! !$Id: cdrag_mod.f90 5285 2024-10-28 13:33:29Z evignon $ ! ! MODULE cdrag_mod ! ! This module contains some procedures for calculation of the cdrag ! coefficients for turbulent diffusion at surface ! IMPLICIT NONE CONTAINS ! !**************************************************************************************** ! !r original routine svn3623 ! SUBROUTINE cdrag(knon, nsrf, & speed, t1, q1, zgeop1, & psol, pblh, tsurf, qsurf, z0m, z0h, & ri_in, iri_in, & cdm, cdh, zri, pref, prain, tsol , pat1) USE dimphy USE coare_cp_mod, ONLY: coare_cp USE coare30_flux_cnrm_mod, ONLY: coare30_flux_cnrm USE indice_sol_mod USE print_control_mod, ONLY: lunout, prt_level USE ioipsl_getin_p_mod, ONLY : getin_p USE lmdz_atke_turbulence_ini, ONLY : smmin, ric, cinf, cepsilon, pr_slope, pr_asym, pr_neut USE yomcst_mod_h USE clesphys_mod_h USE yoethf_mod_h IMPLICIT NONE ! ================================================================= c ! ! Objet : calcul des cdrags pour le moment (pcfm) et ! les flux de chaleur sensible et latente (pcfh) d'apr??s ! Louis 1982, Louis 1979, King et al 2001 ! ou Zilitinkevich et al 2002 pour les cas stables, Louis 1979 ! et 1982 pour les cas instables ! ! Modified history: ! writting on the 20/05/2016 ! modified on the 13/12/2016 to be adapted to LMDZ6 ! ! References: ! Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the ! atmosphere. Boundary-Layer Meteorology. 01/1979; 17(2):187-202. ! Louis, J. F., Tiedtke, M. and Geleyn, J. F., 1982: `A short history of the ! operational PBL parametrization at ECMWF'. Workshop on boundary layer ! parametrization, November 1981, ECMWF, Reading, England. ! Page: 19. Equations in Table 1. ! Mascart P, Noilhan J, Giordani H 1995.A MODIFIED PARAMETERIZATION OF FLUX-PROFILE RELATIONSHIPS ! IN THE SURFACE LAYER USING DIFFERENT ROUGHNESS LENGTH VALUES FOR HEAT AND MOMENTUM ! Boundary-Layer Meteorology 72: 331-344 ! Anton Beljaars. May 1992. The parametrization of the planetary boundary layer. ! European Centre for Medium-Range Weather Forecasts. ! Equations: 110-113. Page 40. ! Miller,M.J., A.C.M.Beljaars, T.N.Palmer. 1992. The sensitivity of the ECMWF ! model to the parameterization of evaporation from the tropical oceans. J. ! Climate, 5:418-434. ! King J.C, Connolley, W.M ad Derbyshire S.H. 2001, Sensitivity of Modelled Antarctic climate ! to surface and boundary-layer flux parametrizations ! QJRMS, 127, pp 779-794 ! ! ================================================================= c ! ================================================================= c ! On choisit le couple de fonctions de correction avec deux flags: ! Un pour les cas instables, un autre pour les cas stables ! ! iflag_corr_insta: ! 1: Louis 1979 avec les modifications de Mascart 1995 (z0/= z0h) ! 2: Louis 1982 ! 3: Laurent Li ! ! iflag_corr_sta: ! 1: Louis 1979 avec les modifications de Mascart 1995 (z0/= z0h) ! 2: Louis 1982 ! 3: Laurent Li ! 4: King 2001 (SHARP) ! 