!Completed MODULE ocean_slab_mod ! ! This module is used for both surface ocean and sea-ice when using the slab ocean, ! "ocean=slab". ! USE dimphy USE indice_sol_mod USE surface_data USE mod_grid_phy_lmdz, ONLY: klon_glo USE mod_phys_lmdz_mpi_data, ONLY: is_mpi_root IMPLICIT NONE PRIVATE PUBLIC :: ocean_slab_init, ocean_slab_frac, ocean_slab_noice, ocean_slab_ice !*********************************************************************************** ! Global saved variables !*********************************************************************************** ! number of slab vertical layers INTEGER, PUBLIC, SAVE :: nslay !$OMP THREADPRIVATE(nslay) ! timestep for coupling (update slab temperature) in timesteps INTEGER, PRIVATE, SAVE :: cpl_pas !$OMP THREADPRIVATE(cpl_pas) ! cyang = 1/heat capacity of top layer (rho.c.H) REAL, PRIVATE, SAVE :: cyang !$OMP THREADPRIVATE(cyang) ! depth of slab layers (1 or 2) REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: slabh !$OMP THREADPRIVATE(slabh) ! slab temperature REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: tslab !$OMP THREADPRIVATE(tslab) ! heat flux convergence due to Ekman REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_ekman !$OMP THREADPRIVATE(dt_ekman) ! heat flux convergence due to horiz diffusion REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_hdiff !$OMP THREADPRIVATE(dt_hdiff) ! heat flux convergence due to GM eddy advection REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_gm !$OMP THREADPRIVATE(dt_gm) ! Heat Flux correction REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_qflux !$OMP THREADPRIVATE(dt_qflux) ! fraction of ocean covered by sea ice (sic / (oce+sic)) REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: fsic !$OMP THREADPRIVATE(fsic) ! temperature of the sea ice REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: tice !$OMP THREADPRIVATE(tice) ! sea ice thickness, in kg/m2 REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: seaice !$OMP THREADPRIVATE(seaice) ! net surface heat flux, weighted by open ocean fraction ! slab_bils accumulated over cpl_pas timesteps REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bils_cum !$OMP THREADPRIVATE(bils_cum) ! net heat flux into the ocean below the ice : conduction + solar radiation REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: slab_bilg !$OMP THREADPRIVATE(slab_bilg) ! slab_bilg over cpl_pas timesteps REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bilg_cum !$OMP THREADPRIVATE(bilg_cum) ! wind stress saved over cpl_pas timesteps REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: taux_cum !$OMP THREADPRIVATE(taux_cum) REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tauy_cum !$OMP THREADPRIVATE(tauy_cum) !*********************************************************************************** ! Parameters (could be read in def file: move to slab_init) !*********************************************************************************** ! snow and ice physical characteristics: REAL, PARAMETER :: t_freeze=271.35 ! freezing sea water temp REAL, PARAMETER :: t_melt=273.15 ! melting ice temp REAL, PARAMETER :: sno_den=300. !mean snow density, kg/m3 REAL, PARAMETER :: ice_den=917. ! ice density REAL, PARAMETER :: sea_den=1025. ! sea water density REAL, PARAMETER :: ice_cond=2.17*ice_den !conductivity of ice REAL, PARAMETER :: sno_cond=0.31*sno_den ! conductivity of snow REAL, PARAMETER :: ice_cap=2067. ! specific heat capacity, snow and ice REAL, PARAMETER :: sea_cap=3995. ! specific heat capacity, snow and ice REAL, PARAMETER :: ice_lat=334000. ! freeze /melt latent heat snow and ice ! control of snow and ice cover & freeze / melt (heights converted to kg/m2) REAL, PARAMETER :: snow_min=0.05*sno_den !critical snow height 5 cm REAL, PARAMETER :: snow_wfact=0.4 ! max fraction of falling snow blown into ocean REAL, PARAMETER :: ice_frac_min=0.001 REAL, PARAMETER :: ice_frac_max=1. ! less than 1. if min leads fraction REAL, PARAMETER :: h_ice_min=0.01*ice_den ! min ice thickness REAL, PARAMETER :: h_ice_thin=0.15*ice_den ! thin ice thickness ! below ice_thin, priority is melt lateral / grow height ! ice_thin is also height of new ice REAL, PARAMETER :: h_ice_thick=2.5*ice_den ! thin ice thickness ! above ice_thick, priority is melt height / grow lateral REAL, PARAMETER :: h_ice_new=1.