! $Header$ SUBROUTINE hbtm2l(knon, paprs, pplay, t2m, t10m, q2m, q10m, ustar, flux_t, flux_q, u, v, t, q, pblh, therm, plcl, cape, & cin, eauliq, ctei, d_qt, d_thv, dlt_2, xhis, posint, omega, diagok) USE yomcst_mod_h USE dimphy USE yoethf_mod_h IMPLICIT NONE ! *************************************************************** ! * * ! * HBTM2L D'apres Holstag&Boville et Troen&Mahrt * ! * JAS 47 BLM * ! * Algorithmes These Anne Mathieu * ! * Critere d'Entrainement Peter Duynkerke (JAS 50) * ! * written by : Anne MATHIEU & Alain LAHELLEC, 22/11/99 * ! * features : implem. exces Mathieu * ! *************************************************************** ! * mods : decembre 99 passage th a niveau plus bas. voir fixer * ! *************************************************************** ! * fin therm a la HBTM passage a forme Mathieu 12/09/2001 * ! *************************************************************** ! AM Fev 2003 Adaptation a LMDZ version couplee * ! * ! Pour le moment on fait passer en argument les grdeurs de surface : ! flux, t,q2m, t,q10m, on va utiliser systematiquement les grdeurs a 2m ms ! on garde la possibilite de changer si besoin est (jusqu'a present la ! forme de HB avec le 1er niveau modele etait conservee) * ! *************************************************************** ! * re-ecriture complete Alain Mars 2012 dans LMDZ5V5 * ! *************************************************************** REAL rlvcp, reps ! Arguments: INTEGER knon ! nombre de points a calculer ! AM REAL t2m(klon), t10m(klon) ! temperature a 2 et 10m REAL q2m(klon), q10m(klon) ! q a 2 et 10m REAL ustar(klon) REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) REAL pplay(klon, klev) ! pression au milieu de couche (Pa) REAL flux_t(klon, klev), flux_q(klon, klev) ! Flux REAL u(klon, klev) ! vitesse U (m/s) REAL v(klon, klev) ! vitesse V (m/s) REAL t(klon, klev) ! temperature (K) REAL q(klon, klev) ! vapeur d'eau (kg/kg) INTEGER isommet REAL vk PARAMETER (vk=0.35) ! Von Karman => passer a .41 ! cf U.Olgstrom REAL ricr PARAMETER (ricr=0.4) REAL fak PARAMETER (fak=8.5) ! b calcul du Prandtl et de dTetas REAL fakn PARAMETER (fakn=7.2) ! a REAL onet PARAMETER (onet=1.0/3.0) REAL betam PARAMETER (betam=15.0) ! pour Phim / h dans la S.L stable REAL betah PARAMETER (betah=15.0) REAL betas PARAMETER (betas=5.0) ! Phit dans la S.L. stable (mais 2 formes / z/OBL<>1 REAL sffrac PARAMETER (sffrac=0.1) ! S.L. = z/h < .1 REAL binm PARAMETER (binm=betam*sffrac) REAL binh PARAMETER (binh=betah*sffrac) REAL q_star, t_star REAL b1, b2, b212, b2sr ! Lambert correlations T' q' avec T* q* PARAMETER (b1=70., b2=20.) ! b1 entre 70 et 100 REAL z(klon, klev) ! AM REAL zref, dt0 PARAMETER (zref=2.) ! Niveau de ref a 2m PARAMETER (dt0=0.1) ! convergence do while INTEGER i, k, j REAL khfs(klon) ! surface kinematic heat flux [mK/s] REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] REAL heatv(klon) ! surface virtual heat flux REAL rhino(klon, klev) ! bulk Richardon no. mais en Theta_v LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) LOGICAL check(klon) ! True=>chk if Richardson no.