subroutine SISVAT_GSn ! +------------------------------------------------------------------------+ ! | MAR SISVAT_GSn 20-09-2003 MAR | ! | SubRoutine SISVAT_GSn simulates SNOW Metamorphism | ! +------------------------------------------------------------------------+ ! | | ! | PARAMETERS: knonv: Total Number of columns = | ! | ^^^^^^^^^^ = Total Number of continental grid boxes | ! | X Number of Mosaic Cell per grid box | ! | | ! | INPUT / isnoSV = total Nb of Ice/Snow Layers | ! | OUTPUT: iiceSV = total Nb of Ice Layers | ! | ^^^^^^ istoSV = 0,...,5 : Snow History (see istdSV data) | ! | | ! | INPUT: TsisSV : Soil/Ice Temperatures (layers -nsol,-nsol+1,..,0)| ! | ^^^^^ & Snow Temperatures (layers 1,2,...,nsno) [K] | ! | ro__SV : Soil/Snow Volumic Mass [kg/m3] | ! | eta_SV : Soil/Snow Water Content [m3/m3] | ! | slopSV : Surface Slope [-] | ! | dzsnSV : Snow Layer Thickness [m] | ! | dt__SV2 : Time Step [s] | ! | | ! | INPUT / G1snSV : Dendricity (<0) or Sphericity (>0) of Snow Layer | ! | OUTPUT: G2snSV : Sphericity (>0) or Size of Snow Layer | ! | ^^^^^^ | ! | | ! | Formalisme adopte pour la Representation des Grains: | ! | Formalism for the Representation of Grains: | ! | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | ! | | ! | 1 - -1 Neige Fraiche | ! | / \ | ------------- | ! | / \ | Dendricite decrite par Dendricite | ! | / \ | Dendricity et Sphericite | ! | / \ | | ! | 2---------3 - 0 described by Dendricity | ! | and Sphericity | ! | |---------| | ! | 0 1 | ! | Sphericite | ! | Sphericity | ! | | ! | 4---------5 - | ! | | | | | ! | | | | Diametre (1/10eme de mm) (ou Taille) | ! | | | | Diameter (1/10th of mm) (or Size ) | ! | | | | | ! | | | | Neige non dendritique | ! | 6---------7 - --------------------- | ! | decrite par Sphericite | ! | et Taille | ! | described by Sphericity | ! | and Size | ! | | ! | Les Variables du Modele: | ! | Model Variables: | ! | ^^^^^^^^^^^^^^^^^^^^^^^^ | ! | Cas Dendritique Cas non Dendritique | ! | | ! | G1snSV : Dendricite G1snSV : Sphericite | ! | G2snSV : Sphericite G2snSV : Taille (1/10e mm) | ! | Size | ! | | ! | Cas Dendritique/ Dendritic Case | ! | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | ! | Dendricite(Dendricity) G1snSV | ! | varie de -G1_dSV (-99 par defaut / etoile) a 0 | ! | division par -G1_dSV pour obtenir des valeurs entre 1 et 0 | ! | varies from -G1_dSV (default -99 / fresh snow) to 0 | ! | division by -G1_dSV to obtain values between 1 and 0 | ! | | ! | Sphericite(Sphericity) G2snSV | ! | varie de 0 (cas completement anguleux) | ! | a G1_dSV (99 par defaut, cas spherique) | ! | division par G1_dSV pour obtenir des valeurs entre 0 et 1 | ! | varies from 0 (full faceted) to G1_dSV | ! | | ! | Cas non Dendritique / non Dendritic Case | ! | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | ! | Sphericite(Sphericity) G1snSV | ! | varie de 0 (cas completement anguleux) | ! | a G1_dSV (99 par defaut, cas spherique) | ! | division par G1_dSV pour obtenir des valeurs entre 0 et 1 | ! | varies from 0 (full faceted) to G1_dSV | ! | | ! | Taille (Size) G2snSV | ! | superieure a ADSdSV (.4 mm) et ne fait que croitre | ! | greater than ADSdSV (.4 mm) always increases | ! | | ! | Exemples: Points caracteristiques des Figures ci-dessus | ! | ^^^^^^^^^ | ! | | ! | G1snSV G2snSV dendricite sphericite taille | ! | dendricity sphericity size | ! | ------------------------------------------------------------------ | ! | [1/10 mm] | ! | 1 -G1_dSV sph3SN 1 0.5 | ! | 2 0 0 0 0 | ! | 3 0 G1_dSV 0 1 | ! | 4 0 ADSdSV 0 4. | ! | 5 G1_dSV ADSdSV-vsphe1 1 3. | ! | 6 0 -- 0 -- | ! | 7 G1_dSV -- 1 -- | ! | | ! | par defaut: G1_dSV=99. | ! | sph3SN=50. | ! | ADSdSV= 4. | ! | vsphe1=1. | ! | | ! | Methode: | ! | ^^^^^^^^ | ! | 1. Evolution Types de Grains selon Lois de Brun et al. (1992): | ! | Grain metamorphism according to Brun et al. (1992): | ! | Plusieurs Cas sont a distiguer / the different Cases are: | ! | 1.1 Metamorphose Neige humide / wet Snow | ! | 1.2 Metamorphose Neige seche / dry Snow | ! | 1.2.1 Gradient faible / low Temperature Gradient | ! | 1.2.2 Gradient moyen / moderate Temperature Gradient | ! | 1.2.3 Gradient fort / high Temperature Gradient | ! | Dans chaque Cas on separe Neige Dendritique et non Dendritique | ! | le Passage Dendritique -> non Dendritique | ! | se fait lorsque G1snSV devient > 0 | ! | the Case of Dentritic or non Dendritic Snow is treated separately | ! | the Limit Dentritic -> non Dendritic is reached when G1snSV > 0 | ! | | ! | 2. Tassement: Loi de Viscosite adaptee selon le Type de Grains | ! | Snow Settling: Viscosity depends on the Grain Type | ! | | ! | 3. Update Variables historiques (cas non dendritique seulement) | ! | nhSNow defaut | ! | 0 Cas normal | ! | istdSV(1) 1 Grains anguleux / faceted cristal | ! | istdSV(2) 2 Grains ayant ete en presence d eau liquide | ! | mais n'ayant pas eu de caractere anguleux / | ! | liquid water and no faceted cristals before | ! | istdSV(3) 3 Grains ayant ete en presence d eau liquide | ! | ayant eu auparavant un caractere anguleux / | ! | liquid water and faceted cristals before | ! | | ! | REFER. : Brun et al. 1989, J. Glaciol 35 pp. 333--342 | ! | ^^^^^^^^ Brun et al. 1992, J. Glaciol 38 pp. 13-- 22 | ! | (CROCUS Model, adapted to MAR at CEN by H.Gallee) | ! | | ! | REFER. : Marbouty, D. 1980, J. Glaciol 26 pp. xxx--xxx | ! | ^^^^^^^^ (CROCUS Model, adapted to MAR at CEN by H.Gallee) | ! | (for angular shapes) | ! | | ! | Preprocessing Option: SISVAT IO (not always a standard preprocess.) | ! | ^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ | ! | FILE | CONTENT | ! | ~~~~~~~~~~~~~~~~~~~~~+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ! | # SISVAT_GSn.vp | #vp: OUTPUT/Verification: Snow Properties | ! | | unit 47, SubRoutines SISVAT_zSn, _GSn | ! | # stdout | #wp: OUTPUT/Verification: Snow Properties | ! | | unit 6, SubRoutine SISVAT_GSn | ! | | ! +------------------------------------------------------------------------+ ! +--Global Variables ! + ================ use VARphy use VAR_SV use VARdSV use VAR0SV use VARxSV use VARtSV IMPLICIT NONE ! +--INPUT/OUTPUT ! + ------------ ! +--OUTPUT ! + ------ integer :: dt__SV2 ! +--Local Variables ! + ================ logical :: vector ! integer :: ikl ! integer :: isn ,isnp ! integer :: istoOK ! real :: G1_bak,G2_bak ! Old Values of G1, G2 real :: ro_dry(knonv, nsno) ! Dry Density [g/cm3] real :: etaSno(knonv, nsno) ! Liquid Water Content [g/cm2] real :: SnMass(knonv) ! Snow Mass [kg/m2] real :: dTsndz ! Temperature Gradient real :: sWater ! Water Content [%] real :: exp1Wa ! real :: dDENDR ! Dendricity Increment real :: DENDRn ! Normalized Dendricity real :: SPHERn ! Normalized Sphericity real :: Wet_OK ! Wet Metamorphism Switch real :: OK__DE ! real :: OK__wd ! New G*, from wet Dendritic real :: G1__wd ! New G1, from wet Dendritic real :: G2__wd ! New