*ice_den ! max height of new open ocean ice REAL, PARAMETER :: h_ice_max=10.*ice_den ! max ice height ! albedo and radiation parameters REAL, PARAMETER :: alb_sno_min=0.55 !min snow albedo REAL, PARAMETER :: alb_sno_del=0.3 !max snow albedo = min + del REAL, PARAMETER :: alb_ice_dry=0.75 !dry thick ice REAL, PARAMETER :: alb_ice_wet=0.66 !melting thick ice REAL, PARAMETER :: pen_frac=0.3 !fraction of shortwave penetrating into the ! ice (no snow) REAL, PARAMETER :: pen_ext=1.5 !extinction of penetrating shortwave (m-1) ! horizontal transport LOGICAL, PUBLIC, SAVE :: slab_hdiff !$OMP THREADPRIVATE(slab_hdiff) LOGICAL, PUBLIC, SAVE :: slab_gm !$OMP THREADPRIVATE(slab_gm) REAL, PRIVATE, SAVE :: coef_hdiff ! coefficient for horizontal diffusion !$OMP THREADPRIVATE(coef_hdiff) INTEGER, PUBLIC, SAVE :: slab_ekman, slab_cadj ! Ekman, conv adjustment !$OMP THREADPRIVATE(slab_ekman) !$OMP THREADPRIVATE(slab_cadj) !*********************************************************************************** CONTAINS ! !*********************************************************************************** ! SUBROUTINE ocean_slab_init(dtime, pctsrf_rst) !, seaice_rst etc USE ioipsl_getin_p_mod, ONLY : getin_p USE mod_phys_lmdz_transfert_para, ONLY : gather USE slab_heat_transp_mod, ONLY : ini_slab_transp ! Input variables !*********************************************************************************** REAL, INTENT(IN) :: dtime ! Variables read from restart file REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: pctsrf_rst ! surface fractions from start file ! Local variables !************************************************************************************ INTEGER :: error REAL, DIMENSION(klon_glo) :: zmasq_glo CHARACTER (len = 80) :: abort_message CHARACTER (len = 20) :: modname = 'ocean_slab_intit' !*********************************************************************************** ! Define some parameters !*********************************************************************************** ! Number of slab layers nslay=2 CALL getin_p('slab_layers',nslay) print *,'number of slab layers : ',nslay ! Layer thickness ALLOCATE(slabh(nslay), stat = error) IF (error /= 0) THEN abort_message='Pb allocation slabh' CALL abort_physic(modname,abort_message,1) ENDIF slabh(1)=50. CALL getin_p('slab_depth',slabh(1)) IF (nslay.GT.1) THEN slabh(2)=150. END IF ! cyang = 1/heat capacity of top layer (rho.c.H) cyang=1/(slabh(1)*sea_den*sea_cap) ! cpl_pas coupling period (update of tslab and ice fraction) ! pour un calcul a chaque pas de temps, cpl_pas=1 cpl_pas = NINT(86400./dtime * 1.0) ! une fois par jour CALL getin_p('cpl_pas',cpl_pas) print *,'cpl_pas',cpl_pas ! Horizontal diffusion slab_hdiff=.FALSE. CALL getin_p('slab_hdiff',slab_hdiff) coef_hdiff=25000. CALL getin_p('coef_hdiff',coef_hdiff) ! Ekman transport slab_ekman=0 CALL getin_p('slab_ekman',slab_ekman) ! GM eddy advection (2-layers only) slab_gm=.FALSE. CALL getin_p('slab_gm',slab_gm) IF (slab_ekman.LT.2) THEN slab_gm=.FALSE. ENDIF ! Convective adjustment IF (nslay.EQ.1) THEN slab_cadj=0 ELSE slab_cadj=1 END IF CALL getin_p('slab_cadj',slab_cadj) !************************************************************************************ ! Allocate surface fraction read from restart file !************************************************************************************ ALLOCATE(fsic(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation tmp_pctsrf_slab' CALL abort_physic(modname,abort_message,1) ENDIF fsic(:)=0. !zmasq = continent fraction WHERE (1.-zmasq(:)>EPSFRA) fsic(:) = pctsrf_rst(:,is_sic)/(1.-zmasq(:)) END WHERE !************************************************************************************ ! Allocate saved fields !