MODULE lmdz_lscp IMPLICIT NONE CONTAINS !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ SUBROUTINE lscp(klon,klev,dtime,missing_val, & paprs, pplay, omega, temp, qt, ql_seri, qi_seri, & ptconv, ratqs, sigma_qtherm, & d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & pfraclr, pfracld, & cldfraliq, sigma2_icefracturb,mean_icefracturb, & radocond, radicefrac, rain, snow, & frac_impa, frac_nucl, beta, & prfl, psfl, rhcl, qta, fraca, & tv, pspsk, tla, thl, iflag_cld_th, & iflag_ice_thermo, distcltop, temp_cltop, & tke, tke_dissip, & cell_area, & cf_seri, rvc_seri, u_seri, v_seri, & qsub, qissr, qcld, subfra, issrfra, gamma_cond, & dcf_sub, dcf_con, dcf_mix, & dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi,& dqi_avi, dqvc_avi, flight_dist, flight_h2o, & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv, & qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& dqsmelt, dqsfreez) !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) !-------------------------------------------------------------------------------- ! Date: 01/2021 !-------------------------------------------------------------------------------- ! Aim: Large Scale Clouds and Precipitation (LSCP) ! ! This code is a new version of the fisrtilp.F90 routine, which is itself a ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) ! and 'ilp' (il pleut, L. Li) ! ! Compared to the original fisrtilp code, lscp ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) ! -> consider always precipitation thermalisation (fl_cor_ebil>0) ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) ! -> option "oldbug" by JYG has been removed ! -> iflag_t_glace >0 always ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) ! -> rectangular distribution from L. Li no longer available ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) !-------------------------------------------------------------------------------- ! References: ! ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 ! - Touzze-Peifert Ludo, PhD thesis, p117-124 ! ------------------------------------------------------------------------------- ! Code structure: ! ! P0> Thermalization of the precipitation coming from the overlying layer ! P1> Evaporation of the precipitation (falling from the k+1 level) ! P2> Cloud formation (at the k level) ! P2.A.1> With the PDFs, calculation of cloud properties using the inital ! values of T and Q ! P2.A.2> Coupling between condensed water and temperature ! P2.A.3> Calculation of final quantities associated with cloud formation ! P2.B> Release of Latent heat after cloud formation ! P3> Autoconversion to precipitation (k-level) ! P4> Wet scavenging !------------------------------------------------------------------------------ ! Some preliminary comments (JBM) : ! ! The cloud water that the radiation scheme sees is not the same that the cloud ! water used in the physics and the dynamics ! ! During the autoconversion to precipitation (P3 step), radocond (cloud water used ! by the radiation scheme) is calculated as an average of the water that remains ! in the cloud during the precipitation and not the water remaining at the end ! of the time step. The latter is used in the rest of the physics and advected ! by the dynamics. ! ! In summary: ! ! Radiation: ! xflwc(newmicro)+xfiwc(newmicro) = ! radocond=lwcon(nc)+iwcon(nc) ! ! Notetheless, be aware of: ! ! radocond .NE. ocond(nc) ! i.e.: ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) ! but oliq+(ocond-oliq) .EQ. ocond ! (which is not trivial) !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ! USE de modules contenant des fonctions. USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb USE lmdz_lscp_tools, ONLY : fallice_velocity, distance_to_cloud_top USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat USE lmdz_lscp_precip, ONLY : histprecip_precld, poprecip_precld, poprecip_postcld ! Use du module lmdz_lscp_ini contenant les constantes USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps USE lmdz_lscp_ini, ONLY : seuil_neb, niter_lscp, iflag_evap_prec, DDT0, rain_int_min USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca, cld_expo_con, cld_expo_lsc USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_rain_incloud_vol, iflag_t_glace, t_glace_min USE lmdz_lscp_ini, ONLY : cld_tau_lsc, cld_tau_con, cld_lc_lsc, cld_lc_con USE lmdz_lscp_ini, ONLY : iflag_bergeron, iflag_fisrtilp_qsat, iflag_vice, cice_velo, dice_velo USE lmdz_lscp_ini, ONLY : iflag_autoconversion, ffallv_con, ffallv_lsc, min_frac_th_cld USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG USE lmdz_lscp_ini, ONLY : ok_poprecip USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac IMPLICIT NONE !=============================================================================== ! VARIABLES DECLARATION !