MODULE physiq_mod IMPLICIT NONE CONTAINS SUBROUTINE physiq(nlon, nlev, & debut, lafin, pdtphys_, & paprs, pplay, pphi, pphis, presnivs, & u, v, rot, t, qx, & flxmass_w, & d_u, d_v, d_t, d_qx, d_ps) ! For clarity, the "USE" section is now arranged in alphabetical order, ! with a separate section for CPP keys ! PLEASE try to follow this rule USE ACAMA_GWD_rando_m, ONLY: ACAMA_GWD_rando USE aero_mod USE add_phys_tend_mod, ONLY: add_pbl_tend, add_phys_tend, diag_phys_tend, prt_enerbil, & fl_ebil, fl_cor_ebil USE lmdz_assert, ONLY: assert USE change_srf_frac_mod USE conf_phys_m, ONLY: conf_phys USE carbon_cycle_mod, ONLY: infocfields_init, RCO2_glo, carbon_cycle_rad USE CFMIP_point_locations ! IM stations CFMIP USE cmp_seri_mod USE dimphy USE etat0_limit_unstruct_mod USE FLOTT_GWD_rando_m, ONLY: FLOTT_GWD_rando USE fonte_neige_mod, ONLY: fonte_neige_get_vars USE lmdz_geometry, ONLY: cell_area, latitude_deg, longitude_deg USE ioipsl, ONLY: histbeg, histvert, histdef, histend, histsync, & histwrite, ju2ymds, ymds2ju, getin USE lmdz_ioipsl_getin_p, ONLY: getin_p USE indice_sol_mod USE infotrac_phy, ONLY: nqtot, nbtr, nqo, tracers, type_trac, addPhase USE lmdz_strings, ONLY: strIdx USE iophy USE limit_read_mod, ONLY: init_limit_read USE lmdz_grid_phy, ONLY: nbp_lon, nbp_lat, nbp_lev, klon_glo, grid1dTo2d_glo, grid_type, unstructured USE lmdz_phys_mpi_data, ONLY: is_mpi_root USE lmdz_phys_para USE netcdf95, ONLY: nf95_close USE netcdf, ONLY: nf90_fill_real ! IM for NMC files USE open_climoz_m, ONLY: open_climoz ! ozone climatology from a file USE ozonecm_m, ONLY: ozonecm ! ozone of J.-F. Royer USE pbl_surface_mod, ONLY: pbl_surface USE phyaqua_mod, ONLY: zenang_an USE phyetat0_mod, ONLY: phyetat0 USE phystokenc_mod, ONLY: offline, phystokenc USE phys_cal_mod, ONLY: year_len, days_elapsed, jh_1jan, & year_cur, mth_cur, jD_cur, jH_cur, jD_ref, day_cur, hour, calend !! USE phys_local_var_mod, ONLY: a long list of variables !! ==> see below, after "CPP Keys" section USE phys_state_var_mod ! Variables sauvegardees de la physique USE phys_output_mod USE phys_output_ctrlout_mod USE lmdz_print_control, ONLY: mydebug => debug, lunout, prt_level, & alert_first_call, call_alert, prt_alerte USE readaerosol_mod, ONLY: init_aero_fromfile USE readaerosolstrato_m, ONLY: init_readaerosolstrato USE radlwsw_m, ONLY: radlwsw USE regr_horiz_time_climoz_m, ONLY: regr_horiz_time_climoz USE regr_pr_time_av_m, ONLY: regr_pr_time_av USE surface_data, ONLY: type_ocean, ok_veget USE time_phylmdz_mod, ONLY: current_time, itau_phy, pdtphys, raz_date, update_time USE tracinca_mod, ONLY: config_inca USE tropopause_m, ONLY: dyn_tropopause USE lmdz_vampir USE lmdz_writefield_phy USE lmdz_wxios, ONLY: g_ctx, wxios_set_context USE lmdz_lscp, ONLY: lscp USE lmdz_call_cloud_optics_prop, ONLY: call_cloud_optics_prop USE lmdz_lscp_old, ONLY: fisrtilp USE lmdz_call_blowing_snow, ONLY: call_blowing_snow_sublim_sedim USE lmdz_wake_ini, ONLY: wake_ini USE yamada_ini_mod, ONLY: yamada_ini USE lmdz_atke_turbulence_ini, ONLY: atke_ini USE lmdz_thermcell_ini, ONLY: thermcell_ini, iflag_thermals_tenv USE lmdz_thermcell_dtke, ONLY: thermcell_dtke USE lmdz_blowing_snow_ini, ONLY: blowing_snow_ini, qbst_bs USE lmdz_lscp_ini, ONLY: lscp_ini USE lmdz_ratqs_main, ONLY: ratqs_main USE lmdz_ratqs_ini, ONLY: ratqs_ini USE lmdz_cloud_optics_prop_ini, ONLY: cloud_optics_prop_ini USE phys_output_var_mod, ONLY: cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv USE phys_output_var_mod, ONLY: cloud_cover_sw, cloud_cover_sw_s2 USE lmdz_plevel_new, ONLY: plevel_new USE lmdz_moy_undefstd, ONLY: moy_undefstd USE lmdz_undefstd, ONLY: undefstd USE lmdz_ini_undefstd, ONLY: ini_undefstd USE lmdz_geometry, ONLY: longitude, latitude, boundslon, boundslat, ind_cell_glo USE time_phylmdz_mod, ONLY: ndays USE infotrac_phy, ONLY: nqCO2 USE time_phylmdz_mod, ONLY: annee_ref, day_ini, day_ref, start_time USE lmdz_vertical_layers, ONLY: aps, bps, ap, bp USE lmdz_xios, ONLY: xios_update_calendar, xios_context_finalize, xios_get_field_attr, & xios_field_is_active, xios_context, xios_set_current_context USE lmdz_wxios, ONLY: missing_val, using_xios USE paramLMDZ_phy_mod USE lmdz_phytracr_spl, ONLY: phytracr_spl, phytracr_spl_out_init USE phys_output_write_spl_mod USE phytrac_mod, ONLY: phytrac_init, phytrac USE phys_output_write_mod USE lmdz_abort_physic, ONLY: abort_physic USE lmdz_calcul_divers, ONLY: calcul_divers USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_DUST, CPPKEY_COSP, CPPKEY_COSP2, CPPKEY_COSPV2, CPPKEY_STRATAER, & CPPKEY_REPROBUS USE phys_local_var_mod, ONLY: d_q_emiss USE strataer_local_var_mod USE strataer_nuc_mod, ONLY: strataer_nuc_init USE strataer_emiss_mod, ONLY: strataer_emiss_init !!!!!!!!!!!!!!!!!! "USE" section for CPP keys !!!!!!!!!!!!!!!!!!!!!!!! USE lmdz_reprobus_wrappers, ONLY: Init_chem_rep_xjour, d_q_rep, d_ql_rep, d_qi_rep, & ptrop, ttrop, ztrop, gravit, itroprep, Z1, Z2, fac, B USE strataer_local_var_mod USE strataer_emiss_mod, ONLY: strataer_emiss_init #ifdef CPP_RRTM USE YOERAD, ONLY: NRADLP #endif !!!!!!!!!!!!!!!!!! END "USE" for CPP keys !!!!!!!!!!!!!!!!!!!!!! USE physiqex_mod, ONLY: physiqex USE phys_local_var_mod, ONLY: phys_local_var_init, phys_local_var_end, & ! [Variables internes non sauvegardees de la physique] ! Variables locales pour effectuer les appels en serie t_seri,q_seri,ql_seri,qs_seri,qbs_seri, & u_seri,v_seri,cf_seri,rvc_seri,tr_seri, & rhcl, & ! Dynamic tendencies (diagnostics) d_t_dyn, d_q_dyn, d_ql_dyn, d_qs_dyn, d_qbs_dyn, & d_u_dyn, d_v_dyn,d_cf_dyn,d_rvc_dyn,d_tr_dyn, & d_q_dyn2d, d_ql_dyn2d, d_qs_dyn2d, d_qbs_dyn2d, & ! Physic tendencies d_t_con, d_q_con, d_q_con_zmasse, d_u_con, d_v_con, & d_tr, & !! to be removed?? (jyg) d_t_wake, d_q_wake, & d_t_lwr, d_t_lw0, d_t_swr, d_t_sw0, & d_t_ajsb, d_q_ajsb, & d_t_ajs, d_q_ajs, d_u_ajs, d_v_ajs, & ! d_t_ajs_w,d_q_ajs_w, & ! d_t_ajs_x,d_q_ajs_x, & d_t_eva, d_q_eva, d_ql_eva, d_qi_eva, & d_t_lsc, d_q_lsc, d_ql_lsc, d_qi_lsc, & d_t_lscst, d_q_lscst, & d_t_lscth, d_q_lscth, & plul_st, plul_th, & d_t_vdf, d_q_vdf, d_qbs_vdf, d_u_vdf, d_v_vdf, d_t_diss, & d_t_vdf_x, d_t_vdf_w, & d_q_vdf_x, d_q_vdf_w, & d_ts, & d_t_bsss, d_q_bsss, d_qbs_bsss, & ! d_t_oli,d_u_oli,d_v_oli, & d_t_oro, d_u_oro, d_v_oro, & d_t_oro_gw, d_u_oro_gw, d_v_oro_gw, & d_t_lif, d_u_lif, d_v_lif, & d_t_ec, & du_gwd_hines, dv_gwd_hines, d_t_hin, & dv_gwd_rando, dv_gwd_front, & east_gwstress, west_gwstress, & d_q_ch4, & ! proprecip qraindiag, qsnowdiag, & dqreva, dqssub, & dqrauto, dqrcol, dqrmelt, dqrfreez, & dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez, & ! Special RRTM ZLWFT0_i, ZSWFT0_i, ZFLDN0, & ZFLUP0, ZFSDN0, ZFSUP0, & topswad_aero, solswad_aero, & topswai_aero, solswai_aero, & topswad0_aero, solswad0_aero, & !LW additional toplwad_aero, sollwad_aero, & toplwai_aero, sollwai_aero, & toplwad0_aero, sollwad0_aero, & !pour Ecrad topswad_aero_s2, solswad_aero_s2, & topswai_aero_s2, solswai_aero_s2, & topswad0_aero_s2, solswad0_aero_s2, & topsw_aero_s2, topsw0_aero_s2, & solsw_aero_s2, solsw0_aero_s2, & topswcf_aero_s2, solswcf_aero_s2, & !LW diagnostics toplwad_aero_s2, sollwad_aero_s2, & toplwai_aero_s2, sollwai_aero_s2, & toplwad0_aero_s2, sollwad0_aero_s2, & topsw_aero, solsw_aero, & topsw0_aero, solsw0_aero, & topswcf_aero, solswcf_aero, & tausum_aero, tau3d_aero, & drytausum_aero, & !variables CFMIP2/CMIP5 topswad_aerop, solswad_aerop, & topswai_aerop, solswai_aerop, & topswad0_aerop, solswad0_aerop, & topsw_aerop, topsw0_aerop, & solsw_aerop, solsw0_aerop, & topswcf_aerop, solswcf_aerop, & !LW