! $Id: disvert.F90 2153 2014-11-24 15:18:11Z ymeurdesoif $ SUBROUTINE disvert() #ifdef CPP_IOIPSL use ioipsl, only: getin #else USE ioipsl_getincom, only: getin #endif use new_unit_m, only: new_unit use assert_m, only: assert IMPLICIT NONE include "dimensions.h" include "paramet.h" include "comvert.h" include "comconst.h" include "iniprint.h" include "logic.h" !------------------------------------------------------------------------------- ! Purpose: Vertical distribution functions for LMDZ. ! Triggered by the levels number llm. !------------------------------------------------------------------------------- ! Read in "comvert.h": ! pa !--- vertical coordinate is close to a PRESSURE COORDINATE FOR P ! < 0.3 * pa (relative variation of p on a model level is < 0.1 %) ! preff !--- REFERENCE PRESSURE (101325 Pa) ! Written in "comvert.h": ! ap(llm+1), bp(llm+1) !--- Ap, Bp HYBRID COEFFICIENTS AT INTERFACES ! aps(llm), bps(llm) !--- Ap, Bp HYBRID COEFFICIENTS AT MID-LAYERS ! dpres(llm) !--- PRESSURE DIFFERENCE FOR EACH LAYER ! presnivs(llm) !--- PRESSURE AT EACH MID-LAYER ! scaleheight !--- VERTICAL SCALE HEIGHT (Earth: 8kms) ! nivsig(llm+1) !--- SIGMA INDEX OF EACH LAYER INTERFACE ! nivsigs(llm) !--- SIGMA INDEX OF EACH MID-LAYER !------------------------------------------------------------------------------- ! Local variables: REAL sig(llm+1), dsig(llm) REAL sig0(llm+1), zz(llm+1) REAL zk, zkm1, dzk1, dzk2, z, k0, k1 INTEGER l, unit REAL dsigmin REAL vert_scale,vert_dzmin,vert_dzlow,vert_z0low,vert_dzmid,vert_z0mid,vert_h_mid,vert_dzhig,vert_z0hig,vert_h_hig REAL alpha, beta, deltaz REAL x character(len=*),parameter :: modname="disvert" character(len=24):: vert_sampling ! (allowed values are "param", "tropo", "strato" and "read") !----------------------------------------------------------------------- WRITE(lunout,*) TRIM(modname)//" starts" ! default scaleheight is 8km for earth scaleheight=8. vert_sampling = merge("strato", "tropo ", ok_strato) ! default value call getin('vert_sampling', vert_sampling) WRITE(lunout,*) TRIM(modname)//' vert_sampling = ' // vert_sampling if (llm==39 .and. vert_sampling=="strato") then dsigmin=0.3 ! Vieille option par défaut pour CMIP5 else dsigmin=1. endif call getin('dsigmin', dsigmin) WRITE(LUNOUT,*) trim(modname), 'Discretisation verticale DSIGMIN=',dsigmin select case (vert_sampling) case ("param") ! On lit les options dans sigma.def: OPEN(99, file='sigma.def', status='old', form='formatted') READ(99, *) scaleheight ! hauteur d'echelle 8. READ(99, *) deltaz ! epaiseur de la premiere couche 0.04 READ(99, *) beta ! facteur d'acroissement en haut 1.3 READ(99, *) k0 ! nombre de couches dans la transition surf READ(99, *) k1 ! nombre de couches dans la transition haute CLOSE(99) alpha=deltaz/(llm*scaleheight) write(lunout, *)trim(modname),':scaleheight, alpha, k0, k1, beta', & scaleheight, alpha, k0, k1, beta alpha=deltaz/tanh(1./k0)*2. zkm1=0. sig(1)=1. do l=1, llm sig(l+1)=(cosh(l/k0))**(-alpha*k0/scaleheight) & *exp(-alpha/scaleheight*tanh((llm-k1)/k0) & *beta**(l-(llm-k1))/log(beta)) zk=-scaleheight*log(sig(l+1)) dzk1=alpha*tanh(l/k0) dzk2=alpha*tanh((llm-k1)/k0)*beta**(l-(llm-k1))/log(beta) write(lunout, *)l, sig(l+1), zk, zk-zkm1, dzk1, dzk2 