5: MO 1st order theory (allow collapse of turbulence) ! ! !***************************************************************** ! Parametres d'entree !***************************************************************** INTEGER, INTENT(IN) :: knon, nsrf ! nombre de points de grille sur l'horizontal + type de surface REAL, DIMENSION(klon), INTENT(IN) :: speed ! module du vent au 1er niveau du modele REAL, DIMENSION(klon), INTENT(IN) :: zgeop1 ! geopotentiel au 1er niveau du modele REAL, DIMENSION(klon), INTENT(IN) :: tsurf ! Surface temperature (K) REAL, DIMENSION(klon), INTENT(IN) :: qsurf ! Surface humidity (Kg/Kg) REAL, DIMENSION(klon), INTENT(INOUT) :: z0m, z0h ! Rugosity at surface (m) REAL, DIMENSION(klon), INTENT(IN) :: ri_in ! Input Richardson 1st layer for first guess calculations of screen var. INTEGER, INTENT(IN) :: iri_in! iflag to activate cdrag calculation using ri1 REAL, DIMENSION(klon), INTENT(IN) :: t1 ! Temperature au premier niveau (K) REAL, DIMENSION(klon), INTENT(IN) :: q1 ! humidite specifique au premier niveau (kg/kg) REAL, DIMENSION(klon), INTENT(IN) :: psol ! pression au sol !------------------ Rajout pour COARE (OT2018) -------------------- REAL, DIMENSION(klon), INTENT(INOUT) :: pblh !hauteur de CL REAL, DIMENSION(klon), INTENT(IN) :: prain !rapport au precipitation REAL, DIMENSION(klon), INTENT(IN) :: tsol !SST imposé sur la surface oceanique REAL, DIMENSION(klon), INTENT(IN) :: pat1 !pression premier lev ! Parametres de sortie !****************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: cdm ! Drag coefficient for momentum REAL, DIMENSION(klon), INTENT(OUT) :: cdh ! Drag coefficient for heat flux REAL, DIMENSION(klon), INTENT(OUT) :: zri ! Richardson number REAL, DIMENSION(klon), INTENT(INOUT) :: pref ! Pression au niveau zgeop/RG ! Variables Locales !****************************************************************** REAL, PARAMETER :: CKAP=0.40, CKAPT=0.42 REAL CEPDU2 REAL ALPHA REAL CB,CC,CD,C2,C3 REAL MU, CM, CH, B, CMstar, CHstar REAL PM, PH, BPRIME INTEGER ng_q1 ! Number of grids that q1 < 0.0 INTEGER ng_qsurf ! Number of grids that qsurf < 0.0 INTEGER i, k REAL zdu2, ztsolv REAL ztvd, zscf REAL zucf, zcr REAL, DIMENSION(klon) :: FM, FH ! stability functions REAL, DIMENSION(klon) :: cdmn, cdhn ! Drag coefficient in neutral conditions REAL zzzcd REAL, DIMENSION(klon) :: sm, prandtl ! Stability function from atke turbulence scheme REAL ri0, ri1, cn ! to have dimensionless term in sm and prandtl !------------------ Rajout (OT2018) -------------------- !------------------ Rajout pour les appelles BULK (OT) -------------------- REAL, DIMENSION(klon,2) :: rugos_itm REAL, DIMENSION(klon,2) :: rugos_ith REAL, PARAMETER :: tol_it_rugos=1.e-4 REAL, DIMENSION(3) :: coeffs LOGICAL :: mixte REAL :: z_0m REAL :: z_0h REAL, DIMENSION(klon) :: cdmm REAL, DIMENSION(klon) :: cdhh !