>critcal LOGICAL omegafl(klon) ! flag de prolongement cape pour pt Omega REAL obklen(klon) ! Monin-Obukhov lengh REAL pblh(klon) ! PBL H (m) REAL therm(klon) ! exces du thermique (K) REAL plcl(klon) ! Lifted Cnd Level (Pa) REAL cape(klon) ! Cape REAL cin(klon) ! Inhibition REAL eauliq(klon) ! Eau Liqu integree REAL ctei(klon) ! Cld Top Entr. Instab. REAL d_qt(klon) ! Saut de qT a l'inversion REAL d_thv(klon) ! Theta_e REAL dlt_2(klon) ! Ordonnee a gauche de courbe de melange REAL xhis(klon) ! fraction de melange pour flottab nulle REAL posint(klon) ! partie positive de l'int. de Peter REAL omega(klon) ! point ultime de l'ascention du thermique REAL diagok(klon) ! pour traiter les sous-mailles sans info ! Algorithme thermique REAL s(klon, klev) ! [P/Po]^Kappa milieux couches REAL th_th(klon) ! potential temperature of thermal REAL the_th(klon) ! equivalent potential temperature of thermal REAL qt_th(klon) ! total water of thermal REAL tbef(klon) ! T thermique niveau ou calcul precedent LOGICAL zsat(klon) ! le thermique est sature LOGICAL zcin(klon) ! calcul d'inhibition REAL kape(klon) ! Cape locale REAL kin(klon) ! Cin locale ! calcul de CTEI etc REAL the1, the2, aa, bb, zthvd, zthvu, qsat, chi, rh, zxt, zdu2 REAL rnum, denom, th1, th2, tv1, tv2, thv1, thv2, ql1, ql2, dt REAL dqsat_dt, qsat2, qt1, q1, q2, t1, t2, tl1, te2, xnull, delt_the REAL delt_qt, quadsat, spblh, reduc ! diag REAL dTv21(klon,klev) REAL phiminv(klon) ! inverse phi function for momentum REAL phihinv(klon) ! inverse phi function for heat REAL wm(klon) ! turbulent velocity scale for momentum REAL zm(klon) ! current level height REAL zp(klon) ! current level height + one level up REAL zcor, zdelta, zcvm5 REAL fac, pblmin REAL missing_val include "FCTTRE.h" ! c missing_val=nf90_fill_real (avec include netcdf) missing_val = 0. ! initialisations (Anne) isommet = klev b212 = sqrt(b1*b2) b2sr = sqrt(b2) ! Initialisation thermo rlvcp = rlvtt/rcpd reps = rd/rv ! raz q_star = 0. t_star = 0. cape(:) = missing_val kape(:) = 0. cin(:) = missing_val eauliq(:) = missing_val ctei(:) = missing_val d_qt(:) = missing_val d_thv(:) = missing_val dlt_2(:) = missing_val xhis(:) = missing_val posint(:) = missing_val kin(:) = missing_val omega(:) = missing_val diagok(:) = 0. ! diag dTv21(:,:)= missing_val ! Calculer les hauteurs de chaque couche DO i = 1, knon z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))*(paprs(i,1)-pplay(i,1))/rg s(i, 1) = (pplay(i,1)/paprs(i,1))**rkappa END DO ! s(k) = [pplay(k)/ps]^kappa ! + + + + + + + + + pplay <-> s(k) t dp=pplay(k-1)-pplay(k) ! ----------------- paprs <-> sig(k) ! + + + + + + + + + pplay <-> s(k-1) ! + + + + + + + + + pplay <-> s(1) t dp=paprs-pplay z(1) ! ----------------- paprs <-> sig(1) DO k = 2, klev DO i = 1, knon z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1)-pplay(i,k))/rg s(i, k) = (pplay(i,k)/paprs(i,1))**rkappa END DO END DO ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! +++ Determination des grandeurs de surface +++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DO i = 1, knon ! AM Niveau de ref choisi a 2m zxt = t2m(i) ! *************************************************** ! attention, il doit s'agir de ! ;Calcul de tcls virtuel et de w'theta'virtuel ! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ! tcls=tcls*(1+.608*qcls) ! ;Pour avoir w'theta', ! ; il faut diviser par ro.Cp ! Cp=Cpd*(1+0.84*qcls) ! fcs=fcs/(ro_surf*Cp) ! ;On transforme w'theta' en w'thetav' ! Lv=(2.501-0.00237*(tcls-273.15))*1.E6 ! xle=xle/(ro_surf*Lv) ! fcsv=fcs+.608*xle*tcls ! *************************************************** ! dif khfs est deja w't'_v / heatv(i) = khfs(i) + RETV*zxt*kqfs(i) ! AM calcul de Ro = paprs(i,1)/Rd zxt ! AM convention >0 vers le bas ds lmdz khfs(i) = -flux_t(i, 1)*zxt*rd/(rcpd*paprs(i,1)) kqfs(i) = -flux_q(i, 1)*zxt*rd/(paprs(i,1)) ! AM verifier que khfs et kqfs sont bien de la forme w'l' heatv(i) = khfs(i) + retv*zxt*kqfs(i) ! a comparer aussi aux sorties de clqh : flux_T/RoCp et flux_q/RoLv ! AM ustar est en entree (calcul dans stdlevvar avec t2m q2m) ! Theta et qT du thermique sans exces qt_th(i) = q2m(i) ! Al1 Th_th restera la Theta du thermique sans exces jusqu'au 3eme calcul th_th(i) = t2m(i) END DO DO i = 1, knon rhino(i, 1) = 0.0 ! Global Richardson check(i) = .TRUE. pblh(i) = z(i, 1) ! on initialise pblh a l'altitude du 1er niveau ! Attention Plcl est pression ou altitude ? ! plcl(i) = 6000. ! m plcl(i) = 200. ! hPa IF (heatv(i)>0.0001) THEN ! Lambda = -u*^3 / (alpha.g.kvon. obklen(i) = -t(i, 1)*ustar(i)**3/(rg*vk*heatv(i)) ELSE ! set pblh to the friction high (cf + bas) pblh(i) = 700.0*ustar(i) check(i) = .FALSE. END IF END DO ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! PBL height calculation: ! Search for level of pbl. Scan upward until the Richardson number between ! the first level and the current level exceeds the "critical" value. ! (bonne idee Nu de separer le Ric et l'exces de temp du thermique) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ fac = 100.0 DO k = 2, isommet DO i = 1, knon IF (check(i)) THEN zdu2 = u(i, k)**2 + v(i, k)**2 zdu2 = max(zdu2, 1.0E-20) ! Theta_v environnement zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) zthvu = th_th(i)*(1.+retv*qt_th(i)) ! Le Ri bulk par Theta_v rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) IF (rhino(i,k)>=ricr) THEN pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) ! test04 (la pblh est encore ici sous-estime'e) pblh(i) = pblh(i) + 100. ! pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * ! . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) check(i) = .FALSE. END IF END IF END DO END DO ! Set pbl height to maximum value where computation exceeds number of ! layers allowed DO i = 1, knon IF (check(i)) pblh(i) = z(i, isommet) END DO ! Improve estimate of pbl height for the unstable points. ! Find unstable points (sensible heat flux is upward): DO i = 1, knon IF (heatv(i)>0.) THEN unstbl(i) = .TRUE. check(i) = .TRUE. ELSE unstbl(i) = .FALSE. check(i) = .FALSE. END IF END DO ! For the unstable case, compute velocity scale and the ! convective temperature excess: DO i = 1, knon IF (check(i)) THEN phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet ! *************************************************** ! Wm ? et W* ? c'est la formule pour z/h < .1 ! ;Calcul de w* ;; ! ;;;;;;;;;;;;;;;; ! w_star=((g/tcls)*fcsv*z(ind))^(1/3.) [ou prendre la premiere approx de h) ! ;; CALCUL DE wm ;; ! ;;;;;;;;;;;;;;;;;; ! ; Ici on considerera que l'on est dans la couche de surf jusqu'a 100m ! ; On prend svt couche de surface=0.1*h mais on ne connait pas h ! ;;;;;;;;;;;Dans la couche de surface ! if (z(ind) le 20) then begin ! Phim=(1.-15.*(z(ind)/L))^(-1/3.) ! wm=u_star/Phim ! ;;;;;;;;;;;En dehors de la couche de surface ! endif else if (z(ind) gt 20) then begin ! wm=(u_star^3+c1*w_star^3)^(1/3.) ! endif ! *************************************************** wm(i) = ustar(i)*phiminv(i) ! ====================================================================== ! valeurs de Dominique Lambert de la campagne SEMAPHORE : ! = 100.T*^2; = 20.q*^2 a 10m ! = (1+1.2q).100.T* + 1.2Tv.sqrt(20*100).T*.q* + (.608*Tv)^2*20.q*^2; ! et dTetavS = sqrt() ainsi calculee. ! avec : T*=_s/w* et q*=/w* ! !!! on peut donc utiliser w* pour les fluctuations <-> Lambert ! (leur corellation pourrait dependre de beta par ex) ! if fcsv(i,j) gt 0 then begin ! dTetavs=b1*(1.+2.*.608*q_10(i,j))*(fcs(i,j)/wm(i,j))^2+$ ! (.608*Thetav_10(i,j))^2*b2*(xle(i,j)/wm(i,j))^2+$ ! 2.*.608*thetav_10(i,j)*sqrt(b1*b2)*(xle(i,j)/wm(i,j))*(fcs(i,j)/wm(i,j)) ! dqs=b2*(xle(i,j)/wm(i,j))^2 ! theta_s(i,j)=thetav_10(i,j)+sqrt(dTetavs) ! q_s(i,j)=q_10(i,j)+sqrt(dqs) ! endif else begin ! Theta_s(i,j)=thetav_10(i,j) ! q_s(i,j)=q_10(i,j) ! endelse ! leur reference est le niveau a 10m, mais on prend 2m ici. ! ====================================================================== ! Premier calcul de l'exces tu thermique ! ====================================================================== ! HBTM therm(i) = heatv(i)*fak/wm(i) ! forme Mathieu : q_star = max(0., kqfs(i)/wm(i)) t_star = max(0., khfs(i)/wm(i)) ! Al1 Houston, we have a problem : il arrive en effet que heatv soit ! positif (=thermique instable) mais pas t_star : avec evaporation ! importante, il se peut qu'on refroidisse la 2m Que faire alors ? ! Garder le seul terme en q_star^2 ? ou rendre negatif le t_star^2 ? therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th(i))**2*b2*q_star*q_star+2.*retv*th_th(i)*b212* & q_star*t_star) ! Theta et qT du thermique (forme H&B) avec exces ! (attention, on ajoute therm(i) qui est virtuelle ...) ! pourquoi pas sqrt(b1)*t_star ? ! dqs = b2sr*kqfs(i)/wm(i) qt_th(i) = qt_th(i) + b2sr*q_star rhino(i, 1) = 0.0 END IF END DO ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++ Improve pblh estimate for unstable conditions using the +++++++ ! ++ convective temperature excess : +++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DO k = 2, isommet DO i = 1, knon IF (check(i)) THEN ! test zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 zdu2 = u(i, k)**2 + v(i, k)**2 zdu2 = max(zdu2, 1.0E-20) ! Theta_v environnement zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) ! et therm Theta_v (avec hypothese de constance de H&B, ! qui assimile qT a vapeur) zthvu = th_th(i)*(1.