!*************************************************************************************** ! tend_to_tke.F90 !************* ! ! Subroutine that adds a tendency on the TKE created by the ! fluxes of momentum retrieved from the wind speed tendencies ! of the physics. ! ! The basic concept is the following: ! the TKE equation writes de/dt = -u'w' du/dz -v'w' dv/dz +g/theta dtheta/dz +...... ! ! ! We expect contributions to the term u'w' and v'w' that do not come from the Yamada ! scheme, for instance: gravity waves, drag from high vegetation..... These contributions ! need to be accounted for. ! we explicitely calculate the fluxes, integrating the wind speed ! tendency from the top of the atmospher ! ! ! ! contacts: Frederic Hourdin, Etienne Vignon ! ! History: !--------- ! - 1st redaction, Etienne, 15/10/2016 ! Ajout des 4 sous surfaces pour la tke ! on sort l'ajout des tendances du if sur les deux cas, pour ne pas ! dupliuqer les lignes ! on enleve le pas de temps qui disprait dans les calculs ! ! !************************************************************************************** SUBROUTINE tend_to_tke(dt,plev,exner,temp,windu,windv,dt_a,du_a,dv_a,pctsrf,tke) USE dimphy, ONLY: klon, klev USE indice_sol_mod, ONLY: nbsrf USE yomcst_mod_h IMPLICIT NONE ! Declarations !============== ! Inputs !------- REAL dt ! Time step [s] REAL plev(klon,klev+1) ! inter-layer pressure [Pa] REAL temp(klon,klev) ! temperature [K], grid-cell average or for a one subsurface REAL windu(klon,klev) ! zonal wind [m/s], grid-cell average or for a one subsurface REAL windv(klon,klev) ! meridonal wind [m/s], grid-cell average or for a one subsurface REAL exner(klon,klev) ! Fonction d'Exner = T/theta REAL dt_a(klon,klev) ! Temperature tendency [K], grid-cell average or for a one subsurface REAL du_a(klon,klev) ! Zonal wind speed tendency [m/s], grid-cell average or for a one subsurface REAL dv_a(klon,klev) ! Meridional wind speed tendency [m/s], grid-cell average or for a one subsurface REAL pctsrf(klon,nbsrf+1) ! Turbulent Kinetic energy [m2/s2], grid-cell average or for a subsurface ! Inputs/Outputs !--------------- REAL tke(klon,klev+1,nbsrf+1) ! Turbulent Kinetic energy [m2/s2], grid-cell average or for a subsurface ! Local !------- INTEGER i,k,isrf ! indices REAL masse(klon,klev) ! mass in the layers [kg/m2] REAL unsmasse(klon,klev+1) ! linear mass in the layers [kg/m2] REAL flux_rhotw(klon,klev+1) ! flux massique de tempe. pot. rho*u'*theta' REAL flux_rhouw(klon,klev+1) ! flux massique de quantit?? de mouvement rho*u'*w' [kg/m/s2] REAL flux_rhovw(klon,klev+1) ! flux massique de quantit?? de mouvement rho*v'*w' [kg/m/s2] REAL tendt(klon,klev) ! new temperature tke tendency [m2/s2/s] REAL tendu(klon,klev) ! new zonal tke tendency [m2/s2/s] REAL tendv(klon,klev) ! new meridonal tke tendency [m2/s2/s] ! First calculations: !===================== unsmasse(:,:)=0. DO k=1,klev masse(:,k)=(plev(:,k)-plev(:,k+1))/RG unsmasse(:,k)=unsmasse(:,k)+0.5/masse(:,k) unsmasse(:,k+1)=unsmasse(:,k+1)+0.5/masse(:,k) END DO tendu(:,:)=0.0 tendv(:,:)=0.0 ! Method 1: Calculation of fluxes using a downward integration !============================================================ ! Flux calculation flux_rhotw(:,klev+1)=0. flux_rhouw(:,klev+1)=0. flux_rhovw(:,klev+1)=0. DO k=klev,1,-1 flux_rhotw(:,k)=flux_rhotw(:,k+1)+masse(:,k)*dt_a(:,k)/exner(:,k) flux_rhouw(:,k)=flux_rhouw(:,k+1)+masse(:,k)*du_a(:,k) flux_rhovw(:,k)=flux_rhovw(:,k+1)+masse(:,k)*dv_a(:,k) ENDDO ! TKE update: DO k=2,klev tendt(:,k)=-flux_rhotw(:,k)*(exner(:,k)-exner(:,k-1))*unsmasse(:,k)*RCPD tendu(:,k)=-flux_rhouw(:,k)*(windu(:,k)-windu(:,k-1))*unsmasse(:,k) tendv(:,k)=-flux_rhovw(:,k)*(windv(:,k)-windv(:,k-1))*unsmasse(:,k) ENDDO tendt(:,1)=-flux_rhotw(:,1)*(exner(:,1)-1.)*unsmasse(:,1)*RCPD tendu(:,1)=-1.*flux_rhouw(:,1)*windu(:,1)*unsmasse(:,1) tendv(:,1)=-1.*flux_rhovw(:,1)*windv(:,1)*unsmasse(:,1) DO isrf=1,nbsrf DO k=1,klev DO i=1,klon IF (pctsrf(i,isrf)>0.) THEN tke(i,k,isrf)= tke(i,k,isrf)+tendu(i,k)+tendv(i,k)+tendt(i,k) tke(i,k,isrf)= max(tke(i,k,isrf),1.e-10) ENDIF ENDDO ENDDO ENDDO ! IF (klon==1) THEN ! CALL iophys_ecrit('u',klev,'u','',windu) ! CALL iophys_ecrit('v',klev,'v','',windu) ! CALL iophys_ecrit('t',klev,'t','',temp) ! CALL iophys_ecrit('tke1',klev,'tke1','',tke(:,1:klev,1)) ! CALL iophys_ecrit('tke2',klev,'tke2','',tke(:,1:klev,2)) ! CALL iophys_ecrit('tke3',klev,'tke3','',tke(:,1:klev,3)) ! CALL iophys_ecrit('tke4',klev,'tke4','',tke(:,1:klev,4)) ! CALL iophys_ecrit('theta',klev,'theta','',temp/exner) ! CALL iophys_ecrit('Duv',klev,'Duv','',tendu(:,1:klev)+tendv(:,1:klev)) ! CALL iophys_ecrit('Dt',klev,'Dt','',tendt(:,1:klev)) ! ENDIF END SUBROUTINE tend_to_tke