! ! $Id: traccoag_mod.F90 4368 2022-12-05 23:01:16Z jyg $ ! MODULE traccoag_mod ! ! This module calculates the concentration of aerosol particles in certain size bins ! considering coagulation and sedimentation. ! CONTAINS SUBROUTINE traccoag(pdtphys, gmtime, debutphy, julien, & presnivs, xlat, xlon, pphis, pphi, & t_seri, pplay, paprs, sh, rh, tr_seri) USE phys_local_var_mod, ONLY: mdw, R2SO4, DENSO4, f_r_wet, surf_PM25_sulf, & & budg_emi_ocs, budg_emi_so2, budg_emi_h2so4, budg_emi_part USE dimphy USE infotrac_phy, ONLY : nbtr_bin, nbtr_sulgas, nbtr, id_SO2_strat USE aerophys USE geometry_mod, ONLY : cell_area, boundslat USE mod_grid_phy_lmdz USE mod_phys_lmdz_mpi_data, ONLY : is_mpi_root USE mod_phys_lmdz_para, only: gather, scatter USE phys_cal_mod, ONLY : year_len, year_cur,mth_cur, day_cur, hour USE sulfate_aer_mod USE phys_local_var_mod, ONLY: stratomask USE YOMCST USE print_control_mod, ONLY: lunout USE strataer_mod IMPLICIT NONE ! Input argument !--------------- REAL,INTENT(IN) :: pdtphys ! Pas d'integration pour la physique (seconde) REAL,INTENT(IN) :: gmtime ! Heure courante LOGICAL,INTENT(IN) :: debutphy ! le flag de l'initialisation de la physique INTEGER,INTENT(IN) :: julien ! Jour julien REAL,DIMENSION(klev),INTENT(IN) :: presnivs! pressions approximat. des milieux couches (en PA) REAL,DIMENSION(klon),INTENT(IN) :: xlat ! latitudes pour chaque point REAL,DIMENSION(klon),INTENT(IN) :: xlon ! longitudes pour chaque point REAL,DIMENSION(klon),INTENT(IN) :: pphis ! geopotentiel du sol REAL,DIMENSION(klon,klev),INTENT(IN) :: pphi ! geopotentiel de chaque couche REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression pour chaque inter-couche (en Pa) REAL,DIMENSION(klon,klev),INTENT(IN) :: sh ! humidite specifique REAL,DIMENSION(klon,klev),INTENT(IN) :: rh ! humidite relative ! Output argument !---------------- REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] ! Local variables !---------------- REAL :: m_aer_emiss_vol_daily ! daily injection mass emission INTEGER :: it, k, i, ilon, ilev, itime, i_int, ieru LOGICAL,DIMENSION(klon,klev) :: is_strato ! true = above tropopause, false = below REAL,DIMENSION(klon,klev) :: m_air_gridbox ! mass of air in every grid box [kg] REAL,DIMENSION(klon_glo,klev,nbtr) :: tr_seri_glo ! Concentration Traceur [U/KgA] REAL,DIMENSION(klev+1) :: altLMDz ! altitude of layer interfaces in m REAL,DIMENSION(klev) :: f_lay_emiss ! fraction of emission for every vertical layer REAL :: f_lay_sum ! sum of layer emission fractions REAL :: alt ! altitude for integral calculation INTEGER,PARAMETER :: n_int_alt=10 ! number of subintervals for integration over Gaussian emission profile REAL,DIMENSION(nbtr_bin) :: r_bin ! particle radius in size bin [m] REAL,DIMENSION(nbtr_bin) :: r_lower ! particle radius at lower bin boundary [m] REAL,DIMENSION(nbtr_bin) :: r_upper ! particle radius at upper bin boundary [m] REAL,DIMENSION(nbtr_bin) :: m_part_dry ! mass of one dry particle in size bin [kg] REAL :: zrho ! Density of air [kg/m3] REAL :: zdz ! thickness of atm. model layer in m REAL,DIMENSION(klev) :: zdm ! mass of atm. model layer in kg REAL,DIMENSION(klon,klev) :: dens_aer ! density of aerosol particles [kg/m3 aerosol] with default H2SO4 mass fraction REAL :: emission ! emission REAL :: theta_min, theta_max ! for SAI computation between two latitudes REAL :: dlat_loc IF (is_mpi_root) THEN WRITE(lunout,*) 'in traccoag: date from phys_cal_mod =',year_cur,'-',mth_cur,'-',day_cur,'-',hour WRITE(lunout,*) 'IN traccoag flag_sulf_emit: ',flag_sulf_emit ENDIF DO it=1, nbtr_bin r_bin(it)=mdw(it)/2. ENDDO !