G2, from wet Dendritic real :: OKlowT ! real :: facVap ! real :: OK_ldd ! real :: G1_ldd ! real :: G2_ldd ! real :: DiamGx ! real :: DiamOK ! real :: No_Big ! real :: dSPHER ! real :: SPHER0 ! real :: SPHbig ! real :: G1_lds ! real :: OK_mdT ! real :: OKmidT ! real :: OKhigT ! real :: OK_mdd ! real :: G1_mdd ! real :: G2_mdd ! real :: G1_mds ! real :: OK_hdd ! real :: G1_hdd ! real :: G2_hdd ! real :: OK_hds ! real :: G1_hds ! real :: T1__OK,T2__OK ! real :: T3_xOK,T3__OK,T3_nOK ! real :: ro1_OK,ro2_OK ! real :: dT1_OK,dT2_OK,dT3xOK,dT3_OK ! real :: dT4xOK,dT4_OK,dT4nOK,AngSno ! real :: G2_hds,SphrOK,HISupd ! real :: H1a_OK,H1b_OK,H1__OK ! real :: H23aOK,H23bOK,H23_OK ! real :: H2__OK,H3__OK ! real :: H45_OK,H4__OK,H5__OK ! real :: ViscSn,OK_Liq,OK_Ang,OKxLiq ! real :: dSnMas,dzsnew,rosnew,rosmax,smb_old,smb_new real :: zn_old,zn_new real :: epsi5 ! Alpha ev67 single precision real :: vdiam1 ! Small Grains Min.Diam.[.0001m] real :: vdiam2 ! Spher.Variat.Max Diam. [mm] real :: vdiam3 ! Min.Diam.|Limit Spher. [mm] real :: vdiam4 ! Min.Diam.|Viscosity Change real :: vsphe1 ! Max Sphericity real :: vsphe2 ! Low T Metamorphism Coeff. real :: vsphe3 ! Max.Sphericity (history=1) real :: vsphe4 ! Min.Sphericity=>history=1 real :: vtang1,vtang2,vtang3,vtang4 ! Temperature Contribution real :: vtang5,vtang6,vtang7,vtang8 ! real :: vtang9,vtanga,vtangb,vtangc ! real :: vrang1,vrang2 ! Density Contribution real :: vgang1,vgang2,vgang3,vgang4 ! Grad(T) Contribution real :: vgang5,vgang6,vgang7,vgang8 ! real :: vgang9,vganga,vgangb,vgangc ! real :: vgran6 ! Max.Sphericity for Settling real :: vtelv1 ! Threshold | history = 2, 3 real :: vvap1 ! Vapor Pressure Coefficient real :: vvap2 ! Vapor Pressure Exponent real :: vgrat1 ! Boundary weak/mid grad(T) real :: vgrat2 ! Boundary mid/strong grad(T) real :: vfi ! PHI, strong grad(T) real :: vvisc1,vvisc2,vvisc3,vvisc4 ! Viscosity Coefficients real :: vvisc5,vvisc6,vvisc7 ! id., wet Snow real :: rovisc ! Wet Snow Density Influence real :: vdz3 ! Maximum Layer Densification real :: OK__ws ! New G2 real :: G1__ws ! New G1, from wet Spheric real :: G2__ws ! New G2, from wet Spheric real :: husi_0,husi_1,husi_2,husi_3 ! Constants for New G2 real :: vtail1,vtail2 ! Constants for New G2 real :: frac_j ! Time Step [Day] real :: vdent1 ! Wet Snow Metamorphism integer :: nvdent1 ! (Coefficients for integer :: nvdent2 ! Dendricity) ! +--Snow Properties: IO ! + ~~~~~~~~~~~~~~~~~~~ ! #vp real G_curr(18),Gcases(18) ! #vp common /GSnLOC/ Gcases ! #wp real D__MAX ! #wp common /GSnMAX/ D__MAX ! +--DATA ! + ==== data vector/.true./ ! Vectorization Switch data vdent1/ 0.5e8/ ! Wet Snow Metamorphism !XF tuned for Greenland (2.e8=old value) data nvdent1/ 3 / ! (Coefficients for data nvdent2/16 / ! Dendricity) data husi_0 /20. / ! 10 * 2 data husi_1 / 0.23873 / ! (3/4) /pi data husi_2 / 4.18880 / ! (4/3) *pi data husi_3 / 0.33333 / ! 1/3 data vtail1 / 1.28e-08/ ! Wet Metamorphism data vtail2 / 4.22e-10/ ! (NON Dendritic / Spheric) data epsi5 / 1.0e-5 / ! data vdiam1 / 4.0 / ! Small Grains Min.Diameter data vdiam2 / 0.5 / ! Spher.Variat.Max Diam.[mm] data vdiam3 / 3.0 / ! Min.Diam.|Limit Spher.[mm] data vdiam4 / 2.0 / ! Min.Diam.