! $Id: flott_gwd_rando_m.F90 5159 2024-08-02 19:58:25Z jyg $ module FLOTT_GWD_rando_m IMPLICIT NONE CONTAINS SUBROUTINE FLOTT_GWD_rando(DTIME, pp, tt, uu, vv, prec, zustr, zvstr, d_u, & d_v, east_gwstress, west_gwstress) ! Parametrization of the momentum flux deposition due to a discrete ! number of gravity waves. ! Author: F. Lott ! July, 12th, 2012 ! Gaussian distribution of the source, source is precipitation ! Reference: Lott (JGR, vol 118, page 8897, 2013) !ONLINE: USE dimphy, ONLY: klon, klev USE lmdz_assert, ONLY: assert USE lmdz_ioipsl_getin_p, ONLY: getin_p USE lmdz_vertical_layers, ONLY: presnivs USE lmdz_abort_physic, ONLY: abort_physic USE lmdz_clesphys USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, & GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat USE lmdz_yomcst IMPLICIT NONE CHARACTER (LEN = 20) :: modname = 'flott_gwd_rando' CHARACTER (LEN = 80) :: abort_message ! 0. DECLARATIONS: ! 0.1 INPUTS REAL, INTENT(IN) :: DTIME ! Time step of the Physics REAL, INTENT(IN) :: pp(:, :) ! (KLON, KLEV) Pressure at full levels REAL, INTENT(IN) :: prec(:) ! (klon) Precipitation (kg/m^2/s) REAL, INTENT(IN) :: TT(:, :) ! (KLON, KLEV) Temp at full levels REAL, INTENT(IN) :: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels REAL, INTENT(IN) :: VV(:, :) ! (KLON, KLEV) Merid wind at full levels ! 0.2 OUTPUTS REAL, INTENT(OUT) :: zustr(:), zvstr(:) ! (KLON) Surface Stresses REAL, INTENT(INOUT) :: d_u(:, :), d_v(:, :) REAL, INTENT(INOUT) :: east_gwstress(:, :) ! Profile of eastward stress REAL, INTENT(INOUT) :: west_gwstress(:, :) ! Profile of westward stress ! (KLON, KLEV) tendencies on winds ! O.3 INTERNAL ARRAYS REAL BVLOW(klon) REAL DZ ! Characteristic depth of the Source INTEGER II, JJ, LL ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED REAL DELTAT ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS INTEGER, PARAMETER :: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO INTEGER JK, JP, JO, JW INTEGER, PARAMETER :: NA = 5 !number of realizations to get the phase speed REAL KMIN, KMAX ! Min and Max horizontal wavenumbers REAL CMAX ! standard deviation of the phase speed distribution REAL RUWMAX, SAT ! ONLINE SPECIFIED IN run.def REAL CPHA ! absolute PHASE VELOCITY frequency REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude REAL ZP(NW, KLON) ! Horizontal wavenumber angle REAL ZO(NW, KLON) ! Absolute frequency ! ! Waves Intr. freq. at the 1/2 lev surrounding the full level REAL ZOM(NW, KLON), ZOP(NW, KLON) ! Wave EP-fluxes at the 2 semi levels surrounding the full level REAL WWM(NW, KLON), WWP(NW, KLON) REAL RUW0(NW, KLON) ! Fluxes at launching level REAL RUWP(NW, KLON), RVWP(NW, KLON) ! Fluxes X and Y for each waves at 1/2 Levels INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude REAL XLAUNCH ! Controle the launching altitude REAL XTROP ! SORT of Tropopause altitude REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels REAL PRMAX ! Maximum value of PREC, and for which our linear formula ! for GWs parameterisation apply ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE REAL H0 ! Characteristic Height of the atmosphere REAL PR, TR ! Reference Pressure and Temperature REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels REAL PSEC ! Security to avoid division by 0 pressure REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels REAL BVSEC ! Security to avoid negative BVF REAL RAN_NUM_1, RAN_NUM_2, RAN_NUM_3 REAL, DIMENSION(klev + 1) :: HREF LOGICAL, SAVE :: gwd_reproductibilite_mpiomp = .TRUE. LOGICAL, SAVE :: firstcall = .TRUE. !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp) IF (firstcall) THEN ! Cle introduite pour resoudre un probleme de non reproductibilite ! Le but est de pouvoir tester de revenir a la version precedenete ! A eliminer rapidement CALL getin_p('gwd_reproductibilite_mpiomp', gwd_reproductibilite_mpiomp) IF (NW + 3 * NA>=KLEV) THEN abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes' CALL abort_physic (modname, abort_message, 1) ENDIF firstcall = .FALSE. ENDIF !----------------------------------------------------------------- ! 1. INITIALISATIONS ! 