MODULE climb_hq_mod ! ! Module to solve the verctical diffusion of "q" and "H"; ! specific humidity and potential energi. ! USE dimphy USE compbl_mod_h IMPLICIT NONE PRIVATE PUBLIC :: climb_hq_down, climb_hq_up, d_h_col_vdf, f_h_bnd REAL, DIMENSION(:,:), ALLOCATABLE :: gamaq, gamah !$OMP THREADPRIVATE(gamaq,gamah) REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_Q, Dcoef_Q !$OMP THREADPRIVATE(Ccoef_Q, Dcoef_Q) REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_H, Dcoef_H !$OMP THREADPRIVATE(Ccoef_H, Dcoef_H) REAL, DIMENSION(:), ALLOCATABLE :: Acoef_Q, Bcoef_Q !$OMP THREADPRIVATE(Acoef_Q, Bcoef_Q) REAL, DIMENSION(:), ALLOCATABLE :: Acoef_H, Bcoef_H !$OMP THREADPRIVATE(Acoef_H, Bcoef_H) REAL, DIMENSION(:,:), ALLOCATABLE :: Kcoefhq !$OMP THREADPRIVATE(Kcoefhq) REAL, SAVE, DIMENSION(:,:), ALLOCATABLE :: h_old ! for diagnostics, h before solving diffusion !$OMP THREADPRIVATE(h_old) REAL, SAVE, DIMENSION(:), ALLOCATABLE :: d_h_col_vdf ! for diagnostics, vertical integral of enthalpy change !$OMP THREADPRIVATE(d_h_col_vdf) REAL, SAVE, DIMENSION(:), ALLOCATABLE :: f_h_bnd ! for diagnostics, enthalpy flux at surface !$OMP THREADPRIVATE(f_h_bnd) CONTAINS ! !**************************************************************************************** ! SUBROUTINE climb_hq_down(knon, coefhq, paprs, pplay, & delp, temp, q, dtime, & !!! nrlmd le 02/05/2011 Ccoef_H_out, Ccoef_Q_out, Dcoef_H_out, Dcoef_Q_out, & Kcoef_hq_out, gama_q_out, gama_h_out, & !!! Acoef_H_out, Acoef_Q_out, Bcoef_H_out, Bcoef_Q_out) ! This routine calculates recursivly the coefficients C and D ! for the quantity X=[Q,H] in equation X(k) = C(k) + D(k)*X(k-1), where k is ! the index of the vertical layer. USE yomcst_mod_h ! Input arguments !**************************************************************************************** INTEGER, INTENT(IN) :: knon REAL, DIMENSION(klon,klev), INTENT(IN) :: coefhq REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs REAL, DIMENSION(klon,klev), INTENT(IN) :: temp, delp ! temperature REAL, DIMENSION(klon,klev), INTENT(IN) :: q REAL, INTENT(IN) :: dtime ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_H_out REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_Q_out REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_H_out REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_Q_out !!! nrlmd le 02/05/2011 REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef_H_out REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef_Q_out REAL, DIMENSION(klon,klev), INTENT(OUT) :: Dcoef_H_out REAL, DIMENSION(klon,klev), INTENT(OUT) :: Dcoef_Q_out REAL, DIMENSION(klon,klev), INTENT(OUT) :: Kcoef_hq_out REAL, DIMENSION(klon,klev), INTENT(OUT) :: gama_q_out REAL, DIMENSION(klon,klev), INTENT(OUT) :: gama_h_out !!! ! Local variables !**************************************************************************************** LOGICAL, SAVE :: first=.TRUE. !$OMP THREADPRIVATE(first) ! JLD now renamed h_old and declared in module ! REAL, DIMENSION(klon,klev) :: local_H REAL, DIMENSION(klon) :: psref REAL :: delz, pkh INTEGER :: k, i, ierr !**************************************************************************************** ! 1) ! Allocation at first time step only ! !**************************************************************************************** IF (first) THEN first=.FALSE. ALLOCATE(Ccoef_Q(klon,klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc Ccoef_Q, ierr=', ierr ALLOCATE(Dcoef_Q(klon,klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc Dcoef_Q, ierr=', ierr ALLOCATE(Ccoef_H(klon,klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc Ccoef_H, ierr=', ierr ALLOCATE(Dcoef_H(klon,klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc Dcoef_H, ierr=', ierr ALLOCATE(Acoef_Q(klon), Bcoef_Q(klon), Acoef_H(klon), Bcoef_H(klon), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc Acoef_X and Bcoef_X, ierr=', ierr ALLOCATE(Kcoefhq(klon,klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc Kcoefhq, ierr=', ierr ALLOCATE(gamaq(1:klon,2:klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc gamaq, ierr=', ierr ALLOCATE(gamah(1:klon,2:klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc gamah, ierr=', ierr ALLOCATE(h_old(klon,klev), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc h_old, ierr=', ierr ALLOCATE(d_h_col_vdf(klon), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc d_h_col_vdf, ierr=', ierr ALLOCATE(f_h_bnd(klon), STAT=ierr) IF ( ierr /= 0 ) PRINT*,' pb in allloc f_h_bnd, ierr=', ierr END IF !**************************************************************************************** ! 2) ! Definition of the coeficient K ! !**************************************************************************************** Kcoefhq(:,:) = 0.0 DO k = 2, klev DO i = 1, knon Kcoefhq(i,k) = & coefhq(i,k)*RG*RG*dtime /(pplay(i,k-1)-pplay(i,k)) & *(paprs(i,k)*2/(temp(i,k)+temp(i,k-1))/RD)**2 ENDDO ENDDO !**************************************************************************************** ! 3) ! Calculation of gama for "Q" and "H" ! !**************************************************************************************** ! surface pressure is used as reference psref(:) = paprs(:,1) ! definition of gama IF (iflag_pbl == 1) THEN gamaq(:,:) = 0.0 gamah(:,:) = -1.0e-03 gamah(:,2) = -2.5e-03 ! conversion de gama DO k = 2, klev DO i = 1, knon delz = RD * (temp(i,k-1)+temp(i,k)) / & 2.0 / RG / paprs(i,k) * (pplay(i,k-1)-pplay(i,k)) pkh = (psref(i)/paprs(i,k))**RKAPPA ! convertie gradient verticale d'humidite specifique en difference d'humidite specifique entre centre de couches gamaq(i,k) = gamaq(i,k) * delz ! convertie gradient verticale de temperature en difference de temperature potentielle entre centre de couches gamah(i,k) = gamah(i,k) * delz * RCPD * pkh ENDDO ENDDO ELSE gamaq(:,:) = 0.0 gamah(:,:) = 0.0 ENDIF !**************************************************************************************** ! 4) ! Calculte the coefficients C and D for specific humidity, q ! !**************************************************************************************** CALL calc_coef(knon, Kcoefhq(:,:), gamaq(:,:), delp(:,:), q(:,:), & Ccoef_Q(:,:), Dcoef_Q(:,:), Acoef_Q, Bcoef_Q) !**************************************************************************************** ! 5) ! Calculte the coefficients C and D for potentiel entalpie, H ! !**************************************************************************************** h_old(:,:) = 0.0 DO k=1,klev DO i = 1, knon ! convertie la temperature en entalpie potentielle h_old(i,k) = RCPD * temp(i,k) * & (psref(i)/pplay(i,k))**RKAPPA ENDDO ENDDO CALL calc_coef(knon, Kcoefhq(:,:), gamah(:,:), delp(:,:), h_old(:,:), & Ccoef_H(:,:), Dcoef_H(:,:), Acoef_H, Bcoef_H) !**************************************************************************************** ! 6) ! Return the first layer in output variables ! !**************************************************************************************** Acoef_H_out = Acoef_H Bcoef_H_out = Bcoef_H Acoef_Q_out = Acoef_Q Bcoef_Q_out = Bcoef_Q !**************************************************************************************** ! 7) ! If Pbl is split, return also the other layers in output variables ! !**************************************************************************************** !!! jyg le 07/02/2012 !!jyg IF (mod(iflag_pbl_split,2) .eq.1) THEN IF (mod(iflag_pbl_split,10) .ge.1) THEN !!! nrlmd le 02/05/2011 DO k= 1, klev DO i= 1, klon Ccoef_H_out(i,k) = Ccoef_H(i,k) Dcoef_H_out(i,k) = Dcoef_H(i,k) Ccoef_Q_out(i,k) = Ccoef_Q(i,k) Dcoef_Q_out(i,k) = Dcoef_Q(i,k) Kcoef_hq_out(i,k) = Kcoefhq(i,k) IF (k.eq.1) THEN gama_h_out(i,k) = 0. gama_q_out(i,k) = 0. ELSE gama_h_out(i,k) = gamah(i,k) gama_q_out(i,k) = gamaq(i,k) ENDIF ENDDO ENDDO !!! ENDIF ! (mod(iflag_pbl_split,2) .ge.1) !!! END SUBROUTINE climb_hq_down ! !