! ! $Id: rrtm_ecrt_140gp.F90 2152 2014-11-19 16:52:35Z evignon $ ! !****************** SUBROUTINE RRTM_ECRT_140GP ************************** SUBROUTINE RRTM_ECRT_140GP & & ( K_IPLON, klon , klev, kcld,& & paer , paph , pap,& & pts , pth , pt,& & P_ZEMIS, P_ZEMIW,& & pq , pcco2, pozn, pcldf, ptaucld, ptclear,& & P_CLDFRAC,P_TAUCLD,& & PTAU_LW,& & P_COLDRY,P_WKL,P_WX,& & P_TAUAERL,PAVEL,P_TAVEL,PZ,P_TZ,P_TBOUND,K_NLAYERS,P_SEMISS,K_IREFLECT ) ! Reformatted for F90 by JJMorcrette, ECMWF, 980714 ! Read in atmospheric profile from ECMWF radiation code, and prepare it ! for use in RRTM. Set other RRTM input parameters. Values are passed ! back through existing RRTM arrays and commons. !- Modifications ! 2000-05-15 Deborah Salmond Speed-up USE PARKIND1 ,ONLY : JPIM ,JPRB USE YOMHOOK ,ONLY : LHOOK, DR_HOOK USE PARRRTM , ONLY : JPBAND ,JPXSEC ,JPLAY ,& & JPINPX USE YOERAD , ONLY : NLW ,NOVLP USE YOERDI , ONLY : RCH4 ,RN2O ,RCFC11 ,RCFC12 USE YOESW , ONLY : RAER !------------------------------Arguments-------------------------------- IMPLICIT NONE INTEGER(KIND=JPIM),INTENT(IN) :: KLON! Number of atmospheres (longitudes) INTEGER(KIND=JPIM),INTENT(IN) :: KLEV! Number of atmospheric layers INTEGER(KIND=JPIM),INTENT(IN) :: K_IPLON INTEGER(KIND=JPIM),INTENT(OUT) :: KCLD REAL(KIND=JPRB) ,INTENT(IN) :: PAER(KLON,6,KLEV) ! Aerosol optical thickness REAL(KIND=JPRB) ,INTENT(IN) :: PAPH(KLON,KLEV+1) ! Interface pressures (Pa) REAL(KIND=JPRB) ,INTENT(IN) :: PAP(KLON,KLEV) ! Layer pressures (Pa) REAL(KIND=JPRB) ,INTENT(IN) :: PTS(KLON) ! Surface temperature (K) REAL(KIND=JPRB) ,INTENT(IN) :: PTH(KLON,KLEV+1) ! Interface temperatures (K) REAL(KIND=JPRB) ,INTENT(IN) :: PT(KLON,KLEV) ! Layer temperature (K) REAL(KIND=JPRB) ,INTENT(IN) :: P_ZEMIS(KLON) ! Non-window surface emissivity REAL(KIND=JPRB) ,INTENT(IN) :: P_ZEMIW(KLON) ! Window surface emissivity REAL(KIND=JPRB) ,INTENT(IN) :: PQ(KLON,KLEV) ! H2O specific humidity (mmr) REAL(KIND=JPRB) ,INTENT(IN) :: PCCO2 ! CO2 mass mixing ratio REAL(KIND=JPRB) ,INTENT(IN) :: POZN(KLON,KLEV) ! O3 mass mixing ratio REAL(KIND=JPRB) ,INTENT(IN) :: PCLDF(KLON,KLEV) ! Cloud fraction REAL(KIND=JPRB) ,INTENT(IN) :: PTAUCLD(KLON,KLEV,JPBAND) ! Cloud optical depth !--C.Kleinschmitt REAL(KIND=JPRB) ,INTENT(IN) :: PTAU_LW(KLON,KLEV,NLW) ! LW Optical depth of aerosols !--end REAL(KIND=JPRB) ,INTENT(OUT) :: PTCLEAR REAL(KIND=JPRB) ,INTENT(OUT) :: P_CLDFRAC(JPLAY) ! Cloud fraction REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUCLD(JPLAY,JPBAND) ! Spectral optical thickness REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLDRY(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: P_WKL(JPINPX,JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: P_WX(JPXSEC,JPLAY) ! Amount of trace gases REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUAERL(JPLAY,JPBAND) REAL(KIND=JPRB) ,INTENT(OUT) :: PAVEL(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAVEL(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PZ(0:JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: P_TZ(0:JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: P_TBOUND INTEGER(KIND=JPIM),INTENT(OUT) :: K_NLAYERS REAL(KIND=JPRB) ,INTENT(OUT) :: P_SEMISS(JPBAND) INTEGER(KIND=JPIM),INTENT(OUT) :: K_IREFLECT ! real rch4 ! CH4 mass mixing ratio ! real rn2o ! N2O mass mixing ratio ! real rcfc11 ! CFC11 mass mixing ratio ! real rcfc12 ! CFC12 mass mixing ratio !- from AER !- from PROFILE !- from SURFACE REAL(KIND=JPRB) :: ztauaer(5) REAL(KIND=JPRB) :: zc1j(0:klev) ! total cloud from top and level k REAL(KIND=JPRB) :: Z_AMD ! Effective molecular weight of dry air (g/mol) REAL(KIND=JPRB) :: Z_AMW ! Molecular weight of water vapor (g/mol) REAL(KIND=JPRB) :: Z_AMCO2 ! Molecular weight of carbon dioxide (g/mol) REAL(KIND=JPRB) :: Z_AMO ! Molecular weight of ozone (g/mol) REAL(KIND=JPRB) :: Z_AMCH4 ! Molecular weight of methane (g/mol) REAL(KIND=JPRB) :: Z_AMN2O ! Molecular weight of nitrous oxide (g/mol) REAL(KIND=JPRB) :: Z_AMC11 ! Molecular weight of CFC11 (g/mol) - CFCL3 REAL(KIND=JPRB) :: Z_AMC12 ! Molecular weight of CFC12 (g/mol) - CF2CL2 REAL(KIND=JPRB) :: Z_AVGDRO ! Avogadro's number (molecules/mole) REAL(KIND=JPRB) :: Z_GRAVIT ! Gravitational acceleration (cm/sec2) ! Atomic weights for conversion from mass to volume mixing ratios; these ! are the same values used in ECRT to assure accurate conversion to vmr data Z_AMD / 28.970_JPRB / data Z_AMW / 18.0154_JPRB / data Z_AMCO2 / 44.011_JPRB / data Z_AMO / 47.9982_JPRB / data Z_AMCH4 / 16.043_JPRB / data Z_AMN2O / 44.013_JPRB / data Z_AMC11 / 137.3686_JPRB / data Z_AMC12 / 120.9140_JPRB / data Z_AVGDRO/ 6.02214E23_JPRB / data Z_GRAVIT/ 9.80665E02_JPRB / INTEGER(KIND=JPIM) :: IATM, IMOL, IXMAX, J1, J2, JAE, JB, JK, JL, I_L INTEGER(KIND=JPIM) :: I_NMOL, I_NXMOL REAL(KIND=JPRB) :: Z_AMM, ZCLDLY, ZCLEAR, ZCLOUD, ZEPSEC REAL(KIND=JPRB) :: ZHOOK_HANDLE ! *** ! *** mji ! Initialize all molecular amounts and aerosol optical depths to zero here, ! then pass ECRT amounts into RRTM arrays below. ! DATA ZWKL /MAXPRDW*0.0/ ! DATA ZWX /MAXPROD*0.0/ ! DATA KREFLECT /0/ ! Activate cross section molecules: ! NXMOL - number of cross-sections input by user ! IXINDX(I) - index of cross-section molecule corresponding to Ith ! cross-section specified by user ! = 0 -- not allowed in RRTM ! = 1 -- CCL4 ! = 2 -- CFC11 ! = 3 -- CFC12 ! = 4 -- CFC22 ! DATA KXMOL /2/ ! DATA KXINDX /0,2,3,0,31*0/ ! IREFLECT=KREFLECT ! NXMOL=KXMOL IF (LHOOK) CALL DR_HOOK('RRTM_ECRT_140GP',0,ZHOOK_HANDLE) K_IREFLECT=0 I_NXMOL=2 DO J1=1,35 ! IXINDX(J1)=0 DO J2=1,KLEV P_WKL(J1,J2)=0.0_JPRB ENDDO ENDDO !IXINDX(2)=2 !IXINDX(3)=3 ! Set parameters needed for RRTM execution: IATM = 0 ! IXSECT = 1 ! NUMANGS = 0 ! IOUT = -1 IXMAX = 4 ! Bands 6,7,8 are considered the 'window' and allowed to have a ! different surface emissivity (as in ECMWF). Eli wrote this