! $Id: diagedyn.f90 5159 2024-08-02 19:58:25Z evignon $ !====================================================================== SUBROUTINE diagedyn(tit,iprt,idiag,idiag2,dtime & , ucov , vcov , ps, p ,pk , teta , q, ql) !====================================================================== ! Purpose: ! Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, ! et calcul le flux de chaleur et le flux d'eau necessaire a ces ! changements. Ces valeurs sont moyennees sur la surface de tout ! le globe et sont exprime en W/2 et kg/s/m2 ! Outil pour diagnostiquer la conservation de l'energie ! et de la masse dans la dynamique. !====================================================================== ! Arguments: ! tit-----imput-A15- Comment added in PRINT (CHARACTER*15) ! iprt----input-I- PRINT level ( <=1 : no PRINT) ! idiag---input-I- indice dans lequel sera range les nouveaux ! bilans d' entalpie et de masse ! idiag2--input-I-les nouveaux bilans d'entalpie et de masse ! sont compare au bilan de d'enthalpie de masse de ! l'indice numero idiag2 ! Cas parriculier : si idiag2=0, pas de comparaison, on ! sort directement les bilans d'enthalpie et de masse ! dtime----input-R- time step (s) ! uconv, vconv-input-R- vents covariants (m/s) ! ps-------input-R- Surface pressure (Pa) ! p--------input-R- pressure at the interfaces ! pk-------input-R- pk= (p/Pref)**kappa ! teta-----input-R- potential temperature (K) ! q--------input-R- vapeur d'eau (kg/kg) ! ql-------input-R- liquid watter (kg/kg) ! aire-----input-R- mesh surafce (m2) ! the following total value are computed by UNIT of earth surface ! d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy ! change (J/m2) during one time step (dtime) for the whole ! atmosphere (air, watter vapour, liquid and solid) ! d_qt------output-R- total water mass flux (kg/m2/s) defined as the ! total watter (kg/m2) change during one time step (dtime), ! d_qw------output-R- same, for the watter vapour only (kg/m2/s) ! d_ql------output-R- same, for the liquid watter only (kg/m2/s) ! d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column ! J.L. Dufresne, July 2002 !====================================================================== USE control_mod, ONLY: planet_type USE lmdz_iniprint, ONLY: lunout, prt_level USE lmdz_comgeom USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm USE lmdz_paramet IMPLICIT NONE ! ! Ehouarn: for now set these parameters to what is in Earth physics... ! (cf ../phylmd/suphel.h) ! this should be generalized... REAL,PARAMETER :: RCPD= & 3.5*(1000.*(6.0221367E+23*1.380658E-23)/28.9644) REAL,PARAMETER :: RCPV= & 4.*(1000.*(6.0221367E+23*1.380658E-23)/18.0153) REAL,PARAMETER :: RCS=RCPV REAL,PARAMETER :: RCW=RCPV REAL,PARAMETER :: RLSTT=2.8345E+6 REAL,PARAMETER :: RLVTT=2.5008E+6 INTEGER :: imjmp1 PARAMETER( imjmp1=iim*jjp1) ! Input variables CHARACTER(len=15) :: tit INTEGER :: iprt,idiag, idiag2 REAL :: dtime REAL :: vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants REAL :: ps(ip1jmp1) ! pression au sol REAL :: p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches REAL :: pk (ip1jmp1,llm ) ! = (p/Pref)**kappa REAL :: teta(ip1jmp1,llm) ! temperature potentielle REAL :: q(ip1jmp1,llm) ! champs eau vapeur REAL :: ql(ip1jmp1,llm) ! champs eau liquide ! Output variables REAL :: d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec ! Local variables REAL :: h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot & , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot ! h_vcol_tot-- total enthalpy of vertical air column ! (air with watter vapour, liquid and solid) (J/m2) ! h_dair_tot-- total enthalpy of dry air (J/m2) ! h_qw_tot---- total enthalpy of watter vapour (J/m2) ! h_ql_tot---- total enthalpy of liquid watter (J/m2) ! h_qs_tot---- total enthalpy of solid watter (J/m2) ! qw_tot------ total mass of watter vapour (kg/m2) ! ql_tot------ total mass of liquid watter (kg/m2) ! qs_tot------ total mass of solid watter (kg/m2) ! ec_tot------ total cinetic energy (kg/m2) REAL :: masse(ip1jmp1,llm) ! masse d'air REAL :: vcont(ip1jm,llm),ucont(ip1jmp1,llm) REAL :: ecin(ip1jmp1,llm) REAL :: zaire(imjmp1) REAL :: zps(imjmp1) REAL :: zairm(imjmp1,llm) REAL :: zecin(imjmp1,llm) REAL :: zpaprs(imjmp1,llm) REAL :: zpk(imjmp1,llm) REAL :: zt(imjmp1,llm) REAL :: zh(imjmp1,llm) REAL :: zqw(imjmp1,llm) REAL :: zql(imjmp1,llm) REAL :: zqs(imjmp1,llm) REAL :: zqw_col(imjmp1) REAL :: zql_col(imjmp1) REAL :: zqs_col(imjmp1) REAL :: zec_col(imjmp1) REAL :: zh_dair_col(imjmp1) REAL :: zh_qw_col(imjmp1), zh_ql_col(imjmp1), zh_qs_col(imjmp1) REAL :: d_h_dair, d_h_qw, d_h_ql, d_h_qs REAL :: airetot, zcpvap, zcwat, zcice INTEGER :: i, k, jj, ij , l ,ip1jjm1 INTEGER :: ndiag ! max number of diagnostic in parallel PARAMETER (ndiag=10) INTEGER :: pas(ndiag) save pas data pas/ndiag*0/ REAL :: h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag) & , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag) & , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag) SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre & , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre IF (planet_type=="earth") THEN !====================================================================== ! Compute Kinetic enrgy CALL covcont ( llm , ucov , vcov , ucont, vcont ) CALL enercin ( vcov , ucov , vcont , ucont , ecin ) CALL massdair( p, masse ) !====================================================================== PRINT*,'MAIS POURQUOI DONC DIAGEDYN NE MARCHE PAS ?' RETURN ! On ne garde les donnees que dans les colonnes i=1,iim DO jj = 1,jjp1 ip1jjm1=iip1*(jj-1) DO ij = 1,iim i=iim*(jj-1)+ij zaire(i)=aire(ij+ip1jjm1) zps(i)=ps(ij+ip1jjm1) ENDDO ENDDO ! 3D arrays DO l = 1, llm DO jj = 1,jjp1 ip1jjm1=iip1*(jj-1) DO ij = 1,iim i=iim*(jj-1)+ij zairm(i,l) = masse(ij+ip1jjm1,l) zecin(i,l) = ecin(ij+ip1jjm1,l) zpaprs(i,l) = p(ij+ip1jjm1,l) zpk(i,l) = pk(ij+ip1jjm1,l) zh(i,l) = teta(ij+ip1jjm1,l) zqw(i,l) = q(ij+ip1jjm1,l) zql(i,l) = ql(ij+ip1jjm1,l) zqs(i,l) = 0. ENDDO ENDDO ENDDO ! Reset variables DO i = 1, imjmp1 zqw_col(i)=0. zql_col(i)=0. zqs_col(i)=0. zec_col(i) = 0. zh_dair_col(i) = 0. zh_qw_col(i) = 0. zh_ql_col(i) = 0. zh_qs_col(i) = 0. ENDDO zcpvap=RCPV zcwat=RCW zcice=RCS ! Compute vertical sum for each atmospheric column ! ================================================ DO k = 1, llm DO i = 1, imjmp1 ! Watter mass zqw_col(i) = zqw_col(i) + zqw(i,k)*zairm(i,k) zql_col(i) = zql_col(i) + zql(i,k)*zairm(i,k) zqs_col(i) = zqs_col(i) + zqs(i,k)*zairm(i,k) ! Cinetic Energy zec_col(i) = zec_col(i) & +zecin(i,k)*zairm(i,k) ! Air enthalpy zt(i,k)= zh(i,k) * zpk(i,k) / RCPD zh_dair_col(i) = zh_dair_col(i) & + RCPD*(1.