+retv*qt_th(i)) + therm(i) ! Le Ri par Theta_v ! AM Niveau de ref 2m rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) ! Niveau critique atteint IF (rhino(i,k)>=ricr) THEN pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) ! test04 pblh(i) = pblh(i) + 100. ! pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * ! . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) check(i) = .FALSE. END IF END IF END DO END DO ! Set pbl height to maximum value where computation exceeds number of ! layers allowed (H&B) DO i = 1, knon IF (check(i)) pblh(i) = z(i, isommet) END DO ! PBL height must be greater than some minimum mechanical mixing depth ! Several investigators have proposed minimum mechanical mixing depth ! relationships as a function of the local friction velocity, u*. We ! make use of a linear relationship of the form h = c u* where c=700. ! The scaling arguments that give rise to this relationship most often ! represent the coefficient c as some constant over the local coriolis ! parameter. Here we make use of the experimental results of Koracin ! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f ! where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid ! latitude value for f so that c = 0.07/f = 700. (H&B) ! Al1 calcul de pblT dans ce cas DO i = 1, knon pblmin = 700.0*ustar(i) IF (pblh(i)0.) check(i) = .TRUE. ! diag ! dTv21(i,1) = T2*(1+RETV*qT_th(i))-t(i,1)*(1+RETV*q(i,1)) END DO ! ---------------------------------- ! 2/ upward integration for thermals ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ k loop DO k = 2, isommet DO i = 1, knon IF (check(i) .OR. omegafl(i)) THEN ! CC if (pplay(i,k) .le. plcl(i)) then zm(i) = z(i, k-1) zp(i) = z(i, k) ! Environnement : calcul de Tv1 a partir de t(:,:)== T liquide ! ============== tl1 = t(i, k) t1 = tl1 zdelta = max(0., sign(1.,rtt-t1)) qsat = r2es*foeew(t1, zdelta)/pplay(i, k) qsat = min(0.5, qsat) zcor = 1./(1.-retv*qsat) qsat = qsat*zcor q1 = min(q(i,k), qsat) ql1 = max(0., q(i,k)-q1) ! thermodyn function (Tl2Tql) dt = rlvcp*ql1 DO WHILE (abs(dt)>=dt0) t1 = t1 + dt zdelta = max(0., sign(1.,rtt-t1)) zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta qsat = r2es*foeew(t1, zdelta)/pplay(i, k) qsat = min(0.5, qsat) zcor = 1./(1.-retv*qsat) qsat = qsat*zcor dqsat_dt = foede(t1, zdelta, zcvm5, qsat, zcor) ! correction lineaire pour conserver Tl env ! << Tl = T1 + DT - RLvCp*(ql1 - dqsat/dT*DT >> denom = 1. + rlvcp*dqsat_dt q1 = min(q(i,k), qsat) ql1 = q(i, k) - q1 ! can be negative rnum = tl1 - t1 + rlvcp*ql1 dt = rnum/denom END DO ql1 = max(0., ql1) tv1 = t1*(1.+retv*q1-ql1) ! Thermique : on atteint le seuil B/E de condensation ! ============== IF (.NOT. zsat(i)) THEN ! first guess from The_th(i) = Th_th(i) + RLvCp* [qv=qT_th(i)] t2 = s(i, k)*the_th(i) - rlvcp*qt_th(i) zdelta = max(0., sign(1.,rtt-t2)) qsat = r2es*foeew(t2, zdelta)/pplay(i, k) qsat = min(0.5, qsat) zcor = 1./(1.-retv*qsat) qsat = qsat*zcor q2 = min(qt_th(i), qsat) ql2 = max(0., qt_th(i)-q2) IF (ql2>0.0001) zsat(i) = .TRUE. tbef(i) = t2 ! a PBLH non sature IF (zm(i)=pblh(i)) THEN reduc = (pblh(i)-zm(i))/(zp(i)-zm(i)) spblh = s(i, k-1) + reduc*(s(i,k)-s(i,k-1)) ! lmdz : qT1 et Thv1 t1 = (t(i,k-1)+reduc*(t(i,k)-t(i,k-1))) thv1 = t1*(1.