part.... P_SEMISS(1) = P_ZEMIS(K_IPLON) P_SEMISS(2) = P_ZEMIS(K_IPLON) P_SEMISS(3) = P_ZEMIS(K_IPLON) P_SEMISS(4) = P_ZEMIS(K_IPLON) P_SEMISS(5) = P_ZEMIS(K_IPLON) P_SEMISS(6) = P_ZEMIW(K_IPLON) P_SEMISS(7) = P_ZEMIW(K_IPLON) P_SEMISS(8) = P_ZEMIW(K_IPLON) P_SEMISS(9) = P_ZEMIS(K_IPLON) P_SEMISS(10) = P_ZEMIS(K_IPLON) P_SEMISS(11) = P_ZEMIS(K_IPLON) P_SEMISS(12) = P_ZEMIS(K_IPLON) P_SEMISS(13) = P_ZEMIS(K_IPLON) P_SEMISS(14) = P_ZEMIS(K_IPLON) P_SEMISS(15) = P_ZEMIS(K_IPLON) P_SEMISS(16) = P_ZEMIS(K_IPLON) ! Set surface temperature. P_TBOUND = pts(K_IPLON) ! Install ECRT arrays into RRTM arrays for pressure, temperature, ! and molecular amounts. Pressures are converted from Pascals ! (ECRT) to mb (RRTM). H2O, CO2, O3 and trace gas amounts are ! converted from mass mixing ratio to volume mixing ratio. CO2 ! converted with same dry air and CO2 molecular weights used in ! ECRT to assure correct conversion back to the proper CO2 vmr. ! The dry air column COLDRY (in molec/cm2) is calculated from ! the level pressures PZ (in mb) based on the hydrostatic equation ! and includes a correction to account for H2O in the layer. The ! molecular weight of moist air (amm) is calculated for each layer. ! Note: RRTM levels count from bottom to top, while the ECRT input ! variables count from the top down and must be reversed here. K_NLAYERS = klev I_NMOL = 6 PZ(0) = paph(K_IPLON,klev+1)/100._JPRB P_TZ(0) = pth(K_IPLON,klev+1) DO I_L = 1, KLEV PAVEL(I_L) = pap(K_IPLON,KLEV-I_L+1)/100._JPRB P_TAVEL(I_L) = pt(K_IPLON,KLEV-I_L+1) PZ(I_L) = paph(K_IPLON,KLEV-I_L+1)/100._JPRB P_TZ(I_L) = pth(K_IPLON,KLEV-I_L+1) P_WKL(1,I_L) = pq(K_IPLON,KLEV-I_L+1)*Z_AMD/Z_AMW P_WKL(2,I_L) = pcco2*Z_AMD/Z_AMCO2 P_WKL(3,I_L) = pozn(K_IPLON,KLEV-I_L+1)*Z_AMD/Z_AMO P_WKL(4,I_L) = rn2o*Z_AMD/Z_AMN2O P_WKL(6,I_L) = rch4*Z_AMD/Z_AMCH4 Z_AMM = (1-P_WKL(1,I_L))*Z_AMD + P_WKL(1,I_L)*Z_AMW P_COLDRY(I_L) = (PZ(I_L-1)-PZ(I_L))*1.E3_JPRB*Z_AVGDRO/(Z_GRAVIT*Z_AMM*(1+P_WKL(1,I_L))) ENDDO !- Fill RRTM aerosol arrays with operational ECMWF aerosols, ! do the mixing and distribute over the 16 spectral intervals DO I_L=1,KLEV JK=KLEV-I_L+1 ! DO JAE=1,5 JAE=1 ZTAUAER(JAE) =& & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) P_TAUAERL(I_L, 1)=ZTAUAER(1) P_TAUAERL(I_L, 2)=ZTAUAER(1) JAE=2 ZTAUAER(JAE) =& & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) P_TAUAERL(I_L, 3)=ZTAUAER(2) P_TAUAERL(I_L, 4)=ZTAUAER(2) P_TAUAERL(I_L, 5)=ZTAUAER(2) JAE=3 ZTAUAER(JAE) =& & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) P_TAUAERL(I_L, 6)=ZTAUAER(3) P_TAUAERL(I_L, 8)=ZTAUAER(3) P_TAUAERL(I_L, 9)=ZTAUAER(3) JAE=4 ZTAUAER(JAE) =& & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) P_TAUAERL(I_L, 7)=ZTAUAER(4) JAE=5 ZTAUAER(JAE) =& & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) ! END DO P_TAUAERL(I_L,10)=ZTAUAER(5) P_TAUAERL(I_L,11)=ZTAUAER(5) P_TAUAERL(I_L,12)=ZTAUAER(5) P_TAUAERL(I_L,13)=ZTAUAER(5) P_TAUAERL(I_L,14)=ZTAUAER(5) P_TAUAERL(I_L,15)=ZTAUAER(5) P_TAUAERL(I_L,16)=ZTAUAER(5) ENDDO !