--set boundaries of size bins DO it=1, nbtr_bin IF (it.EQ.1) THEN r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) r_lower(it)=r_bin(it)**2./r_upper(it) ELSEIF (it.EQ.nbtr_bin) THEN r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) r_upper(it)=r_bin(it)**2./r_lower(it) ELSE r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) ENDIF ENDDO IF (debutphy .and. is_mpi_root) THEN DO it=1, nbtr_bin WRITE(lunout,*) 'radius bin', it, ':', r_bin(it), '(from', r_lower(it), 'to', r_upper(it), ')' ENDDO ENDIF !--initialising logical is_strato from stratomask is_strato(:,:)=.FALSE. WHERE (stratomask.GT.0.5) is_strato=.TRUE. ! STRACOMP (H2O, P, t_seri -> aerosol composition (R2SO4)) ! H2SO4 mass fraction in aerosol (%) CALL stracomp(sh,t_seri,pplay) ! aerosol density (gr/cm3) CALL denh2sa(t_seri) ! compute factor for converting dry to wet radius (for every grid box) f_r_wet(:,:) = (dens_aer_dry/(DENSO4(:,:)*1000.)/(R2SO4(:,:)/100.))**(1./3.) !--calculate mass of air in every grid box DO ilon=1, klon DO ilev=1, klev m_air_gridbox(ilon,ilev)=(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*cell_area(ilon) ENDDO ENDDO ! IF (debutphy) THEN ! CALL gather(tr_seri, tr_seri_glo) ! IF (MAXVAL(tr_seri_glo).LT.1.e-30) THEN !--initialising tracer concentrations to zero ! DO it=1, nbtr ! tr_seri(:,:,it)=0.0 ! ENDDO ! ENDIF ! ENDIF !--initialise emission diagnostics budg_emi_ocs(:)=0.0 budg_emi_so2(:)=0.0 budg_emi_h2so4(:)=0.0 budg_emi_part(:)=0.0 !--sulfur emission, depending on chosen scenario (flag_sulf_emit) SELECT CASE(flag_sulf_emit) CASE(0) ! background aerosol ! do nothing (no emission) CASE(1) ! volcanic eruption !--only emit on day of eruption ! stretch emission over one day of Pinatubo eruption DO ieru=1, nErupt IF (year_cur==year_emit_vol(ieru).AND.mth_cur==mth_emit_vol(ieru).AND.& day_cur>=day_emit_vol(ieru).AND.day_cur<(day_emit_vol(ieru)+injdur)) THEN ! ! daily injection mass emission - NL m_aer_emiss_vol_daily = m_aer_emiss_vol(ieru)/(REAL(injdur)*REAL(ponde_lonlat_vol(ieru))) WRITE(lunout,*) 'IN traccoag DD m_aer_emiss_vol(ieru)=',m_aer_emiss_vol(ieru), & 'ponde_lonlat_vol(ieru)=',ponde_lonlat_vol(ieru),'(injdur*ponde_lonlat_vol(ieru))', & (injdur*ponde_lonlat_vol(ieru)),'m_aer_emiss_vol_daily=',m_aer_emiss_vol_daily,'ieru=',ieru WRITE(lunout,*) 'IN traccoag, dlon=',dlon DO i=1,klon !Pinatubo eruption at 15.14N, 120.35E dlat_loc=180./RPI/2.*(boundslat(i,1)-boundslat(i,3)) ! dlat = half difference of boundary latitudes WRITE(lunout,*) 'IN traccoag, dlat=',dlat_loc IF ( xlat(i).GE.xlat_min_vol(ieru)-dlat_loc .AND. xlat(i).LT.xlat_max_vol(ieru)+dlat_loc .AND. & xlon(i).GE.xlon_min_vol(ieru)-dlon .AND. xlon(i).LT.xlon_max_vol(ieru)+dlon ) THEN ! WRITE(lunout,*) 'coordinates of volcanic injection point=',xlat(i),xlon(i),day_cur,mth_cur,year_cur WRITE(lunout,*) 'DD m_aer_emiss_vol_daily=',m_aer_emiss_vol_daily ! compute altLMDz altLMDz(:)=0.0 DO k=1, klev zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg zdz=zdm(k)/zrho !thickness of layer in m altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface ENDDO SELECT CASE(flag_sulf_emit_distrib) CASE(0) ! Gaussian distribution !compute distribution of emission to vertical model layers (based on Gaussian peak in altitude) f_lay_sum=0.0 DO k=1, klev f_lay_emiss(k)=0.0 DO i_int=1, n_int_alt alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_vol(ieru))* & & exp(-0.5*((alt-altemiss_vol(ieru))/sigma_alt_vol(ieru))**2.)* & & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) ENDDO f_lay_sum=f_lay_sum+f_lay_emiss(k) ENDDO CASE(1) ! Uniform distribution ! In this case, parameter sigma_alt_vol(ieru) is considered to be half the ! height of the injection, centered around altemiss_vol(ieru) DO k=1, klev f_lay_emiss(k)=max(min(altemiss_vol(ieru)+sigma_alt_vol(ieru),altLMDz(k+1))- & & max(altemiss_vol(ieru)-sigma_alt_vol(ieru),altLMDz(k)),0.)