1.1 Basic parameter ! Are provided from elsewhere (latent heat of vaporization, dry ! gaz constant for air, gravity constant, heat capacity of dry air ! at constant pressure, earth rotation rate, pi). ! 1.2 Tuning parameters of V14 RDISS = 0.5 ! Diffusion parameter ! ONLINE RUWMAX = GWD_RANDO_RUWMAX SAT = gwd_rando_sat !END ONLINE ! OFFLINE ! RUWMAX= 1.75 ! Launched flux ! SAT=0.25 ! Saturation parameter ! END OFFLINE PRMAX = 20. / 24. / 3600. ! maximum of rain for which our theory applies (in kg/m^2/s) ! Characteristic depth of the source DZ = 1000. XLAUNCH = 0.5 ! Parameter that control launching altitude XTROP = 0.2 ! Parameter that control tropopause altitude DELTAT = 24. * 3600. ! Time scale of the waves (first introduced in 9b) ! OFFLINE ! DELTAT=DTIME ! END OFFLINE KMIN = 2.E-5 ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) KMAX = 1.E-3 ! Max horizontal wavenumber CMAX = 30. ! Max phase speed velocity TR = 240. ! Reference Temperature PR = 101300. ! Reference pressure H0 = RD * TR / RG ! Characteristic vertical scale height BVSEC = 5.E-3 ! Security to avoid negative BVF PSEC = 1.E-6 ! Security to avoid division by 0 pressure ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ IF (1==0) THEN !ONLINE CALL assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & size(vv, 1), size(zustr), size(zvstr), size(d_u, 1), & size(d_v, 1), & size(east_gwstress, 1), size(west_gwstress, 1) /), & "FLOTT_GWD_RANDO klon") CALL assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & size(vv, 2), size(d_u, 2), size(d_v, 2), & size(east_gwstress, 2), size(west_gwstress, 2) /), & "FLOTT_GWD_RANDO klev") !END ONLINE ENDIF IF(DELTAT < DTIME)THEN abort_message = 'flott_gwd_rando: deltat < dtime!' CALL abort_physic(modname, abort_message, 1) ENDIF IF (KLEV < NW) THEN abort_message = 'flott_gwd_rando: you will have problem with random numbers' CALL abort_physic(modname, abort_message, 1) ENDIF ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS ! Pressure and Inv of pressure DO LL = 2, KLEV PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) end DO PH(:, KLEV + 1) = 0. PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) ! Launching altitude !Pour revenir a la version non reproductible en changeant le nombre de process IF (gwd_reproductibilite_mpiomp) THEN ! Reprend la formule qui calcule PH en fonction de PP=play DO LL = 2, KLEV HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.) end DO HREF(KLEV + 1) = 0. HREF(1) = 2. * presnivs(1) - HREF(2) ELSE HREF(1:KLEV) = PH(KLON / 2, 1:KLEV) ENDIF LAUNCH = 0 LTROP = 0 DO LL = 1, KLEV IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL ENDDO DO LL = 1, KLEV IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL ENDDO !LAUNCH=22 ; LTROP=33 ! PRINT*,'LAUNCH=',LAUNCH,'LTROP=',LTROP ! Log pressure vert. coordinate DO LL = 1, KLEV + 1 ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) end DO ! BV frequency DO LL = 2, KLEV ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & * RD**2 / RCPD / H0**2 + (TT(:, LL) & - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 end DO BVLOW(:) = 0.5 * (TT(:, LTROP) + TT(:, LAUNCH)) & * RD**2 / RCPD / H0**2 + (TT(:, LTROP) & - TT(:, LAUNCH)) / (ZH(:, LTROP) - ZH(:, LAUNCH)) * RD / H0 UH(:, 1) = UH(:, 2) UH(:, KLEV + 1) = UH(:, KLEV) BV(:, 1) = UH(:, 2) BV(:, KLEV + 1) = UH(:, KLEV) ! SMOOTHING THE BV HELPS DO LL = 2, KLEV BV(:, LL) = (UH(:, LL + 1) + 2. * UH(:, LL) + UH(:, LL - 1)) / 4. end DO BV = MAX(SQRT(MAX(BV, 0.)), BVSEC) BVLOW = MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) ! WINDS DO LL = 2, KLEV UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind end DO UH(:, 1) = 0. VH(:, 1) = 0. UH(:, KLEV + 1) = UU(:, KLEV) VH(:, KLEV + 1) = VV(:, KLEV) ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE ! The mod functions of weird arguments are used to produce the ! waves characteristics in an almost stochastic way DO JW = 1, NW ! Angle DO II = 1, KLON ! Angle (0 or PI so far) RAN_NUM_1 = MOD(TT(II, JW) * 10., 1.) RAN_NUM_2 = MOD(TT(II, JW) * 100., 1.) ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.) & * RPI / 2. ! Horizontal wavenumber amplitude ZK(JW, II) = KMIN + (KMAX - KMIN) * RAN_NUM_2 ! Horizontal phase speed CPHA = 0. DO JJ = 1, NA RAN_NUM_3 = MOD(TT(II, JW + 3 * JJ)**2, 1.) CPHA = CPHA + & CMAX * 2. * (RAN_NUM_3 - 0.5) * SQRT(3.) / SQRT(NA * 1.) END DO IF (CPHA<0.) THEN CPHA = -1. * CPHA ZP(JW, II) = ZP(JW, II) + RPI ENDIF ! Absolute frequency is imposed ZO(JW, II) = CPHA * ZK(JW, II) ! Intrinsic frequency is imposed ZO(JW, II) = ZO(JW, II) & + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) ! Momentum flux at launch lev RUW0(JW, II) = RUWMAX ENDDO ENDDO ! 4. COMPUTE THE FLUXES ! 4.1 Vertical velocity at launching altitude to ensure ! the correct value to the imposed fluxes. DO JW = 1, NW ! Evaluate intrinsic frequency at launching altitude: ZOP(JW, :) = ZO(JW, :) & - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) ! VERSION WITH CONVECTIVE SOURCE ! Vertical velocity at launch level, value to ensure the ! imposed factor related to the convective forcing: ! precipitations. ! tanh limitation to values above prmax: WWP(JW, :) = RUW0(JW, :) & * (RD / RCPD / H0 * RLVTT * PRMAX * TANH(PREC(:) / PRMAX))**2 ! Factor related to the characteristics of the waves: WWP(JW, :) = WWP(JW, :) * ZK(JW, :)**3 / KMIN / BVLOW(:) & / MAX(ABS(ZOP(JW, :)), ZOISEC)**3 ! Moderation by the depth of the source (dz here): WWP(JW, :) = WWP(JW, :) & * EXP(- BVLOW(:)**2 / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 * ZK(JW, :)**2 & * DZ**2) ! Put the stress in the right direction: RUWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & * BV(:, LAUNCH) * COS(ZP(JW, :)) * WWP(JW, :)**2 RVWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & * BV(:, LAUNCH) * SIN(ZP(JW, :)) * WWP(JW, :)**2 end DO ! 4.2 Uniform values below the launching altitude DO LL = 1, LAUNCH RUW(:, LL) = 0 RVW(:, LL) = 0 DO JW = 1, NW RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) end DO end DO ! 4.3 Loop over altitudes, with passage from one level to the next ! done by i) conserving the EP flux, ii) dissipating a little, ! iii) testing critical levels, and vi) testing the breaking. DO LL = LAUNCH, KLEV - 1 ! Warning: all the physics is here (passage from one level ! to the next) DO JW = 1, NW ZOM(JW, :) = ZOP(JW, :) WWM(JW, :) = WWP(JW, :) ! Intrinsic Frequency ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) ! No breaking (Eq.6) ! Dissipation (Eq. 8) WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) & + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) ! Critical levels (forced to zero if intrinsic frequency changes sign) ! Saturation (Eq. 12) WWP(JW, :) = min(WWP(JW, :), MAX(0., & SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 & * SAT**2 / ZK(JW, :)**4) end DO ! Evaluate EP-flux from Eq. 7 and give the right orientation to ! the stress DO JW = 1, NW RUWP(JW, :) = SIGN(1., ZOP(JW, :)) * COS(ZP(JW, :)) * WWP(JW, :) RVWP(JW, :) = SIGN(1., ZOP(JW, :)) * SIN(ZP(JW, :)) * WWP(JW, :) end DO RUW(:, LL + 1) = 0. RVW(:, LL + 1) = 0. DO JW = 1, NW RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LL) + MAX(0., RUWP(JW, :)) / FLOAT(NW) WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LL) + MIN(0., RUWP(JW, :)) / FLOAT(NW) end DO end DO ! OFFLINE ONLY ! PRINT *,'SAT PROFILE:' ! DO LL=1,KLEV ! PRINT *,ZH(KLON/2,LL)/1000.,SAT*(2.+TANH(ZH(KLON/2,LL)/H0-8.)) ! ENDDO ! 5 CALCUL DES TENDANCES: ! 5.1 Rectification des flux au sommet et dans les basses couches RUW(:, KLEV + 1) = 0. RVW(:, KLEV + 1) = 0. RUW(:, 1) = RUW(:, LAUNCH) RVW(:, 1) = RVW(:, LAUNCH) DO LL = 1, LAUNCH RUW(:, LL) = RUW(:, LAUNCH + 1) RVW(:, LL) = RVW(:, LAUNCH + 1) EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LAUNCH) WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LAUNCH) end DO ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 DO LL = 1, KLEV D_U(:, LL) = (1. - DTIME / DELTAT) * D_U(:, LL) + DTIME / DELTAT / REAL(NW) * & RG * (RUW(:, LL + 1) - RUW(:, LL)) & / (PH(:, LL + 1) - PH(:, LL)) * DTIME ! NO AR-1 FOR MERIDIONAL TENDENCIES D_V(:, LL) = 1. / REAL(NW) * & RG * (RVW(:, LL + 1) - RVW(:, LL)) & / (PH(:, LL + 1) - PH(:, LL)) * DTIME ENDDO ! Cosmetic: evaluation of the cumulated stress ZUSTR = 0. ZVSTR = 0. DO LL = 1, KLEV ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) / DTIME ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) / DTIME ENDDO END SUBROUTINE FLOTT_GWD_RANDO END MODULE FLOTT_GWD_rando_m