************************************************************************************ ALLOCATE(tslab(klon,nslay), stat=error) IF (error /= 0) CALL abort_physic & (modname,'pb allocation tslab', 1) ALLOCATE(bils_cum(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation slab_bils_cum' CALL abort_physic(modname,abort_message,1) ENDIF bils_cum(:) = 0.0 IF (version_ocean=='sicINT') THEN ! interactive sea ice ALLOCATE(slab_bilg(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation slab_bilg' CALL abort_physic(modname,abort_message,1) ENDIF slab_bilg(:) = 0.0 ALLOCATE(bilg_cum(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation slab_bilg_cum' CALL abort_physic(modname,abort_message,1) ENDIF bilg_cum(:) = 0.0 ALLOCATE(tice(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation slab_tice' CALL abort_physic(modname,abort_message,1) ENDIF ALLOCATE(seaice(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation slab_seaice' CALL abort_physic(modname,abort_message,1) ENDIF END IF IF (slab_hdiff) THEN !horizontal diffusion ALLOCATE(dt_hdiff(klon,nslay), stat = error) IF (error /= 0) THEN abort_message='Pb allocation dt_hdiff' CALL abort_physic(modname,abort_message,1) ENDIF dt_hdiff(:,:) = 0.0 ENDIF ALLOCATE(dt_qflux(klon,nslay), stat = error) IF (error /= 0) THEN abort_message='Pb allocation dt_qflux' CALL abort_physic(modname,abort_message,1) ENDIF dt_qflux(:,:) = 0.0 IF (slab_gm) THEN !GM advection ALLOCATE(dt_gm(klon,nslay), stat = error) IF (error /= 0) THEN abort_message='Pb allocation dt_gm' CALL abort_physic(modname,abort_message,1) ENDIF dt_gm(:,:) = 0.0 ENDIF IF (slab_ekman.GT.0) THEN ! ekman transport ALLOCATE(dt_ekman(klon,nslay), stat = error) IF (error /= 0) THEN abort_message='Pb allocation dt_ekman' CALL abort_physic(modname,abort_message,1) ENDIF dt_ekman(:,:) = 0.0 ALLOCATE(taux_cum(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation taux_cum' CALL abort_physic(modname,abort_message,1) ENDIF taux_cum(:) = 0.0 ALLOCATE(tauy_cum(klon), stat = error) IF (error /= 0) THEN abort_message='Pb allocation tauy_cum' CALL abort_physic(modname,abort_message,1) ENDIF tauy_cum(:) = 0.0 ENDIF ! Initialize transport IF (slab_hdiff.OR.(slab_ekman.GT.0)) THEN CALL gather(zmasq,zmasq_glo) ! Master thread/process only !$OMP MASTER IF (is_mpi_root) THEN CALL ini_slab_transp(zmasq_glo) END IF !$OMP END MASTER END IF END SUBROUTINE ocean_slab_init ! !*********************************************************************************** ! SUBROUTINE ocean_slab_frac(itime, dtime, jour, pctsrf_chg, is_modified) ! this routine sends back the sea ice and ocean fraction to the main physics ! routine. Called only with interactive sea ice ! Arguments !************************************************************************************ INTEGER, INTENT(IN) :: itime ! current timestep INTEGER, INTENT(IN) :: jour ! day in year (not REAL , INTENT(IN) :: dtime ! physics timestep (s) REAL, DIMENSION(klon,nbsrf), INTENT(INOUT) :: pctsrf_chg ! sub-surface fraction LOGICAL, INTENT(OUT) :: is_modified ! true if pctsrf is ! modified at this time step pctsrf_chg(:,is_oce)=(1.-fsic(:))*(1.-zmasq(:)) pctsrf_chg(:,is_sic)=fsic(:)*(1.-zmasq(:)) is_modified=.TRUE. END SUBROUTINE ocean_slab_frac ! !************************************************************************************ ! SUBROUTINE ocean_slab_noice( & itime, dtime, jour, knon, knindex, & p1lay, cdragh, cdragq, cdragm, precip_rain, precip_snow, temp_air, spechum, & AcoefH, AcoefQ, BcoefH, BcoefQ, & AcoefU, AcoefV, BcoefU, BcoefV, & ps, u1, v1, gustiness, tsurf_in, & radsol, snow, & qsurf, evap, fluxsens, fluxlat, flux_u1, flux_v1, & tsurf_new, dflux_s, dflux_l, slab_bils) USE clesphys_mod_h USE calcul_fluxs_mod USE slab_heat_transp_mod, ONLY: divgrad_phy,slab_ekman1,slab_ekman2,slab_gmdiff USE mod_phys_lmdz_para ! This routine ! (1) computes surface turbulent fluxes over points with some open ocean ! (2) reads additional Q-flux (everywhere) ! (3) computes horizontal transport (diffusion & Ekman) ! (4) updates slab temperature every cpl_pas ; creates new ice if needed. ! Note : ! klon total number of points ! knon number of points with open ocean (varies with time) ! knindex gives position of the knon points within klon. ! In general, local saved variables have klon values ! variables exchanged with PBL module have knon. ! Input arguments !