--Use LW AOD from own Mie calculations (C. Kleinschmitt) DO I_L=1,KLEV JK=KLEV-I_L+1 DO JAE=1, NLW P_TAUAERL(I_L,JAE) = MAX( PTAU_LW(K_IPLON, JK, JAE), 1e-30 ) ENDDO ENDDO !--end C. Kleinschmitt DO J2=1,KLEV DO J1=1,JPXSEC P_WX(J1,J2)=0.0_JPRB ENDDO ENDDO DO I_L = 1, KLEV !- Set cross section molecule amounts from ECRT; convert to vmr P_WX(2,I_L) = rcfc11*Z_AMD/Z_AMC11 P_WX(3,I_L) = rcfc12*Z_AMD/Z_AMC12 P_WX(2,I_L) = P_COLDRY(I_L) * P_WX(2,I_L) * 1.E-20_JPRB P_WX(3,I_L) = P_COLDRY(I_L) * P_WX(3,I_L) * 1.E-20_JPRB !- Here, all molecules in WKL and WX are in volume mixing ratio; convert to ! molec/cm2 based on COLDRY for use in RRTM DO IMOL = 1, I_NMOL P_WKL(IMOL,I_L) = P_COLDRY(I_L) * P_WKL(IMOL,I_L) ENDDO ! DO IX = 1,JPXSEC ! IF (IXINDX(IX) /= 0) THEN ! WX(IXINDX(IX),L) = COLDRY(L) * WX(IX,L) * 1.E-20_JPRB ! ENDIF ! END DO ENDDO !- Approximate treatment for various cloud overlaps ZCLEAR=1.0_JPRB ZCLOUD=0.0_JPRB ZC1J(0)=0.0_JPRB ZEPSEC=1.E-03_JPRB JL=K_IPLON !++MODIFCODE IF ((NOVLP == 1).OR.(NOVLP ==6).OR.(NOVLP ==8)) THEN !--MODIFCODE DO JK=1,KLEV IF (pcldf(JL,JK) > ZEPSEC) THEN ZCLDLY=pcldf(JL,JK) ZCLEAR=ZCLEAR & & *(1.0_JPRB-MAX( ZCLDLY , ZCLOUD ))& & /(1.0_JPRB-MIN( ZCLOUD , 1.0_JPRB-ZEPSEC )) ZCLOUD = ZCLDLY ZC1J(JK)= 1.0_JPRB - ZCLEAR ELSE ZCLDLY=0.0_JPRB ZCLEAR=ZCLEAR & & *(1.0_JPRB-MAX( ZCLDLY , ZCLOUD ))& & /(1.0_JPRB-MIN( ZCLOUD , 1.0_JPRB-ZEPSEC )) ZCLOUD = ZCLDLY ZC1J(JK)= 1.0_JPRB - ZCLEAR ENDIF ENDDO !++MODIFCODE ELSEIF ((NOVLP == 2).OR.(NOVLP ==7)) THEN !--MODIFCODE DO JK=1,KLEV IF (pcldf(JL,JK) > ZEPSEC) THEN ZCLDLY=pcldf(JL,JK) ZCLOUD = MAX( ZCLDLY , ZCLOUD ) ZC1J(JK) = ZCLOUD ELSE ZCLDLY=0.0_JPRB ZCLOUD = MAX( ZCLDLY , ZCLOUD ) ZC1J(JK) = ZCLOUD ENDIF ENDDO !++MODIFCODE ELSEIF ((NOVLP == 3).OR.(NOVLP ==5)) THEN !--MODIFCODE DO JK=1,KLEV IF (pcldf(JL,JK) > ZEPSEC) THEN ZCLDLY=pcldf(JL,JK) ZCLEAR = ZCLEAR * (1.0_JPRB-ZCLDLY) ZCLOUD = 1.0_JPRB - ZCLEAR ZC1J(JK) = ZCLOUD ELSE ZCLDLY=0.0_JPRB ZCLEAR = ZCLEAR * (1.0_JPRB-ZCLDLY) ZCLOUD = 1.0_JPRB - ZCLEAR ZC1J(JK) = ZCLOUD ENDIF ENDDO ELSEIF (NOVLP == 4) THEN ENDIF PTCLEAR=1.0_JPRB-ZC1J(KLEV) ! Transfer cloud fraction and cloud optical depth to RRTM arrays; ! invert array index for pcldf to go from bottom to top for RRTM !- clear-sky column IF (PTCLEAR > 1.0_JPRB-ZEPSEC) THEN KCLD=0 DO I_L = 1, KLEV P_CLDFRAC(I_L) = 0.0_JPRB ENDDO DO JB=1,JPBAND DO I_L=1,KLEV P_TAUCLD(I_L,JB) = 0.0_JPRB ENDDO ENDDO ELSE !- cloudy column ! The diffusivity factor (Savijarvi, 1997) on the cloud optical ! thickness TAUCLD has already been applied in RADLSW KCLD=1 DO I_L=1,KLEV P_CLDFRAC(I_L) = pcldf(K_IPLON,I_L) ENDDO DO JB=1,JPBAND DO I_L=1,KLEV P_TAUCLD(I_L,JB) = ptaucld(K_IPLON,I_L,JB) ENDDO ENDDO ENDIF ! ------------------------------------------------------------------ IF (LHOOK) CALL DR_HOOK('RRTM_ECRT_140GP',1,ZHOOK_HANDLE) END SUBROUTINE RRTM_ECRT_140GP