=============================================================================== ! INPUT VARIABLES: !----------------- INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels REAL, INTENT(IN) :: dtime ! time step [s] REAL, INTENT(IN) :: missing_val ! missing value for output REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) REAL, DIMENSION(klon,klev), INTENT(IN) :: omega ! vertical velocity [Pa/s] REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] REAL, DIMENSION(klon,klev), INTENT(IN) :: ql_seri ! liquid specific content [kg/kg] REAL, DIMENSION(klon,klev), INTENT(IN) :: qi_seri ! ice specific content [kg/kg] INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics ! CR: if iflag_ice_thermo=2, only convection is active LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active !Inputs associated with thermal plumes REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] ! INPUT/OUTPUT variables !------------------------ REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs,sigma_qtherm ! function of pressure that sets the large-scale ! INPUT/OUTPUT condensation and ice supersaturation !-------------------------------------------------- REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] REAL, DIMENSION(klon,klev), INTENT(INOUT):: rvc_seri ! cloudy water vapor to total water vapor ratio [-] REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] ! INPUT/OUTPUT aviation !-------------------------------------------------- REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! Aviation distance flown within the mesh [m/s/mesh] REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_h2o ! Aviation H2O emitted within the mesh [kg H2O/s/mesh] ! OUTPUT variables !----------------- REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water ! fraction of aerosol scavenging through impaction and nucleation (for on-line) REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] ! for condensation and ice supersaturation REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] ! for contrails and aviation REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcontr !--threshold temperature for contrail formation [K] REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr !--threshold humidity for contrail formation [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr2 !--// (2nd expression more consistent with LMDZ expression of q) REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrN !--fraction of grid favourable to non-persistent contrails REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrP !--fraction of grid favourable to persistent contrails REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_avi !--cloud fraction tendency because of aviation [s-1] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_avi !--specific ice content tendency because of aviation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_avi !--specific cloud water vapor tendency because of aviation [kg/kg/s] ! for POPRECIP REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] ! for thermals REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment ! LOCAL VARIABLES: !---------------- REAL,DIMENSION(klon) :: qice_ini REAL :: zct, zcl,zexpo REAL, DIMENSION(klon,klev) :: ctot REAL, DIMENSION(klon,klev) :: ctot_vol REAL, DIMENSION(klon) :: zqs, zdqs REAL :: zdelta, zcor, zcvm5 REAL, DIMENSION(klon) :: zdqsdT_raw REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T REAL, DIMENSION(klon) :: Tbef,qlbef,DT ! temperature, humidity and temp. variation during lognormal iteration REAL :: num,denom REAL :: cste REAL, DIMENSION(klon) :: zpdf_sig,zpdf_k,zpdf_delta ! lognormal parameters REAL, DIMENSION(klon) :: Zpdf_a,zpdf_b,zpdf_e1,zpdf_e2 ! lognormal intermediate variables REAL :: erf REAL, DIMENSION(klon) :: zfice_th REAL, DIMENSION(klon) :: qcloud, qincloud_mpc REAL, DIMENSION(klon) :: zrfl REAL, DIMENSION(klon) :: zifl, ziflprev REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn REAL, DIMENSION(klon) :: zoliql, zoliqi REAL, DIMENSION(klon) :: zt REAL, DIMENSION(klon,klev) :: zrho REAL, DIMENSION(klon) :: zdz,iwc REAL :: zchau,zfroi REAL, DIMENSION(klon) :: zfice,zneb REAL :: zrain,zsnow,zprecip REAL, DIMENSION(klon) :: dzfice REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb REAL :: zsolid REAL, DIMENSION(klon) :: qtot, qzero REAL :: smallestreal ! Variables for Bergeron process REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl REAL, DIMENSION(klon) :: zqpreci, zqprecl ! Variables precipitation energy conservation REAL, DIMENSION(klon) :: zmqc REAL :: zalpha_tr REAL :: zfrac_lessi REAL, DIMENSION(klon) :: zprec_cond REAL, DIMENSION(klon) :: zlh_solid REAL, DIMENSION(klon) :: ztupnew REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl REAL :: zm_solid ! for liquid -> solid conversion REAL, DIMENSION(klon) :: zrflclr, zrflcld REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr REAL, DIMENSION(klon) :: ziflclr, ziflcld REAL, DIMENSION(klon) :: znebprecipclr, znebprecipcld REAL, DIMENSION(klon) :: tot_zneb, tot_znebn, d_tot_zneb REAL, DIMENSION(klon) :: d_znebprecip_clr_cld, d_znebprecip_cld_clr REAL, DIMENSION(klon,klev) :: velo REAL :: vr, ffallv REAL :: qlmpc, qimpc, rnebmpc REAL, DIMENSION(klon,klev) :: radocondi, radocondl REAL :: effective_zneb REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb ! for condensation and ice supersaturation REAL, DIMENSION(klon) :: qvc, shear REAL :: delta_z !