zkm1=zk enddo sig(llm+1)=0. bp(: llm) = EXP(1. - 1. / sig(: llm)**2) bp(llmp1) = 0. ap = pa * (sig - bp) case("sigma") DO l = 1, llm x = 2*asin(1.) * (l - 0.5) / (llm + 1) dsig(l) = dsigmin + 7.0 * SIN(x)**2 ENDDO dsig = dsig / sum(dsig) sig(llm+1) = 0. DO l = llm, 1, -1 sig(l) = sig(l+1) + dsig(l) ENDDO bp(1)=1. bp(2: llm) = sig(2:llm) bp(llmp1) = 0. ap(:)=0. case("tropo") DO l = 1, llm x = 2*asin(1.) * (l - 0.5) / (llm + 1) dsig(l) = dsigmin + 7.0 * SIN(x)**2 ENDDO dsig = dsig / sum(dsig) sig(llm+1) = 0. DO l = llm, 1, -1 sig(l) = sig(l+1) + dsig(l) ENDDO bp(1)=1. bp(2: llm) = EXP(1. - 1. / sig(2: llm)**2) bp(llmp1) = 0. ap(1)=0. ap(2: llm + 1) = pa * (sig(2: llm + 1) - bp(2: llm + 1)) case("strato") DO l = 1, llm x = 2*asin(1.) * (l - 0.5) / (llm + 1) dsig(l) =(dsigmin + 7. * SIN(x)**2) & *(0.5*(1.-tanh(1.*(x-asin(1.))/asin(1.))))**2 ENDDO dsig = dsig / sum(dsig) sig(llm+1) = 0. DO l = llm, 1, -1 sig(l) = sig(l+1) + dsig(l) ENDDO bp(1)=1. bp(2: llm) = EXP(1. - 1. / sig(2: llm)**2) bp(llmp1) = 0. ap(1)=0. ap(2: llm + 1) = pa * (sig(2: llm + 1) - bp(2: llm + 1)) case("strato_correct") !================================================================== ! Fredho 2014/05/18, Saint-Louis du Senegal ! Cette version de la discretisation strato est corrige au niveau ! du passage des sig aux ap, bp ! la version precedente donne un coude dans l'epaisseur des couches ! vers la tropopause !================================================================== DO l = 1, llm x = 2*asin(1.) * (l - 0.5) / (llm + 1) dsig(l) =(dsigmin + 7. * SIN(x)**2) & *(0.5*(1.-tanh(1.*(x-asin(1.))/asin(1.))))**2 ENDDO dsig = dsig / sum(dsig) sig0(llm+1) = 0. DO l = llm, 1, -1 sig0(l) = sig0(l+1) + dsig(l) ENDDO sig=racinesig(sig0) bp(1)=1. bp(2:llm)=EXP(1.-1./sig(2: llm)**2) bp(llmp1)=0. ap(1)=0. ap(2:llm)=pa*(sig(2:llm)-bp(2:llm)) ap(llm+1)=0. CASE("strato_custom0") !======================================================= ! Version Transitoire ! custumize strato distribution with specific alpha & beta values and function ! depending on llm (experimental and temporary)! SELECT CASE (llm) CASE(55) alpha=0.45 beta=4.0 CASE(63) alpha=0.45 beta=5.0 CASE(71) alpha=3.05 beta=65. CASE(79) alpha=3.20 ! alpha=2.05 ! FLOTT 79 (PLANTE) beta=70. END SELECT ! Or used values provided by user in def file: CALL getin("strato_alpha",alpha) CALL getin("strato_beta",beta) ! Build geometrical distribution scaleheight=7. zz(1)=0. IF (llm==55.OR.llm==63) THEN DO l=1,llm z=zz(l)/scaleheight zz(l+1)=zz(l)+0.03+z*1.5*(1.-TANH(z-0.5))+alpha*(1.+TANH(z-1.5)) & +5.0*EXP((l-llm)/beta) ENDDO ELSEIF (llm==71) THEN !.OR.llm==79) THEN ! FLOTT 79 (PLANTE) DO l=1,llm z=zz(l) zz(l+1)=zz(l)+0.02+0.88*TANH(z/2.5)+alpha*(1.+TANH((z-beta)/15.)) ENDDO ELSEIF (llm==79) THEN DO l=1,llm z=zz(l) zz(l+1)=zz(l)+0.02+0.80*TANH(z/3.8)+alpha*(1+TANH((z-beta)/17.)) & +0.03*TANH(z/.25) ENDDO ENDIF ! of IF (llm==55.OR.llm==63) ... ! Build sigma distribution sig0=EXP(-zz(:)/scaleheight) sig0(llm+1)=0. ! sig=ridders(sig0) sig=racinesig(sig0) ! Compute ap() and bp() bp(1)=1. bp(2:llm)=EXP(1.-1./sig(2:llm)**2) bp(llm+1)=0. ap=pa*(sig-bp) CASE("strato_custom") !=================================================================== ! David Cugnet, François Lott, Lionel Guez, Ehouoarn Millour, Fredho ! 