------------------RAJOUT POUR ECUME ------------------- REAL, DIMENSION(klon) :: PQSAT REAL, DIMENSION(klon) :: PSFTH REAL, DIMENSION(klon) :: PFSTQ REAL, DIMENSION(klon) :: PUSTAR REAL, DIMENSION(klon) :: PCD ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PCDN ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PCH ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PCE ! Drag coefficient for momentum REAL, DIMENSION(klon) :: PRI REAL, DIMENSION(klon) :: PRESA REAL, DIMENSION(klon) :: PSSS LOGICAL :: OPRECIP LOGICAL :: OPWEBB LOGICAL :: OPERTFLUX LOGICAL :: LPRECIP LOGICAL :: LPWG LOGICAL, SAVE :: firstcall = .TRUE. !$OMP THREADPRIVATE(firstcall) INTEGER, SAVE :: iflag_corr_sta !$OMP THREADPRIVATE(iflag_corr_sta) INTEGER, SAVE :: iflag_corr_insta !$OMP THREADPRIVATE(iflag_corr_insta) LOGICAL, SAVE :: ok_cdrag_iter !$OMP THREADPRIVATE(ok_cdrag_iter) !===================================================================c ! Valeurs numeriques des constantes !===================================================================c ! Minimum du carre du vent CEPDU2 = (0.1)**2 ! Louis 1982 CB=5.0 CC=5.0 CD=5.0 ! King 2001 C2=0.25 C3=0.0625 ! Louis 1979 BPRIME=4.7 B=9.4 !MO ALPHA=5.0 ! Consistent with atke scheme cn=(1./sqrt(cepsilon))**(2./3.) ri0=2./rpi*(cinf - cn)*ric/cn ri1=-2./rpi * (pr_asym - pr_neut)/pr_slope ! ================================================================= c ! Tests avant de commencer ! Fuxing WANG, 04/03/2015 ! To check if there are negative q1, qsurf values. !====================================================================c ng_q1 = 0 ! Initialization ng_qsurf = 0 ! Initialization DO i = 1, knon IF (q1(i).LT.0.0) ng_q1 = ng_q1 + 1 IF (qsurf(i).LT.0.0) ng_qsurf = ng_qsurf + 1 ENDDO IF (ng_q1.GT.0 .and. prt_level > 5) THEN WRITE(lunout,*)" *** Warning: Negative q1(humidity at 1st level) values in cdrag.F90 !" WRITE(lunout,*)" The total number of the grids is: ", ng_q1 WRITE(lunout,*)" The negative q1 is set to zero " ! abort_message="voir ci-dessus" ! CALL abort_physic(modname,abort_message,1) ENDIF IF (ng_qsurf.GT.0 .and. prt_level > 5) THEN WRITE(lunout,*)" *** Warning: Negative qsurf(humidity at surface) values in cdrag.F90 !" WRITE(lunout,*)" The total number of the grids is: ", ng_qsurf WRITE(lunout,*)" The negative qsurf is set to zero " ! abort_message="voir ci-dessus" ! CALL abort_physic(modname,abort_message,1) ENDIF !=============================================================================c ! Calcul du cdrag !=============================================================================c ! On choisit les fonctions de stabilite utilisees au premier appel !************************************************************************** IF (firstcall) THEN iflag_corr_sta=2 iflag_corr_insta=2 ok_cdrag_iter = .FALSE. CALL getin_p('iflag_corr_sta',iflag_corr_sta) CALL getin_p('iflag_corr_insta',iflag_corr_insta) CALL getin_p('ok_cdrag_iter',ok_cdrag_iter) firstcall = .FALSE. ENDIF !