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails) ! Constants used for calculating ratios that are advected (using a parent-child ! formalism). This is not done in the dynamical core because at this moment, ! only isotopes can use this parent-child formalism. Note that the two constants ! are the same as the one use in the dynamical core, being also defined in ! dyn3d_common/infotrac.F90 REAL :: min_qParent, min_ratio INTEGER i, k, n, kk, iter INTEGER, DIMENSION(klon) :: n_i INTEGER ncoreczq INTEGER, DIMENSION(klon,klev) :: mpc_bl_points LOGICAL iftop LOGICAL, DIMENSION(klon) :: lognormale LOGICAL, DIMENSION(klon) :: keepgoing CHARACTER (len = 20) :: modname = 'lscp' CHARACTER (len = 80) :: abort_message !=============================================================================== ! INITIALISATION !=============================================================================== ! Few initial checks IF (iflag_fisrtilp_qsat .LT. 0) THEN abort_message = 'lscp cannot be used with iflag_fisrtilp<0' CALL abort_physic(modname,abort_message,1) ENDIF ! Few initialisations ctot_vol(1:klon,1:klev)=0.0 rneblsvol(1:klon,1:klev)=0.0 smallestreal=1.e-9 znebprecipclr(:)=0.0 znebprecipcld(:)=0.0 mpc_bl_points(:,:)=0 IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' ! AA for 'safety' reasons zalpha_tr = 0. zfrac_lessi = 0. beta(:,:)= 0. ! Initialisation of variables: prfl(:,:) = 0.0 psfl(:,:) = 0.0 d_t(:,:) = 0.0 d_q(:,:) = 0.0 d_ql(:,:) = 0.0 d_qi(:,:) = 0.0 rneb(:,:) = 0.0 pfraclr(:,:)=0.0 pfracld(:,:)=0.0 cldfraliq(:,:)=0. sigma2_icefracturb(:,:)=0. mean_icefracturb(:,:)=0. radocond(:,:) = 0.0 radicefrac(:,:) = 0.0 frac_nucl(:,:) = 1.0 frac_impa(:,:) = 1.0 rain(:) = 0.0 snow(:) = 0.0 zoliq(:)=0.0 zfice(:)=0.0 dzfice(:)=0.0 zfice_turb(:)=0.0 dzfice_turb(:)=0.0 zqprecl(:)=0.0 zqpreci(:)=0.0 zrfl(:) = 0.0 zifl(:) = 0.0 ziflprev(:)=0.0 zneb(:) = seuil_neb zrflclr(:) = 0.0 ziflclr(:) = 0.0 zrflcld(:) = 0.0 ziflcld(:) = 0.0 tot_zneb(:) = 0.0 tot_znebn(:) = 0.0 d_tot_zneb(:) = 0.0 qzero(:) = 0.0 zdistcltop(:)=0.0 ztemp_cltop(:) = 0.0 ztupnew(:)=0.0 distcltop(:,:)=0. temp_cltop(:,:)=0. !--Ice supersaturation gamma_cond(:,:) = 1. qissr(:,:) = 0. issrfra(:,:) = 0. dcf_sub(:,:) = 0. dcf_con(:,:) = 0. dcf_mix(:,:) = 0. dqi_adj(:,:) = 0. dqi_sub(:,:) = 0. dqi_con(:,:) = 0. dqi_mix(:,:) = 0. dqvc_adj(:,:) = 0. dqvc_sub(:,:) = 0. dqvc_con(:,:) = 0. dqvc_mix(:,:) = 0. fcontrN(:,:) = 0. fcontrP(:,:) = 0. Tcontr(:,:) = missing_val qcontr(:,:) = missing_val qcontr2(:,:) = missing_val dcf_avi(:,:) = 0. dqi_avi(:,:) = 0. dqvc_avi(:,:) = 0. qvc(:) = 0. shear(:) = 0. min_qParent = 1.e-30 min_ratio = 1.e-16 !-- poprecip qraindiag(:,:)= 0. qsnowdiag(:,:)= 0. dqreva(:,:) = 0. dqrauto(:,:) = 0. dqrmelt(:,:) = 0. dqrfreez(:,:) = 0. dqrcol(:,:) = 0. dqssub(:,:) = 0. dqsauto(:,:) = 0. dqsrim(:,:) = 0. dqsagg(:,:) = 0. dqsfreez(:,:) = 0. dqsmelt(:,:) = 0. zqupnew(:) = 0. zqvapclr(:) = 0. !c_iso: variable initialisation for iso !=============================================================================== ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM !=============================================================================== ncoreczq=0 DO k = klev, 1, -1 qice_ini = qi_seri(:,k) IF (k.LE.klev-1) THEN iftop=.false. ELSE iftop=.true. ENDIF ! Initialisation temperature and specific humidity ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt ! at the end of the klon loop, a temperature incremtent d_t due to all processes ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated ! d_t = temperature tendency due to lscp ! The temperature of the overlying layer is updated here because needed for thermalization DO i = 1, klon zt(i)=temp(i,k) zq(i)=qt(i,k) IF (.not. iftop) THEN ztupnew(i) = temp(i,k+1) + d_t(i,k+1) zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) !--zqs(i) is the saturation specific humidity in the layer above zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) ENDIF !c_iso init of iso ENDDO ! -------------------------------------------------------------------- ! P1> Precipitation processes, before cloud formation: ! Thermalization of precipitation falling from the overlying layer AND ! Precipitation evaporation/sublimation/melting !