/(2.*sigma_alt_vol(ieru)) f_lay_sum=f_lay_sum+f_lay_emiss(k) ENDDO END SELECT ! End CASE over flag_sulf_emit_distrib) WRITE(lunout,*) "IN traccoag m_aer_emiss_vol=",m_aer_emiss_vol(ieru) WRITE(lunout,*) "IN traccoag f_lay_emiss=",f_lay_emiss !correct for step integration error f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) !vertically distributed emission DO k=1, klev ! stretch emission over one day of Pinatubo eruption emission=m_aer_emiss_vol_daily*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/1./(86400.-pdtphys) tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol ENDDO ENDIF ! emission grid cell ENDDO ! klon loop WRITE(lunout,*) "IN traccoag (ieru=",ieru,") m_aer_emiss_vol_daily=",m_aer_emiss_vol_daily ENDIF ! emission period ENDDO ! eruption number CASE(2) ! stratospheric aerosol injections (SAI) ! DO i=1,klon ! SAI standard scenario with continuous emission from 1 grid point at the equator ! SAI emission on single month ! SAI continuous emission o dlat_loc=180./RPI/2.*(boundslat(i,1)-boundslat(i,3)) ! dlat = half difference of boundary latitudes IF ( xlat(i).GE.xlat_sai-dlat_loc .AND. xlat(i).LT.xlat_sai+dlat_loc .AND. & & xlon(i).GE.xlon_sai-dlon .AND. xlon(i).LT.xlon_sai+dlon ) THEN ! ! compute altLMDz altLMDz(:)=0.0 DO k=1, klev zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg zdz=zdm(k)/zrho !thickness of layer in m altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface ENDDO SELECT CASE(flag_sulf_emit_distrib) CASE(0) ! Gaussian distribution !compute distribution of emission to vertical model layers (based on Gaussian peak in altitude) f_lay_sum=0.0 DO k=1, klev f_lay_emiss(k)=0.0 DO i_int=1, n_int_alt alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_sai)* & & exp(-0.5*((alt-altemiss_sai)/sigma_alt_sai)**2.)* & & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) ENDDO f_lay_sum=f_lay_sum+f_lay_emiss(k) ENDDO CASE(1) ! Uniform distribution f_lay_sum=0.0 ! In this case, parameter sigma_alt_vol(ieru) is considered to be half ! the height of the injection, centered around altemiss_sai DO k=1, klev f_lay_emiss(k)=max(min(altemiss_sai+sigma_alt_sai,altLMDz(k+1))- & & max(altemiss_sai-sigma_alt_sai,altLMDz(k)),0.)/(2.*sigma_alt_sai) f_lay_sum=f_lay_sum+f_lay_emiss(k) ENDDO END SELECT ! Gaussian or uniform distribution !correct for step integration error f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) !vertically distributed emission DO k=1, klev ! stretch emission over whole year (360d) emission=m_aer_emiss_sai*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/FLOAT(year_len)/86400. tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol ENDDO ! !emission as monodisperse particles with 0.1um dry radius (BIN21) ! !vertically distributed emission ! DO k=1, klev ! ! stretch emission over whole year (360d) ! emission=m_aer_emiss*(mH2SO4mol/mSatom)/m_part_dry(21)/m_air_gridbox(i,k)*f_lay_emiss(k)/FLOAT(year_len)/86400. ! tr_seri(i,k,id_BIN01_strat+20)=tr_seri(i,k,id_BIN01_strat+20)+emission*pdtphys ! budg_emi_part(i)=budg_emi_part(i)+emission*zdm(k)*mSatom/mH2SO4mol ! ENDDO ENDIF ! emission grid cell ENDDO ! klon loop CASE(3) ! --- SAI injection over a single band of longitude and between ! lat_min and lat_max DO i=1,klon ! SAI scenario with continuous emission dlat_loc=180./RPI/2.