|Viscosity Change data vsphe1 / 1.0 / ! Max Sphericity data vsphe2 / 1.0e9 / ! Low T Metamorphism Coeff. data vsphe3 / 0.5 / ! Max.Sphericity (history=1) data vsphe4 / 0.1 / ! Min.Sphericity=>history=1 data vgran6 / 51. / ! Max.Sphericity for Settling data vtelv1 / 5.e-1 / ! Threshold | history = 2, 3 data vvap1 /-6.e3 / ! Vapor Pressure Coefficient data vvap2 / 0.4 / ! Vapor Pressure Exponent data vgrat1 /0.05 / ! Boundary weak/mid grad(T) data vgrat2 /0.15 / ! Boundary mid/strong grad(T) data vfi /0.09 / ! PHI, strong grad(T) data vvisc1 / 0.70 / ! Viscosity Coefficients data vvisc2 / 1.11e5 / ! data vvisc3 /23.00 / ! data vvisc4 / 0.10 / ! data vvisc5 / 1.00 / ! id., wet Snow data vvisc6 / 2.00 / ! data vvisc7 /10.00 / ! data rovisc / 0.25 / ! Wet Snow Density Influence data vdz3 / 0.30 / ! Maximum Layer Densification ! +--DATA (Coefficient Fonction fort Gradient Marbouty) ! + -------------------------------------------------- data vtang1 /40.0/ ! Temperature Contribution data vtang2 / 6.0/ ! data vtang3 /22.0/ ! data vtang4 / 0.7/ ! data vtang5 / 0.3/ ! data vtang6 / 6.0/ ! data vtang7 / 1.0/ ! data vtang8 / 0.8/ ! data vtang9 /16.0/ ! data vtanga / 0.2/ ! data vtangb / 0.2/ ! data vtangc /18.0/ ! data vrang1 / 0.40/ ! Density Contribution data vrang2 / 0.15/ ! data vgang1 / 0.70/ ! Grad(T) Contribution data vgang2 / 0.25/ ! data vgang3 / 0.40/ ! data vgang4 / 0.50/ ! data vgang5 / 0.10/ ! data vgang6 / 0.15/ ! data vgang7 / 0.10/ ! data vgang8 / 0.55/ ! data vgang9 / 0.65/ ! data vganga / 0.20/ ! data vgangb / 0.85/ ! data vgangc / 0.15/ ! ! #wp data D__MAX / 4.00/ ! ! +-- 1. Metamorphoses dans les Strates ! + Metamorphism ! + ============================== dt__SV2= dt__SV frac_j = dt__SV2 / 86400. ! Time Step [Day] zn4_SV = 0 ! +-- 1.1 Initialisation: teneur en eau liquide et gradient de temperature ! + ------------------ liquid water content and temperature gradient DO ikl=1,knonv DO isn=1,isnoSV(ikl) ro_dry(ikl,isn) = 1.e-3 *ro__SV(ikl,isn) & ! Dry Density *(1. -eta_SV(ikl,isn)) ! [g/cm3] etaSno(ikl,isn) = 1.e-1 *dzsnSV(ikl,isn) & ! Liquid Water * ro__SV(ikl,isn) & ! Content [g/cm2] * eta_SV(ikl,isn) ! END DO END DO !!$OMP PARALLEL DO default(firstprivate) !!$OMP.shared (/xSISVAT_I/,/xSISVAT_R/,/SoR0SV/,/SoI0SV/,/Sn_dSV/) DO ikl=1,knonv DO isn=1,isnoSV(ikl) isnp = min(isn+1,isnoSV(ikl)) dTsndz = abs( (TsisSV(ikl,isnp)-TsisSV(ikl,isn-1)) *2.e-2 & /max(((dzsnSV(ikl,isnp)+dzsnSV(ikl,isn) ) & *( isnp - isn) & +(dzsnSV(ikl,isn )+dzsnSV(ikl,isn-1))),epsi)) ! +... Factor 1.d-2 for Conversion K/m --> K/cm ! +-- 1.2 Metamorphose humide ! + Wet Snow Metamorphism ! + --------------------- Wet_OK = max(zero,sign(unun,eta_SV(ikl,isn)-epsi)) ! +-- Vitesse de diminution de la dendricite ! + Rate of the dendricity decrease ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ sWater=1.d-1*ro__SV(ikl,isn)*eta_SV(ikl,isn) & /max(epsi,ro_dry(ikl,isn)) ! +... sWater:Water Content [%] ! + 1.d-1= 1.d2(1->%) * 1.d-3(ro__SV*eta_SV:kg/m3->g/cm3) exp1Wa= sWater**nvdent1 dDENDR=max(exp1Wa/nvdent2,vdent1*exp(vvap1/TfSnow)) ! +-- 1.2.1 Cas dendritique/dendritic Case ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OK__wd=max(zero, & ! sign(unun,-G1snSV(ikl,isn) & ! -epsi )) ! DENDRn=-G1snSV(ikl,isn)/G1_dSV ! Normalized Dendricity (+) SPHERn= G2snSV(ikl,isn)/G1_dSV ! Normalized Sphericity DENDRn= DENDRn -dDENDR *frac_j ! New Dendricity (+) SPHERn= SPHERn +dDENDR *frac_j ! New Sphericity OK__DE=max(zero, & ! IF 1., sign(unun, DENDRn & ! NO change -epsi )) ! Dendr. -> Spheric G1__wd=OK__DE * ( -DENDRn*G1_dSV) & ! Dendritic +(1.-OK__DE)* min(G1_dSV,SPHERn*G1_dSV) ! Dendr. -> Spheric G2__wd=OK__DE * min(G1_dSV,SPHERn*G1_dSV) & ! Spheric +(1.