------------------ Rajout (OT2018) -------------------- !--------- Rajout pour itération sur rugosité ---------------- rugos_itm(:,2) = z0m rugos_itm(:,1) = 3.*tol_it_rugos*z0m rugos_ith(:,2) = z0h !cp nouveau rugos_it rugos_ith(:,1) = 3.*tol_it_rugos*z0h !-------------------------------------------------------------------- !xxxxxxxxxxxxxxxxxxxxxxx DO i = 1, knon ! Boucle sur l'horizontal !xxxxxxxxxxxxxxxxxxxxxxx ! calculs preliminaires: !*********************** zdu2 = MAX(CEPDU2, speed(i)**2) pref(i) = EXP(LOG(psol(i)) - zgeop1(i)/(RD*t1(i)* & (1.+ RETV * max(q1(i),0.0)))) ! negative q1 set to zero ztsolv = tsurf(i) * (1.0+RETV*max(qsurf(i),0.0)) ! negative qsurf set to zero ztvd = (t1(i)+zgeop1(i)/RCPD/(1.+RVTMP2*q1(i))) & *(1.+RETV*max(q1(i),0.0)) ! negative q1 set to zero !------------------ Rajout (OT2018) -------------------- !-------------- ON DUPLIQUE POUR METTRE ITERATION SUR OCEAN ------------------------ IF (iri_in.EQ.1) THEN zri(i) = ri_in(i) ENDIF IF (nsrf == is_oce) THEN !------------------ Pour Core 2 choix Core Pur ou Core Mixte -------------------- IF ((choix_bulk > 1 .AND. choix_bulk < 4) .AND. (nsrf .eq. is_oce)) THEN IF(choix_bulk .eq. 2) THEN mixte = .false. ELSE mixte = .true. ENDIF call clc_core_cp ( sqrt(zdu2),t1(i)-tsurf(i),q1(i)-qsurf(i),t1(i),q1(i),& zgeop1(i)/RG, zgeop1(i)/RG, zgeop1(i)/RG,& psol(i),nit_bulk,mixte,& coeffs,z_0m,z_0h) cdmm(i) = coeffs(1) cdhh(i) = coeffs(2) cdm(i)=cdmm(i) cdh(i)=cdhh(i) write(*,*) "clc_core cd ch",cdmm(i),cdhh(i) !------------------ Pour ECUME -------------------- ELSE IF ((choix_bulk .eq. 4) .and. (nsrf .eq. is_oce)) THEN OPRECIP = .false. OPWEBB = .false. OPERTFLUX = .false. IF (nsrf .eq. is_oce) THEN PSSS = 0.0 ENDIF call ini_csts call ecumev6_flux( z_0m,t1(i),tsurf(i),& q1(i),qsurf(i),sqrt(zdu2),zgeop1(i)/RG,PSSS,zgeop1(i)/RG,& psol(i),pat1(i), OPRECIP, OPWEBB,& PSFTH,PFSTQ,PUSTAR,PCD,PCDN,& PCH,PCE,PRI,PRESA,prain,& z_0h,OPERTFLUX,coeffs) cdmm(i) = coeffs(1) cdhh(i) = coeffs(2) cdm(i)=cdmm(i) cdh(i)=cdhh(i) write(*,*) "ecume cd ch",cdmm(i),cdhh(i) !------------------ Pour COARE CNRM -------------------- ELSE IF ((choix_bulk .eq. 5) .and. (nsrf .eq. is_oce)) THEN LPRECIP = .false. LPWG = .false. call ini_csts block real, dimension(1) :: z0m_1d, z_0h_1d, sqrt_zdu2_1d, zgeop1_rg_1d ! convert scalar to 1D for call z0m_1d = z0m z_0h_1d = z0h sqrt_zdu2_1d = sqrt(zdu2) zgeop1_rg_1d=zgeop1(i)/RG call coare30_flux_cnrm(z0m_1d,t1(i),tsurf(i), q1(i), & sqrt_zdu2_1d,zgeop1_rg_1d,zgeop1_rg_1d,psol(i),qsurf(i),PQSAT, & PSFTH,PFSTQ,PUSTAR,PCD,PCDN,PCH,PCE,PRI, & PRESA,prain,pat1(i),z_0h_1d, LPRECIP, LPWG, coeffs) end block cdmm(i) = coeffs(1) cdhh(i) = coeffs(2) cdm(i)=cdmm(i) cdh(i)=cdhh(i) write(*,*) "coare CNRM cd ch",cdmm(i),cdhh(i) !