-zqw(i,k)-zql(i,k)-zqs(i,k))*zairm(i,k)*zt(i,k) zh_qw_col(i) = zh_qw_col(i) & + zcpvap*zqw(i,k)*zairm(i,k)*zt(i,k) zh_ql_col(i) = zh_ql_col(i) & + zcwat*zql(i,k)*zairm(i,k)*zt(i,k) & - RLVTT*zql(i,k)*zairm(i,k) zh_qs_col(i) = zh_qs_col(i) & + zcice*zqs(i,k)*zairm(i,k)*zt(i,k) & - RLSTT*zqs(i,k)*zairm(i,k) END DO ENDDO ! Mean over the planete surface ! ============================= qw_tot = 0. ql_tot = 0. qs_tot = 0. ec_tot = 0. h_vcol_tot = 0. h_dair_tot = 0. h_qw_tot = 0. h_ql_tot = 0. h_qs_tot = 0. airetot=0. DO i=1,imjmp1 qw_tot = qw_tot + zqw_col(i) ql_tot = ql_tot + zql_col(i) qs_tot = qs_tot + zqs_col(i) ec_tot = ec_tot + zec_col(i) h_dair_tot = h_dair_tot + zh_dair_col(i) h_qw_tot = h_qw_tot + zh_qw_col(i) h_ql_tot = h_ql_tot + zh_ql_col(i) h_qs_tot = h_qs_tot + zh_qs_col(i) airetot=airetot+zaire(i) END DO qw_tot = qw_tot/airetot ql_tot = ql_tot/airetot qs_tot = qs_tot/airetot ec_tot = ec_tot/airetot h_dair_tot = h_dair_tot/airetot h_qw_tot = h_qw_tot/airetot h_ql_tot = h_ql_tot/airetot h_qs_tot = h_qs_tot/airetot h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot ! Compute the change of the atmospheric state compare to the one ! stored in "idiag2", and convert it in flux. THis computation ! is performed IF idiag2 /= 0 and IF it is not the first CALL ! for "idiag" ! =================================== IF ( (idiag2>0) .AND. (pas(idiag2) /= 0) ) THEN d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime d_qw = (qw_tot - qw_pre(idiag2) )/dtime d_ql = (ql_tot - ql_pre(idiag2) )/dtime d_qs = (qs_tot - qs_pre(idiag2) )/dtime d_ec = (ec_tot - ec_pre(idiag2) )/dtime d_qt = d_qw + d_ql + d_qs ELSE d_h_vcol = 0. d_h_dair = 0. d_h_qw = 0. d_h_ql = 0. d_h_qs = 0. d_qw = 0. d_ql = 0. d_qs = 0. d_ec = 0. d_qt = 0. ENDIF IF (iprt>=2) THEN WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs 9000 format('Dyn3d. Watter Mass Budget (kg/m2/s)',A15 & ,1i6,10(1pE14.6)) WRITE(6,9001) tit,pas(idiag), d_h_vcol 9001 format('Dyn3d. Enthalpy Budget (W/m2) ',A15,1i6,10(F8.2)) WRITE(6,9002) tit,pas(idiag), d_ec 9002 format('Dyn3d. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F8.2)) ! WRITE(6,9003) tit,pas(idiag), ec_tot 9003 format('Dyn3d. Cinetic Energy (W/m2) ',A15,1i6,10(E15.6)) WRITE(6,9004) tit,pas(idiag), d_h_vcol+d_ec 9004 format('Dyn3d. Total Energy Budget (W/m2) ',A15,1i6,10(F8.2)) END IF ! Store the new atmospheric state in "idiag" pas(idiag)=pas(idiag)+1 h_vcol_pre(idiag) = h_vcol_tot h_dair_pre(idiag) = h_dair_tot h_qw_pre(idiag) = h_qw_tot h_ql_pre(idiag) = h_ql_tot h_qs_pre(idiag) = h_qs_tot qw_pre(idiag) = qw_tot ql_pre(idiag) = ql_tot qs_pre(idiag) = qs_tot ec_pre (idiag) = ec_tot ELSE WRITE(lunout,*)'diagedyn: set to function with Earth parameters' ENDIF ! of if (planet_type=="earth") RETURN END SUBROUTINE diagedyn