**************************************************************************************** ! SUBROUTINE calc_coef(knon, Kcoef, gama, delp, X, Ccoef, Dcoef, Acoef, Bcoef) ! ! Calculate the coefficients C and D in : X(k) = C(k) + D(k)*X(k-1) ! where X is H or Q, and k the vertical level k=1,klev ! USE yomcst_mod_h! Input arguments !**************************************************************************************** INTEGER, INTENT(IN) :: knon REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef, delp REAL, DIMENSION(klon,klev), INTENT(IN) :: X REAL, DIMENSION(klon,2:klev), INTENT(IN) :: gama ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: Acoef, Bcoef REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef, Dcoef ! Local variables !**************************************************************************************** INTEGER :: k, i REAL :: buf !**************************************************************************************** ! Niveau au sommet, k=klev ! !**************************************************************************************** Ccoef(:,:) = 0.0 Dcoef(:,:) = 0.0 DO i = 1, knon buf = delp(i,klev) + Kcoef(i,klev) Ccoef(i,klev) = (X(i,klev)*delp(i,klev) - Kcoef(i,klev)*gama(i,klev))/buf Dcoef(i,klev) = Kcoef(i,klev)/buf END DO !**************************************************************************************** ! Niveau (klev-1) <= k <= 2 ! !**************************************************************************************** DO k=(klev-1),2,-1 DO i = 1, knon buf = delp(i,k) + Kcoef(i,k) + Kcoef(i,k+1)*(1.-Dcoef(i,k+1)) Ccoef(i,k) = (X(i,k)*delp(i,k) + Kcoef(i,k+1)*Ccoef(i,k+1) + & Kcoef(i,k+1)*gama(i,k+1) - Kcoef(i,k)*gama(i,k))/buf Dcoef(i,k) = Kcoef(i,k)/buf END DO END DO !**************************************************************************************** ! Niveau k=1 ! !**************************************************************************************** DO i = 1, knon buf = delp(i,1) + Kcoef(i,2)*(1.-Dcoef(i,2)) Acoef(i) = (X(i,1)*delp(i,1) + Kcoef(i,2)*(gama(i,2)+Ccoef(i,2)))/buf Bcoef(i) = -1. * RG / buf END DO END SUBROUTINE calc_coef ! !**************************************************************************************** ! SUBROUTINE climb_hq_up(knon, dtime, t_old, q_old, & flx_q1, flx_h1, paprs, pplay, & !!! nrlmd le 02/05/2011 Acoef_H_in, Acoef_Q_in, Bcoef_H_in, Bcoef_Q_in, & Ccoef_H_in, Ccoef_Q_in, Dcoef_H_in, Dcoef_Q_in, & Kcoef_hq_in, gama_q_in, gama_h_in, & !!! flux_q, flux_h, d_q, d_t) ! ! This routine calculates the flux and tendency of the specific humidity q and ! the potential engergi H. ! The quantities q and H are calculated according to ! X(k) = C(k) + D(k)*X(k-1) for X=[q,H], where the coefficients ! C and D are known from before and k is index of the vertical layer. ! USE yomcst_mod_h USE compbl_mod_h ! Input arguments !**************************************************************************************** INTEGER, INTENT(IN) :: knon REAL, INTENT(IN) :: dtime REAL, DIMENSION(klon,klev), INTENT(IN) :: t_old, q_old REAL, DIMENSION(klon), INTENT(IN) :: flx_q1, flx_h1 REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay !!! nrlmd le 02/05/2011 REAL, DIMENSION(klon), INTENT(IN) :: Acoef_H_in,Acoef_Q_in, Bcoef_H_in, Bcoef_Q_in REAL, DIMENSION(klon,klev), INTENT(IN) :: Ccoef_H_in, Ccoef_Q_in, Dcoef_H_in, Dcoef_Q_in REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef_hq_in, gama_q_in, gama_h_in !!! ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon,klev), INTENT(OUT) :: flux_q, flux_h, d_q, d_t ! Local variables !