diagnostics toplwad_aerop, sollwad_aerop, & toplwai_aerop, sollwai_aerop, & toplwad0_aerop, sollwad0_aerop, & !pour Ecrad topswad_aero_s2, solswad_aero_s2, & topswai_aero_s2, solswai_aero_s2, & topswad0_aero_s2, solswad0_aero_s2, & topsw_aero_s2, topsw0_aero_s2, & solsw_aero_s2, solsw0_aero_s2, & topswcf_aero_s2, solswcf_aero_s2, & !LW diagnostics toplwad_aero_s2, sollwad_aero_s2, & toplwai_aero_s2, sollwai_aero_s2, & toplwad0_aero_s2, sollwad0_aero_s2, & ptstar, pt0, slp, & bils, & cldh, cldl, cldm, cldq, cldt, & JrNt, & dthmin, evap, snowerosion, fder, plcl, plfc, & prw, prlw, prsw, prbsw, water_budget, & s_lcl, s_pblh, s_pblt, s_therm, & cdragm, cdragh, & zustar, zu10m, zv10m, rh2m, qsat2m, & zq2m, zt2m, zn2mout, weak_inversion, & s_pblh_x, s_pblh_w, & s_lcl_x, s_lcl_w, & slab_wfbils, tpot, tpote, & ue, uq, ve, vq, zxffonte, & uwat, vwat, & zxfqcalving, zxfluxlat, & zxrunofflic, & zxtsol, snow_lsc, zxfqfonte, zxqsurf, & delta_qsurf, & rain_lsc, rain_num, & sens_x, sens_w, & zxfluxlat_x, zxfluxlat_w, & pbl_tke_input, pbl_eps, l_mix, wprime, & t_therm, q_therm, u_therm, v_therm, & cdragh_x, cdragh_w, & cdragm_x, cdragm_w, & kh, kh_x, kh_w, & wake_k, & alp_wake, & wake_h, wake_omg, & ! tendencies of delta T and delta q: d_deltat_wk, d_deltaq_wk, & ! due to wakes d_deltat_wk_gw, d_deltaq_wk_gw, & ! due to wake induced gravity waves d_deltat_vdf, d_deltaq_vdf, & ! due to vertical diffusion d_deltat_the, d_deltaq_the, & ! due to thermals d_deltat_ajs_cv, d_deltaq_ajs_cv, & ! due to dry adjustment of (w) before convection ! tendencies of wake fractional area and wake number per unit area: d_s_wk, d_s_a_wk, d_dens_wk, d_dens_a_wk, & ! due to wakes !!! d_s_vdf, d_dens_a_vdf, d_dens_vdf, & ! due to vertical diffusion !!! d_s_the, d_dens_a_the, d_dens_the, & ! due to thermals ptconv, ratqsc, & wbeff, convoccur, zmax_th, & sens, flwp, fiwp, & alp_bl_conv, alp_bl_det, & alp_bl_fluct_m, alp_bl_fluct_tke, & alp_bl_stat, n2, s2, strig, zcong, zlcl_th, & proba_notrig, random_notrig, & !! cv_gen, & !moved to phys_state_var_mod dnwd0, & omega, & epmax_diag, & ! Deep convective variables used in phytrac pmflxr, pmflxs, & wdtrainA, wdtrainS, wdtrainM, & upwd, dnwd, & ep, & da, mp, & phi, & wght_cvfd, & phi2, & d1a, dam, & ev, & elij, & qtaa, & clw, & epmlmMm, eplaMm, & sij, & rneblsvol, & pfraclr, pfracld, cldfraliq, sigma2_icefracturb, mean_icefracturb, & distcltop, temp_cltop, & !-- LSCP - condensation and ice supersaturation variables qsub, qissr, qcld, subfra, issrfra, gamma_cond, ratio_qi_qtot, & dcf_sub, dcf_con, dcf_mix, dqi_adj, dqi_sub, dqi_con, dqi_mix, & dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, qsatliq, qsatice, & !-- LSCP - aviation and contrails variables Tcontr, qcontr, qcontr2, fcontrN, fcontrP, & dcf_avi, dqi_avi, dqvc_avi, flight_dist, flight_h2o, & ! cldemi, & cldfra, cldtau, fiwc, & fl, re, flwc, & ref_liq, ref_ice, theta, & ref_liq_pi, ref_ice_pi, & zphi, zx_rh, zx_rhl, zx_rhi, & pmfd, pmfu, & t2m, fluxlat, & fsollw, evap_pot, & fsolsw, wfbils, wfevap, & prfl, psfl, bsfl, fraca, Vprecip, & zw2, & fluxu, fluxv, & fluxt, & uwriteSTD, vwriteSTD, & !pour calcul_STDlev.h wwriteSTD, phiwriteSTD, & !pour calcul_STDlev.h qwriteSTD, twriteSTD, rhwriteSTD, & !pour calcul_STDlev.h beta_prec, & rneb, & zxsnow, snowhgt, qsnow, to_ice, sissnow, runoff, albsol3_lic, & zxfluxt, zxfluxq USE phys_local_var_mod, ONLY: zfice, dNovrN, ptconv USE phys_output_var_mod, ONLY: scdnc, cldncl, reffclwtop, lcc, reffclws, & reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra USE output_physiqex_mod, ONLY: output_physiqex USE lmdz_simu_airs, ONLY: simu_airs USE lmdz_alpale USE lmdz_clesphys USE lmdz_nuage_params USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree USE lmdz_conema3 USE lmdz_dimpft, ONLY: nvm_lmdz USE lmdz_yoethf USE lmdz_yomcst USE lmdz_phys_constants, ONLY: dobson_u IMPLICIT NONE INCLUDE "FCTTRE.h" !>====================================================================== !! !! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 !! !! Objet: Moniteur general de la physique du modele !!AA Modifications quant aux traceurs : !!AA - uniformisation des parametrisations ds phytrac !!AA - stockage des moyennes des champs necessaires !!AA en mode traceur off-line !!====================================================================== !! CLEFS CPP POUR LES IO !! ===================== #define histNMC !!====================================================================== !! modif ( P. Le Van , 12/10/98 ) !! !! Arguments: !! !! nlon----input-I-nombre de points horizontaux !! nlev----input-I-nombre de couches verticales, doit etre egale a klev !! debut---input-L-variable logique indiquant le premier passage !! lafin---input-L-variable logique indiquant le dernier passage !! jD_cur -R-jour courant a l'appel de la physique (jour julien) !! jH_cur -R-heure courante a l'appel de la physique (jour julien) !! pdtphys-input-R-pas d'integration pour la physique (seconde) !! paprs---input-R-pression pour chaque inter-couche (en Pa) !! pplay---input-R-pression pour le mileu de chaque couche (en Pa) !! pphi----input-R-geopotentiel de chaque couche (g z) (reference sol) !! pphis---input-R-geopotentiel du sol !! presnivs-input_R_pressions approximat. des milieux couches ( en PA) !! u-------input-R-vitesse dans la direction X (de O a E) en m/s !! v-------input-R-vitesse Y (de S a N) en m/s !! t-------input-R-temperature (K) !! qx------input-R-humidite specifique (kg/kg) et d'autres traceurs !! d_t_dyn-input-R-tendance dynamique pour "t" (K/s) !! d_q_dyn-input-R-tendance dynamique pour "q" (kg/kg/s) !! d_ql_dyn-input-R-tendance dynamique pour "ql" (kg/kg/s) !! d_qs_dyn-input-R-tendance dynamique pour "qs" (kg/kg/s) !! flxmass_w -input-R- flux de masse verticale !! d_u-----output-R-tendance physique de "u" (m/s/s) !! d_v-----output-R-tendance physique de "v" (m/s/s) !! d_t-----output-R-tendance physique de "t" (K/s) !! d_qx----output-R-tendance physique de "qx" (kg/kg/s) !! d_ps----output-R-tendance physique de la pression au sol !!====================================================================== INTEGER jjmp1 ! parameter (jjmp1=jjm+1-1/jjm) ! => (jjmp1=nbp_lat-1/(nbp_lat-1)) ! integer iip1 ! parameter (iip1=iim+1) include "regdim.h" include "dimsoil.h" !====================================================================== LOGICAL, SAVE :: ok_volcan ! pour activer les diagnostics volcaniques !$OMP THREADPRIVATE(ok_volcan) INTEGER, SAVE :: flag_volc_surfstrat ! pour imposer le cool/heat rate à la surf/strato !$OMP THREADPRIVATE(flag_volc_surfstrat) LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE PARAMETER (ok_cvl = .TRUE.) LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface PARAMETER (ok_gust = .FALSE.) INTEGER, SAVE :: iflag_radia ! active ou non le rayonnement (MPL) !$OMP THREADPRIVATE(iflag_radia) !====================================================================== LOGICAL check ! Verifier la conservation du modele en eau PARAMETER (check = .FALSE.) LOGICAL ok_stratus ! Ajouter artificiellement les stratus PARAMETER (ok_stratus = .FALSE.) !====================================================================== REAL amn, amx INTEGER igout !====================================================================== ! Clef iflag_cycle_diurne controlant l'activation du cycle diurne: ! en attente du codage des cles par Fred ! iflag_cycle_diurne est initialise par conf_phys et se trouve ! dans clesphys.h (IM) !