! ! $Id: micphy_tstep.F90 4727 2023-10-19 14:02:57Z fhourdin $ ! SUBROUTINE micphy_tstep(pdtphys,tr_seri,t_seri,pplay,paprs,rh,is_strato) USE geometry_mod, ONLY : latitude_deg !NL- latitude corr. to local domain USE dimphy, ONLY : klon,klev USE aerophys USE infotrac_phy, ONLY : nbtr_bin, nbtr_sulgas, nbtr, id_H2SO4_strat USE phys_local_var_mod, ONLY: mdw, budg_3D_nucl, budg_3D_cond_evap, budg_h2so4_to_part, R2SO4, DENSO4, f_r_wet USE nucleation_tstep_mod USE cond_evap_tstep_mod USE sulfate_aer_mod, ONLY : STRAACT USE YOMCST, ONLY : RPI, RD, RG USE print_control_mod, ONLY: lunout USE strataer_local_var_mod IMPLICIT NONE !-------------------------------------------------------- ! transfer variables when calling this routine REAL,INTENT(IN) :: pdtphys ! Pas d'integration pour la physique (seconde) REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression pour chaque inter-couche (en Pa) REAL,DIMENSION(klon,klev),INTENT(IN) :: rh ! humidite relative LOGICAL,DIMENSION(klon,klev),INTENT(IN) :: is_strato ! local variables in coagulation routine INTEGER, PARAMETER :: nbtstep=4 ! Max number of time steps in microphysics per time step in physics INTEGER :: it,ilon,ilev,count_tstep REAL :: rhoa !H2SO4 number density [molecules/cm3] REAL :: ntot !total number of molecules in the critical cluster (ntot>4) REAL :: x ! molefraction of H2SO4 in the critical cluster REAL Vbin(nbtr_bin) REAL a_xm, b_xm, c_xm REAL PDT, dt REAL H2SO4_init REAL ACTSO4(klon,klev) REAL RRSI(nbtr_bin) REAL nucl_rate REAL cond_evap_rate REAL evap_rate REAL FL(nbtr_bin) REAL ASO4(nbtr_bin) REAL DNDR(nbtr_bin) REAL H2SO4_sat DO it=1,nbtr_bin Vbin(it)=4.0*RPI*((mdw(it)/2.)**3)/3.0 ENDDO !coefficients for H2SO4 density parametrization used for nucleation if ntot<4 a_xm = 0.7681724 + 1.*(2.1847140 + 1.*(7.1630022 + 1.*(-44.31447 + & & 1.*(88.75606 + 1.*(-75.73729 + 1.*23.43228))))) b_xm = 1.808225e-3 + 1.*(-9.294656e-3 + 1.*(-0.03742148 + 1.*(0.2565321 + & & 1.*(-0.5362872 + 1.*(0.4857736 - 1.*0.1629592))))) c_xm = -3.478524e-6 + 1.*(1.335867e-5 + 1.*(5.195706e-5 + 1.*(-3.717636e-4 + & & 1.*(7.990811e-4 + 1.*(-7.458060e-4 + 1.*2.58139e-4 ))))) ! STRAACT (R2SO4, t_seri -> H2SO4 activity coefficient (ACTSO4)) for cond/evap CALL STRAACT(ACTSO4) ! compute particle radius in cm RRSI from diameter in m DO it=1,nbtr_bin RRSI(it)=mdw(it)/2.*100. ENDDO DO ilon=1, klon ! !--initialisation of diagnostic budg_h2so4_to_part(ilon)=0.0 ! DO ilev=1, klev ! !--initialisation of diagnostic budg_3D_nucl(ilon,ilev)=0.0 budg_3D_cond_evap(ilon,ilev)=0.0 ! ! only in the stratosphere IF (is_strato(ilon,ilev)) THEN ! initialize sulfur fluxes H2SO4_init=tr_seri(ilon,ilev,id_H2SO4_strat) ! adaptive timestep for nucleation and condensation PDT=pdtphys count_tstep=0 DO WHILE (PDT>0.0) count_tstep=count_tstep+1 IF (count_tstep .GT. nbtstep) EXIT ! convert tr_seri(GASH2SO4) (in kg/kgA) to H2SO4 number density (in molecules/cm3) rhoa=tr_seri(ilon,ilev,id_H2SO4_strat) & & *pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol ! compute nucleation rate in kg(H2SO4)/kgA/s CALL nucleation_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev),rh(ilon,ilev), & & a_xm,b_xm,c_xm,nucl_rate,ntot,x) !NL - add nucleation box (if flag on) IF (flag_nuc_rate_box) THEN IF (latitude_deg(ilon).LE.nuclat_min .OR. latitude_deg(ilon).GE.nuclat_max & .OR. pplay(ilon,ilev).GE.nucpres_max .AND. pplay(ilon,ilev).LE.nucpres_min) THEN nucl_rate=0.0 ENDIF ENDIF ! compute cond/evap rate in kg(H2SO4)/kgA/s CALL condens_evapor_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), & & ACTSO4(ilon,ilev),R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), & & RRSI,Vbin,FL,ASO4,DNDR) ! Compute H2SO4 saturate vapor for big particules H2SO4_sat = DNDR(nbtr_bin)/(pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol) ! consider only condensation (positive FL) DO it=1,nbtr_bin FL(it)=MAX(FL(it),0.) ENDDO ! compute total H2SO4 cond flux for all particles cond_evap_rate=0.0 DO it=1, nbtr_bin cond_evap_rate=cond_evap_rate+tr_seri(ilon,ilev,it+nbtr_sulgas)*FL(it)*mH2SO4mol ENDDO ! determine appropriate time step dt=(H2SO4_init-H2SO4_sat)/float(nbtstep)/MAX(1.e-30, nucl_rate+cond_evap_rate) !cond_evap_rate pos. for cond. and neg. for evap. IF (dt.LT.0.0) THEN dt=PDT ENDIF dt=MIN(dt,PDT) ! update H2SO4 concentration tr_seri(ilon,ilev,id_H2SO4_strat)=MAX(0.,tr_seri(ilon,ilev,id_H2SO4_strat)-(nucl_rate+cond_evap_rate)*dt) ! apply cond to bins CALL cond_evap_part(dt,FL,ASO4,f_r_wet(ilon,ilev),RRSI,Vbin,tr_seri(ilon,ilev,:)) ! apply nucl. to bins CALL nucleation_part(nucl_rate,ntot,x,dt,Vbin,tr_seri(ilon,ilev,:)) ! compute fluxes as diagnostic in [kg(S)/m2/layer/s] (now - for evap and + for cond) budg_3D_cond_evap(ilon,ilev)=budg_3D_cond_evap(ilon,ilev)+mSatom/mH2SO4mol & & *cond_evap_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*dt/pdtphys budg_3D_nucl(ilon,ilev)=budg_3D_nucl(ilon,ilev)+mSatom/mH2SO4mol & & *nucl_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*dt/pdtphys ! update time step PDT=PDT-dt ENDDO ! convert tr_seri(GASH2SO4) (in kg/kgA) to H2SO4 number density (in molecules/cm3) rhoa=tr_seri(ilon,ilev,id_H2SO4_strat) & & *pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol ! compute cond/evap rate in kg(H2SO4)/kgA/s (now only evap for pdtphys) CALL condens_evapor_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), & & ACTSO4(ilon,ilev),R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), & & RRSI,Vbin,FL,ASO4,DNDR) ! limit evaporation (negative FL) over one physics time step to H2SO4 content of the droplet DO it=1,nbtr_bin FL(it)=MAX(FL(it)*pdtphys,0.-ASO4(it))/pdtphys ! consider only evap (negative FL) FL(it)=MIN(FL(it),0.) ENDDO ! compute total H2SO4 evap flux for all particles evap_rate=0.0 DO it=1, nbtr_bin evap_rate=evap_rate+tr_seri(ilon,ilev,it+nbtr_sulgas)*FL(it)*mH2SO4mol ENDDO ! update H2SO4 concentration after evap tr_seri(ilon,ilev,id_H2SO4_strat)=MAX(0.,tr_seri(ilon,ilev,id_H2SO4_strat)-evap_rate*pdtphys) ! apply evap to bins CALL cond_evap_part(pdtphys,FL,ASO4,f_r_wet(ilon,ilev),RRSI,Vbin,tr_seri(ilon,ilev,:)) ! compute fluxes as diagnostic in [kg(S)/m2/layer/s] (now - for evap and + for cond) budg_3D_cond_evap(ilon,ilev)=budg_3D_cond_evap(ilon,ilev)+mSatom/mH2SO4mol & & *evap_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG ! compute vertically integrated flux due to the net effect of nucleation and condensation/evaporation budg_h2so4_to_part(ilon)=budg_h2so4_to_part(ilon)+(H2SO4_init-tr_seri(ilon,ilev,id_H2SO4_strat)) & & *mSatom/mH2SO4mol*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG/pdtphys ENDIF ENDDO ENDDO IF (MINVAL(tr_seri).LT.0.0) THEN DO ilon=1, klon DO ilev=1, klev DO it=1, nbtr IF (tr_seri(ilon,ilev,it).LT.0.0) THEN WRITE(lunout,*) 'micphy_tstep: negative concentration', tr_seri(ilon,ilev,it), ilon, ilev, it ENDIF ENDDO ENDDO ENDDO ENDIF END SUBROUTINE micphy_tstep