*(boundslat(i,1)-boundslat(i,3)) ! dlat = half difference of boundary latitudes theta_min = max(xlat(i)-dlat_loc,xlat_min_sai) theta_max = min(xlat(i)+dlat_loc,xlat_max_sai) IF ( xlat(i).GE.xlat_min_sai-dlat_loc .AND. xlat(i).LT.xlat_max_sai+dlat_loc .AND. & & xlon(i).GE.xlon_sai-dlon .AND. xlon(i).LT.xlon_sai+dlon ) THEN ! ! compute altLMDz altLMDz(:)=0.0 DO k=1, klev zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg zdz=zdm(k)/zrho !thickness of layer in m altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface ENDDO SELECT CASE(flag_sulf_emit_distrib) CASE(0) ! Gaussian distribution !compute distribution of emission to vertical model layers (based on !Gaussian peak in altitude) f_lay_sum=0.0 DO k=1, klev f_lay_emiss(k)=0.0 DO i_int=1, n_int_alt alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_sai)* & & exp(-0.5*((alt-altemiss_sai)/sigma_alt_sai)**2.)* & & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) ENDDO f_lay_sum=f_lay_sum+f_lay_emiss(k) ENDDO CASE(1) ! Uniform distribution f_lay_sum=0.0 ! In this case, parameter sigma_alt_vol(ieru) is considered to be half ! the height of the injection, centered around altemiss_sai DO k=1, klev f_lay_emiss(k)=max(min(altemiss_sai+sigma_alt_sai,altLMDz(k+1))- & & max(altemiss_sai-sigma_alt_sai,altLMDz(k)),0.)/(2.*sigma_alt_sai) f_lay_sum=f_lay_sum+f_lay_emiss(k) ENDDO END SELECT ! Gaussian or uniform distribution !correct for step integration error f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) !vertically distributed emission DO k=1, klev ! stretch emission over whole year (360d) emission=m_aer_emiss_sai*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/ & & FLOAT(year_len)/86400.*(sin(theta_max/180.*RPI)-sin(theta_min/180.*RPI))/ & & (sin(xlat_max_sai/180.*RPI)-sin(xlat_min_sai/180.*RPI)) tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol ENDDO ! !emission as monodisperse particles with 0.1um dry radius (BIN21) ! !vertically distributed emission ! DO k=1, klev ! ! stretch emission over whole year (360d) ! emission=m_aer_emiss*(mH2SO4mol/mSatom)/m_part_dry(21)/m_air_gridbox(i,k)*f_lay_emiss(k)/year_len/86400 ! tr_seri(i,k,id_BIN01_strat+20)=tr_seri(i,k,id_BIN01_strat+20)+emission*pdtphys ! budg_emi_part(i)=budg_emi_part(i)+emission*zdm(k)*mSatom/mH2SO4mol ! ENDDO ENDIF ! emission grid cell ENDDO ! klon loop END SELECT ! emission scenario (flag_sulf_emit) !--read background concentrations of OCS and SO2 and lifetimes from input file !--update the variables defined in phys_local_var_mod CALL interp_sulf_input(debutphy,pdtphys,paprs,tr_seri) !--convert OCS to SO2 in the stratosphere CALL ocs_to_so2(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) !--convert SO2 to H2SO4 CALL so2_to_h2so4(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) !--common routine for nucleation and condensation/evaporation with adaptive timestep CALL micphy_tstep(pdtphys,tr_seri,t_seri,pplay,paprs,rh,is_strato) !--call coagulation routine CALL coagulate(pdtphys,mdw,tr_seri,t_seri,pplay,dens_aer,is_strato) !--call sedimentation routine CALL aer_sedimnt(pdtphys, t_seri, pplay, paprs, tr_seri, dens_aer) !--compute mass concentration of PM2.5 sulfate particles (wet diameter and mass) at the surface for health studies surf_PM25_sulf(:)=0.0 DO i=1,klon DO it=1, nbtr_bin IF (mdw(it) .LT. 2.5e-6) THEN !surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas)*m_part(i,1,it) & !assume that particles consist of ammonium sulfate at the surface (132g/mol) !and are dry at T = 20 deg. C and 50 perc. humidity surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas) & & *132./98.*dens_aer_dry*4./3.*RPI*(mdw(it)/2.)**3 & & *pplay(i,1)/t_seri(i,1)/RD*1.e9 ENDIF ENDDO ENDDO ! CALL minmaxsimple(tr_seri(:,:,id_SO2_strat),0.0,0.0,'fin SO2') ! DO it=1, nbtr_bin ! CALL minmaxsimple(tr_seri(:,:,nbtr_sulgas+it),0.0,0.0,'fin bin ') ! ENDDO END SUBROUTINE traccoag END MODULE traccoag_mod