====================================================================== ! Modele thermique du sol, a activer pour le cycle diurne: !cc LOGICAL soil_model !cc PARAMETER (soil_model=.FALSE.) !====================================================================== ! Dans les versions precedentes, l'eau liquide nuageuse utilisee dans ! le calcul du rayonnement est celle apres la precipitation des nuages. ! Si cette cle new_oliq est activee, ce sera une valeur moyenne entre ! la condensation et la precipitation. Cette cle augmente les impacts ! radiatifs des nuages. !cc LOGICAL new_oliq !cc PARAMETER (new_oliq=.FALSE.) !====================================================================== ! Clefs controlant deux parametrisations de l'orographie: !c LOGICAL ok_orodr !cc PARAMETER (ok_orodr=.FALSE.) !cc LOGICAL ok_orolf !cc PARAMETER (ok_orolf=.FALSE.) !====================================================================== LOGICAL ok_journe ! sortir le fichier journalier SAVE ok_journe !$OMP THREADPRIVATE(ok_journe) LOGICAL ok_mensuel ! sortir le fichier mensuel SAVE ok_mensuel !$OMP THREADPRIVATE(ok_mensuel) LOGICAL ok_instan ! sortir le fichier instantane SAVE ok_instan !$OMP THREADPRIVATE(ok_instan) LOGICAL ok_LES ! sortir le fichier LES SAVE ok_LES !$OMP THREADPRIVATE(ok_LES) LOGICAL callstats ! sortir le fichier stats SAVE callstats !$OMP THREADPRIVATE(callstats) LOGICAL ok_region ! sortir le fichier regional PARAMETER (ok_region = .FALSE.) !====================================================================== REAL seuil_inversion SAVE seuil_inversion !$OMP THREADPRIVATE(seuil_inversion) REAL facteur REAL wmax_th(klon) REAL tau_overturning_th(klon) INTEGER lmax_th(klon) INTEGER limbas(klon) REAL ratqscth(klon, klev) REAL ratqsdiff(klon, klev) REAL zqsatth(klon, klev) !====================================================================== ! indices de traceurs eau vapeur, liquide, glace, fraction nuageuse LS (optional), blowing snow (optional) INTEGER, SAVE :: ivap, iliq, isol, ibs, icf, irvc !$OMP THREADPRIVATE(ivap, iliq, isol, ibs, icf, irvc) ! Variables argument: INTEGER nlon INTEGER nlev REAL, INTENT(IN) :: pdtphys_ ! NB: pdtphys to be used in physics is in time_phylmdz_mod LOGICAL debut, lafin REAL paprs(klon, klev + 1) REAL pplay(klon, klev) REAL pphi(klon, klev) REAL pphis(klon) REAL presnivs(klev) !JLD REAL znivsig(klev) !JLD real pir REAL u(klon, klev) REAL v(klon, klev) REAL, INTENT(IN) :: rot(klon, klev) ! relative vorticity, in s-1, needed for frontal waves REAL t(klon, klev), thetal(klon, klev) ! thetal: ligne suivante a decommenter si vous avez les fichiers ! MPL 20130625 ! fth_fonctions.F90 et parkind1.F90 ! sinon thetal=theta ! REAL fth_thetae,fth_thetav,fth_thetal REAL qx(klon, klev, nqtot) REAL flxmass_w(klon, klev) REAL d_u(klon, klev) REAL d_v(klon, klev) REAL d_t(klon, klev) REAL d_qx(klon, klev, nqtot) REAL d_ps(klon) ! variables pour tend_to_tke REAL duadd(klon, klev) REAL dvadd(klon, klev) REAL dtadd(klon, klev) !! Variables moved to phys_local_var_mod !! ! Variables pour le transport convectif !! real da(klon,klev),phi(klon,klev,klev),mp(klon,klev) !! real wght_cvfd(klon,klev) !! ! Variables pour le lessivage convectif !! ! RomP >>> !! real phi2(klon,klev,klev) !! real d1a(klon,klev),dam(klon,klev) !! real ev(klon,klev) !! real clw(klon,klev),elij(klon,klev,klev) !! real epmlmMm(klon,klev,klev),eplaMm(klon,klev) !! ! RomP <<< !IM definition dynamique o_trac dans phys_output_open ! type(ctrl_out) :: o_trac(nqtot) ! variables a une pression donnee include "declare_STDlev.h" include "radepsi.h" include "radopt.h" INTEGER n !ym INTEGER npoints !ym PARAMETER(npoints=klon) INTEGER nregISCtot PARAMETER(nregISCtot = 1) ! imin_debut, nbpti, jmin_debut, nbptj : parametres pour sorties ! sur 1 region rectangulaire y compris pour 1 point ! imin_debut : indice minimum de i; nbpti : nombre de points en ! direction i (longitude) ! jmin_debut : indice minimum de j; nbptj : nombre de points en ! direction j (latitude) !JLD INTEGER imin_debut, nbpti !JLD INTEGER jmin_debut, nbptj !IM: region='3d' <==> sorties en global CHARACTER*3 region PARAMETER(region = '3d') LOGICAL ok_hf SAVE ok_hf !$OMP THREADPRIVATE(ok_hf) INTEGER, PARAMETER :: longcles = 20 REAL, SAVE :: clesphy0(longcles) !$OMP THREADPRIVATE(clesphy0) ! Variables propres a la physique INTEGER, SAVE :: itap ! compteur pour la physique !$OMP THREADPRIVATE(itap) INTEGER, SAVE :: abortphy = 0 ! Reprere si on doit arreter en fin de phys !$OMP THREADPRIVATE(abortphy) REAL, SAVE :: solarlong0 !$OMP THREADPRIVATE(solarlong0) ! Parametres de l'Orographie a l'Echelle Sous-Maille (OESM): !IM 141004 REAL zulow(klon),zvlow(klon),zustr(klon), zvstr(klon) REAL zulow(klon), zvlow(klon) INTEGER igwd, idx(klon), itest(klon) ! REAL,ALLOCATABLE,save :: run_off_lic_0(:) !!! !$OMP THREADPRIVATE(run_off_lic_0) !ym SAVE run_off_lic_0 !KE43 ! Variables liees a la convection de K. Emanuel (sb): REAL, SAVE :: bas, top ! cloud base and top levels !$OMP THREADPRIVATE(bas, top) !------------------------------------------------------------------ ! Upmost level reached by deep convection and related variable (jyg) ! INTEGER izero INTEGER k_upper_cv !------------------------------------------------------------------ ! Compteur de l'occurence de cvpas=1 INTEGER Ncvpaseq1 SAVE Ncvpaseq1 !$OMP THREADPRIVATE(Ncvpaseq1) !========================================================================== !CR04.12.07: on ajoute les nouvelles variables du nouveau schema !de convection avec poches froides ! Variables li\'ees \`a la poche froide (jyg) !! REAL mipsh(klon,klev) ! mass flux shed by the adiab ascent at each level !! Moved to phys_state_var_mod REAL wape_prescr, fip_prescr INTEGER it_wape_prescr SAVE wape_prescr, fip_prescr, it_wape_prescr !$OMP THREADPRIVATE(wape_prescr, fip_prescr, it_wape_prescr) ! variables supplementaires de concvl REAL Tconv(klon, klev) !! variable moved to phys_local_var_mod !! REAL sij(klon,klev,klev) !! ! !! ! variables pour tester la conservation de l'energie dans concvl !! REAL, DIMENSION(klon,klev) :: d_t_con_sat !! REAL, DIMENSION(klon,klev) :: d_q_con_sat !! REAL, DIMENSION(klon,klev) :: dql_sat REAL, SAVE :: alp_bl_prescr = 0. REAL, SAVE :: ale_bl_prescr = 0. REAL, SAVE :: wake_s_min_lsp = 0.1 !$OMP THREADPRIVATE(alp_bl_prescr,ale_bl_prescr) !$OMP THREADPRIVATE(wake_s_min_lsp) REAL ok_wk_lsp(klon) !RC ! Variables li\'ees \`a la poche froide (jyg et rr) INTEGER, SAVE :: iflag_wake_tend ! wake: if =0, then wake state variables are ! updated within calwake !$OMP THREADPRIVATE(iflag_wake_tend) INTEGER, SAVE :: iflag_alp_wk_cond = 0 ! wake: if =0, then Alp_wk is the average lifting ! power provided by the wakes; else, Alp_wk is the ! lifting power conditionned on the presence of a ! gust-front in the grid cell. !$OMP THREADPRIVATE(iflag_alp_wk_cond) REAL t_w(klon, klev), q_w(klon, klev) ! temperature and moisture profiles in the wake region REAL t_x(klon, klev), q_x(klon, klev) ! temperature and moisture profiles in the off-wake region REAL wake_dth(klon, klev) ! wake : temp pot difference REAL wake_omgbdth(klon, klev) ! Wake : flux of Delta_Theta ! transported by LS omega REAL wake_dp_omgb(klon, klev) ! Wake : vertical gradient of ! large scale omega REAL wake_dtKE(klon, klev) ! Wake : differential heating ! (wake - unpertubed) CONV REAL wake_dqKE(klon, klev) ! Wake : differential moistening ! (wake - unpertubed) CONV REAL wake_dp_deltomg(klon, klev) ! Wake : gradient vertical de wake_omg REAL wake_spread(klon, klev) ! spreading term in wake_delt !pourquoi y'a pas de save?? !!! INTEGER, SAVE, DIMENSION(klon) :: wake_k !!! !