2014/05 ! custumize strato distribution ! Al the parameter are given in km assuming a given scalehigh vert_scale=7. ! scale hight vert_dzmin=0.02 ! width of first layer vert_dzlow=1. ! dz in the low atmosphere vert_z0low=8. ! height at which resolution recches dzlow vert_dzmid=3. ! dz in the mid atmsophere vert_z0mid=70. ! height at which resolution recches dzmid vert_h_mid=20. ! width of the transition vert_dzhig=11. ! dz in the high atmsophere vert_z0hig=80. ! height at which resolution recches dz vert_h_hig=20. ! width of the transition !=================================================================== call getin('vert_scale',vert_scale) call getin('vert_dzmin',vert_dzmin) call getin('vert_dzlow',vert_dzlow) call getin('vert_z0low',vert_z0low) CALL getin('vert_dzmid',vert_dzmid) CALL getin('vert_z0mid',vert_z0mid) call getin('vert_h_mid',vert_h_mid) call getin('vert_dzhig',vert_dzhig) call getin('vert_z0hig',vert_z0hig) call getin('vert_h_hig',vert_h_hig) scaleheight=vert_scale ! for consistency with further computations ! Build geometrical distribution zz(1)=0. DO l=1,llm z=zz(l) zz(l+1)=zz(l)+vert_dzmin+vert_dzlow*TANH(z/vert_z0low)+ & & (vert_dzmid-vert_dzlow)* & & (TANH((z-vert_z0mid)/vert_h_mid)-TANH((-vert_z0mid)/vert_h_mid)) & & +(vert_dzhig-vert_dzmid-vert_dzlow)* & & (TANH((z-vert_z0hig)/vert_h_hig)-TANH((-vert_z0hig)/vert_h_hig)) ENDDO !=================================================================== ! Comment added Fredho 2014/05/18, Saint-Louis, Senegal ! From approximate z to ap, bp, so that p=ap+bp*p0 and p/p0=exp(-z/H) ! sig0 is p/p0 ! sig is an intermediate distribution introduce to estimate bp ! 1. sig0=exp(-z/H) ! 2. inversion of sig0=(1-pa/p0)*sig+(1-pa/p0)*exp(1-1/sig**2) ! 3. bp=exp(1-1/sig**2) ! 4. ap deduced from the combination of 2 and 3 so that sig0=ap/p0+bp !=================================================================== sig0=EXP(-zz(:)/vert_scale) sig0(llm+1)=0. sig=racinesig(sig0) bp(1)=1. bp(2:llm)=EXP(1.-1./sig(2:llm)**2) bp(llm+1)=0. ap=pa*(sig-bp) case("read") ! Read "ap" and "bp". First line is skipped (title line). "ap" ! should be in Pa. First couple of values should correspond to ! the surface, that is : "bp" should be in descending order. call new_unit(unit) open(unit, file="hybrid.txt", status="old", action="read", & position="rewind") read(unit, fmt=*) ! skip title line do l = 1, llm + 1 read(unit, fmt=*) ap(l), bp(l) end do close(unit) call assert(ap(1) == 0., ap(llm + 1) == 0., bp(1) == 1., & bp(llm + 1) == 0., "disvert: bad ap or bp values") case default call abort_gcm("disvert", 'Wrong value for "vert_sampling"', 1) END select DO l=1, llm nivsigs(l) = REAL(l) ENDDO DO l=1, llmp1 nivsig(l)= REAL(l) ENDDO write(lunout, *) trim(modname),': BP ' write(lunout, *) bp write(lunout, *) trim(modname),': AP ' write(lunout, *) ap write(lunout, *) 'Niveaux de pressions approximatifs aux centres des' write(lunout, *)'couches calcules pour une pression de surface =', preff write(lunout, *) 'et altitudes equivalentes pour une hauteur d echelle de ' write(lunout, *) scaleheight,' km' DO l = 1, llm dpres(l) = bp(l) - bp(l+1) presnivs(l) = 0.5 *( ap(l)+bp(l)*preff + ap(l+1)+bp(l+1)*preff ) write(lunout, *)'PRESNIVS(', l, ')=', presnivs(l), ' Z ~ ', & log(preff/presnivs(l))*scaleheight & , ' DZ ~ ', scaleheight*log((ap(l)+bp(l)*preff)/ & max(ap(l+1)+bp(l+1)*preff, 1.e-10)) ENDDO write(lunout, *) trim(modname),': PRESNIVS ' write(lunout, *) presnivs CONTAINS !