*********************************************************************************** INTEGER, INTENT(IN) :: itime ! current timestep INTEGER, INTEGER, INTENT(IN) :: jour ! day in year (for Q-Flux) INTEGER, INTENT(IN) :: knon ! number of points INTEGER, DIMENSION(klon), INTENT(IN) :: knindex REAL, INTENT(IN) :: dtime ! timestep (s) REAL, DIMENSION(klon), INTENT(IN) :: p1lay REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragq, cdragm ! drag coefficients REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum ! near surface T, q REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ, BcoefH, BcoefQ REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV ! exchange coefficients for boundary layer scheme REAL, DIMENSION(klon), INTENT(IN) :: ps ! surface pressure REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness ! surface wind REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in ! surface temperature REAL, DIMENSION(klon), INTENT(INOUT) :: radsol ! net surface radiative flux ! In/Output arguments !************************************************************************************ REAL, DIMENSION(klon), INTENT(INOUT) :: snow ! in kg/m2 ! Output arguments !************************************************************************************ REAL, DIMENSION(klon), INTENT(OUT) :: qsurf REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new ! new surface tempearture REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l REAL, DIMENSION(klon), INTENT(OUT) :: slab_bils ! Local variables !************************************************************************************ INTEGER :: i,ki,k REAL :: t_cadj ! for surface heat fluxes REAL, DIMENSION(klon) :: cal, beta, dif_grnd ! for Q-Flux computation: d/dt SST, d/dt ice volume (kg/m2), surf fluxes REAL, DIMENSION(klon) :: diff_sst, diff_siv REAL, DIMENSION(klon,nslay) :: lmt_bils ! for surface wind stress REAL, DIMENSION(klon) :: u0, v0 REAL, DIMENSION(klon) :: u1_lay, v1_lay ! for new ice creation REAL :: e_freeze, h_new, dfsic ! horizontal diffusion and Ekman local vars ! dimension = global domain (klon_glo) instead of // subdomains REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_glo,dt_ekman_glo,dt_gm_glo ! dt_ekman_glo saved for diagnostic, dt_ekman_tmp used for time loop REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_tmp, dt_ekman_tmp REAL, DIMENSION(klon_glo,nslay) :: tslab_glo REAL, DIMENSION(klon_glo) :: taux_glo,tauy_glo !**************************************************************************************** ! 1) Surface fluxes calculation ! !**************************************************************************************** !cal(:) = 0. ! infinite thermal inertia !beta(:) = 1. ! wet surface !dif_grnd(:) = 0. ! no diffusion into ground ! EV: use calbeta CALL calbeta(dtime, is_oce, knon, snow,qsurf, beta, cal, dif_grnd) ! Suppose zero surface speed u0(:)=0.0 v0(:)=0.0 u1_lay(:) = u1(:) - u0(:) v1_lay(:) = v1(:) - v0(:) ! Compute latent & sensible fluxes CALL calcul_fluxs(knon, is_oce, dtime, & tsurf_in, p1lay, cal, beta, cdragh, cdragq, ps, & precip_rain, precip_snow, snow, qsurf, & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) ! save total cumulated heat fluxes locally ! radiative + turbulent + melt of falling snow slab_bils(:)=0. DO i=1,knon ki=knindex(i) slab_bils(ki)=(1.-fsic(ki))*(fluxlat(i)+fluxsens(i)+radsol(i) & -precip_snow(i)*ice_lat*(1.+snow_wfact*fsic(ki))) bils_cum(ki)=bils_cum(ki)+slab_bils(ki) END DO ! Compute surface wind stress CALL calcul_flux_wind(knon, dtime, & u0, v0, u1, v1, gustiness, cdragm, & AcoefU, AcoefV, BcoefU, BcoefV, & p1lay, temp_air, & flux_u1, flux_v1) ! save cumulated wind stress IF (slab_ekman.GT.0) THEN DO i=1,knon ki=knindex(i) taux_cum(ki)=taux_cum(ki)+flux_u1(i)*(1.-fsic(ki))/cpl_pas tauy_cum(ki)=tauy_cum(ki)+flux_v1(i)*(1.-fsic(ki))/cpl_pas END DO ENDIF !**************************************************************************************** ! 