--------------------------------------------------------------------- !================================================================ ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) IF ( ok_poprecip .OR. ( iflag_evap_prec .EQ. 6 ) ) THEN CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & zqvapclr, zqupnew, & zrfl, zrflclr, zrflcld, & zifl, ziflclr, ziflcld, & dqreva(:,k), dqssub(:,k) & ) !================================================================ ELSE CALL histprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & zt, ztupnew, zq, zmqc, zneb, znebprecipclr, & zrfl, zrflclr, zrflcld, & zifl, ziflclr, ziflcld, & dqreva(:,k), dqssub(:,k) & ) ENDIF ! (ok_poprecip) ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter !------------------------------------------------------- qtot(:)=zq(:)+zmqc(:) CALL calc_qsat_ecmwf(klon,zt,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) DO i = 1, klon zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) IF (zq(i) .LT. 1.e-15) THEN ncoreczq=ncoreczq+1 zq(i)=1.e-15 ENDIF ! c_iso: do something similar for isotopes ENDDO ! -------------------------------------------------------------------- ! P2> Cloud formation !--------------------------------------------------------------------- ! ! Unlike fisrtilp, we always assume a 'fractional cloud' approach ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution ! is prescribed and depends on large scale variables and boundary layer ! properties) ! The decrease in condensed part due tu latent heating is taken into ! account ! ------------------------------------------------------------------- ! P2.1> With the PDFs (log-normal, bigaussian) ! cloud properties calculation with the initial values of t and q ! ---------------------------------------------------------------- ! initialise gammasat and qincloud_mpc gammasat(:)=1. qincloud_mpc(:)=0. IF (iflag_cld_th.GE.5) THEN ! Cloud cover and content in meshes affected by shallow convection, ! are retrieved from a bi-gaussian distribution of the saturation deficit ! following Jam et al. 2013 IF (iflag_cloudth_vert.LE.2) THEN ! Old version of Arnaud Jam CALL cloudth(klon,klev,k,tv, & zq,qta,fraca, & qcloud,ctot,pspsk,paprs,pplay,tla,thl, & ratqs,zqs,temp, & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN ! Default version of Arnaud Jam CALL cloudth_v3(klon,klev,k,tv, & zq,qta,fraca, & qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & ratqs,sigma_qtherm,zqs,temp, & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) ELSEIF (iflag_cloudth_vert.EQ.6) THEN ! Jean Jouhaud's version, with specific separation between surface and volume ! cloud fraction Decembre 2018 CALL cloudth_v6(klon,klev,k,tv, & zq,qta,fraca, & qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & ratqs,zqs,temp, & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) ELSEIF (iflag_cloudth_vert .EQ. 7) THEN ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment ! for boundary-layer mixed phase clouds CALL cloudth_mpc(klon,klev,k,mpc_bl_points,zt,zq,qta(:,k),fraca(:,k), & pspsk(:,k),paprs(:,k+1),paprs(:,k),pplay(:,k), tla(:,k), & ratqs(:,k),qcloud,qincloud_mpc,zfice_th,ctot(:,k),ctot_vol(:,k), & cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) ENDIF DO i=1,klon rneb(i,k)=ctot(i,k) rneblsvol(i,k)=ctot_vol(i,k) zqn(i)=qcloud(i) !--AB grid-mean vapor in the cloud - we assume saturation adjustment qvc(i) = rneb(i,k) * zqs(i) ENDDO ENDIF IF (iflag_cld_th .LE. 4) THEN ! lognormal lognormale(:) = .TRUE. ELSEIF (iflag_cld_th .GE. 6) THEN ! lognormal distribution when no thermals lognormale(:) = fraca(:,k) < min_frac_th_cld ELSE ! When iflag_cld_th=5, we always assume ! bi-gaussian distribution lognormale(:) = .FALSE. ENDIF DT(:) = 0. n_i(:)=0 Tbef(:)=zt(:) qlbef(:)=0. ! Treatment of non-boundary layer clouds (lognormale) ! We iterate here to take into account the change in qsat(T) and ice fraction ! during the condensation process ! the increment in temperature is calculated using the first principle of ! thermodynamics (enthalpy conservation equation in a mesh composed of a cloud fraction ! and a clear sky fraction) ! note that we assume that the vapor in the cloud is at saturation for this calculation DO iter=1,iflag_fisrtilp_qsat+1 keepgoing(:) = .FALSE. DO i=1,klon ! keepgoing = .true. while convergence is not satisfied IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN ! if not convergence: ! we calculate a new iteration keepgoing(i) = .TRUE. ! P2.2.1> cloud fraction and condensed water mass calculation ! Calculated variables: ! rneb : cloud fraction ! zqn : total water within the cloud ! zcond: mean condensed water within the mesh ! rhcl: clear-sky relative humidity !