!----- This subroutine calculates the sedimentation flux of Tracers ! SUBROUTINE sediment_mod(t_seri,pplay,zrho,paprs,time_step,RHcl, & id_coss,id_codu,id_scdu, & ok_chimeredust, & sed_ss,sed_dust,sed_dustsco, & sed_ss3D,sed_dust3D,sed_dustsco3D,tr_seri) !nhl . xlon,xlat, ! USE dimphy USE infotrac USE dimensions_mod, ONLY: iim, jjm, llm, ndm USE yomcst_mod_h IMPLICIT NONE ! INCLUDE "chem.h" ! INCLUDE "dimphy.h" INCLUDE "YOECUMF.h" ! REAL :: RHcl(klon,klev) ! humidite relative ciel clair REAL :: tr_seri(klon, klev,nbtr) !conc of tracers REAL :: sed_ss(klon) !sedimentation flux of Sea Salt (g/m2/s) REAL :: sed_dust(klon) !sedimentation flux of dust (g/m2/s) REAL :: sed_dustsco(klon) !sedimentation flux of scoarse dust (g/m2/s) REAL :: sed_ss3D(klon,klev) !sedimentation flux of Sea Salt (g/m2/s) REAL :: sed_dust3D(klon,klev) !sedimentation flux of dust (g/m2/s) REAL :: sed_dustsco3D(klon,klev) !sedimentation flux of scoarse dust (g/m2/s) REAL :: t_seri(klon, klev) !Temperature at mid points of Z (K) REAL :: v_dep_ss(klon,klev) ! sed. velocity for SS m/s REAL :: v_dep_dust(klon,klev) ! sed. velocity for dust m/s REAL :: v_dep_dustsco(klon,klev) ! sed. velocity for dust m/s REAL :: pplay(klon, klev) !pressure at mid points of Z (Pa) REAL :: zrho(klon, klev) !Density of air at mid points of Z (kg/m3) REAL :: paprs(klon, klev+1) !pressure at interface of layers Z (Pa) REAL :: time_step !time step (sec) LOGICAL :: ok_chimeredust REAL :: xlat(klon) ! latitudes pour chaque point REAL :: xlon(klon) ! longitudes pour chaque point INTEGER :: id_coss,id_codu,id_scdu ! !------local variables ! INTEGER :: i, k, nbre_RH PARAMETER(nbre_RH=12) ! REAL :: lambda, ss_g REAL :: mmd_ss !mass median diameter of SS (um) REAL :: mmd_dust !mass median diameter of dust (um) REAL :: mmd_dustsco !mass median diameter of scoarse dust (um) REAL :: rho_ss(nbre_RH),rho_ss1 !density of sea salt (kg/m3) REAL :: rho_dust !density of dust(kg/m3) REAL :: v_stokes, CC, v_sed, ss_growth_f(nbre_RH) REAL :: sed_flux(klon,klev) ! sedimentation flux g/m2/s REAL :: air_visco(klon,klev) REAL :: zdz(klon,klev) ! layers height (m) REAL :: temp ! temperature in degree Celius ! INTEGER :: RH_num REAL :: RH_MAX, DELTA, rh, RH_tab(nbre_RH) PARAMETER (RH_MAX=95.) ! DATA RH_tab/0.,10.,20.,30.,40.,50.,60.,70.,80.,85.,90.,95./ ! ! DATA rho_ss/2160. ,2160. ,2160., 2160, 1451.6, 1367.9, & 1302.9,1243.2,1182.7, 1149.5,1111.6, 1063.1/ ! DATA ss_growth_f/0.503, 0.503, 0.503, 0.503, 0.724, 0.782, & 0.838, 0.905, 1.000, 1.072, 1.188, 1.447/ ! ! mmd_ss=12.7 !dia -um at 80% for bin 0.5-20 um but 90% of real mmd ! obsolete mmd_dust=2.8 !micrometer for bin 0.5-20 and 0.5-10 um ! 