2) Q-Flux : get global variables lmt_bils, diff_sst and diff_siv from file limit_slab.nc ! !**************************************************************************************** CALL limit_slab(itime, dtime, jour, lmt_bils, diff_sst, diff_siv) ! lmt_bils and diff_sst,siv saved by limit_slab ! qflux = total QFlux correction (in W/m2) dt_qflux(:,1)=lmt_bils(:,1)+diff_sst(:)/cyang/86400.-diff_siv(:)*ice_den*ice_lat/86400. IF (nslay.GT.1) THEN dt_qflux(:,2:nslay)=lmt_bils(:,2:nslay) END IF !**************************************************************************************** ! 3) Recalculate new temperature (add Surf fluxes, Q-Flux, Ocean transport) ! Bring to freezing temp and make sea ice if necessary ! !***********************************************o***************************************** tsurf_new=tsurf_in IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab & fraction ! *********************************** ! Horizontal transport ! *********************************** IF (slab_ekman.GT.0) THEN ! copy wind stress to global var CALL gather(taux_cum,taux_glo) CALL gather(tauy_cum,tauy_glo) END IF IF (slab_hdiff.OR.(slab_ekman.GT.0)) THEN CALL gather(tslab,tslab_glo) ! Compute horiz transport on one process only IF (is_mpi_root .AND. is_omp_root) THEN ! Only master processus IF (slab_hdiff) THEN dt_hdiff_glo(:,:)=0. END IF IF (slab_ekman.GT.0) THEN dt_ekman_glo(:,:)=0. END IF IF (slab_gm) THEN dt_gm_glo(:,:)=0. END IF DO i=1,cpl_pas ! time splitting for numerical stability IF (slab_ekman.GT.0) THEN SELECT CASE (slab_ekman) CASE (1) CALL slab_ekman1(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp) CASE (2) CALL slab_ekman2(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp,dt_hdiff_tmp,slab_gm) CASE DEFAULT dt_ekman_tmp(:,:)=0. END SELECT dt_ekman_glo(:,:)=dt_ekman_glo(:,:)+dt_ekman_tmp(:,:) ! convert dt_ekman from K.s-1.(kg.m-2) to K.s-1 DO k=1,nslay dt_ekman_tmp(:,k)=dt_ekman_tmp(:,k)/(slabh(k)*sea_den) ENDDO tslab_glo=tslab_glo+dt_ekman_tmp*dtime IF (slab_gm) THEN ! Gent-McWilliams eddy advection dt_gm_glo(:,:)=dt_gm_glo(:,:)+ dt_hdiff_tmp(:,:) ! convert dt from K.s-1.(kg.m-2) to K.s-1 DO k=1,nslay dt_hdiff_tmp(:,k)=dt_hdiff_tmp(:,k)/(slabh(k)*sea_den) END DO tslab_glo=tslab_glo+dt_hdiff_tmp*dtime END IF ENDIF ! GM included in Ekman_2 ! IF (slab_gm) THEN ! Gent-McWilliams eddy advection ! CALL slab_gmdiff(tslab_glo,dt_hdiff_tmp) ! ! convert dt_gm from K.m.s-1 to K.s-1 ! DO k=1,nslay ! dt_hdiff_tmp(:,k)=dt_hdiff_tmp(:,k)/slabh(k) ! END DO ! tslab_glo=tslab_glo+dt_hdiff_tmp*dtime ! dt_gm_glo(:,:)=dt_gm_glo(:,:)+ dt_hdiff_tmp(:,:) ! END IF IF (slab_hdiff) THEN ! horizontal diffusion ! laplacian of slab T CALL divgrad_phy(nslay,tslab_glo,dt_hdiff_tmp) ! multiply by diff coef and normalize to 50m slab equivalent dt_hdiff_tmp=dt_hdiff_tmp*coef_hdiff*50./SUM(slabh) dt_hdiff_glo(:,:)=dt_hdiff_glo(:,:)+ dt_hdiff_tmp(:,:) tslab_glo=tslab_glo+dt_hdiff_tmp*dtime END IF END DO ! time splitting IF (slab_hdiff) THEN !dt_hdiff_glo saved in W/m2 DO k=1,nslay dt_hdiff_glo(:,k)=dt_hdiff_glo(:,k)*slabh(k)*sea_den*sea_cap/cpl_pas END DO END IF IF (slab_gm) THEN !dt_hdiff_glo saved in W/m2 dt_gm_glo(:,:)=dt_gm_glo(:,:)*sea_cap/cpl_pas END IF IF (slab_ekman.GT.0) THEN ! dt_ekman_glo saved in W/m2 dt_ekman_glo(:,:)=dt_ekman_glo(:,:)*sea_cap/cpl_pas END IF END IF ! master process !$OMP BARRIER ! Send new fields back to all processes CALL Scatter(tslab_glo,tslab) IF (slab_hdiff) THEN CALL Scatter(dt_hdiff_glo,dt_hdiff) END IF IF (slab_gm) THEN CALL Scatter(dt_gm_glo,dt_gm) END IF IF (slab_ekman.GT.0) THEN CALL Scatter(dt_ekman_glo,dt_ekman) ! clear wind stress taux_cum(:)=0. tauy_cum(:)=0. END IF ENDIF ! transport ! *********************************** ! Other heat fluxes ! *********************************** ! Add read QFlux DO k=1,nslay tslab(:,k)=tslab(:,k)+dt_qflux(:,k)*cyang*dtime*cpl_pas & *slabh(1)/slabh(k) END DO ! Add cumulated surface fluxes tslab(:,1)=tslab(:,1)+bils_cum(:)*cyang*dtime ! Convective adjustment if 2 layers IF ((nslay.GT.1).AND.