------------------ Pour COARE Maison -------------------- ELSE IF ((choix_bulk .eq. 1) .and. (nsrf .eq. is_oce)) THEN IF ( pblh(i) .eq. 0. ) THEN pblh(i) = 1500. ENDIF write(*,*) "debug size",size(coeffs) call coare_cp(sqrt(zdu2),t1(i)-tsurf(i),q1(i)-qsurf(i),& t1(i),q1(i),& zgeop1(i)/RG,zgeop1(i)/RG,zgeop1(i)/RG,& psol(i), pblh(i),& nit_bulk,& coeffs,z_0m,z_0h) cdmm(i) = coeffs(1) cdhh(i) = coeffs(3) cdm(i)=cdmm(i) cdh(i)=cdhh(i) write(*,*) "coare cd ch",cdmm(i),cdhh(i) ELSE !------------------ Pour La param LMDZ (ocean) -------------------- zri(i) = zgeop1(i)*(ztvd-ztsolv)/(zdu2*ztvd) IF (iri_in.EQ.1) THEN zri(i) = ri_in(i) ENDIF ENDIF !----------------------- Rajout des itérations -------------- DO k=1,nit_bulk ! Coefficients CD neutres : k^2/ln(z/z0) et k^2/(ln(z/z0)*ln(z/z0h)): !******************************************************************** zzzcd=CKAP/LOG(1.+zgeop1(i)/(RG*rugos_itm(i,2))) cdmn(i) = zzzcd*zzzcd cdhn(i) = zzzcd*(CKAP/LOG(1.+zgeop1(i)/(RG*rugos_ith(i,2)))) ! Calcul des fonctions de stabilite FMs, FHs, FMi, FHi : !******************************************************* IF (zri(i) .LT. 0.) THEN SELECT CASE (iflag_corr_insta) CASE (1) ! Louis 1979 + Mascart 1995 MU=LOG(MAX(z0m(i)/z0h(i),0.01)) CMstar=6.8741+2.6933*MU-0.3601*(MU**2)+0.0154*(MU**3) PM=0.5233-0.0815*MU+0.0135*(MU**2)-0.001*(MU**3) CHstar=3.2165+4.3431*MU+0.536*(MU**2)-0.0781*(MU**3) PH=0.5802-0.1571*MU+0.0327*(MU**2)-0.0026*(MU**3) CH=CHstar*B*CKAP/LOG(z0m(i)+zgeop1(i)/(RG*z0m(i))) & & * CKAPT/LOG(z0h(i)+zgeop1(i)/(RG*z0h(i))) & & * ((zgeop1(i)/(RG*z0h(i)))**PH) CM=CMstar*B*CKAP/LOG(z0m(i)+zgeop1(i)/(RG*z0m(i))) & & *CKAP/LOG(z0m(i)+zgeop1(i)/(RG*z0m(i))) & & * ((zgeop1(i)/(RG*z0m(i)))**PM) FM(i)=1.-B*zri(i)/(1.+CM*SQRT(ABS(zri(i)))) FH(i)=1.-B*zri(i)/(1.+CH*SQRT(ABS(zri(i)))) CASE (2) ! Louis 1982 zucf = 1./(1.+3.0*CB*CC*cdmn(i)*SQRT(ABS(zri(i)) & *(1.0+zgeop1(i)/(RG*z0m(i))))) FM(i) = AMAX1((1.-2.0*CB*zri(i)*zucf),f_ri_cd_min) FH(i) = AMAX1((1.-3.0*CB*zri(i)*zucf),f_ri_cd_min) CASE (3) ! Laurent Li FM(i) = MAX(SQRT(1.0-18.0*zri(i)),f_ri_cd_min) FH(i) = MAX(SQRT(1.0-18.0*zri(i)),f_ri_cd_min) CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = 2./rpi * (cinf - cn) * atan(-zri(i)/ri0) + cn prandtl(i) = -2./rpi * (pr_asym - pr_neut) * atan(zri(i)/ri1) + pr_neut FM(i) = MAX((sm(i)**(3./2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1./2.)),f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zucf = 1./(1.+3.0*CB*CC*cdmn(i)*SQRT(ABS(zri(i)) & *(1.0+zgeop1(i)/(RG*z0m(i))))) FM(i) = AMAX1((1.-2.0*CB*zri(i)*zucf),f_ri_cd_min) FH(i) = AMAX1((1.-3.0*CB*zri(i)*zucf),f_ri_cd_min) END SELECT ! Calcul des drags cdmm(i)=cdmn(i)*FM(i) cdhh(i)=f_cdrag_ter*cdhn(i)*FH(i) ! Traitement particulier des cas oceaniques ! on applique Miller et al 1992 en l'absence de gustiness IF (nsrf == is_oce) THEN ! cdh(i)=f_cdrag_oce*cdhn(i)*FH(i) IF (iflag_gusts==0) THEN zcr = (0.0016/(cdmn(i)*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) cdhh(i) =f_cdrag_oce* cdhn(i)*(1.0+zcr**1.25)**(1./1.25) ENDIF cdmm(i)=MIN(cdmm(i),cdmmax) cdhh(i)=MIN(cdhh(i),cdhmax) ! write(*,*) "LMDZ cd ch",cdmm(i),cdhh(i) END IF ELSE !''''''''''''''' ! Cas stables : !''''''''''''''' zri(i) = MIN(20.,zri(i)) SELECT CASE (iflag_corr_sta) CASE (1) ! Louis 1979 + Mascart 1995 FM(i)=MAX(1./((1+BPRIME*zri(i))**2),f_ri_cd_min) FH(i)=FM(i) CASE (2) ! Louis 1982 zscf = SQRT(1.