$OMP THREADPRIVATE(wake_k) !jyg< !cc REAL wake_pe(klon) ! Wake potential energy - WAPE !>jyg REAL wake_fip_0(klon) ! Average Front Incoming Power (unconditionned) REAL wake_gfl(klon) ! Gust Front Length !!! REAL wake_dens(klon) ! moved to phys_state_var_mod REAL dt_dwn(klon, klev) REAL dq_dwn(klon, klev) REAL M_dwn(klon, klev) REAL M_up(klon, klev) REAL dt_a(klon, klev) REAL dq_a(klon, klev) REAL d_t_adjwk(klon, klev) !jyg REAL d_q_adjwk(klon, klev) !jyg LOGICAL, SAVE :: ok_adjwk = .FALSE. !$OMP THREADPRIVATE(ok_adjwk) INTEGER, SAVE :: iflag_adjwk = 0 !jyg !$OMP THREADPRIVATE(iflag_adjwk) !jyg REAL, SAVE :: oliqmax = 999., oicemax = 999. !$OMP THREADPRIVATE(oliqmax,oicemax) REAL, SAVE :: alp_offset !$OMP THREADPRIVATE(alp_offset) REAL, SAVE :: dtcon_multistep_max = 1.e6 !$OMP THREADPRIVATE(dtcon_multistep_max) REAL, SAVE :: dqcon_multistep_max = 1.e6 !$OMP THREADPRIVATE(dqcon_multistep_max) !RR:fin declarations poches froides !========================================================================== REAL ztv(klon, klev), ztva(klon, klev) REAL zpspsk(klon, klev) REAL ztla(klon, klev), zqla(klon, klev) REAL zthl(klon, klev) !cc nrlmd le 10/04/2012 !--------Stochastic Boundary Layer Triggering: ALE_BL-------- !---Propri\'et\'es du thermiques au LCL ! real zlcl_th(klon) ! Altitude du LCL calcul\'e ! continument (pcon dans ! thermcell_main.F90) REAL fraca0(klon) ! Fraction des thermiques au LCL REAL w0(klon) ! Vitesse des thermiques au LCL REAL w_conv(klon) ! Vitesse verticale de grande \'echelle au LCL REAL tke0(klon, klev + 1) ! TKE au d\'ebut du pas de temps REAL therm_tke_max0(klon) ! TKE dans les thermiques au LCL REAL env_tke_max0(klon) ! TKE dans l'environnement au LCL INTEGER, SAVE :: iflag_thermcell_tke ! transtport TKE by thermals !$OMP THREADPRIVATE(iflag_thermcell_tke) !JLD !---D\'eclenchement stochastique !JLD INTEGER :: tau_trig(klon) REAL, SAVE :: random_notrig_max = 1. !$OMP THREADPRIVATE(random_notrig_max) !--------Statistical Boundary Layer Closure: ALP_BL-------- !---Profils de TKE dans et hors du thermique REAL therm_tke_max(klon, klev) ! Profil de TKE dans les thermiques REAL env_tke_max(klon, klev) ! Profil de TKE dans l'environnement !-------Activer les tendances de TKE due a l'orograp??ie--------- INTEGER, SAVE :: addtkeoro !$OMP THREADPRIVATE(addtkeoro) REAL, SAVE :: alphatkeoro !$OMP THREADPRIVATE(alphatkeoro) LOGICAL, SAVE :: smallscales_tkeoro !$OMP THREADPRIVATE(smallscales_tkeoro) !cc fin nrlmd le 10/04/2012 ! Variables locales pour la couche limite (al1): !Al1 REAL pblh(klon) ! Hauteur de couche limite !Al1 SAVE pblh !34EK ! Variables locales: !AA !AA Pour phytrac REAL u1(klon) ! vents dans la premiere couche U REAL v1(klon) ! vents dans la premiere couche V !@$$ LOGICAL offline ! Controle du stockage ds "physique" !@$$ PARAMETER (offline=.FALSE.) !@$$ INTEGER physid REAL frac_impa(klon, klev) ! fractions d'aerosols lessivees (impaction) REAL frac_nucl(klon, klev) ! idem (nucleation) ! RomP >>> REAL beta_prec_fisrt(klon, klev) ! taux de conv de l'eau cond (fisrt) ! RomP <<< !IM cf FH pour Tiedtke 080604 REAL rain_tiedtke(klon), snow_tiedtke(klon) !IM 050204 END REAL devap(klon) ! evaporation et sa derivee REAL dsens(klon) ! chaleur sensible et sa derivee ! Conditions aux limites REAL :: day_since_equinox ! Date de l'equinoxe de printemps INTEGER, parameter :: mth_eq = 3, day_eq = 21 REAL :: jD_eq LOGICAL, parameter :: new_orbit = .TRUE. INTEGER lmt_pas SAVE lmt_pas ! frequence de mise a jour !$OMP THREADPRIVATE(lmt_pas) REAL zmasse(klon, nbp_lev), exner(klon, nbp_lev) ! (column-density of mass of air in a cell, in kg m-2) !IM sorties REAL un_jour PARAMETER(un_jour = 86400.) INTEGER itapm1 !pas de temps de la physique du(es) mois precedents SAVE itapm1 !mis a jour le dernier pas de temps du mois en cours !$OMP THREADPRIVATE(itapm1) !====================================================================== ! Declaration des procedures appelees EXTERNAL angle ! calculer angle zenithal du soleil EXTERNAL alboc ! calculer l'albedo sur ocean EXTERNAL ajsec ! ajustement sec EXTERNAL conlmd ! convection (schema LMD) EXTERNAL hgardfou ! verifier les temperatures EXTERNAL nuage ! calculer les proprietes radiatives !C EXTERNAL o3cm ! initialiser l'ozone EXTERNAL orbite ! calculer l'orbite terrestre EXTERNAL phyredem ! ecrire l'etat de redemarrage de la physique EXTERNAL suphel ! initialiser certaines constantes EXTERNAL transp ! transport total de l'eau et de l'energie EXTERNAL haut2bas !variables de haut en bas ! EXTERNAL moyglo_aire ! moyenne globale d'1 var ponderee par l'aire de la maille (moyglo_pondaire) ! par la masse/airetot (moyglo_pondaima) et la vraie masse (moyglo_pondmass) ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Local variables ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! REAL rhcl(klon,klev) ! humiditi relative ciel clair REAL dialiq(klon, klev) ! eau liquide nuageuse REAL diafra(klon, klev) ! fraction nuageuse REAL radocond(klon, klev) ! eau condensee nuageuse !XXX PB REAL fluxq(klon, klev, nbsrf) ! flux turbulent d'humidite REAL fluxqbs(klon, klev, nbsrf) ! flux turbulent de neige soufflee !FC REAL zxfluxt(klon, klev) !FC REAL zxfluxq(klon, klev) REAL zxfluxqbs(klon, klev) REAL zxfluxu(klon, klev) REAL zxfluxv(klon, klev) ! Le rayonnement n'est pas calcule tous les pas, il faut donc ! sauvegarder les sorties du rayonnement !ym SAVE heat,cool,albpla,topsw,toplw,solsw,sollw,sollwdown !ym SAVE sollwdownclr, toplwdown, toplwdownclr !ym SAVE topsw0,toplw0,solsw0,sollw0, heat0, cool0 INTEGER itaprad SAVE itaprad !$OMP THREADPRIVATE(itaprad) REAL conv_q(klon, klev) ! convergence de l'humidite (kg/kg/s) REAL conv_t(klon, klev) ! convergence de la temperature(K/s) REAL zsav_tsol(klon) REAL dist, rmu0(klon), fract(klon) REAL zrmu0(klon), zfract(klon) REAL zdtime, zdtime1, zdtime2, zlongi REAL z_avant(klon), z_apres(klon), z_factor(klon) LOGICAL zx_ajustq REAL za REAL zx_t, zx_qs, zdelta, zcor REAL zqsat(klon, klev) INTEGER i, k, iq, nsrf, l, itr REAL t_coup PARAMETER (t_coup = 234.0) !ym A voir plus tard !! !ym REAL zx_relief(iim,jjmp1) !ym REAL zx_aire(iim,jjmp1) ! Grandeurs de sorties REAL s_capCL(klon) REAL s_oliqCL(klon), s_cteiCL(klon) REAL s_trmb1(klon), s_trmb2(klon) REAL s_trmb3(klon) ! La convection n'est pas calculee tous les pas, il faut donc ! sauvegarder les sorties de la convection !ym SAVE !ym SAVE !ym SAVE INTEGER itapcv, itapwk SAVE itapcv, itapwk !$OMP THREADPRIVATE(itapcv, itapwk) !KE43 ! Variables locales pour la convection de K. Emanuel (sb): REAL tvp(klon, klev) ! virtual temp of lifted parcel CHARACTER*40 capemaxcels !max(CAPE) REAL rflag(klon) ! flag fonctionnement de convect INTEGER iflagctrl(klon) ! flag fonctionnement de convect ! -- convect43: INTEGER ntra ! nb traceurs pour convect4.3 REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) REAL dplcldt(klon), dplcldr(klon) !? . condm_con(klon,klev),conda_con(klon,klev), !? . mr_con(klon,klev),ep_con(klon,klev) !? . ,sadiab(klon,klev),wadiab(klon,klev) ! -- !34EK ! Variables du changement ! con: convection ! lsc: condensation a grande echelle (Large-Scale-Condensation) ! ajs: ajustement sec ! eva: evaporation de l'eau liquide nuageuse ! vdf: couche limite (Vertical DiFfusion) ! tendance nulles REAL, DIMENSION(klon, klev) :: du0, dv0, dt0, dq0, dql0, dqi0, dqbs0 REAL, DIMENSION(klon) :: dsig0, ddens0 INTEGER, DIMENSION(klon) :: wkoccur1 ! tendance buffer pour appel de add_phys_tend REAL, DIMENSION(klon, klev) :: d_q_ch4_dtime ! Flag pour pouvoir ne pas ajouter les tendances. ! Par defaut, les tendances doivente etre ajoutees et ! flag_inhib_tend = 0 ! flag_inhib_tend > 0 : tendances non ajoutees, avec un nombre ! croissant de print quand la valeur du flag augmente !!! attention, ce flag doit etre change avec prudence !!! INTEGER :: flag_inhib_tend = 0 ! 