**************************************************************************************** LOGICAL, SAVE :: last=.FALSE. REAL, DIMENSION(klon,klev) :: h_new, q_new REAL, DIMENSION(klon) :: psref INTEGER :: k, i, ierr !**************************************************************************************** ! 1) ! Definition of some variables REAL, DIMENSION(klon,klev) :: d_h, zairm ! !**************************************************************************************** flux_q(:,:) = 0.0 flux_h(:,:) = 0.0 d_q(:,:) = 0.0 d_t(:,:) = 0.0 d_h(:,:) = 0.0 f_h_bnd(:)= 0.0 psref(1:knon) = paprs(1:knon,1) !!! jyg le 07/02/2012 !!jyg IF (mod(iflag_pbl_split,2) .eq.1) THEN IF (mod(iflag_pbl_split,10) .ge.1) THEN !!! nrlmd le 02/05/2011 DO i = 1, knon Acoef_H(i)=Acoef_H_in(i) Acoef_Q(i)=Acoef_Q_in(i) Bcoef_H(i)=Bcoef_H_in(i) Bcoef_Q(i)=Bcoef_Q_in(i) ENDDO DO k = 1, klev DO i = 1, knon Ccoef_H(i,k)=Ccoef_H_in(i,k) Ccoef_Q(i,k)=Ccoef_Q_in(i,k) Dcoef_H(i,k)=Dcoef_H_in(i,k) Dcoef_Q(i,k)=Dcoef_Q_in(i,k) Kcoefhq(i,k)=Kcoef_hq_in(i,k) IF (k.gt.1) THEN gamah(i,k)=gama_h_in(i,k) gamaq(i,k)=gama_q_in(i,k) ENDIF ENDDO ENDDO !!! ENDIF ! (mod(iflag_pbl_split,2) .ge.1) !!! !**************************************************************************************** ! 2) ! Calculation of Q and H ! !**************************************************************************************** !- First layer q_new(1:knon,1) = Acoef_Q(1:knon) + Bcoef_Q(1:knon)*flx_q1(1:knon)*dtime h_new(1:knon,1) = Acoef_H(1:knon) + Bcoef_H(1:knon)*flx_h1(1:knon)*dtime f_h_bnd(1:knon) = flx_h1(1:knon) !- All the other layers DO k = 2, klev DO i = 1, knon q_new(i,k) = Ccoef_Q(i,k) + Dcoef_Q(i,k)*q_new(i,k-1) h_new(i,k) = Ccoef_H(i,k) + Dcoef_H(i,k)*h_new(i,k-1) END DO END DO !**************************************************************************************** ! 3) ! Calculation of the flux for Q and H ! !**************************************************************************************** !- The flux at first layer, k=1 flux_q(1:knon,1)=flx_q1(1:knon) flux_h(1:knon,1)=flx_h1(1:knon) !- The flux at all layers above surface DO k = 2, klev DO i = 1, knon flux_q(i,k) = (Kcoefhq(i,k)/RG/dtime) * & (q_new(i,k)-q_new(i,k-1)+gamaq(i,k)) flux_h(i,k) = (Kcoefhq(i,k)/RG/dtime) * & (h_new(i,k)-h_new(i,k-1)+gamah(i,k)) END DO END DO !**************************************************************************************** ! 4) ! Calculation of tendency for Q and H ! !**************************************************************************************** d_h_col_vdf(:) = 0.0 DO k = 1, klev DO i = 1, knon d_t(i,k) = h_new(i,k)/(psref(i)/pplay(i,k))**RKAPPA/RCPD - t_old(i,k) d_q(i,k) = q_new(i,k) - q_old(i,k) d_h(i,k) = h_new(i,k) - h_old(i,k) !JLD d_t(i,k) = d_h(i,k)/(psref(i)/pplay(i,k))**RKAPPA/RCPD !correction a venir ! layer air mass zairm(i, k) = (paprs(i,k)-paprs(i,k+1))/rg d_h_col_vdf(i) = d_h_col_vdf(i) + d_h(i,k)*zairm(i,k) END DO END DO !**************************************************************************************** ! Some deallocations ! !**************************************************************************************** IF (last) THEN DEALLOCATE(Ccoef_Q, Dcoef_Q, Ccoef_H, Dcoef_H,stat=ierr) IF ( ierr /= 0 ) PRINT*,' pb in dealllocate Ccoef_Q, Dcoef_Q, Ccoef_H, Dcoef_H, ierr=', ierr DEALLOCATE(Acoef_Q, Bcoef_Q, Acoef_H, Bcoef_H,stat=ierr) IF ( ierr /= 0 ) PRINT*,' pb in dealllocate Acoef_Q, Bcoef_Q, Acoef_H, Bcoef_H, ierr=', ierr DEALLOCATE(gamaq, gamah,stat=ierr) IF ( ierr /= 0 ) PRINT*,' pb in dealllocate gamaq, gamah, ierr=', ierr DEALLOCATE(Kcoefhq,stat=ierr) IF ( ierr /= 0 ) PRINT*,' pb in dealllocate Kcoefhq, ierr=', ierr DEALLOCATE(h_old, d_h_col_vdf, f_h_bnd, stat=ierr) IF ( ierr /= 0 ) PRINT*,' pb in dealllocate h_old, d_h_col_vdf, f_h_bnd, ierr=', ierr END IF END SUBROUTINE climb_hq_up ! !**************************************************************************************** ! END MODULE climb_hq_mod