-OK__DE)*(ADSdSV-min(SPHERn,vsphe1)) ! Spher. -> Size ! +-- 1.2.2 Cas non dendritique non completement spherique ! + Evolution de la Sphericite seulement. ! + Non dendritic and not completely spheric Case ! + Evolution of Sphericity only (not size) ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OK__ws=max(zero, & ! sign(unun, G1_dSV & ! -epsi5 & ! -G1snSV(ikl,isn))) ! SPHERn= G1snSV(ikl,isn)/G1_dSV SPHERn= SPHERn +dDENDR *frac_j G1__ws= min(G1_dSV,SPHERn*G1_dSV) ! +-- 1.2.3 Cas non dendritique et spherique / non dendritic and spheric ! + Evolution de la Taille seulement / Evolution of Size only ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G2__ws = husi_0 & *( husi_1 & *(husi_2 *( G2snSV(ikl,isn)/husi_0)**3 & +(vtail1 +vtail2 *exp1Wa )*dt__SV2)) & ** husi_3 ! +-- 1.3 Metamorposes seches / Dry Metamorphism ! + -------------------------------------- ! +-- 1.3.1 Calcul Metamorphose faible/low Gradient (0.00-0.05 deg/cm) ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OKlowT=max(zero, & ! sign(unun, vgrat1 & ! -dTsndz )) ! facVap=exp(vvap1/TsisSV(ikl,isn)) ! +-- 1.3.1.1 Cas dendritique / dendritic Case OK_ldd=max(zero, & ! sign(unun,-G1snSV(ikl,isn) & ! -epsi )) ! DENDRn=-G1snSV(ikl,isn) /G1_dSV SPHERn= G2snSV(ikl,isn) /G1_dSV DENDRn= DENDRn-vdent1*facVap*frac_j SPHERn= SPHERn+vsphe2*facVap*frac_j OK__DE=max(zero, & ! IF 1., sign(unun, DENDRn & ! NO change -epsi )) ! Dendr. -> Spheric G1_ldd= OK__DE * ( -DENDRn*G1_dSV) & ! Dendritic +(1.-OK__DE)* min(G1_dSV,SPHERn*G1_dSV) ! Dendr. -> Spheric G2_ldd= OK__DE * min(G1_dSV,SPHERn*G1_dSV) & ! Spheric +(1.-OK__DE)*(ADSdSV-min(SPHERn,vsphe1)) ! Spher. -> Size ! +-- 1.3.1.2 Cas non dendritique / non dendritic Case SPHERn=G1snSV(ikl,isn)/G1_dSV DiamGx=G2snSV(ikl,isn)*0.1 istoOK=min( abs(istoSV(ikl,isn)- & istdSV(1) ),1) ! zero if istoSV = 1 DiamOK=max(zero, sign(unun,vdiam2-DiamGx)) No_Big= istoOK+DiamOK No_Big=min(No_Big,unun) dSPHER= vsphe2*facVap*frac_j ! SPHER0= SPHERn+dSPHER ! small grains SPHbig= SPHERn+dSPHER & ! big grains *exp(min(zero,vdiam3-G2snSV(ikl,isn))) ! (history = 2 or 3) SPHbig= min(vsphe3,SPHbig) ! limited sphericity SPHERn= No_Big * SPHER0 & + (1.-No_Big)* SPHbig G1_lds= min(G1_dSV,SPHERn*G1_dSV) ! +-- 1.3.2 Calcul Metamorphose Gradient Moyen/Moderate (0.05-0.15) ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OK_mdT=max(zero, & ! sign(unun, vgrat2 & ! -dTsndz)) ! OKmidT= OK_mdT *(1.-OKlowT) ! OKhigT= (1. -OK_mdT) *(1.-OKlowT) ! facVap=vdent1*exp(vvap1/TsisSV(ikl,isn)) & * (1.e2 *dTsndz)**vvap2 ! +-- 1.3.2.1 cas dendritique / dendritic case. OK_mdd=max(zero, & ! sign(unun,-G1snSV(ikl,isn) & ! -epsi )) ! DENDRn=-G1snSV(ikl,isn)/G1_dSV SPHERn= G2snSV(ikl,isn)/G1_dSV DENDRn= DENDRn - facVap*frac_j SPHERn= SPHERn - facVap*frac_j OK__DE=max(zero, & ! IF 1., sign(unun, DENDRn & ! NO change -epsi )) ! Dendr. -> Spheric G1_mdd= OK__DE * ( -DENDRn*G1_dSV) & ! Dendritic +(1.-OK__DE)* max(zero ,SPHERn*G1_dSV) ! Dendr. -> Spheric G2_mdd= OK__DE * max(zero ,SPHERn*G1_dSV) & ! Spheric +(1.-OK__DE)*(ADSdSV-max(SPHERn,zero )) ! Spher. -> Size ! +-- 1.3.2.2 Cas non dendritique / non dendritic Case SPHERn=G1snSV(ikl,isn)/G1_dSV SPHERn= SPHERn-facVap*frac_j G1_mds=max(zero,SPHERn*G1_dSV) ! +-- 1.3.3 Calcul Metamorphose fort / high Gradient ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ facVap=vdent1*exp(vvap1/TsisSV(ikl,isn)) & * (1.e2 *dTsndz)**vvap2 ! +-- 1.3.3.1 Cas dendritique / dendritic Case OK_hdd=max(zero, & ! sign(unun,-G1snSV(ikl,isn) & ! -epsi )) ! DENDRn=-G1snSV(ikl,isn)/G1_dSV ! SPHERn= G2snSV(ikl,isn)/G1_dSV ! DENDRn= DENDRn - facVap*frac_j ! SPHERn= SPHERn - facVap*frac_j ! Non dendritic ! + ! and angular OK__DE=max(zero, & ! IF 1., sign(unun, DENDRn & ! NO change -epsi )) ! Dendr. -> Spheric G1_hdd= OK__DE * ( -DENDRn*G1_dSV) & ! Dendritic +(1.