0 is the default value !! INTEGER :: flag_inhib_tend = 2 ! Logical switch to a bug : reseting to 0 convective variables at the ! begining of physiq. LOGICAL, SAVE :: ok_bug_cv_trac = .TRUE. !$OMP THREADPRIVATE(ok_bug_cv_trac) ! Logical switch to a bug : changing wake_deltat when thermals are active ! even when there are no wakes. LOGICAL, SAVE :: ok_bug_split_th = .TRUE. !$OMP THREADPRIVATE(ok_bug_split_th) ! Logical switch to a bug : modifying directly wake_deltat by adding ! the (w) dry adjustment tendency to wake_deltat LOGICAL, SAVE :: ok_bug_ajs_cv = .TRUE. !$OMP THREADPRIVATE(ok_bug_ajs_cv) !******************************************************** ! declarations !******************************************************** !IM 081204 END REAL pen_u(klon, klev), pen_d(klon, klev) REAL pde_u(klon, klev), pde_d(klon, klev) INTEGER kcbot(klon), kctop(klon), kdtop(klon) REAL ratqsbas, ratqshaut, tau_ratqs SAVE ratqsbas, ratqshaut, tau_ratqs !$OMP THREADPRIVATE(ratqsbas,ratqshaut,tau_ratqs) REAL, SAVE :: ratqsp0 = 50000., ratqsdp = 20000. !$OMP THREADPRIVATE(ratqsp0, ratqsdp) ! Parametres lies au nouveau schema de nuages (SB, PDF) REAL, SAVE :: fact_cldcon REAL, SAVE :: facttemps !$OMP THREADPRIVATE(fact_cldcon,facttemps) LOGICAL, SAVE :: ok_newmicro !$OMP THREADPRIVATE(ok_newmicro) INTEGER, SAVE :: iflag_cld_th !$OMP THREADPRIVATE(iflag_cld_th) !IM LOGICAL ptconv(klon,klev) !passe dans phys_local_var_mod !IM cf. AM 081204 BEG LOGICAL ptconvth(klon, klev) REAL picefra(klon, klev) REAL zrel_oro(klon) !IM cf. AM 081204 END ! Variables liees a l'ecriture de la bande histoire physique !====================================================================== !JLD integer itau_w ! pas de temps ecriture = itap + itau_phy ! Variables locales pour effectuer les appels en serie !IM RH a 2m (la surface) REAL Lheat INTEGER length PARAMETER (length = 100) REAL tabcntr0(length) !JLD INTEGER ndex2d(nbp_lon*nbp_lat) !IM !IM AMIP2 BEG !JLD REAL moyglo, mountor !IM 141004 BEG REAL zustrdr(klon), zvstrdr(klon) REAL zustrli(klon), zvstrli(klon) REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc !IM 141004 END !IM 190504 BEG ! INTEGER imp1jmp1 ! PARAMETER(imp1jmp1=(iim+1)*jjmp1) !ym A voir plus tard ! REAL zx_tmp((nbp_lon+1)*nbp_lat) ! REAL airedyn(nbp_lon+1,nbp_lat) !IM 190504 END !JLD LOGICAL ok_msk !JLD REAL msk(klon) !ym A voir plus tard !ym REAL zm_wo(jjmp1, klev) !IM AMIP2 END REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique REAL zx_tmp_fi3d(klon, klev) ! variable temporaire pour champs 3D !JLD REAL zx_tmp_2d(nbp_lon,nbp_lat) !JLD REAL zx_lon(nbp_lon,nbp_lat) !JLD REAL zx_lat(nbp_lon,nbp_lat) INTEGER nid_ctesGCM SAVE nid_ctesGCM !$OMP THREADPRIVATE(nid_ctesGCM) !IM 280405 BEG ! INTEGER nid_bilKPins, nid_bilKPave ! SAVE nid_bilKPins, nid_bilKPave ! !$OMP THREADPRIVATE(nid_bilKPins, nid_bilKPave) REAL ve_lay(klon, klev) ! transport meri. de l'energie a chaque niveau vert. REAL vq_lay(klon, klev) ! transport meri. de l'eau a chaque niveau vert. REAL ue_lay(klon, klev) ! transport zonal de l'energie a chaque niveau vert. REAL uq_lay(klon, klev) ! transport zonal de l'eau a chaque niveau vert. !JLD REAL zjulian !JLD SAVE zjulian !JLD!$OMP THREADPRIVATE(zjulian) !JLD INTEGER nhori, nvert !JLD REAL zsto !JLD REAL zstophy, zout CHARACTER (LEN = 20) :: modname = 'physiq_mod' CHARACTER*80 abort_message LOGICAL, SAVE :: ok_sync, ok_sync_omp !$OMP THREADPRIVATE(ok_sync) REAL date0 ! essai writephys INTEGER fid_day, fid_mth, fid_ins PARAMETER (fid_ins = 1, fid_day = 2, fid_mth = 3) INTEGER prof2d_on, prof3d_on, prof2d_av, prof3d_av PARAMETER (prof2d_on = 1, prof3d_on = 2, prof2d_av = 3, prof3d_av = 4) REAL ztsol(klon) REAL q2m(klon, nbsrf) ! humidite a 2m REAL fsnowerosion(klon, nbsrf) ! blowing snow flux at surface REAL qbsfra ! blowing snow fraction !IM: t2m, q2m, ustar, u10m, v10m et t2mincels, t2maxcels CHARACTER*40 t2mincels, t2maxcels !t2m min., t2m max CHARACTER*40 tinst, tave REAL cldtaupi(klon, klev) ! Cloud optical thickness for ! pre-industrial (pi) aerosols INTEGER :: naero ! Aerosol optical properties CHARACTER*4, DIMENSION(naero_grp) :: rfname REAL, DIMENSION(klon, klev) :: mass_solu_aero ! total mass ! concentration ! for all soluble ! aerosols[ug/m3] REAL, DIMENSION(klon, klev) :: mass_solu_aero_pi ! - " - (pre-industrial value) REAL, DIMENSION(klon, klev, naero_tot) :: m_allaer ! Parameters LOGICAL ok_ade, ok_aie ! Apply aerosol (IN)direct effects or not LOGICAL ok_alw ! Apply aerosol LW effect or not LOGICAL ok_cdnc ! ok cloud droplet number concentration (O. Boucher 01-2013) REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995) SAVE ok_ade, ok_aie, ok_alw, ok_cdnc, bl95_b0, bl95_b1 !$OMP THREADPRIVATE(ok_ade, ok_aie, ok_alw, ok_cdnc, bl95_b0, bl95_b1) LOGICAL, SAVE :: aerosol_couple ! true : calcul des aerosols dans INCA ! false : lecture des aerosol dans un fichier !$OMP THREADPRIVATE(aerosol_couple) LOGICAL, SAVE :: chemistry_couple ! true : use INCA chemistry O3 ! false : use offline chemistry O3 !$OMP THREADPRIVATE(chemistry_couple) INTEGER, SAVE :: flag_aerosol !$OMP THREADPRIVATE(flag_aerosol) LOGICAL, SAVE :: flag_bc_internal_mixture !$OMP THREADPRIVATE(flag_bc_internal_mixture) !--STRAT AEROSOL INTEGER, SAVE :: flag_aerosol_strat !$OMP THREADPRIVATE(flag_aerosol_strat) !--INTERACTIVE AEROSOL FEEDBACK ON RADIATION LOGICAL, SAVE :: flag_aer_feedback !$OMP THREADPRIVATE(flag_aer_feedback) !c-fin STRAT AEROSOL ! Declaration des constantes et des fonctions thermodynamiques LOGICAL, SAVE :: first = .TRUE. !$OMP THREADPRIVATE(first) ! VARIABLES RELATED TO OZONE CLIMATOLOGIES ; all are OpenMP shared ! Note that pressure vectors are in Pa and in stricly ascending order INTEGER, SAVE :: read_climoz ! Read ozone climatology ! (let it keep the default OpenMP shared attribute) ! Allowed values are 0, 1 and 2 ! 0: do not read an ozone climatology ! 1: read a single ozone climatology that will be used day and night ! 2: read two ozone climatologies, the average day and night ! climatology and the daylight climatology INTEGER, SAVE :: ncid_climoz ! NetCDF file identifier REAL, ALLOCATABLE, SAVE :: press_cen_climoz(:) ! Pressure levels REAL, ALLOCATABLE, SAVE :: press_edg_climoz(:) ! Edges of pressure intervals REAL, ALLOCATABLE, SAVE :: time_climoz(:) ! Time vector CHARACTER(LEN = 13), PARAMETER :: vars_climoz(2) & = ["tro3 ", "tro3_daylight"] ! vars_climoz(1:read_climoz): variables names in climoz file. ! vars_climoz(1:read_climoz-2) if read_climoz>2 (temporary) REAL :: ro3i ! 0<=ro3i<=360 ; required time index in NetCDF file for ! the ozone fields, old method. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Declarations pour Simulateur COSP !============================================================ ! AI 10-22 INCLUDE "ini_COSP.h" REAL :: mr_ozone(klon, klev), phicosp(klon, klev) !IM stations CFMIP INTEGER, SAVE :: nCFMIP !$OMP THREADPRIVATE(nCFMIP) INTEGER, PARAMETER :: npCFMIP = 120 INTEGER, ALLOCATABLE, SAVE :: tabCFMIP(:) REAL, ALLOCATABLE, SAVE :: lonCFMIP(:), latCFMIP(:) !$OMP THREADPRIVATE(tabCFMIP, lonCFMIP, latCFMIP) INTEGER, ALLOCATABLE, SAVE :: tabijGCM(:) REAL, ALLOCATABLE, SAVE :: lonGCM(:), latGCM(:) !