--------------------------------------------------------------- ! new temperature that only serves in the iteration process: Tbef(i)=Tbef(i)+DT(i) ! Rneb, qzn and zcond for lognormal PDFs qtot(i)=zq(i)+zmqc(i) ENDIF ENDDO ! Calculation of saturation specific humidity and ice fraction CALL calc_qsat_ecmwf(klon,Tbef,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) CALL calc_gammasat(klon,Tbef,qtot,pplay(:,k),gammasat,dgammasatdt) ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) ! cloud phase determination IF (iflag_t_glace.GE.4) THEN ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) ENDIF CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop,ztemp_cltop,zfice,dzfice) !--AB Activates a condensation scheme that allows for !--ice supersaturation and contrails evolution from aviation IF (ok_ice_supersat) THEN !--Calculate the shear value (input for condensation and ice supersat) DO i = 1, klon !--Cell thickness [m] delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * Tbef(i) * RD IF ( iftop ) THEN ! top shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) ELSEIF ( k .EQ. 1 ) THEN ! surface shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) ELSE ! other layers shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) ENDIF ENDDO !--------------------------------------------- !-- CONDENSATION AND ICE SUPERSATURATION -- !--------------------------------------------- CALL condensation_ice_supersat( & klon, dtime, missing_val, & pplay(:,k), paprs(:,k), paprs(:,k+1), & cf_seri(:,k), rvc_seri(:,k), ql_seri(:,k), qi_seri(:,k), & shear, tke_dissip(:,k), cell_area, & Tbef, zq, zqs, gammasat, ratqs(:,k), keepgoing, & rneb(:,k), zqn, qvc, issrfra(:,k), qissr(:,k), & dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), & dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), & dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), & Tcontr(:,k), qcontr(:,k), qcontr2(:,k), fcontrN(:,k), fcontrP(:,k), & flight_dist(:,k), flight_h2o(:,k), & dcf_avi(:,k), dqi_avi(:,k), dqvc_avi(:,k)) ELSE !--generalised lognormal condensation scheme (Bony and Emanuel 2001) CALL condensation_lognormal( & klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & keepgoing, rneb(:,k), zqn, qvc) ENDIF ! .NOT. ok_ice_supersat DO i=1,klon IF (keepgoing(i)) THEN ! If vertical heterogeneity, change fraction by volume as well IF (iflag_cloudth_vert.GE.3) THEN ctot_vol(i,k)=rneb(i,k) rneblsvol(i,k)=ctot_vol(i,k) ENDIF ! P2.2.2> Approximative calculation of temperature variation DT ! due to condensation. ! Calculated variables: ! dT : temperature change due to condensation !--------------------------------------------------------------- IF (zfice(i).LT.1) THEN cste=RLVTT ELSE cste=RLSTT ENDIF ! LEA_R : check formule IF ( ok_unadjusted_clouds ) THEN !--AB We relax the saturation adjustment assumption !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme IF ( rneb(i,k) .GT. eps ) THEN qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) ELSE qlbef(i) = 0. ENDIF ELSE qlbef(i)=max(0.,zqn(i)-zqs(i)) ENDIF num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & *qlbef(i)*dzfice(i) ! here we update a provisory temperature variable that only serves in the iteration ! process DT(i)=num/denom n_i(i)=n_i(i)+1 ENDIF ! end keepgoing ENDDO ! end loop on i ENDDO ! iter=1,iflag_fisrtilp_qsat+1 ! P2.2> Final quantities calculation ! Calculated variables: ! rneb : cloud fraction ! zcond: mean condensed water in the mesh ! zqn : mean water vapor in the mesh ! zfice: ice fraction in clouds ! zt : temperature ! rhcl : clear-sky relative humidity ! ---------------------------------------------------------------- ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top IF (iflag_t_glace.GE.4) THEN CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) distcltop(:,k)=zdistcltop(:) temp_cltop(:,k)=ztemp_cltop(:) ENDIF ! Partition function depending on temperature CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) ! Partition function depending on tke for non shallow-convective clouds IF (iflag_icefrac .GE. 1) THEN CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), omega(:,k), qice_ini, ziflcld, zqn, & rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) ENDIF ! Water vapor update, Phase determination and subsequent latent heat exchange DO i=1, klon ! Overwrite phase partitioning in boundary layer mixed phase clouds when the ! iflag_cloudth_vert=7 and specific param is activated IF (mpc_bl_points(i,k) .GT. 0) THEN zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) ! following line is very strange and probably wrong rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) ! water vapor update and partition function if thermals zq(i) = zq(i) - zcond(i) zfice(i)=zfice_th(i) ELSE ! Checks on rneb, rhcl and zqn IF (rneb(i,k) .LE. 0.0) THEN zqn(i) = 0.0 rneb(i,k) = 0.0 zcond(i) = 0.0 rhcl(i,k)=zq(i)/zqs(i) ELSE IF (rneb(i,k) .GE. 1.0) THEN zqn(i) = zq(i) rneb(i,k) = 1.0 IF ( ok_unadjusted_clouds ) THEN !