+CD*ABS(zri(i))) FM(i)= AMAX1(1. / (1.+2.*CB*zri(i)/zscf), f_ri_cd_min) FH(i)= AMAX1(1./ (1.+3.*CB*zri(i)*zscf), f_ri_cd_min ) CASE (3) ! Laurent Li FM(i)=MAX(1.0 / (1.0+10.0*zri(i)*(1+8.0*zri(i))),f_ri_cd_min) FH(i)=FM(i) CASE (4) ! King 2001 IF (zri(i) .LT. C2/2.) THEN FM(i)=MAX((1.-zri(i)/C2)**2,f_ri_cd_min) FH(i)= FM(i) ELSE FM(i)=MAX(C3*((C2/zri(i))**2),f_ri_cd_min) FH(i)= FM(i) ENDIF CASE (5) ! MO if (zri(i) .LT. 1./alpha) then FM(i)=MAX((1.-alpha*zri(i))**2,f_ri_cd_min) FH(i)=FM(i) else FM(i)=MAX(1E-7,f_ri_cd_min) FH(i)=FM(i) endif CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = MAX(smmin,cn*(1.-zri(i)/ric)) ! prandlt expression from venayagamoorthy and stretch 2010, Li et al 2019 prandtl(i) = pr_neut*exp(-pr_slope/pr_neut*zri(i)+zri(i)/pr_neut) & + zri(i) * pr_slope FM(i) = MAX((sm(i)**(3./2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1./2.)),f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zscf = SQRT(1.+CD*ABS(zri(i))) FM(i)= AMAX1(1. / (1.+2.*CB*zri(i)/zscf), f_ri_cd_min) FH(i)= AMAX1(1./ (1.+3.*CB*zri(i)*zscf), f_ri_cd_min ) END SELECT ! Calcul des drags cdmm(i)=cdmn(i)*FM(i) cdhh(i)=f_cdrag_ter*cdhn(i)*FH(i) IF (choix_bulk == 0) THEN cdm(i)=cdmn(i)*FM(i) cdh(i)=f_cdrag_ter*cdhn(i)*FH(i) ENDIF IF (nsrf.EQ.is_oce) THEN cdhh(i)=f_cdrag_oce*cdhn(i)*FH(i) cdmm(i)=MIN(cdmm(i),cdmmax) cdhh(i)=MIN(cdhh(i),cdhmax) ENDIF IF (ok_cdrag_iter) THEN rugos_itm(i,1) = rugos_itm(i,2) rugos_ith(i,1) = rugos_ith(i,2) rugos_itm(i,2) = 0.018*cdmm(i) * (speed(i))/RG & + 0.11*14e-6 / SQRT(cdmm(i) * zdu2) !---------- Version SEPARATION DES Z0 ---------------------- IF (iflag_z0_oce==0) THEN rugos_ith(i,2) = rugos_itm(i,2) ELSE IF (iflag_z0_oce==1) THEN rugos_ith(i,2) = 0.40*14e-6 / SQRT(cdmm(i) * zdu2) ENDIF ENDIF ENDIF IF (ok_cdrag_iter) THEN rugos_itm(i,2) = MAX(1.5e-05,rugos_itm(i,2)) rugos_ith(i,2) = MAX(1.5e-05,rugos_ith(i,2)) ENDIF ENDDO IF (nsrf.EQ.is_oce) THEN cdm(i)=MIN(cdmm(i),cdmmax) cdh(i)=MIN(cdhh(i),cdhmax) ENDIF z0m = rugos_itm(:,2) z0h = rugos_ith(:,2) ELSE ! (nsrf == is_oce) zri(i) = zgeop1(i)*(ztvd-ztsolv)/(zdu2*ztvd) IF (iri_in.EQ.1) THEN zri(i) = ri_in(i) ENDIF ! Coefficients CD neutres : k^2/ln(z/z0) et k^2/(ln(z/z0)*ln(z/z0h)): !******************************************************************** zzzcd=CKAP/LOG(1.+zgeop1(i)/(RG*z0m(i))) cdmn(i) = zzzcd*zzzcd cdhn(i) = zzzcd*(CKAP/LOG(1.+zgeop1(i)/(RG*z0h(i)))) ! Calcul des fonctions de stabilit?? FMs, FHs, FMi, FHi : !