$OMP THREADPRIVATE(tabijGCM, lonGCM, latGCM) INTEGER, ALLOCATABLE, SAVE :: iGCM(:), jGCM(:) !$OMP THREADPRIVATE(iGCM, jGCM) logical, DIMENSION(nfiles) :: phys_out_filestations logical, parameter :: lNMC = .FALSE. !IM betaCRF REAL, SAVE :: pfree, beta_pbl, beta_free !$OMP THREADPRIVATE(pfree, beta_pbl, beta_free) REAL, SAVE :: lon1_beta, lon2_beta, lat1_beta, lat2_beta !$OMP THREADPRIVATE(lon1_beta, lon2_beta, lat1_beta, lat2_beta) LOGICAL, SAVE :: mskocean_beta !$OMP THREADPRIVATE(mskocean_beta) REAL, DIMENSION(klon, klev) :: beta ! facteur sur cldtaurad et ! cldemirad pour evaluer les ! retros liees aux CRF REAL, DIMENSION(klon, klev) :: cldtaurad ! epaisseur optique ! pour radlwsw pour ! tester "CRF off" REAL, DIMENSION(klon, klev) :: cldtaupirad ! epaisseur optique ! pour radlwsw pour ! tester "CRF off" REAL, DIMENSION(klon, klev) :: cldemirad ! emissivite pour ! radlwsw pour tester ! "CRF off" REAL, DIMENSION(klon, klev) :: cldfrarad ! fraction nuageuse REAL :: calday, zxsnow_dummy(klon) ! set de variables utilisees pour l'initialisation des valeurs provenant de INCA REAL, DIMENSION(klon, klev, naero_grp, nbands) :: init_tauinca REAL, DIMENSION(klon, klev, naero_grp, nbands) :: init_pizinca REAL, DIMENSION(klon, klev, naero_grp, nbands) :: init_cginca REAL, DIMENSION(klon, klev, nbands) :: init_ccminca REAL, DIMENSION(klon, nbtr) :: init_source !lwoff=y : offset LW CRE for radiation code and other schemes REAL, SAVE :: betalwoff !$OMP THREADPRIVATE(betalwoff) INTEGER :: nbtr_tmp ! Number of tracer inside concvl REAL, DIMENSION(klon, klev) :: sh_in ! Specific humidity entering in phytrac REAL, DIMENSION(klon, klev) :: ch_in ! Condensed humidity entering in phytrac (eau liquide) INTEGER iostat REAL, DIMENSION(klon, klev + 1) :: l_mix_ave, wprime_ave REAL zzz !albedo SB >>> REAL, DIMENSION(6), SAVE :: SFRWL !$OMP THREADPRIVATE(SFRWL) !albedo SB <<< !--Lea Raillard qs_ini REAL, dimension(klon,klev) :: qs_ini !--OB variables for mass fixer (hard coded for now) REAL qql1(klon), qql2(klon), corrqql !--OB flag to activate better conservation of water tendency when convection is not called every timestep LOGICAL, PARAMETER :: ok_conserv_d_q_con = .FALSE. REAL, DIMENSION(klon, klev) :: t_env, q_env REAL, DIMENSION(klon) :: pr_et REAL, DIMENSION(klon) :: w_et, jlr_g_c, jlr_g_s REAL pi REAL viscom, viscoh INTEGER ieru !AI namelist pour gerer le double appel de Ecrad CHARACTER(len = 512) :: namelist_ecrad_file !======================================================================! ! Bifurcation vers un nouveau moniteur physique pour experimenter ! ! des solutions et préparer le couplage avec la physique de MesoNH ! ! 14 mai 2023 ! !======================================================================! IF (debut) then ! iflag_physiq = 0 CALL getin_p('iflag_physiq', iflag_physiq) ! endif ! IF (iflag_physiq == 2) then ! CALL physiqex (nlon, nlev, & ! debut, lafin, pdtphys_, & ! paprs, pplay, pphi, pphis, presnivs, & ! u, v, rot, t, qx, & ! flxmass_w, & ! d_u, d_v, d_t, d_qx, d_ps) ! return ! endif ! !======================================================================! pi = 4. * ATAN(1.) ! set-up CALL to alerte function call_alert = (alert_first_call .AND. is_master) ! Ehouarn: set value of jjmp1 since it is no longer a "fixed parameter" jjmp1 = nbp_lat !====================================================================== ! Gestion calendrier : mise a jour du module phys_cal_mod pdtphys = pdtphys_ CALL update_time(pdtphys) phys_tstep = NINT(pdtphys) IF (.NOT. using_xios) missing_val = nf90_fill_real IF (using_xios) THEN ! switch to XIOS LMDZ physics context IF (.NOT. debut .AND. is_omp_master) THEN CALL wxios_set_context() CALL xios_update_calendar(itap + 1) ENDIF ENDIF !====================================================================== ! Ecriture eventuelle d'un profil verticale en entree de la physique. ! Utilise notamment en 1D mais peut etre active egalement en 3D ! en imposant la valeur de igout. !====================================================================== IF (prt_level>=1) THEN igout = klon / 2 + 1 / klon WRITE(lunout, *) 'DEBUT DE PHYSIQ !!!!!!!!!!!!!!!!!!!!' WRITE(lunout, *) 'igout, lat, lon ', igout, latitude_deg(igout), & longitude_deg(igout) WRITE(lunout, *) & 'nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys' WRITE(lunout, *) & nlon, klev, nqtot, debut, lafin, jD_cur, jH_cur, pdtphys WRITE(lunout, *) 'paprs, play, phi, u, v, t' DO k = 1, klev WRITE(lunout, *) paprs(igout, k), pplay(igout, k), pphi(igout, k), & u(igout, k), v(igout, k), t(igout, k) ENDDO WRITE(lunout, *) 'ovap (g/kg), oliq (g/kg)' DO k = 1, klev WRITE(lunout, *) qx(igout, k, 1) * 1000, qx(igout, k, 2) * 1000. ENDDO ENDIF ! Quick check on pressure levels: CALL assert(paprs(:, nbp_lev + 1) < paprs(:, nbp_lev), & "physiq_mod paprs bad order") IF (first) THEN ivap = strIdx(tracers(:)%name, addPhase('H2O', 'g')) iliq = strIdx(tracers(:)%name, addPhase('H2O', 'l')) isol = strIdx(tracers(:)%name, addPhase('H2O', 's')) ibs = strIdx(tracers(:)%name, addPhase('H2O', 'b')) icf = strIdx(tracers(:)%name, addPhase('H2O', 'f')) irvc = strIdx(tracers(:)%name, addPhase('H2O', 'c')) ! CALL init_etat0_limit_unstruct ! IF (.NOT. create_etat0_limit) CALL init_limit_read(days_elapsed) !CR:nvelles variables convection/poches froides WRITE(lunout, *) '=================================================' WRITE(lunout, *) 'Allocation des variables locales et sauvegardees' WRITE(lunout, *) '=================================================' CALL phys_local_var_init ! appel a la lecture du run.def physique CALL conf_phys(ok_journe, ok_mensuel, & ok_instan, ok_hf, & ok_LES, & callstats, & solarlong0, seuil_inversion, & fact_cldcon, facttemps, ok_newmicro, iflag_radia, & iflag_cld_th, ratqsbas, ratqshaut, tau_ratqs, & ok_ade, ok_aie, ok_alw, ok_cdnc, ok_volcan, flag_volc_surfstrat, aerosol_couple, & chemistry_couple, flag_aerosol, flag_aerosol_strat, flag_aer_feedback, & flag_bc_internal_mixture, bl95_b0, bl95_b1, & ! nv flags pour la convection et les ! poches froides read_climoz, & alp_offset) CALL init_etat0_limit_unstruct IF (.NOT. create_etat0_limit) CALL init_limit_read(days_elapsed) CALL phys_state_var_init(read_climoz) CALL phys_output_var_init IF (read_climoz>=1 .AND. create_etat0_limit .AND. grid_type==unstructured) & CALL regr_horiz_time_climoz(read_climoz, ok_daily_climoz) PRINT*, '=================================================' !CR: check sur le nb de traceurs de l eau IF ((iflag_ice_thermo>0).AND.(nqo==2)) THEN WRITE (lunout, *) ' iflag_ice_thermo==1 requires 3 H2O tracers ', & '(H2O_g, H2O_l, H2O_s) but nqo=', nqo, '. Might as well stop here.' abort_message = 'see above' CALL abort_physic(modname, abort_message, 1) ENDIF IF (ok_ice_supersat.AND.(iflag_ice_thermo==0)) THEN WRITE (lunout, *) ' ok_ice_supersat=y requires iflag_ice_thermo=1 as well' abort_message = 'see above' CALL abort_physic(modname, abort_message, 1) ENDIF IF (ok_ice_supersat.AND.(nqo<5)) THEN WRITE (lunout, *) ' ok_ice_supersat=y requires 5 H2O tracers ', & '(H2O_g, H2O_l, H2O_s, H2O_f, H2O_c) but nqo=', nqo, '. Might as well stop here.' abort_message = 'see above' CALL abort_physic(modname, abort_message, 1) ENDIF IF (ok_plane_h2o.AND..NOT.ok_ice_supersat) THEN WRITE (lunout, *) ' ok_plane_h2o=y requires ok_ice_supersat=y ' abort_message = 'see above' CALL abort_physic(modname, abort_message, 1) ENDIF IF (ok_plane_contrail.AND..NOT.ok_ice_supersat) THEN WRITE (lunout, *) ' ok_plane_contrail=y requires ok_ice_supersat=y ' abort_message = 'see above' CALL abort_physic(modname, abort_message, 1) ENDIF IF (ok_bs) THEN IF ((ok_ice_supersat.AND.nqo <6).OR.