--AB We relax the saturation adjustment assumption !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme zcond(i) = MAX(0., zqn(i) - qvc(i)) ELSE zcond(i) = MAX(0.0,zqn(i)-zqs(i)) ENDIF rhcl(i,k)=1.0 ELSE IF ( ok_unadjusted_clouds ) THEN !--AB We relax the saturation adjustment assumption !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) ELSE zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) ENDIF ! following line is very strange and probably wrong: rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) IF (iflag_icefrac .GE. 1) THEN IF (lognormale(i)) THEN zcond(i) = zqliq(i) + zqice(i) zfice(i)=zfice_turb(i) rhcl(i,k) = zqvapcl(i) * rneb(i,k) + (zq(i) - zqn(i)) * (1.-rneb(i,k)) ENDIF ENDIF ENDIF ! water vapor update zq(i) = zq(i) - zcond(i) ENDIF ! c_iso : routine that computes in-cloud supersaturation ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) ! temperature update due to phase change zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) ENDDO ! If vertical heterogeneity, change volume fraction IF (iflag_cloudth_vert .GE. 3) THEN ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) rneblsvol(1:klon,k)=ctot_vol(1:klon,k) ENDIF ! ---------------------------------------------------------------- ! P3> Precipitation processes, after cloud formation ! - precipitation formation, melting/freezing ! ---------------------------------------------------------------- !================================================================ ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) IF (ok_poprecip) THEN DO i = 1, klon zoliql(i) = zcond(i) * ( 1. - zfice(i) ) zoliqi(i) = zcond(i) * zfice(i) ENDDO CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), pplay(:,k), & ctot_vol(:,k), ptconv(:,k), & zt, zq, zoliql, zoliqi, zfice, & rneb(:,k), znebprecipclr, znebprecipcld, & zrfl, zrflclr, zrflcld, & zifl, ziflclr, ziflcld, & qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & dqsmelt(:,k), dqsfreez(:,k) & ) DO i = 1, klon zoliq(i) = zoliql(i) + zoliqi(i) IF ( zoliq(i) .GT. 0. ) THEN zfice(i) = zoliqi(i)/zoliq(i) ELSE zfice(i) = 0.0 ENDIF ! calculation of specific content of condensates seen by radiative scheme IF (ok_radocond_snow) THEN radocond(i,k) = zoliq(i) radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) radocondi(i,k)= radocond(i,k)*zfice(i)+qsnowdiag(i,k) ELSE radocond(i,k) = zoliq(i) radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) radocondi(i,k)= radocond(i,k)*zfice(i) ENDIF ENDDO !================================================================ ELSE ! LTP: IF (iflag_evap_prec .GE. 4) THEN !Partitionning between precipitation coming from clouds and that coming from CS !0) Calculate tot_zneb, total cloud fraction above the cloud !assuming a maximum-random overlap (voir Jakob and Klein, 2000) DO i=1, klon tot_znebn(i) = 1. - (1.-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & /(1.-min(zneb(i),1.-smallestreal)) d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) tot_zneb(i) = tot_znebn(i) !1) Cloudy to clear air d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) IF (znebprecipcld(i) .GT. 0.) THEN d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) ELSE d_zrfl_cld_clr(i) = 0. d_zifl_cld_clr(i) = 0. ENDIF !2) Clear to cloudy air d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) - d_tot_zneb(i) - zneb(i))) IF (znebprecipclr(i) .GT. 0) THEN d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) ELSE d_zrfl_clr_cld(i) = 0. d_zifl_clr_cld(i) = 0. ENDIF !Update variables znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) ! c_iso do the same thing for isotopes precip ENDDO ENDIF ! Autoconversion ! ------------------------------------------------------------------------------- ! Initialisation of zoliq and radocond variables DO i = 1, klon zoliq(i) = zcond(i) zoliqi(i)= zoliq(i)*zfice(i) zoliql(i)= zoliq(i)*(1.-zfice(i)) ! c_iso : initialisation of zoliq* also for isotopes zrho(i,k) = pplay(i,k) / zt(i) / RD zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i,k)*RG) iwc(i) = 0. zneb(i) = MAX(rneb(i,k),seuil_neb) radocond(i,k) = zoliq(i)/REAL(niter_lscp+1) radocondi(i,k)=zoliq(i)*zfice(i)/REAL(niter_lscp+1) radocondl(i,k)=zoliq(i)*(1.