(slab_cadj.GT.0)) THEN DO i=1,klon IF (tslab(i,2).GT.tslab(i,1)) THEN ! mean (mass-weighted) temperature t_cadj=SUM(tslab(i,:)*slabh(:))/SUM(slabh(:)) tslab(i,1)=t_cadj tslab(i,2)=t_cadj END IF END DO END IF ! *********************************** ! Update surface temperature and ice ! *********************************** SELECT CASE(version_ocean) CASE('sicNO') ! no sea ice even below freezing ! DO i=1,knon ki=knindex(i) tsurf_new(i)=tslab(ki,1) END DO CASE('sicOBS') ! "realistic" case, for prescribed sea ice ! tslab cannot be below freezing, or above it if there is sea ice DO i=1,knon ki=knindex(i) IF ((tslab(ki,1).LT.t_freeze).OR.(fsic(ki).GT.epsfra)) THEN tslab(ki,1)=t_freeze END IF tsurf_new(i)=tslab(ki,1) END DO CASE('sicINT') ! interactive sea ice DO i=1,knon ki=knindex(i) IF (fsic(ki).LT.epsfra) THEN ! Free of ice IF (tslab(ki,1).LT.t_freeze) THEN ! create new ice ! quantity of new ice formed e_freeze=(t_freeze-tslab(ki,1))/cyang/ice_lat ! new ice tice(ki)=t_freeze fsic(ki)=MIN(ice_frac_max,e_freeze/h_ice_thin) IF (fsic(ki).GT.ice_frac_min) THEN seaice(ki)=MIN(e_freeze/fsic(ki),h_ice_max) tslab(ki,1)=t_freeze ELSE fsic(ki)=0. END IF tsurf_new(i)=t_freeze ELSE tsurf_new(i)=tslab(ki,1) END IF ELSE ! ice present tsurf_new(i)=t_freeze IF (tslab(ki,1).LT.t_freeze) THEN ! create new ice ! quantity of new ice formed over open ocean e_freeze=(t_freeze-tslab(ki,1))/cyang*(1.-fsic(ki)) & /(ice_lat+ice_cap/2.*(t_freeze-tice(ki))) ! new ice height and fraction h_new=MIN(h_ice_new,seaice(ki)) ! max new height ice_new dfsic=MIN(ice_frac_max-fsic(ki),e_freeze/h_new) h_new=MIN(e_freeze/dfsic,h_ice_max) ! update tslab to freezing over open ocean only tslab(ki,1)=tslab(ki,1)*fsic(ki)+t_freeze*(1.-fsic(ki)) ! update sea ice seaice(ki)=(h_new*dfsic+seaice(ki)*fsic(ki)) & /(dfsic+fsic(ki)) fsic(ki)=fsic(ki)+dfsic ! update snow? END IF ! tslab below freezing END IF ! sea ice present END DO END SELECT bils_cum(:)=0.0! clear cumulated fluxes END IF ! coupling time END SUBROUTINE ocean_slab_noice ! !**************************************************************************************** SUBROUTINE ocean_slab_ice( & itime, dtime, jour, knon, knindex, & tsurf_in, p1lay, cdragh, cdragm, precip_rain, precip_snow, temp_air, spechum, & AcoefH, AcoefQ, BcoefH, BcoefQ, & AcoefU, AcoefV, BcoefU, BcoefV, & ps, u1, v1, gustiness, & radsol, snow, qsurf, qsol, agesno, & alb1_new, alb2_new, evap, fluxsens, fluxlat, flux_u1, flux_v1, & tsurf_new, dflux_s, dflux_l, swnet) USE clesphys_mod_h USE yomcst_mod_h USE calcul_fluxs_mod ! Input arguments !**************************************************************************************** INTEGER, INTENT(IN) :: itime, jour, knon INTEGER, DIMENSION(klon), INTENT(IN) :: knindex REAL, INTENT(IN) :: dtime REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in REAL, DIMENSION(klon), INTENT(IN) :: p1lay REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragm REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ, BcoefH, BcoefQ REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV REAL, DIMENSION(klon), INTENT(IN) :: ps REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness REAL, DIMENSION(klon), INTENT(IN) :: swnet ! In/Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(INOUT) :: snow, qsol REAL, DIMENSION(klon), INTENT(INOUT) :: agesno REAL, DIMENSION(klon), INTENT(INOUT) :: radsol ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: qsurf REAL, DIMENSION(klon), INTENT(OUT) :: alb1_new ! new albedo in visible SW interval REAL, DIMENSION(klon), INTENT(OUT) :: alb2_new ! new albedo in near IR interval REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l ! Local variables !**************************************************************************************** INTEGER :: i,ki REAL, DIMENSION(klon) :: cal, beta, dif_grnd REAL, DIMENSION(klon) :: u0, v0 REAL, DIMENSION(klon) :: u1_lay, v1_lay ! intermediate heat fluxes: REAL :: f_cond, f_swpen ! for snow/ice albedo: REAL :: alb_snow, alb_ice, alb_pond REAL :: frac_snow, frac_ice, frac_pond ! for ice melt / freeze REAL :: e_melt, snow_evap, h_test ! dhsic, dfsic change in ice mass, fraction. REAL :: dhsic, dfsic, frac_mf !