------------------------------------------------------------------------------- ! FUNCTION ridders(sig) RESULT(sg) ! !------------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------------- ! Purpose: Search for s solving (Pa/Preff)*s+(1-Pa/Preff)*EXP(1-1./s**2)=sg ! Notes: Uses Ridders' method, quite robust. Initial bracketing: 0<=sg<=1. ! Reference: Ridders, C. F. J. "A New Algorithm for Computing a Single Root of a ! Real Continuous Function" IEEE Trans. Circuits Systems 26, 979-980, 1979 !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: sig(:) REAL :: sg(SIZE(sig)) !------------------------------------------------------------------------------- ! Local variables: INTEGER :: it, ns, maxit REAL :: c1, c2, x1, x2, x3, x4, f1, f2, f3, f4, s, xx, distrib !------------------------------------------------------------------------------- ns=SIZE(sig); maxit=9999 c1=Pa/Preff; c2=1.-c1 DO l=1,ns xx=HUGE(1.) x1=0.0; f1=distrib(x1,c1,c2,sig(l)) x2=1.0; f2=distrib(x2,c1,c2,sig(l)) DO it=1,maxit x3=0.5*(x1+x2); f3=distrib(x3,c1,c2,sig(l)) s=SQRT(f3**2-f1*f2); IF(s==0.) EXIT x4=x3+(x3-x1)*(SIGN(1.,f1-f2)*f3/s); IF(ABS(10.*LOG(x4-xx))<=1E-5) EXIT xx=x4; f4=distrib(x4,c1,c2,sig(l)); IF(f4==0.) EXIT IF(SIGN(f3,f4)/=f3) THEN; x1=x3; f1=f3; x2=xx; f2=f4 ELSE IF(SIGN(f1,f4)/=f1) THEN; x2=xx; f2=f4 ELSE IF(SIGN(f2,f4)/=f2) THEN; x1=xx; f1=f4 ELSE; CALL abort_gcm("ridders",'Algorithm failed (which is odd...') END IF IF(ABS(10.*LOG(ABS(x2-x1)))<=1E-5) EXIT !--- ERROR ON SIG <= 0.01m END DO IF(it==maxit+1) WRITE(lunout,'(a,i3)')'WARNING in ridder: failed to converg& &e for level ',l sg(l)=xx END DO sg(1)=1.; sg(ns)=0. END FUNCTION ridders FUNCTION racinesig(sig) RESULT(sg) ! !------------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------------- ! Fredho 2014/05/18 ! Purpose: Search for s solving (Pa/Preff)*sg+(1-Pa/Preff)*EXP(1-1./sg**2)=s ! Notes: Uses Newton Raphson search !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: sig(:) REAL :: sg(SIZE(sig)) !------------------------------------------------------------------------------- ! Local variables: INTEGER :: it, ns, maxit REAL :: c1, c2, x1, x2, x3, x4, f1, f2, f3, f4, s, xx, distrib !------------------------------------------------------------------------------- ns=SIZE(sig); maxit=100 c1=Pa/Preff; c2=1.-c1 DO l=2,ns-1 sg(l)=sig(l) DO it=1,maxit f1=exp(1-1./sg(l)**2)*(1.-c1) sg(l)=sg(l)-(c1*sg(l)+f1-sig(l))/(c1+2*f1*sg(l)**(-3)) ENDDO ! print*,'SSSSIG ',sig(l),sg(l),c1*sg(l)+exp(1-1./sg(l)**2)*(1.-c1) ENDDO sg(1)=1.; sg(ns)=0. END FUNCTION racinesig END SUBROUTINE disvert !------------------------------------------------------------------------------- FUNCTION distrib(x,c1,c2,x0) RESULT(res) ! !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: x, c1, c2, x0 REAL :: res !------------------------------------------------------------------------------- res=c1*x+c2*EXP(1-1/(x**2))-x0 END FUNCTION distrib