! radiation_ecckd.F90 - ecCKD generalized gas optics model ! (C) Copyright 2020- ECMWF. ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. ! In applying this licence, ECMWF does not waive the privileges and immunities ! granted to it by virtue of its status as an intergovernmental organisation ! nor does it submit to any jurisdiction. ! Author: Robin Hogan ! Email: r.j.hogan@ecmwf.int ! License: see the COPYING file for details ! module radiation_ecckd use parkind1, only : jprb use radiation_gas_constants use radiation_ecckd_gas use radiation_spectral_definition, only : spectral_definition_type implicit none public !--------------------------------------------------------------------- ! This derived type contains all the data needed to describe a ! correlated k-distribution gas optics model created using the ecCKD ! tool type ckd_model_type ! Gas information ! Number of gases integer :: ngas = 0 ! Array of individual-gas data objects type(ckd_gas_type), allocatable :: single_gas(:) ! Mapping from the "gas codes" in the radiation_gas_constants ! module to an index to the single_gas array, where zero means gas ! not present (or part of a composite gas) integer :: i_gas_mapping(0:NMaxGases) ! Coordinates of main look-up table for absorption coeffts ! Number of pressure and temperature points integer :: npress = 0 integer :: ntemp = 0 ! Natural logarithm of first (lowest) pressure (Pa) and increment real(jprb) :: log_pressure1, d_log_pressure ! First temperature profile (K), dimensioned (npress) real(jprb), allocatable :: temperature1(:) ! Temperature increment (K) real(jprb) :: d_temperature ! Look-up table for Planck function ! Number of entries integer :: nplanck = 0 ! Temperature of first element of look-up table and increment (K) real(jprb), allocatable :: temperature1_planck real(jprb), allocatable :: d_temperature_planck ! Planck function (black body flux into a horizontal plane) in W ! m-2, dimensioned (ng,nplanck) real(jprb), allocatable :: planck_function(:,:) ! Normalized solar irradiance in each g point dimensioned (ng) real(jprb), allocatable :: norm_solar_irradiance(:) ! Rayleigh molar scattering coefficient in m2 mol-1 in each g ! point real(jprb), allocatable :: rayleigh_molar_scat(:) ! ! Spectral mapping of g points ! ! Number of wavenumber intervals ! integer :: nwav = 0 ! Number of k terms / g points integer :: ng = 0 ! Spectral definition describing bands and g points type(spectral_definition_type) :: spectral_def ! Shortwave: true, longwave: false logical :: is_sw contains procedure :: read => read_ckd_model procedure :: calc_optical_depth => calc_optical_depth_ckd_model procedure :: print => print_ckd_model procedure :: calc_planck_function procedure :: calc_incoming_sw ! procedure :: deallocate => deallocate_ckd_model end type ckd_model_type contains !--------------------------------------------------------------------- ! Read a complete ecCKD gas optics model from a NetCDF file ! "filename" subroutine read_ckd_model(this, filename, iverbose) use easy_netcdf, only : netcdf_file !use radiation_io, only : nulerr, radiation_abort use yomhook, only : lhook, dr_hook class(ckd_model_type), intent(inout) :: this character(len=*), intent(in) :: filename integer, optional, intent(in) :: iverbose type(netcdf_file) :: file real(jprb), allocatable :: pressure_lut(:) real(jprb), allocatable :: temperature_full(:,:) real(jprb), allocatable :: temperature_planck(:) character(len=512) :: constituent_id integer :: iverbose_local ! Loop counters integer :: jgas, jjgas integer :: istart, inext, nchar, i_gas_code real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_ecckd:read_ckd_model',0,hook_handle) if (present(iverbose)) then iverbose_local = iverbose else iverbose_local = 3 end if call file%open(trim(filename), iverbose=iverbose_local) ! Read temperature and pressure coordinate variables call file%get('pressure', pressure_lut) this%log_pressure1 = log(pressure_lut(1)) this%npress = size(pressure_lut) this%d_log_pressure = log(pressure_lut(2)) - this%log_pressure1 call file%get('temperature', temperature_full) if (allocated(this%temperature1)) deallocate(this%temperature1) allocate(this%temperature1(this%npress)); this%temperature1 = temperature_full(:,1) this%d_temperature = temperature_full(1,2)-temperature_full(1,1) this%ntemp = size(temperature_full,2) deallocate(temperature_full) ! Read Planck function, or solar irradiance and Rayleigh ! scattering coefficient if (file%exists('solar_irradiance')) then this%is_sw = .true. call file%get('solar_irradiance', this%norm_solar_irradiance) this%norm_solar_irradiance = this%norm_solar_irradiance & & / sum(this%norm_solar_irradiance) call file%get('rayleigh_molar_scattering_coeff', & & this%rayleigh_molar_scat) else this%is_sw = .false. call file%get('temperature_planck', temperature_planck) this%nplanck = size(temperature_planck) this%temperature1_planck = temperature_planck(1) this%d_temperature_planck = temperature_planck(2) - temperature_planck(1) deallocate(temperature_planck) call file%get('planck_function', this%planck_function) end if ! Read the spectral definition information into a separate ! derived type call this%spectral_def%read(file); this%ng = this%spectral_def%ng ! Read gases call file%get('n_gases', this%ngas) if (allocated(this%single_gas)) deallocate(this%single_gas) allocate(this%single_gas(this%ngas)) call file%get_global_attribute('constituent_id', constituent_id) nchar = len(trim(constituent_id)) istart = 1 this%i_gas_mapping = 0 DO jgas = 1, this%ngas if (jgas < this%ngas) then inext = istart + scan(constituent_id(istart:nchar), ' ') else inext = nchar+2 end if ! Find gas code i_gas_code = 0 DO jjgas = 1, NMaxGases if (constituent_id(istart:inext-2) == trim(GasLowerCaseName(jjgas))) then i_gas_code = jjgas exit end if end do ! if (i_gas_code == 0) then ! write(nulerr,'(a,a,a)') '*** Error: Gas "', constituent_id(istart:inext-2), & ! & '" not understood' ! call radiation_abort('Radiation configuration error') ! end if this%i_gas_mapping(i_gas_code) = jgas; call this%single_gas(jgas)%read(file, constituent_id(istart:inext-2), i_gas_code) istart = inext end do if (lhook) call dr_hook('radiation_ecckd:read_ckd_model',1,hook_handle) end subroutine read_ckd_model !--------------------------------------------------------------------- ! Print a description of the correlated k-distribution model to the ! "nulout" unit subroutine print_ckd_model(this) use radiation_io, only : nulout use radiation_gas_constants class(ckd_model_type), intent(in) :: this integer :: jgas if (this%is_sw) then write(nulout,'(a)',advance='no') 'ecCKD shortwave gas optics model: ' else write(nulout,'(a)',advance='no') 'ecCKD longwave gas optics model: ' end if write(nulout,'(i0,a,i0,a,i0,a,i0,a)') & & nint(this%spectral_def%wavenumber1(1)), '-', & & nint(this%spectral_def%wavenumber2(size(this%spectral_def%wavenumber2))), & & ' cm-1, ', this%ng, ' g-points in ', this%spectral_def%nband, ' bands' write(nulout,'(a,i0,a,i0,a,i0,a)') ' Look-up table sizes: ', this%npress, ' pressures, ', & & this%ntemp, ' temperatures, ', this%nplanck, ' planck-function entries' write(nulout, '(a)') ' Gases:' DO jgas = 1,this%ngas if (this%single_gas(jgas)%i_gas_code > 0) then write(nulout, '(a,a,a)', advance='no') ' ', & & trim(GasName(this%single_gas(jgas)%i_gas_code)), ': ' else write(nulout, '(a)', advance='no') ' Composite of well-mixed background gases: ' end if select case (this%single_gas(jgas)%i_conc_dependence) case (IConcDependenceNone) write(nulout, '(a)') 'no concentration dependence' case (IConcDependenceLinear) write(nulout, '(a)') 'linear concentration dependence' case (IConcDependenceRelativeLinear) write(nulout, '(a,e14.6)') 'linear concentration dependence relative to a mole fraction of ', & & this%single_gas(jgas)%reference_mole_frac case (IConcDependenceLUT) write(nulout, '(a,i0,a,e14.6,a,e13.6)') 'look-up table with ', this%single_gas(jgas)%n_mole_frac, & & ' log-spaced mole fractions in range ', exp(this%single_gas(jgas)%log_mole_frac1), & & ' to ', exp(this%single_gas(jgas)%log_mole_frac1 & & + this%single_gas(jgas)%n_mole_frac*this%single_gas(jgas)%d_log_mole_frac) end select end do end subroutine print_ckd_model !