4tracer SPLA: mmd_dust=11.0 !micrometer for bin 0.5-20 and 0.5-10 um !3days mmd_dust=3.333464 !micrometer for bin 0.5-20 and 0.5-10 um !3days mmd_dustsco=12.91315 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dust=3.002283 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dustsco=13.09771 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dust=5.156346 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dustsco=15.56554 !micrometer for bin 0.5-20 and 0.5-10 um IF (ok_chimeredust) THEN !JE20150212<< : changes in ustar in dustmod changes emission distribution ! mmd_dust=3.761212 !micrometer for bin 0.5-3 and 0.5-10 um ! mmd_dustsco=15.06167 !micrometer for bin 3-20 and 0.5-10 um !JE20150212>> !JE20150618: Change in div3 of dustmod changes distribution. now is div3=6 !div=3 mmd_dust=3.983763 !div=3 mmd_dustsco=15.10854 mmd_dust=3.898047 mmd_dustsco=15.06167 ELSE mmd_dust=11.0 !micrometer for bin 0.5-20 and 0.5-10 um mmd_dustsco=100. ! absurd value, bin not used in this scheme ENDIF rho_dust=2600. !kg/m3 ! !--------- Air viscosity (poise=0.1 kg/m-sec)----------- ! DO k=1, klev DO i=1, klon ! zdz(i,k)=(paprs(i,k)-paprs(i,k+1))/zrho(i,k)/RG ! temp=t_seri(i,k)-RTT ! IF (temp.LT.0.) THEN air_visco(i,k)=(1.718+0.0049*temp-1.2e-5*temp*temp)*1.e-4 ELSE air_visco(i,k)=(1.718+0.0049*temp)*1.e-4 ENDIF ! ENDDO ENDDO ! !--------- for Sea Salt ------------------- ! ! ! IF(id_coss>0) THEN DO k=1, klev DO i=1,klon ! !---cal. correction factor hygroscopic growth of aerosols ! rh=MIN(RHcl(i,k)*100.,RH_MAX) RH_num = INT( rh/10. + 1.) IF (rh.gt.85.) RH_num=10 IF (rh.gt.90.) RH_num=11 DELTA=(rh-RH_tab(RH_num))/(RH_tab(RH_num+1)-RH_tab(RH_num)) ! ss_g=ss_growth_f(rh_num) + & DELTA*(ss_growth_f(RH_num+1)-ss_growth_f(RH_num)) rho_ss1=rho_ss(rh_num) + & DELTA*(rho_ss(RH_num+1)-rho_ss(RH_num)) ! v_stokes=RG*(rho_ss1-zrho(i,k))* & !m/sec (mmd_ss*ss_g)*(mmd_ss*ss_g)* & 1.e-12/(18.0*air_visco(i,k)/10.) ! lambda=6.6*1.e-8*(103125/pplay(i,k))*(t_seri(i,k)/293.15) ! CC=1.0+1.257*lambda/(mmd_ss*ss_g)/1.e6 ! C-correction factor ! v_sed=v_stokes*CC ! m/sec !orig ! !---------check for v_sed*dt0) THEN DO k=1, klev DO i=1,klon ! v_stokes=RG*(rho_dust-zrho(i,k))* & !m/sec mmd_dust*mmd_dust* & 1.e-12/(18.0*air_visco(i,k)/10.) ! lambda=6.6*1.e-8*(103125/pplay(i,k))*(t_seri(i,k)/293.15) CC=1.0+1.257*lambda/(mmd_dust)/1.e6 !dimensionless v_sed=v_stokes*CC !m/sec ! !---------check for v_sed*dt0) THEN DO k=1, klev DO i=1,klon ! v_stokes=RG*(rho_dust-zrho(i,k))* & !m/sec mmd_dustsco*mmd_dustsco* & 1.e-12/(18.0*air_visco(i,k)/10.) ! lambda=6.6*1.e-8*(103125/pplay(i,k))*(t_seri(i,k)/293.15) CC=1.0+1.257*lambda/(mmd_dustsco)/1.e6 !dimensionless v_sed=v_stokes*CC !m/sec ! !---------check for v_sed*dt