+retv*q(i,k))/spblh ! on calcule pour le cas sans nuage un ctei en Delta Thv thv2 = t2/spblh*(1.+retv*qt_th(i)) ctei(i) = thv1 - thv2 tv2 = t2*(1.+retv*q2-ql2) ! diag ! dTv21(i,k) = Tv2-Tv1 check(i) = .FALSE. omegafl(i) = .TRUE. END IF END IF IF (zsat(i)) THEN ! thermodyn functions (Te2Tqsat) t2 = tbef(i) dt = 1. te2 = s(i, k)*the_th(i) DO WHILE (abs(dt)>=dt0) zdelta = max(0., sign(1.,rtt-t2)) zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta qsat = r2es*foeew(t2, zdelta)/pplay(i, k) qsat = min(0.5, qsat) zcor = 1./(1.-retv*qsat) qsat = qsat*zcor dqsat_dt = foede(t2, zdelta, zcvm5, qsat, zcor) ! correction lineaire pour conserver Te_th ! << Te = T2 + DT + RLvCp*(qsatbef + dq/dT*DT >> denom = 1. + rlvcp*dqsat_dt rnum = te2 - t2 - rlvcp*qsat dt = rnum/denom t2 = t2 + dt END DO q2 = min(qt_th(i), qsat) ql2 = max(0., qt_th(i)-q2) ! jusqu'a PBLH y compris IF (zm(i)=pblh(i)) THEN reduc = (pblh(i)-zm(i))/(zp(i)-zm(i)) spblh = s(i, k-1) + reduc*(s(i,k)-s(i,k-1)) ! CAPE et EauLiq a pblH cape(i) = kape(i) + reduc*(zp(i)-zm(i))*rg*.5/(tv2+tv1)*max(0., (tv2-tv1)) eauliq(i) = eauliq(i) + reduc*(paprs(i,k-1)-paprs(i,k))*ql2/rg ! CTEI the2 = (t2+rlvcp*q2)/spblh ! T1 est en realite la Tl env (on a donc strict The1) t1 = (t(i,k-1)+reduc*(t(i,k)-t(i,k-1))) the1 = (t1+rlvcp*q(i,k))/spblh ! Calcul de la Cloud Top Entrainement Instability ! cf Mathieu Lahellec QJRMS (2005) Comments to DYCOMS-II ! saut a l'inversion : delt_the = the1 - the2 ! negatif delt_qt = q(i, k) - qt_th(i) ! negatif d_qt(i) = -delt_qt dlt_2(i) = .63*delt_the - the2*delt_qt ! init ctei(i) ctei(i) = dlt_2(i) IF (dlt_2(i)<-0.1) THEN ! integrale de Peter : aa = delt_the - delt_qt*(rlvcp-retv*the2) bb = (rlvcp-(1.+retv)*the2)*ql2 d_thv(i) = aa - bb ! approx de Xhi_s et de l'integrale Xint=ctei(i) xhis(i) = bb/(aa-dlt_2(i)) ! trmb1(i) = xhis ! trmb3(i) = dlt_2 xnull = bb/aa IF (xhis(i)>0.1) THEN ctei(i) = dlt_2(i)*xhis(i) + aa*(1.-xhis(i)) + bb*alog(xhis(i)) ELSE ctei(i) = .5*(dlt_2(i)+aa-bb) END IF IF (xnull>0.) THEN posint(i) = aa - bb + bb*alog(xnull) ELSE posint(i) = 0. END IF ELSE ctei(i) = 1. posint(i) = 1. END IF check(i) = .FALSE. omegafl(i) = .TRUE. END IF ! end a pblh IF (check(i)) eauliq(i) = eauliq(i) + (paprs(i,k)-paprs(i,k+1))*ql2/rg END IF END IF ! Zsat ! KAPE : thermique / environnement tv2 = t2*(1.+retv*q2-ql2) ! diag ! dTv21(i,k) = Tv2-Tv1 ! Kape courante kape(i) = kape(i) + (zp(i)-zm(i))*rg*.5/(tv2+tv1)*max(0., (tv2-tv1)) ! Cin IF (zcin(i) .AND. tv2-tv1>0.) THEN zcin(i) = .FALSE. cin(i) = kin(i) END IF IF (.NOT. zcin(i) .AND. tv2-tv1<0.) THEN zcin(i) = .TRUE. kin(i) = kin(i) + (zp(i)-zm(i))*rg*.5/(tv2+tv1)*min(0., (tv2-tv1)) END IF IF (kape(i)+kin(i)<0.) THEN omega(i) = zm(i) ! trmb3(i) = paprs(i,k) omegafl(i) = .FALSE. ! diag ! print*,'Tv2-Tv1 (k): ',i,(dTv21(i,j),j=1,k) END IF ! CC EndIf !plcl END IF ! check(i) END DO END DO ! end of level loop ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end k loop RETURN END SUBROUTINE hbtm2l