i,1)=vpn c modv(i,jjp1)=vps modv(i,1)=modv(i,2) modv(i,jjp1)=modv(i,jjm) enddo c calcul du frottement au sol. do j=2,jjm do i=1,iim ucov(i,j,1)=ucov(i,j,1) s -cfric*pdt*0.5*(modv(i+1,j)+modv(i,j))*ucov(i,j,1) enddo ucov(iip1,j,1)=ucov(1,j,1) enddo do j=1,jjm do i=1,iip1 vcov(i,j,1)=vcov(i,j,1) s -cfric*pdt*0.5*(modv(i,j+1)+modv(i,j))*vcov(i,j,1) enddo vcov(iip1,j,1)=vcov(1,j,1) enddo endif ! of if (friction_type.eq.0) if (friction_type.eq.1) then do l=1,llm ucov(:,:,l)=ucov(:,:,l)*(1.-pdt*kfrict(l)) vcov(:,:,l)=vcov(:,:,l)*(1.-pdt*kfrict(l)) enddo endif RETURN END