-OK__DE)* max(zero ,SPHERn*G1_dSV) ! Dendr. -> Spheric G2_hdd= OK__DE * max(zero ,SPHERn*G1_dSV) & ! Spheric +(1.-OK__DE)*(ADSdSV-max(SPHERn,zero )) ! Spher. -> Size ! +-- 1.3.3.2 Cas non dendritique non completement anguleux. ! + non dendritic and spericity gt. 0 OK_hds=max(zero, & ! sign(unun, G1snSV(ikl,isn) & ! -epsi )) ! SPHERn= G1snSV(ikl,isn)/G1_dSV SPHERn= SPHERn - facVap*frac_j G1_hds= max(zero,SPHERn*G1_dSV) ! +-- 1.3.3.3 Cas non dendritique et anguleux ! + dendritic and spericity = 0. T1__OK = max(zero,sign(unun,TsisSV(ikl,isn)-TfSnow+vtang1)) T2__OK = max(zero,sign(unun,TsisSV(ikl,isn)-TfSnow+vtang2)) T3_xOK = max(zero,sign(unun,TsisSV(ikl,isn)-TfSnow+vtang3)) T3__OK = T3_xOK * (1. - T2__OK) T3_nOK = (1. - T3_xOK) * (1. - T2__OK) ro1_OK = max(zero,sign(unun,vrang1-ro_dry(ikl,isn))) ro2_OK = max(zero,sign(unun,ro_dry(ikl,isn)-vrang2)) dT1_OK = max(zero,sign(unun,vgang1-dTsndz )) dT2_OK = max(zero,sign(unun,vgang2-dTsndz )) dT3xOK = max(zero,sign(unun,vgang3-dTsndz )) dT3_OK = dT3xOK * (1. - dT2_OK) dT4xOK = max(zero,sign(unun,vgang4-dTsndz )) dT4_OK = dT4xOK * (1. - dT3_OK) & * (1. - dT2_OK) dT4nOK = (1. - dT4xOK) * (1. - dT3_OK) & * (1. - dT2_OK) ! +-- Influence de la Temperature /Temperature Influence ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AngSno = & T1__OK & ! 11 *(T2__OK*(vtang4+vtang5*(TfSnow -TsisSV(ikl,isn)) & ! 12 /vtang6) & ! +T3__OK*(vtang7-vtang8*(TfSnow-vtang2-TsisSV(ikl,isn)) & ! 13 /vtang9) & ! +T3_nOK*(vtanga-vtangb*(TfSnow-vtang3-TsisSV(ikl,isn)) & ! 14 /vtangc)) & ! ! +-- Influence de la Masse Volumique /Density Influence ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * ro1_OK & *( ro2_OK*(1. - (ro_dry(ikl,isn)-vrang2) & ! /(vrang1-vrang2)) & ! +1.-ro2_OK ) & ! ! +-- Influence du Gradient de Temperature /Temperature Gradient Influence ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *( dT1_OK*(dT2_OK*vgang5*(dTsndz-vgang6) & ! 15 /(vgang2-vgang6) & ! +dT3_OK*vgang7 & ! 16 +dT4_OK*vgang9 & ! 17 +dT4nOK*vgangb ) & ! 18 +1.-dT1_OK ) & ! + ro1_OK & * dT1_OK*(dT3_OK*vgang8*(dTsndz-vgang2) & /(vgang3-vgang2) & +dT4_OK*vganga*(dTsndz-vgang3) & /(vgang4-vgang3) & +dT4nOK*vgangc*(dTsndz-vgang4) & /(vgang1-vgang4)) G2_hds = G2snSV(ikl,isn) + 1.d2 *AngSno*vfi *frac_j ! +--New Properties ! + -------------- G1_bak = G1snSV(ikl,isn) G2_bak = G2snSV(ikl,isn) G1snSV(ikl,isn) = Wet_OK * ( OK__wd *G1__wd & ! 1 +(1.-OK__wd)* OK__ws *G1__ws & ! 2 +(1.-OK__wd)*(1.-OK__ws)*G1_bak) & ! 3 +(1. - Wet_OK) & ! *( OKlowT *( OK_ldd *G1_ldd & ! 4 +(1.-OK_ldd) *G1_lds) & ! 5 + OKmidT *( OK_mdd *G1_mdd & ! 6 +(1.-OK_mdd) *G1_mds) & ! 7 + OKhigT *( OK_hdd *G1_hdd & ! 8 +(1.-OK_hdd)* OK_hds *G1_hds & ! 9 +(1.-OK_hdd)*(1.-OK_hds)*G1_bak)) ! 10 !XF if(G1snSV(ikl,isn)<0.1) & G2_hds = G2snSV(ikl,isn) + 1.d1 *AngSno*vfi *frac_j !XF G2snSV(ikl,isn) = Wet_OK * ( OK__wd *G2__wd & ! 1 +(1.-OK__wd)* OK__ws *G2_bak & ! 2 +(1.-OK__wd)*(1.-OK__ws)*G2__ws) & ! 3 +(1. - Wet_OK) & ! *( OKlowT *( OK_ldd *G2_ldd & ! 4 +(1.-OK_ldd) *G2_bak) & ! 5 + OKmidT *( OK_mdd *G2_mdd & ! 6 +(1.-OK_mdd) *G2_bak) & ! 