**************************************************************************************** ! 1) Flux calculation !**************************************************************************************** ! Suppose zero surface speed u0(:)=0.0 v0(:)=0.0 u1_lay(:) = u1(:) - u0(:) v1_lay(:) = v1(:) - v0(:) ! set beta, cal, compute conduction fluxes inside ice/snow slab_bilg(:)=0. !dif_grnd(:)=0. !beta(:) = 1. ! EV: use calbeta to calculate beta and then recalculate properly cal CALL calbeta(dtime, is_sic, knon, snow, qsol, beta, cal, dif_grnd) DO i=1,knon ki=knindex(i) IF (snow(i).GT.snow_min) THEN ! snow-layer heat capacity cal(i)=2.*RCPD/(snow(i)*ice_cap) ! snow conductive flux f_cond=sno_cond*(tice(ki)-tsurf_in(i))/snow(i) ! all shortwave flux absorbed f_swpen=0. ! bottom flux (ice conduction) slab_bilg(ki)=ice_cond*(tice(ki)-t_freeze)/seaice(ki) ! update ice temperature tice(ki)=tice(ki)-2./ice_cap/(snow(i)+seaice(ki)) & *(slab_bilg(ki)+f_cond)*dtime ELSE ! bare ice ! ice-layer heat capacity cal(i)=2.*RCPD/(seaice(ki)*ice_cap) ! conductive flux f_cond=ice_cond*(t_freeze-tice(ki))/seaice(ki) ! penetrative shortwave flux... f_swpen=swnet(i)*pen_frac*exp(-pen_ext*seaice(ki)/ice_den) slab_bilg(ki)=f_swpen-f_cond END IF radsol(i)=radsol(i)+f_cond-f_swpen END DO ! weight fluxes to ocean by sea ice fraction slab_bilg(:)=slab_bilg(:)*fsic(:) ! calcul_fluxs (sens, lat etc) CALL calcul_fluxs(knon, is_sic, dtime, & tsurf_in, p1lay, cal, beta, cdragh, cdragh, ps, & precip_rain, precip_snow, snow, qsurf, & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) DO i=1,knon IF (snow(i).LT.snow_min) tice(knindex(i))=tsurf_new(i) END DO ! calcul_flux_wind CALL calcul_flux_wind(knon, dtime, & u0, v0, u1, v1, gustiness, cdragm, & AcoefU, AcoefV, BcoefU, BcoefV, & p1lay, temp_air, & flux_u1, flux_v1) !**************************************************************************************** ! 2) Update snow and ice surface !**************************************************************************************** ! snow precip DO i=1,knon ki=knindex(i) IF (precip_snow(i) > 0.) THEN snow(i) = snow(i)+precip_snow(i)*dtime*(1.-snow_wfact*(1.-fsic(ki))) END IF ! snow and ice sublimation IF (evap(i) > 0.) THEN snow_evap = MIN (snow(i) / dtime, evap(i)) snow(i) = snow(i) - snow_evap * dtime snow(i) = MAX(0.0, snow(i)) seaice(ki) = MAX(0.0,seaice(ki)-(evap(i)-snow_evap)*dtime) ENDIF ! Melt / Freeze snow from above if Tsurf>0 IF (tsurf_new(i).GT.t_melt) THEN ! energy available for melting snow (in kg of melted snow /m2) e_melt = MIN(MAX(snow(i)*(tsurf_new(i)-t_melt)*ice_cap/2. & /(ice_lat+ice_cap/2.*(t_melt-tice(ki))),0.0),snow(i)) ! remove snow IF (snow(i).GT.e_melt) THEN snow(i)=snow(i)-e_melt tsurf_new(i)=t_melt ELSE ! all snow is melted ! add remaining heat flux to ice e_melt=e_melt-snow(i) tice(ki)=tice(ki)+e_melt*ice_lat*2./(ice_cap*seaice(ki)) tsurf_new(i)=tice(ki) END IF END IF ! melt ice from above if Tice>0 IF (tice(ki).GT.t_melt) THEN ! quantity of ice melted (kg/m2) e_melt=MAX(seaice(ki)*(tice(ki)-t_melt)*ice_cap/2. & /(ice_lat+ice_cap/2.*(t_melt-t_freeze)),0.0) ! melt from above, height only dhsic=MIN(seaice(ki)-h_ice_min,e_melt) e_melt=e_melt-dhsic IF (e_melt.GT.0) THEN ! lateral melt if ice too thin dfsic=MAX(fsic(ki)-ice_frac_min,e_melt/h_ice_min*fsic(ki)) ! if all melted add remaining heat to ocean e_melt=MAX(0.,e_melt*fsic(ki)-dfsic*h_ice_min) slab_bilg(ki)=slab_bilg(ki)+ e_melt*ice_lat/dtime ! update height and fraction fsic(ki)=fsic(ki)-dfsic END IF seaice(ki)=seaice(ki)-dhsic ! surface temperature at melting point tice(ki)=t_melt tsurf_new(i)=t_melt END IF ! convert snow to ice if below floating line h_test=(seaice(ki)+snow(i))*ice_den-seaice(ki)*sea_den IF (h_test.GT.0.) THEN !snow under water ! extra snow converted to ice (with added frozen sea water) dhsic=h_test/(sea_den-ice_den+sno_den) seaice(ki)=seaice(ki)+dhsic snow(i)=snow(i)-dhsic*sno_den/ice_den ! available energy (freeze sea water + bring to tice) e_melt=dhsic*(1.-sno_den/ice_den)*(ice_lat+ & ice_cap/2.*(t_freeze-tice(ki))) ! update ice temperature tice(ki)=tice(ki)+2.