--------------------------------------------------------------------- ! Compute layerwise optical depth for each g point for ncol columns ! at nlev layers subroutine calc_optical_depth_ckd_model(this, ncol, nlev, istartcol, iendcol, nmaxgas, & & pressure_hl, temperature_fl, mole_fraction_fl, & & optical_depth_fl, rayleigh_od_fl) use yomhook, only : lhook, dr_hook use radiation_constants, only : AccelDueToGravity ! Input variables class(ckd_model_type), intent(in), target :: this ! Number of columns, levels and input gases integer, intent(in) :: ncol, nlev, nmaxgas, istartcol, iendcol ! Pressure at half levels (Pa), dimensioned (ncol,nlev+1) real(jprb), intent(in) :: pressure_hl(ncol,nlev+1) ! Temperature at full levels (K), dimensioned (ncol,nlev) real(jprb), intent(in) :: temperature_fl(istartcol:iendcol,nlev) ! Gas mole fractions at full levels (mol mol-1), dimensioned (ncol,nlev,nmaxgas) real(jprb), intent(in) :: mole_fraction_fl(ncol,nlev,nmaxgas) ! Output variables ! Layer absorption optical depth for each g point real(jprb), intent(out) :: optical_depth_fl(this%ng,nlev,istartcol:iendcol) ! In the shortwave only, the Rayleigh scattering optical depth real(jprb), optional, intent(out) :: rayleigh_od_fl(this%ng,nlev,istartcol:iendcol) ! Local variables real(jprb), pointer :: molar_abs(:,:,:), molar_abs_conc(:,:,:,:) ! Natural logarithm of pressure at full levels real(jprb) :: log_pressure_fl(nlev) ! Optical depth of single gas at one point in space versus ! spectral interval !real(jprb) :: od_single_gas(this%ng) real(jprb) :: multiplier(nlev), simple_multiplier(nlev), global_multiplier, temperature1 ! Indices and weights in temperature, pressure and concentration interpolation real(jprb) :: pindex1, tindex1, cindex1 real(jprb) :: pw1(nlev), pw2(nlev), tw1(nlev), tw2(nlev), cw1(nlev), cw2(nlev) integer :: ip1(nlev), it1(nlev), ic1(nlev) ! Natural logarithm of mole fraction at one point real(jprb) :: log_conc ! Minimum mole fraction in look-up-table real(jprb) :: mole_frac1 integer :: jcol, jlev, jgas, igascode real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth',0,hook_handle) global_multiplier = 1.0_jprb / (AccelDueToGravity * 0.001_jprb * AirMolarMass) DO jcol = istartcol,iendcol log_pressure_fl = log(0.5_jprb * (pressure_hl(jcol,1:nlev)+pressure_hl(jcol,2:nlev+1))) DO jlev = 1,nlev ! Find interpolation points in pressure pindex1 = (log_pressure_fl(jlev)-this%log_pressure1) & & / this%d_log_pressure pindex1 = 1.0_jprb + max(0.0_jprb, min(pindex1, this%npress-1.0001_jprb)) ip1(jlev) = int(pindex1) pw2(jlev) = pindex1 - ip1(jlev) pw1(jlev) = 1.0_jprb - pw2(jlev) ! Find interpolation points in temperature temperature1 = pw1(jlev)*this%temperature1(ip1(jlev)) & & + pw2(jlev)*this%temperature1(ip1(jlev)+1) tindex1 = (temperature_fl(jcol,jlev) - temperature1) & & / this%d_temperature tindex1 = 1.0_jprb + max(0.0_jprb, min(tindex1, this%ntemp-1.0001_jprb)) it1(jlev) = int(tindex1) tw2(jlev) = tindex1 - it1(jlev) tw1(jlev) = 1.0_jprb - tw2(jlev) ! Concentration multiplier simple_multiplier(jlev) = global_multiplier & & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) end do optical_depth_fl(:,:,jcol) = 0.0_jprb DO jgas = 1,this%ngas associate (single_gas => this%single_gas(jgas)) igascode = this%single_gas(jgas)%i_gas_code select case (single_gas%i_conc_dependence) case (IConcDependenceLinear) molar_abs => this%single_gas(jgas)%molar_abs multiplier = simple_multiplier * mole_fraction_fl(jcol,:,igascode) DO jlev = 1,nlev optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & & + (multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & & + (multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) end do case (IConcDependenceRelativeLinear) molar_abs => this%single_gas(jgas)%molar_abs multiplier = simple_multiplier * (mole_fraction_fl(jcol,:,igascode) & & - single_gas%reference_mole_frac) DO jlev = 1,nlev optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & & + (multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & & + (multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) end do case (IConcDependenceNone) ! Composite gases molar_abs => this%single_gas(jgas)%molar_abs DO jlev = 1,nlev optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & & + (simple_multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & & + (simple_multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) end do case (IConcDependenceLUT) ! Logarithmic interpolation in concentration space molar_abs_conc => this%single_gas(jgas)%molar_abs_conc mole_frac1 = exp(single_gas%log_mole_frac1) DO jlev = 1,nlev ! Take care of mole_fraction == 0 log_conc = log(max(mole_fraction_fl(jcol,jlev,igascode), mole_frac1)) cindex1 = (log_conc - single_gas%log_mole_frac1) / single_gas%d_log_mole_frac cindex1 = 1.0_jprb + max(0.0_jprb, min(cindex1, single_gas%n_mole_frac-1.0001_jprb)) ic1(jlev) = int(cindex1) cw2(jlev) = cindex1 - ic1(jlev) cw1(jlev) = 1.0_jprb - cw2(jlev) end do ! od_single_gas = cw1 * (tw1 * (pw1 * molar_abs_conc(:,ip1,it1,ic1) & ! & +pw2 * molar_abs_conc(:,ip1+1,it1,ic1)) & ! & +tw2 * (pw1 * molar_abs_conc(:,ip1,it1+1,ic1) & ! & +pw2 * molar_abs_conc(:,ip1+1,it1+1,ic1))) & ! & +cw2 * (tw1 * (pw1 * molar_abs_conc(:,ip1,it1,ic1+1) & ! & +pw2 * molar_abs_conc(:,ip1+1,it1,ic1+1)) & ! & +tw2 * (pw1 * molar_abs_conc(:,ip1,it1+1,ic1+1) & ! & +pw2 * molar_abs_conc(:,ip1+1,it1+1,ic1+1))) DO jlev = 1,nlev optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & & + (simple_multiplier(jlev) * mole_fraction_fl(jcol,jlev,igascode)) * ( & & (cw1(jlev) * tw1(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev),ic1(jlev)) & & +(cw1(jlev) * tw1(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev),ic1(jlev)) & & +(cw1(jlev) * tw2(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev)+1,ic1(jlev)) & & +(cw1(jlev) * tw2(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev)+1,ic1(jlev)) & & +(cw2(jlev) * tw1(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev),ic1(jlev)+1) & & +(cw2(jlev) * tw1(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev),ic1(jlev)+1) & & +(cw2(jlev) * tw2(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev)+1,ic1(jlev)+1) & & +(cw2(jlev) * tw2(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev)+1,ic1(jlev)+1)) end do end select end associate end do ! Ensure the optical depth is not negative optical_depth_fl(:,:,jcol) = max(0.0_jprb, optical_depth_fl(:,:,jcol)) ! Rayleigh scattering if (this%is_sw .AND. present(rayleigh_od_fl)) then DO jlev = 1,nlev rayleigh_od_fl(:,jlev,jcol) = global_multiplier & & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) * this%rayleigh_molar_scat end do end if end do if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth',1,hook_handle) end subroutine calc_optical_depth_ckd_model !--------------------------------------------------------------------- ! Calculate the Planck function integrated across each of the g ! points of this correlated k-distribution model, for a given ! temperature, where Planck function is defined as the flux emitted ! by a black body (rather than radiance) subroutine calc_planck_function(this, nt, temperature, planck) class(ckd_model_type), intent(in) :: this integer, intent(in) :: nt real(jprb), intent(in) :: temperature(:) ! K real(jprb), intent(out) :: planck(this%ng,nt) ! W m-2 real(jprb) :: tindex1, tw1, tw2 integer :: it1, jt DO jt = 1,nt tindex1 = (temperature(jt) - this%temperature1_planck) & & * (1.0_jprb / this%d_temperature_planck) if (tindex1 >= 0) then ! Normal interpolation, and extrapolation for high temperatures tindex1 = 1.0_jprb + tindex1 it1 = min(int(tindex1), this%nplanck-1) tw2 = tindex1 - it1 tw1 = 1.0_jprb - tw2 planck(:,jt) = tw1 * this%planck_function(:,it1) & & + tw2 * this%planck_function(:,it1+1) else ! Interpolate linearly to zero planck(:,jt) = this%planck_function(:,1) & & * (temperature(jt)/this%temperature1_planck) end if end do end subroutine calc_planck_function !--------------------------------------------------------------------- ! Return the spectral solar irradiance integrated over each g point ! of a solar correlated k-distribution model, given the ! total_solar_irradiance subroutine calc_incoming_sw(this, total_solar_irradiance, & & spectral_solar_irradiance) class(ckd_model_type), intent(in) :: this real(jprb), intent(in) :: total_solar_irradiance ! W m-2 real(jprb), intent(inout) :: spectral_solar_irradiance(:,:) ! W m-2 spectral_solar_irradiance & & = spread(total_solar_irradiance * this%norm_solar_irradiance, & & 2, size(spectral_solar_irradiance,2)) end subroutine calc_incoming_sw end module radiation_ecckd