7 + OKhigT *( OK_hdd *G2_hdd & ! 8 +(1.-OK_hdd)* OK_hds *G2_bak & ! 9 +(1.-OK_hdd)*(1.-OK_hds)*G2_hds)) ! 10 ! +--Snow Properties: IO Set Up ! + ~~~~~~~~~~~~~~~~~~~~~~~~~~ ! #vp G_curr( 1) = Wet_OK * OK__wd ! #vp G_curr( 2) = Wet_OK *(1.-OK__wd)* OK__ws ! #vp G_curr( 3) = Wet_OK *(1.-OK__wd)*(1.-OK__ws) ! #vp G_curr( 4) = (1.-Wet_OK)* OKlowT * OK_ldd ! #vp G_curr( 5) = (1.-Wet_OK)* OKlowT *(1.-OK_ldd) ! #vp G_curr( 6) = (1.-Wet_OK)* OKmidT * OK_mdd ! #vp G_curr( 7) = (1.-Wet_OK)* OKmidT *(1.-OK_mdd) ! #vp G_curr( 8) = (1.-Wet_OK)* OKhigT * OK_hdd ! #vp G_curr( 9) = (1.-Wet_OK)* OKhigT *(1.-OK_hdd)* OK_hds ! #vp G_curr(10) = (1.-Wet_OK)* OKhigT *(1.-OK_hdd)*(1.-OK_hds) ! #vp G_curr(11) = T1__OK * G_curr(10) ! #vp G_curr(12) = T2__OK * G_curr(10) ! #vp G_curr(13) = T3__OK * G_curr(10) ! #vp G_curr(14) = T3_nOK * G_curr(10) ! #vp G_curr(15) = ro1_OK* dT1_OK * dT2_OK * G_curr(10) ! #vp G_curr(16) = ro1_OK* dT1_OK * dT3_OK * G_curr(10) ! #vp G_curr(17) = ro1_OK* dT1_OK * dT4_OK * G_curr(10) ! #vp G_curr(18) = ro1_OK* dT1_OK * dT4nOK * G_curr(10) ! #vp Gcases( 1) = max(Gcases( 1),G_curr( 1)) ! #vp Gcases( 2) = max(Gcases( 2),G_curr( 2)) ! #vp Gcases( 3) = max(Gcases( 3),G_curr( 3)) ! #vp Gcases( 4) = max(Gcases( 4),G_curr( 4)) ! #vp Gcases( 5) = max(Gcases( 5),G_curr( 5)) ! #vp Gcases( 6) = max(Gcases( 6),G_curr( 6)) ! #vp Gcases( 7) = max(Gcases( 7),G_curr( 7)) ! #vp Gcases( 8) = max(Gcases( 8),G_curr( 8)) ! #vp Gcases( 9) = max(Gcases( 9),G_curr( 9)) ! #vp Gcases(10) = max(Gcases(10),G_curr(10)) ! #vp Gcases(11) = max(Gcases(11),G_curr(11)) ! #vp Gcases(12) = max(Gcases(12),G_curr(12)) ! #vp Gcases(13) = max(Gcases(13),G_curr(13)) ! #vp Gcases(14) = max(Gcases(14),G_curr(14)) ! #vp Gcases(15) = max(Gcases(15),G_curr(15)) ! #vp Gcases(16) = max(Gcases(16),G_curr(16)) ! #vp Gcases(17) = max(Gcases(17),G_curr(17)) ! #vp Gcases(18) = max(Gcases(18),G_curr(18)) ! +--Snow Properties: IO ! + ~~~~~~~~~~~~~~~~~~~ ! #vp IF (isn .le. isnoSV(ikl)) ! #vp. write(47,471)isn ,isnoSV(ikl) , ! #vp. TsisSV(ikl,isn),ro__SV(ikl,isn),eta_SV(ikl,isn), ! #vp. G1_bak ,G2_bak ,istoSV(ikl,isn), ! #vp. dTsndz, ! #vp. ( k ,k=1,18), ! #vp. (G_curr(k),k=1,18), ! #vp. (Gcases(k),k=1,18), ! #vp. Wet_OK,OK__wd,G1__wd,G2__wd, ! #vp. 1.-OK__wd,OK__ws,G1__ws,1.-OK__ws,G2__ws, ! #vp. 1.-Wet_OK,OKlowT,OK_ldd,G1_ldd, G2_ldd, ! #vp. 1.-OK_ldd,G1_lds, ! #vp. OKmidT,OK_mdd,G1_mdd, G1_mdd, ! #vp. 1.-OK_mdd,G1_mds, ! #vp. OKhigT,OK_hdd,G1_hdd, G2_hdd, ! #vp. 1.-OK_hdd,OK_hds, G1_hds, ! #vp. 1.-OK_hds,G2_hds, ! #vp. G1snSV(ikl,isn), ! #vp. G2snSV(ikl,isn) END DO END DO !!$OMP END PARALLEL DO ! +-- 2. Mise a Jour Variables Historiques (Cas non dendritique) ! + Update of the historical Variables ! + ======================================================= IF (vector) THEN !XF DO ikl=1,knonv DO isn=1,isnoSV(ikl) SphrOK = max(zero,sign(unun, G1snSV(ikl,isn))) H1a_OK = max(zero,sign(unun,vsphe4-G1snSV(ikl,isn))) H1b_OK = 1 - min(1 , istoSV(ikl,isn)) H1__OK = H1a_OK*H1b_OK H23aOK = max(zero,sign(unun,vsphe4-G1_dSV & +G1snSV(ikl,isn))) H23bOK = max(zero,sign(unun,etaSno(ikl,isn) & /max(epsi,dzsnSV(ikl,isn)) & -vtelv1 )) H23_OK = H23aOK*H23bOK H2__OK = 1 - min(1 , istoSV(ikl,isn)) H3__OK = 1 - min(1 , abs(istoSV(ikl,isn)-istdSV(1))) H45_OK = max(zero,sign(unun,TfSnow-TsisSV(ikl,isn)+epsi)) H4__OK = 1 - min(1 , abs(istoSV(ikl,isn)-istdSV(2))) H5__OK = 1 - min(1 , abs(istoSV(ikl,isn)-istdSV(3))) HISupd = & SphrOK*(H1__OK *istdSV(1) & +(1.