-zfice(i))/REAL(niter_lscp+1) ENDDO DO n = 1, niter_lscp DO i=1,klon IF (rneb(i,k).GT.0.0) THEN iwc(i) = zrho(i,k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content ENDIF ENDDO CALL fallice_velocity(klon,iwc(:),zt(:),zrho(:,k),pplay(:,k),ptconv(:,k),velo(:,k)) DO i = 1, klon IF (rneb(i,k).GT.0.0) THEN ! Initialization of zrain, zsnow and zprecip: zrain=0. zsnow=0. zprecip=0. ! c_iso same init for isotopes. Externalisation? IF (zneb(i).EQ.seuil_neb) THEN zprecip = 0.0 zsnow = 0.0 zrain= 0.0 ELSE IF (ptconv(i,k)) THEN ! if convective point zcl=cld_lc_con zct=1./cld_tau_con zexpo=cld_expo_con ffallv=ffallv_con ELSE zcl=cld_lc_lsc zct=1./cld_tau_lsc zexpo=cld_expo_lsc ffallv=ffallv_lsc ENDIF ! if vertical heterogeneity is taken into account, we use ! the "true" volume fraction instead of a modified ! surface fraction (which is larger and artificially ! reduces the in-cloud water). ! Liquid water quantity to remove: zchau (Sundqvist, 1978) ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) !......................................................... IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN ! if vertical heterogeneity is taken into account, we use ! the "true" volume fraction instead of a modified ! surface fraction (which is larger and artificially ! reduces the in-cloud water). effective_zneb=ctot_vol(i,k) ELSE effective_zneb=zneb(i) ENDIF IF (iflag_autoconversion .EQ. 2) THEN ! two-steps resolution with niter_lscp=1 sufficient ! we first treat the second term (with exponential) in an explicit way ! and then treat the first term (-q/tau) in an exact way zchau=zoliql(i)*(1.-exp(-dtime/REAL(niter_lscp)*zct & *(1.-exp(-(zoliql(i)/effective_zneb/zcl)**zexpo)))) ELSE ! old explicit resolution with subtimesteps zchau = zct*dtime/REAL(niter_lscp)*zoliql(i) & *(1.0-EXP(-(zoliql(i)/effective_zneb/zcl)**zexpo)) ENDIF ! Ice water quantity to remove (Zender & Kiehl, 1997) ! dqice/dt=1/rho*d(rho*wice*qice)/dz !.................................... IF (iflag_autoconversion .EQ. 2) THEN ! exact resolution, niter_lscp=1 is sufficient but works only ! with iflag_vice=0 IF (zoliqi(i) .GT. 0.) THEN zfroi=(zoliqi(i)-((zoliqi(i)**(-dice_velo)) & +dice_velo*dtime/REAL(niter_lscp)*cice_velo/zdz(i)*ffallv)**(-1./dice_velo)) ELSE zfroi=0. ENDIF ELSE ! old explicit resolution with subtimesteps zfroi = dtime/REAL(niter_lscp)/zdz(i)*zoliqi(i)*velo(i,k) ENDIF zrain = MIN(MAX(zchau,0.0),zoliql(i)) zsnow = MIN(MAX(zfroi,0.0),zoliqi(i)) zprecip = MAX(zrain + zsnow,0.0) ENDIF IF (iflag_autoconversion .GE. 1) THEN ! debugged version with phase conservation through the autoconversion process zoliql(i) = MAX(zoliql(i)-1.*zrain , 0.0) zoliqi(i) = MAX(zoliqi(i)-1.*zsnow , 0.0) zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) ELSE ! bugged version with phase resetting zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) ENDIF !--Diagnostics dqrauto(i,k) = dqrauto(i,k) + zrain / dtime dqsauto(i,k) = dqsauto(i,k) + zsnow / dtime ! c_iso: call isotope_conversion (for readibility) or duplicate radocond(i,k) = radocond(i,k) + zoliq(i)/REAL(niter_lscp+1) radocondl(i,k) = radocondl(i,k) + zoliql(i)/REAL(niter_lscp+1) radocondi(i,k) = radocondi(i,k) + zoliqi(i)/REAL(niter_lscp+1) ENDIF ! rneb >0 ENDDO ! i = 1,klon ENDDO ! n = 1,niter ! Precipitation flux calculation DO i = 1, klon IF (iflag_evap_prec.GE.4) THEN ziflprev(i)=ziflcld(i) ELSE ziflprev(i)=zifl(i)*zneb(i) ENDIF IF (rneb(i,k) .GT. 0.0) THEN ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: ! If T<0C, liquid precip are converted into ice, which leads to an increase in ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly ! taken into account through a linearization of the equations and by approximating ! the liquid precipitation process with a "threshold" process. We assume that ! condensates are not modified during this operation. Liquid precipitation is ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. ! Water vapor increases as well ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) ! Computation of DT if all the liquid precip freezes DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) ! T should not exceed the freezing point ! that is Delta > RTT-zt(i) DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) zt(i) = zt(i) + DeltaT ! water vaporization due to temp. increase Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT ! we add this vaporized water to the total vapor and we remove it from the precip zq(i) = zq(i) + Deltaq ! The three "max" lines herebelow protect from rounding errors zcond(i) = max( zcond(i)- Deltaq, 0. ) ! liquid precipitation converted to ice precip Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) ! iced water budget zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) ! c_iso : mv here condensation of isotopes + redispatchage en precip IF (iflag_evap_prec.GE.4) THEN zrflcld(i) = zrflcld(i)+zqprecl(i) & *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) ziflcld(i) = ziflcld(i)+ zqpreci(i) & *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) znebprecipcld(i) = rneb(i,k) zrfl(i) = zrflcld(i) + zrflclr(i) zifl(i) = ziflcld(i) + ziflclr(i) ELSE zrfl(i) = zrfl(i)+ zqprecl(i) & *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) zifl(i) = zifl(i)+ zqpreci(i) & *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) ENDIF ! c_iso : same for isotopes ENDIF ! rneb>0 ENDDO ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min ! if iflag_evap_prec>=4 IF (iflag_evap_prec.GE.4) THEN DO i=1,klon IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) ELSE znebprecipclr(i)=0.0 ENDIF IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) ELSE znebprecipcld(i)=0.0 ENDIF ENDDO ENDIF ENDIF ! ok_poprecip ! End of precipitation processes after cloud formation ! ---------------------------------------------------- !