(.NOT.ok_ice_supersat.AND.nqo<4)) THEN WRITE (lunout, *) 'activation of blowing snow needs a specific H2O tracer', & 'but nqo=', nqo abort_message = 'see above' CALL abort_physic(modname, abort_message, 1) ENDIF ENDIF Ncvpaseq1 = 0 dnwd0 = 0.0 ftd = 0.0 fqd = 0.0 cin = 0. !ym Attention pbase pas initialise dans concvl !!!! pbase = 0 !IM 180608 itau_con = 0 first = .FALSE. ENDIF ! first !ym => necessaire pour iflag_con != 2 pmfd(:, :) = 0. pen_u(:, :) = 0. pen_d(:, :) = 0. pde_d(:, :) = 0. pde_u(:, :) = 0. aam = 0. d_t_adjwk(:, :) = 0 d_q_adjwk(:, :) = 0 alp_bl_conv(:) = 0. torsfc = 0. forall (k = 1:nbp_lev) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg IF (debut) THEN CALL suphel ! initialiser constantes et parametres phys. ! tau_gl : constante de rappel de la temperature a la surface de la glace - en tau_gl = 5. CALL getin_p('tau_gl', tau_gl) ! tau_gl : constante de rappel de la temperature a la surface de la glace - en ! secondes tau_gl = 86400. * tau_gl WRITE(lunout, *) 'debut physiq_mod tau_gl=', tau_gl iflag_thermcell_tke = 0 CALL getin_p('iflag_thermcell_tke', iflag_thermcell_tke) ! CALL getin_p('iflag_alp_wk_cond', iflag_alp_wk_cond) CALL getin_p('random_notrig_max', random_notrig_max) CALL getin_p('ok_adjwk', ok_adjwk) IF (ok_adjwk) iflag_adjwk = 2 ! for compatibility with older versions ! iflag_adjwk: ! 0 = Default: no convective adjustment of w-region ! 1 => convective adjustment but state variables are unchanged ! 2 => convective adjustment and state variables are changed CALL getin_p('iflag_adjwk', iflag_adjwk) CALL getin_p('dtcon_multistep_max', dtcon_multistep_max) CALL getin_p('dqcon_multistep_max', dqcon_multistep_max) CALL getin_p('oliqmax', oliqmax) CALL getin_p('oicemax', oicemax) CALL getin_p('ratqsp0', ratqsp0) CALL getin_p('ratqsdp', ratqsdp) iflag_wake_tend = 0 CALL getin_p('iflag_wake_tend', iflag_wake_tend) ok_bad_ecmwf_thermo = .TRUE. ! By default thermodynamical constants are set ! in rrtm/suphec.F90 (and rvtmp2 is set to 0). CALL getin_p('ok_bad_ecmwf_thermo', ok_bad_ecmwf_thermo) CALL getin_p('ok_bug_cv_trac', ok_bug_cv_trac) CALL getin_p('ok_bug_split_th', ok_bug_split_th) CALL getin_p('ok_bug_ajs_cv', ok_bug_ajs_cv) fl_ebil = 0 ! by default, conservation diagnostics are desactivated CALL getin_p('fl_ebil', fl_ebil) fl_cor_ebil = 0 ! by default, no correction to ensure energy conservation CALL getin_p('fl_cor_ebil', fl_cor_ebil) iflag_phytrac = 1 ! by default we do want to CALL phytrac CALL getin_p('iflag_phytrac', iflag_phytrac) ok_water_mass_fixer = .FALSE. ! OB: by default we do not apply the mass fixer CALL getin_p('ok_water_mass_fixer', ok_water_mass_fixer) IF (CPPKEY_DUST) THEN IF (iflag_phytrac==0) THEN WRITE(lunout, *) 'In order to run with SPLA, iflag_phytrac will be forced to 1' iflag_phytrac = 1 ENDIF END IF nvm_lmdz = 13 CALL getin_p('NVM', nvm_lmdz) WRITE(lunout, *) 'iflag_alp_wk_cond=', iflag_alp_wk_cond WRITE(lunout, *) 'random_ntrig_max=', random_notrig_max WRITE(lunout, *) 'ok_adjwk=', ok_adjwk WRITE(lunout, *) 'iflag_adjwk=', iflag_adjwk WRITE(lunout, *) 'qtcon_multistep_max=', dtcon_multistep_max WRITE(lunout, *) 'qdcon_multistep_max=', dqcon_multistep_max WRITE(lunout, *) 'ratqsp0=', ratqsp0 WRITE(lunout, *) 'ratqsdp=', ratqsdp WRITE(lunout, *) 'iflag_wake_tend=', iflag_wake_tend WRITE(lunout, *) 'ok_bad_ecmwf_thermo=', ok_bad_ecmwf_thermo WRITE(lunout, *) 'ok_bug_cv_trac=', ok_bug_cv_trac WRITE(lunout, *) 'ok_bug_split_th=', ok_bug_split_th WRITE(lunout, *) 'fl_ebil=', fl_ebil WRITE(lunout, *) 'fl_cor_ebil=', fl_cor_ebil WRITE(lunout, *) 'iflag_phytrac=', iflag_phytrac WRITE(lunout, *) 'ok_water_mass_fixer=', ok_water_mass_fixer WRITE(lunout, *) 'NVM=', nvm_lmdz !--PC: defining fields to be exchanged between LMDz, ORCHIDEE and NEMO WRITE(lunout, *) 'Call to infocfields from physiq' CALL infocfields_init !AI 08 2023 #ifdef CPP_ECRAD ok_3Deffect=.FALSE. CALL getin_p('ok_3Deffect',ok_3Deffect) namelist_ecrad_file='namelist_ecrad' #endif ENDIF IF (prt_level>=1) PRINT *, 'CONVERGENCE PHYSIQUE THERM 1 ' !====================================================================== ! Gestion calendrier : mise a jour du module phys_cal_mod ! CALL phys_cal_update(jD_cur,jH_cur) ! Si c'est le debut, il faut initialiser plusieurs choses ! ******** IF (debut) THEN !rv CRinitialisation de wght_th et lalim_conv pour la !definition de la couche alimentation de la convection a partir !des caracteristiques du thermique wght_th(:, :) = 1. lalim_conv(:) = 1 !RC ustar(:, :) = 0. ! u10m(:,:)=0. ! v10m(:,:)=0. rain_con(:) = 0. snow_con(:) = 0. topswai(:) = 0. topswad(:) = 0. solswai(:) = 0. solswad(:) = 0. wmax_th(:) = 0. tau_overturning_th(:) = 0. IF (ANY(type_trac == ['inca', 'inco'])) THEN ! jg : initialisation jusqu'au ces variables sont dans restart ccm(:, :, :) = 0. tau_aero(:, :, :, :) = 0. piz_aero(:, :, :, :) = 0. cg_aero(:, :, :, :) = 0. d_q_ch4(:, :) = 0. config_inca = 'none' ! default CALL getin_p('config_inca', config_inca) ELSE config_inca = 'none' ! default ENDIF tau_aero(:, :, :, :) = 1.e-15 piz_aero(:, :, :, :) = 1. cg_aero(:, :, :, :) = 0. d_q_ch4(:, :) = 0. IF (aerosol_couple .AND. (config_inca /= "aero" & .AND. config_inca /= "aeNP ")) THEN abort_message & = 'if aerosol_couple is activated, config_inca need to be ' & // 'aero or aeNP' CALL abort_physic (modname, abort_message, 1) ENDIF rnebcon0(:, :) = 0.0 clwcon0(:, :) = 0.0 rnebcon(:, :) = 0.0 clwcon(:, :) = 0.0 PRINT*, 'iflag_coupl,iflag_clos,iflag_wake', & iflag_coupl, iflag_clos, iflag_wake PRINT*, 'iflag_cycle_diurne', iflag_cycle_diurne IF (iflag_con==2.AND.iflag_cld_th>-1) THEN abort_message = 'Tiedtke needs iflag_cld_th=-2 or -1' CALL abort_physic (modname, abort_message, 1) ENDIF ! Initialiser les compteurs: itap = 0 itaprad = 0 itapcv = 0 itapwk = 0 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Un petit travail \`a faire ici. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (iflag_pbl>1) THEN PRINT*, "Using method MELLOR&YAMADA" ENDIF ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! FH 2008/05/02 changement lie a la lecture de nbapp_rad dans ! phylmd plutot que dyn3d ! Attention : la version precedente n'etait pas tres propre. ! Il se peut qu'il faille prendre une valeur differente de nbapp_rad ! pour obtenir le meme resultat. !jyg for fh< WRITE(lunout, *) 'Pas de temps phys_tstep pdtphys ', phys_tstep, pdtphys IF (abs(phys_tstep - pdtphys)>1.e-10) THEN abort_message = 'pas de temps doit etre entier en seconde pour orchidee et XIOS' CALL abort_physic(modname, abort_message, 1) ENDIF !>jyg IF (MOD(NINT(86400. / phys_tstep), nbapp_rad)==0) THEN radpas = NINT(86400. / phys_tstep) / nbapp_rad ELSE WRITE(lunout, *) 'le nombre de pas de temps physique doit etre un ', & 'multiple de nbapp_rad' WRITE(lunout, *) 'changer nbapp_rad ou alors commenter ce test ', & 'mais 1+1<>2' abort_message = 'nbre de pas de temps physique n est pas multiple ' & // 'de nbapp_rad' CALL abort_physic(modname, abort_message, 1) ENDIF IF (nbapp_cv == 0) nbapp_cv = 86400. / phys_tstep IF (nbapp_wk == 0) nbapp_wk = 86400. / phys_tstep PRINT *, 'physiq, nbapp_cv, nbapp_wk ', nbapp_cv, nbapp_wk IF (MOD(NINT(86400. / phys_tstep), nbapp_cv)==0) THEN cvpas_0 = NINT(86400. / phys_tstep) / nbapp_cv cvpas = cvpas_0 PRINT *, 'physiq, cvpas ', cvpas ELSE WRITE(lunout, *) 'le nombre de pas de temps physique doit etre un ', & 'multiple de nbapp_cv' WRITE(lunout, *) 'changer nbapp_cv ou alors commenter ce test ', & 'mais 1+1<>2' abort_message = 'nbre de pas de temps physique n est pas multiple ' & // 'de nbapp_cv' CALL abort_physic(modname, abort_message, 1) ENDIF IF (MOD(NINT(86400. / phys_tstep), nbapp_wk)==0) THEN wkpas = NINT(86400. / phys_tstep) / nbapp_wk ! PRINT *,'physiq, wkpas ',wkpas ELSE WRITE(lunout, *) 'le nombre de pas de temps physique doit etre un ', & 'multiple de nbapp_wk' WRITE(lunout, *) 'changer nbapp_wk ou alors commenter ce test ', & 'mais 1+1<>2' abort_message = 'nbre de pas de temps physique n est pas multiple ' & // 'de nbapp_wk' CALL abort_physic(modname, abort_message, 1) ENDIF ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL init_iophy_new(latitude_deg, longitude_deg) !