-H1__OK)* H23_OK *(H2__OK*istdSV(2) & +H3__OK*istdSV(3)) & +(1.-H1__OK)*(1.-H23_OK) *H45_OK*(H4__OK*istdSV(4) & +H5__OK*istdSV(5))) istoSV(ikl,isn) = HISupd + & (1.-min(unun,HISupd)) *istoSV(ikl,isn) END DO END DO ELSE ! +-- 2. Mise a Jour Variables Historiques (Cas non dendritique) ! + Update of the historical Variables ! + ======================================================= DO ikl=1,knonv DO isn=iiceSV(ikl),isnoSV(ikl) IF (G1snSV(ikl,isn).ge.0.) THEN IF(G1snSV(ikl,isn).lt.vsphe4.and.istoSV(ikl,isn).eq.0) THEN istoSV(ikl,isn)=istdSV(1) ELSEIF(G1_dSV-G1snSV(ikl,isn) .lt.vsphe4.and. & etaSno(ikl,isn)/dzsnSV(ikl,isn).gt.vtelv1) THEN IF (istoSV(ikl,isn).eq.0) & istoSV(ikl,isn)= istdSV(2) IF (istoSV(ikl,isn).eq.istdSV(1)) & istoSV(ikl,isn)= istdSV(3) ELSEIF(TsisSV(ikl,isn).lt.TfSnow) THEN IF (istoSV(ikl,isn).eq.istdSV(2)) & istoSV(ikl,isn)= istdSV(4) IF (istoSV(ikl,isn).eq.istdSV(3)) & istoSV(ikl,isn)= istdSV(5) END IF END IF END DO END DO END IF ! +-- 3. Tassement mecanique /mechanical Settlement ! + ========================================== DO ikl=1,knonv SnMass(ikl) = 0. END DO !XF DO ikl=1,knonv smb_old = 0. zn_old = 0 DO isn = 1, isnoSV(ikl) smb_old = smb_old + dzsnSV(ikl,isn) *ro__SV(ikl,isn) zn_old = zn_old + dzsnSV(ikl,isn) ENDDO DO isn=isnoSV(ikl),1,-1 dSnMas = 100.*dzsnSV(ikl,isn)*ro_dry(ikl,isn) SnMass(ikl)= SnMass(ikl)+0.5*dSnMas ViscSn = vvisc1 *vvisc2 & *exp(vvisc3 *ro_dry(ikl,isn) & +vvisc4*abs(TfSnow-TsisSV(ikl,isn))) & *ro_dry(ikl,isn)/rovisc ! +-- Changement de Viscosite si Teneur en Eau liquide ! + Change of the Viscosity if liquid Water Content ! + ------------------------------------------------ OK_Liq = max(zero,sign(unun,etaSno(ikl,isn)-epsi)) OK_Ang = max(zero,sign(unun,vgran6-G1snSV(ikl,isn))) & *(1-min(1 , abs(istoSV(ikl,isn)-istdSV(1)))) ! #wp IF (G1snSV(ikl,isn).gt.0..AND.G1snSV(ikl,isn).lt.vsphe4 ! #wp. .AND.istoSV(ikl,isn).eq. 0) ! #wp. THEN ! #wp write(6,*) ikl,isn,' G1,G2,hist,OK_Ang ', ! #wp. G1snSV(ikl,isn), G2snSV(ikl,isn),istoSV(ikl,isn),OK_Ang ! #wp stop "Grains anguleux mal d?finis" ! #wp END IF OKxLiq = max(zero,sign(unun,vtelv1-etaSno(ikl,isn) & /max(epsi,dzsnSV(ikl,isn)))) & * max(0 ,sign(1 ,istoSV(ikl,isn) & -istdSV(1) )) ViscSn = & ViscSn*( OK_Liq/(vvisc5+vvisc6*etaSno(ikl,isn) & /max(epsi,dzsnSV(ikl,isn))) & +(1.-OK_Liq) ) & *( OK_Ang*exp(min(ADSdSV,G2snSV(ikl,isn)-vdiam4)) & +(1.-OK_Ang) ) & *( OKxLiq* vvisc7 & +(1.-OKxLiq) ) ! +-- Calcul nouvelle Epaisseur / new Thickness ! + ----------------------------------------- dzsnew = & dzsnSV(ikl,isn) & *max(vdz3, & (unun-dt__SV2*max(SnMass(ikl)*cos(slopSV(ikl)),unun) & /max(ViscSn ,epsi))) rosnew = ro__SV(ikl,isn) *dzsnSV(ikl,isn) & /max(1e-10,dzsnew) rosmax = 1. /( (1. -eta_SV(ikl,isn)) /ro_Ice & + eta_SV(ikl,isn) /ro_Wat) rosnew = min(rosnew ,rosmax) dzsnew = dzsnSV(ikl,isn) *ro__SV(ikl,isn) & /max(1e-10,rosnew) ro__SV(ikl,isn)= rosnew dzsnSV(ikl,isn)= dzsnew ro_dry(ikl,isn)= ro__SV(ikl,isn)*(1.-eta_SV(ikl,isn))*1.e-3 ! +... ro_dry: Dry Density (g/cm3) ! + SnMass(ikl) = SnMass(ikl)+dSnMas*0.5 END DO smb_new = 0. DO isn = 1, isnoSV(ikl) smb_new = smb_new + dzsnSV(ikl,isn) *ro__SV(ikl,isn) ENDDO isn=1 if (dzsnSV(ikl,isn)>0.and.ro__SV(ikl,isn)>0) then dzsnSV(ikl,isn) = dzsnSV(ikl,isn) +0.9999*(smb_old-smb_new) & / ro__SV(ikl,isn) endif zn_new = 0 DO isn = 1, isnoSV(ikl) zn_new = zn_new + dzsnSV(ikl,isn) ENDDO zn4_SV(ikl) = zn4_SV(ikl) + (zn_new - zn_old) END DO return end subroutine sisvat_gsn