******************************************************* !'''''''''''''' ! Cas instables !'''''''''''''' IF (zri(i) .LT. 0.) THEN SELECT CASE (iflag_corr_insta) CASE (1) ! Louis 1979 + Mascart 1995 MU=LOG(MAX(z0m(i)/z0h(i),0.01)) CMstar=6.8741+2.6933*MU-0.3601*(MU**2)+0.0154*(MU**3) PM=0.5233-0.0815*MU+0.0135*(MU**2)-0.001*(MU**3) CHstar=3.2165+4.3431*MU+0.536*(MU**2)-0.0781*(MU**3) PH=0.5802-0.1571*MU+0.0327*(MU**2)-0.0026*(MU**3) CH=CHstar*B*CKAP/LOG(z0m(i)+zgeop1(i)/(RG*z0m(i))) & & * CKAPT/LOG(z0h(i)+zgeop1(i)/(RG*z0h(i))) & & * ((zgeop1(i)/(RG*z0h(i)))**PH) CM=CMstar*B*CKAP/LOG(z0m(i)+zgeop1(i)/(RG*z0m(i))) & & *CKAP/LOG(z0m(i)+zgeop1(i)/(RG*z0m(i))) & & * ((zgeop1(i)/(RG*z0m(i)))**PM) FM(i)=1.-B*zri(i)/(1.+CM*SQRT(ABS(zri(i)))) FH(i)=1.-B*zri(i)/(1.+CH*SQRT(ABS(zri(i)))) CASE (2) ! Louis 1982 zucf = 1./(1.+3.0*CB*CC*cdmn(i)*SQRT(ABS(zri(i)) & *(1.0+zgeop1(i)/(RG*z0m(i))))) FM(i) = AMAX1((1.-2.0*CB*zri(i)*zucf),f_ri_cd_min) FH(i) = AMAX1((1.-3.0*CB*zri(i)*zucf),f_ri_cd_min) CASE (3) ! Laurent Li FM(i) = MAX(SQRT(1.0-18.0*zri(i)),f_ri_cd_min) FH(i) = MAX(SQRT(1.0-18.0*zri(i)),f_ri_cd_min) CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = 2./rpi * (cinf - cn) * atan(-zri(i)/ri0) + cn prandtl(i) = -2./rpi * (pr_asym - pr_neut) * atan(zri(i)/ri1) + pr_neut FM(i) = MAX((sm(i)**(3./2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1./2.)),f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zucf = 1./(1.+3.0*CB*CC*cdmn(i)*SQRT(ABS(zri(i)) & *(1.0+zgeop1(i)/(RG*z0m(i))))) FM(i) = AMAX1((1.-2.0*CB*zri(i)*zucf),f_ri_cd_min) FH(i) = AMAX1((1.-3.0*CB*zri(i)*zucf),f_ri_cd_min) END SELECT ! Calcul des drags cdm(i)=cdmn(i)*FM(i) cdh(i)=f_cdrag_ter*cdhn(i)*FH(i) ELSE !''''''''''''''' ! Cas stables : !''''''''''''''' zri(i) = MIN(20.,zri(i)) SELECT CASE (iflag_corr_sta) CASE (1) ! Louis 1979 + Mascart 1995 FM(i)=MAX(1./((1+BPRIME*zri(i))**2),f_ri_cd_min) FH(i)=FM(i) CASE (2) ! Louis 1982 zscf = SQRT(1.+CD*ABS(zri(i))) FM(i)= AMAX1(1. / (1.+2.*CB*zri(i)/zscf), f_ri_cd_min) FH(i)= AMAX1(1./ (1.+3.*CB*zri(i)*zscf), f_ri_cd_min ) CASE (3) ! Laurent Li FM(i)=MAX(1.0 / (1.0+10.0*zri(i)*(1+8.0*zri(i))),f_ri_cd_min) FH(i)=FM(i) CASE (4) ! King 2001 if (zri(i) .LT. C2/2.) then FM(i)=MAX((1.-zri(i)/C2)**2,f_ri_cd_min) FH(i)= FM(i) else FM(i)=MAX(C3*((C2/zri(i))**2),f_ri_cd_min) FH(i)= FM(i) endif CASE (5) ! MO if (zri(i) .LT. 1./alpha) then FM(i)=MAX((1.-alpha*zri(i))**2,f_ri_cd_min) FH(i)=FM(i) else FM(i)=MAX(1E-7,f_ri_cd_min) FH(i)=FM(i) endif CASE (6) ! Consistent with turbulence scheme (in stationary case) derived in atke (2023) sm(i) = MAX(0.,cn*(1.-zri(i)/ric)) prandtl(i) = pr_neut + zri(i) * pr_slope FM(i) = MAX((sm(i)**(3./2.) * sqrt(cepsilon) * (1 - zri(i) / prandtl(i))**(1./2.)),f_ri_cd_min) FH(i) = MAX((FM(i) / prandtl(i)), f_ri_cd_min) CASE default ! Louis 1982 zscf = SQRT(1.+CD*ABS(zri(i))) FM(i)= AMAX1(1. / (1.+2.*CB*zri(i)/zscf), f_ri_cd_min) FH(i)= AMAX1(1./ (1.+3.*CB*zri(i)*zscf), f_ri_cd_min ) END SELECT ! Calcul des drags cdm(i)=cdmn(i)*FM(i) cdh(i)=f_cdrag_ter*cdhn(i)*FH(i) ENDIF ENDIF ! fin du if (nsrf == is_oce) END DO ! Fin de la boucle sur l'horizontal END SUBROUTINE cdrag END MODULE cdrag_mod