---------------------------------------------------------------------- ! P4> Calculation of cloud condensates amount seen by radiative scheme !---------------------------------------------------------------------- ! Calculation of the concentration of condensates seen by the radiation scheme ! for liquid phase, we take radocondl ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) ! we recalculate radocondi to account for contributions from the precipitation flux ! TODO: for the moment, we deactivate this option when ok_poprecip=.true. IF ((ok_radocond_snow) .AND. (k .LT. klev) .AND. (.NOT. ok_poprecip)) THEN ! for the solid phase (crystals + snowflakes) ! we recalculate radocondi by summing ! the ice content calculated in the mesh ! + the contribution of the non-evaporated snowfall ! from the overlying layer DO i=1,klon IF (ziflprev(i) .NE. 0.0) THEN radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i)+ziflprev(i)/zrho(i,k+1)/velo(i,k+1) ELSE radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i) ENDIF radocond(i,k)=radocondl(i,k)+radocondi(i,k) ENDDO ENDIF ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme DO i=1,klon IF (radocond(i,k) .GT. 0.) THEN radicefrac(i,k)=MIN(MAX(radocondi(i,k)/radocond(i,k),0.),1.) ENDIF ENDDO ! ---------------------------------------------------------------- ! P5> Wet scavenging ! ---------------------------------------------------------------- !Scavenging through nucleation in the layer DO i = 1,klon IF(zcond(i).GT.zoliq(i)+1.e-10) THEN beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime ELSE beta(i,k) = 0. ENDIF zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN IF (temp(i,k) .GE. t_glace_min) THEN zalpha_tr = a_tr_sca(3) ELSE zalpha_tr = a_tr_sca(4) ENDIF zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi ! Nucleation with a factor of -1 instead of -0.5 zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) ENDIF ENDDO ! Scavenging through impaction in the underlying layer DO kk = k-1, 1, -1 DO i = 1, klon IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN IF (temp(i,kk) .GE. t_glace_min) THEN zalpha_tr = a_tr_sca(1) ELSE zalpha_tr = a_tr_sca(2) ENDIF zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi ENDIF ENDDO ENDDO !------------------------------------------------------------ ! P6 > write diagnostics and outputs !------------------------------------------------------------ !--AB Write diagnostics and tracers for ice supersaturation IF ( ok_ice_supersat ) THEN CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs) CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsati(:,k),zdqs) DO i = 1, klon IF ( zoliq(i) .LE. 0. ) THEN !--If everything was precipitated, the remaining empty cloud is dissipated !--and everything is transfered to the subsaturated clear sky region rneb(i,k) = 0. qvc(i) = 0. ENDIF cf_seri(i,k) = rneb(i,k) IF ( .NOT. ok_unadjusted_clouds ) THEN qvc(i) = zqs(i) * rneb(i,k) ENDIF IF ( zq(i) .GT. min_qParent ) THEN rvc_seri(i,k) = qvc(i) / zq(i) ELSE rvc_seri(i,k) = min_ratio ENDIF !--The MIN barrier is NEEDED because of: !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes) !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot) !--The MAX barrier is a safeguard that should not be activated rvc_seri(i,k) = MIN(MAX(rvc_seri(i,k), 0.), 1.) !--Diagnostics gamma_cond(i,k) = gammasat(i) subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k) qsub(i,k) = zq(i) - qvc(i) - qissr(i,k) qcld(i,k) = qvc(i) + zfice(i) * zoliq(i) ENDDO ENDIF ! Outputs: !------------------------------- ! Precipitation fluxes at layer interfaces ! + precipitation fractions + ! temperature and water species tendencies DO i = 1, klon psfl(i,k)=zifl(i) prfl(i,k)=zrfl(i) pfraclr(i,k)=znebprecipclr(i) pfracld(i,k)=znebprecipcld(i) d_ql(i,k) = (1-zfice(i))*zoliq(i) d_qi(i,k) = zfice(i)*zoliq(i) d_q(i,k) = zq(i) - qt(i,k) ! c_iso: same for isotopes d_t(i,k) = zt(i) - temp(i,k) ENDDO ENDDO ! Rain or snow at the surface (depending on the first layer temperature) DO i = 1, klon snow(i) = zifl(i) rain(i) = zrfl(i) ! c_iso final output ENDDO IF (ncoreczq>0) THEN WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' ENDIF RETURN END SUBROUTINE lscp !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ END MODULE lmdz_lscp