*e_melt/ice_cap/(snow(i)+seaice(ki)) END IF END DO ! New albedo DO i=1,knon ki=knindex(i) ! snow albedo: update snow age IF (snow(i).GT.0.0001) THEN agesno(i)=(agesno(i) + (1.-agesno(i)/50.)*dtime/86400.)& * EXP(-1.*MAX(0.0,precip_snow(i))*dtime/5.) ELSE agesno(i)=0.0 END IF ! snow albedo alb_snow=alb_sno_min+alb_sno_del*EXP(-agesno(i)/50.) ! ice albedo (varies with ice tkickness and temp) alb_ice=MAX(0.0,0.13*LOG(100.*seaice(ki)/ice_den)+0.1) IF (tice(ki).GT.t_freeze-0.01) THEN alb_ice=MIN(alb_ice,alb_ice_wet) ELSE alb_ice=MIN(alb_ice,alb_ice_dry) END IF ! pond albedo alb_pond=0.36-0.1*(2.0+MIN(0.0,MAX(tice(ki)-t_melt,-2.0))) ! pond fraction frac_pond=0.2*(2.0+MIN(0.0,MAX(tice(ki)-t_melt,-2.0))) ! snow fraction frac_snow=MAX(0.0,MIN(1.0-frac_pond,snow(i)/snow_min)) ! ice fraction frac_ice=MAX(0.0,1.-frac_pond-frac_snow) ! total albedo alb1_new(i)=alb_snow*frac_snow+alb_ice*frac_ice+alb_pond*frac_pond END DO alb2_new(:) = alb1_new(:) !**************************************************************************************** ! 3) Recalculate new ocean temperature (add fluxes below ice) ! Melt / freeze from below !***********************************************o***************************************** !cumul fluxes bilg_cum(:)=bilg_cum(:)+slab_bilg(:) IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab & fraction ! Add cumulated surface fluxes tslab(:,1)=tslab(:,1)+bilg_cum(:)*cyang*dtime DO i=1,knon ki=knindex(i) ! split lateral/top melt-freeze frac_mf=MIN(1.,MAX(0.,(seaice(ki)-h_ice_thin)/(h_ice_thick-h_ice_thin))) IF (tslab(ki,1).LE.t_freeze) THEN ! ****** Form new ice from below ******* ! quantity of new ice e_melt=(t_freeze-tslab(ki,1))/cyang & /(ice_lat+ice_cap/2.*(t_freeze-tice(ki))) ! first increase height to h_thin dhsic=MAX(0.,MIN(h_ice_thin-seaice(ki),e_melt/fsic(ki))) seaice(ki)=dhsic+seaice(ki) e_melt=e_melt-fsic(ki)*dhsic IF (e_melt.GT.0.) THEN ! frac_mf fraction used for lateral increase dfsic=MIN(ice_frac_max-fsic(ki),e_melt*frac_mf/seaice(ki)) fsic(ki)=fsic(ki)+dfsic e_melt=e_melt-dfsic*seaice(ki) ! rest used to increase height seaice(ki)=MIN(h_ice_max,seaice(ki)+e_melt/fsic(ki)) END IF tslab(ki,1)=t_freeze ELSE ! slab temperature above freezing ! ****** melt ice from below ******* ! quantity of melted ice e_melt=(tslab(ki,1)-t_freeze)/cyang & /(ice_lat+ice_cap/2.*(tice(ki)-t_freeze)) ! first decrease height to h_thick dhsic=MAX(0.,MIN(seaice(ki)-h_ice_thick,e_melt/fsic(ki))) seaice(ki)=seaice(ki)-dhsic e_melt=e_melt-fsic(ki)*dhsic IF (e_melt.GT.0) THEN ! frac_mf fraction used for height decrease dhsic=MAX(0.,MIN(seaice(ki)-h_ice_min,e_melt*frac_mf/fsic(ki))) seaice(ki)=seaice(ki)-dhsic e_melt=e_melt-fsic(ki)*dhsic ! rest used to decrease fraction (up to 0!) dfsic=MIN(fsic(ki),e_melt/seaice(ki)) ! keep remaining in ocean e_melt=e_melt-dfsic*seaice(ki) END IF tslab(ki,1)=t_freeze+e_melt*ice_lat*cyang fsic(ki)=fsic(ki)-dfsic END IF END DO bilg_cum(:)=0. END IF ! coupling time !tests ice fraction WHERE (fsic.LT.ice_frac_min) tslab(:,1)=tslab(:,1)-fsic*seaice*ice_lat*cyang tice=t_melt fsic=0. seaice=0. END WHERE END SUBROUTINE ocean_slab_ice ! !**************************************************************************************** ! SUBROUTINE ocean_slab_final !**************************************************************************************** ! Deallocate module variables !**************************************************************************************** IF (ALLOCATED(tslab)) DEALLOCATE(tslab) IF (ALLOCATED(fsic)) DEALLOCATE(fsic) IF (ALLOCATED(tice)) DEALLOCATE(tice) IF (ALLOCATED(seaice)) DEALLOCATE(seaice) IF (ALLOCATED(slab_bilg)) DEALLOCATE(slab_bilg) IF (ALLOCATED(bilg_cum)) DEALLOCATE(bilg_cum) IF (ALLOCATED(bils_cum)) DEALLOCATE(bils_cum) IF (ALLOCATED(taux_cum)) DEALLOCATE(taux_cum) IF (ALLOCATED(tauy_cum)) DEALLOCATE(tauy_cum) IF (ALLOCATED(dt_ekman)) DEALLOCATE(dt_ekman) IF (ALLOCATED(dt_hdiff)) DEALLOCATE(dt_hdiff) IF (ALLOCATED(dt_gm)) DEALLOCATE(dt_gm) IF (ALLOCATED(dt_qflux)) DEALLOCATE(dt_qflux) END SUBROUTINE ocean_slab_final END MODULE ocean_slab_mod