=================================================================== !IM stations CFMIP nCFMIP = npCFMIP OPEN(98, file = 'npCFMIP_param.data', status = 'old', & form = 'formatted', iostat = iostat) IF (iostat == 0) THEN READ(98, *, end = 998) nCFMIP 998 CONTINUE CLOSE(98) IF(nCFMIP>npCFMIP) THEN PRINT*, 'nCFMIP > npCFMIP : augmenter npCFMIP et recompiler' CALL abort_physic("physiq", "", 1) ELSE PRINT*, 'physiq npCFMIP=', npCFMIP, 'nCFMIP=', nCFMIP ENDIF ALLOCATE(tabCFMIP(nCFMIP)) ALLOCATE(lonCFMIP(nCFMIP), latCFMIP(nCFMIP)) ALLOCATE(tabijGCM(nCFMIP)) ALLOCATE(lonGCM(nCFMIP), latGCM(nCFMIP)) ALLOCATE(iGCM(nCFMIP), jGCM(nCFMIP)) ! lecture des nCFMIP stations CFMIP, de leur numero ! et des coordonnees geographiques lonCFMIP, latCFMIP CALL read_CFMIP_point_locations(nCFMIP, tabCFMIP, & lonCFMIP, latCFMIP) ! identification des ! 1) coordonnees lonGCM, latGCM des points CFMIP dans la ! grille de LMDZ ! 2) indices points tabijGCM de la grille physique 1d sur ! klon points ! 3) indices iGCM, jGCM de la grille physique 2d CALL LMDZ_CFMIP_point_locations(nCFMIP, lonCFMIP, latCFMIP, & tabijGCM, lonGCM, latGCM, iGCM, jGCM) ELSE ALLOCATE(tabijGCM(0)) ALLOCATE(lonGCM(0), latGCM(0)) ALLOCATE(iGCM(0), jGCM(0)) ENDIF !$OMP MASTER ! FH : if ok_sync=.TRUE. , the time axis is written at each time step ! in the output files. Only at the end in the opposite case ok_sync_omp = .FALSE. CALL getin('ok_sync', ok_sync_omp) CALL phys_output_open(longitude_deg, latitude_deg, nCFMIP, tabijGCM, & iGCM, jGCM, lonGCM, latGCM, & jjmp1, nlevSTD, clevSTD, rlevSTD, phys_tstep, ok_veget, & type_ocean, iflag_pbl, iflag_pbl_split, ok_mensuel, ok_journe, & ok_hf, ok_instan, ok_LES, ok_ade, ok_aie, & read_climoz, phys_out_filestations, & aerosol_couple, & flag_aerosol_strat, pdtphys, paprs, pphis, & pplay, lmax_th, ptconv, ptconvth, ivap, & d_u, d_t, qx, d_qx, zmasse, ok_sync_omp) !$OMP END MASTER !$OMP BARRIER ok_sync = ok_sync_omp freq_outNMC(1) = ecrit_files(7) freq_outNMC(2) = ecrit_files(8) freq_outNMC(3) = ecrit_files(9) WRITE(lunout, *)'OK freq_outNMC(1)=', freq_outNMC(1) WRITE(lunout, *)'OK freq_outNMC(2)=', freq_outNMC(2) WRITE(lunout, *)'OK freq_outNMC(3)=', freq_outNMC(3) IF (.NOT. using_xios) THEN CALL ini_paramLMDZ_phy(phys_tstep, nid_ctesGCM) END IF ecrit_reg = ecrit_reg * un_jour ecrit_tra = ecrit_tra * un_jour !XXXPB Positionner date0 pour initialisation de ORCHIDEE date0 = jD_ref WRITE(*, *) 'physiq date0 : ', date0 ! CALL create_climoz(read_climoz) IF (.NOT. create_etat0_limit) CALL init_aero_fromfile(flag_aerosol, aerosol_couple) !! initialise aero from file for XIOS interpolation (unstructured_grid) IF (.NOT. create_etat0_limit) CALL init_readaerosolstrato(flag_aerosol_strat) !! initialise aero strato from file for XIOS interpolation (unstructured_grid) ! A.I : Initialisations pour le 1er passage a Cosp IF (ok_cosp) THEN IF (CPPKEY_COSP) THEN CALL ini_COSP(ref_liq_cosp0, ref_ice_cosp0, pctsrf_cosp0, zu10m_cosp0, zv10m_cosp0, & zxtsol_cosp0, zx_rh_cosp0, cldfra_cosp0, rnebcon_cosp0, flwc_cosp0, & fiwc_cosp0, prfl_cosp0, psfl_cosp0, pmflxr_cosp0, pmflxs_cosp0, & mr_ozone_cosp0, cldtau_cosp0, cldemi_cosp0, JrNt_cosp0) CALL phys_cosp(itap, phys_tstep, freq_cosp, & ok_mensuelCOSP, ok_journeCOSP, ok_hfCOSP, & ecrit_mth, ecrit_day, ecrit_hf, ok_all_xml, missing_val, & klon, klev, longitude_deg, latitude_deg, presnivs, overlap, & JrNt_cosp0, ref_liq_cosp0, ref_ice_cosp0, & pctsrf_cosp0, & zu10m_cosp0, zv10m_cosp0, pphis, & pphi, paprs(:, 1:klev), pplay, zxtsol_cosp0, t, & qx(:, :, ivap), zx_rh_cosp0, cldfra_cosp0, rnebcon_cosp0, flwc_cosp0, fiwc_cosp0, & prfl_cosp0(:, 1:klev), psfl_cosp0(:, 1:klev), & pmflxr_cosp0(:, 1:klev), pmflxs_cosp0(:, 1:klev), & mr_ozone_cosp0, cldtau_cosp0, cldemi_cosp0) END IF IF (CPPKEY_COSPV2) THEN CALL ini_COSP(ref_liq_cosp0,ref_ice_cosp0,pctsrf_cosp0,zu10m_cosp0,zv10m_cosp0, & zxtsol_cosp0,zx_rh_cosp0,cldfra_cosp0,rnebcon_cosp0,flwc_cosp0, & fiwc_cosp0,prfl_cosp0,psfl_cosp0,pmflxr_cosp0,pmflxs_cosp0, & mr_ozone_cosp0,cldtau_cosp0,cldemi_cosp0,JrNt_cosp0) CALL lmdz_cosp_interface(itap,phys_tstep,freq_cosp, & ok_mensuelCOSP,ok_journeCOSP,ok_hfCOSP, & ecrit_mth,ecrit_day,ecrit_hf, ok_all_xml, missing_val, & klon,klev,longitude_deg,latitude_deg,presnivs,overlap, & JrNt_cosp0,ref_liq_cosp0,ref_ice_cosp0, & pctsrf_cosp0, & zu10m_cosp0,zv10m_cosp0,pphis, & pphi,paprs(:,1:klev),pplay,zxtsol_cosp0,t, & qx(:,:,ivap),zx_rh_cosp0,cldfra_cosp0,rnebcon_cosp0,flwc_cosp0,fiwc_cosp0, & prfl_cosp0(:,1:klev),psfl_cosp0(:,1:klev), & pmflxr_cosp0(:,1:klev),pmflxs_cosp0(:,1:klev), & mr_ozone_cosp0,cldtau_cosp0, cldemi_cosp0) END IF END IF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Nouvelle initialisation pour le rayonnement RRTM !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL iniradia(klon, klev, paprs(1, 1:klev + 1)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL wake_ini(rg, rd, rv, prt_level) CALL yamada_ini(klon, lunout, prt_level) viscom = 1.46E-5 viscoh = 2.06E-5 CALL atke_ini(RG, RD, RPI, RCPD, RV, viscom, viscoh) CALL thermcell_ini(iflag_thermals, prt_level, tau_thermals, lunout, & RG, RD, RCPD, RKAPPA, RLVTT, RETV) CALL ratqs_ini(klon, klev, iflag_thermals, lunout, nbsrf, is_lic, is_ter, RG, RV, RD, RCPD, RLSTT, RLVTT, RTT) CALL lscp_ini(pdtphys, lunout, prt_level, ok_ice_supersat, iflag_ratqs, fl_cor_ebil, & RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RV, RG, RPI, EPS_W) CALL blowing_snow_ini(RCPD, RLSTT, RLVTT, RLMLT, & RVTMP2, RTT, RD, RG, RV, RPI) ! Test de coherence sur oc_cdnc utilisé uniquement par cloud_optics_prop IF (ok_newmicro) THEN IF (iflag_rrtm==1) THEN #ifdef CPP_RRTM IF (ok_cdnc.AND.NRADLP.NE.3) THEN abort_message='RRTM choix incoherent NRADLP doit etre egal a 3 ' & // 'pour ok_cdnc' CALL abort_physic(modname,abort_message,1) ENDIF #else abort_message = 'You should compile with -rrtm if running with ' // 'iflag_rrtm=1' CALL abort_physic(modname, abort_message, 1) #endif ENDIF ENDIF CALL cloud_optics_prop_ini(klon, prt_level, lunout, flag_aerosol, & ok_cdnc, bl95_b0, & bl95_b1, latitude_deg, rpi, rg, rd, & zepsec, novlp, iflag_ice_thermo, ok_new_lscp) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Initialisation des champs dans phytrac* qui sont utilises par phys_output_write* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (CPPKEY_REPROBUS) THEN CALL strataer_init CALL strataer_emiss_init END IF IF (CPPKEY_STRATAER) THEN CALL strataer_init CALL strataer_nuc_init CALL strataer_emiss_init END IF IF (CPPKEY_DUST) THEN ! Quand on utilise SPLA, on force iflag_phytrac=1 CALL phytracr_spl_out_init() CALL phys_output_write_spl(itap, pdtphys, paprs, pphis, & pplay, lmax_th, aerosol_couple, & ok_ade, ok_aie, ivap, ok_sync, & ptconv, read_climoz, clevSTD, & ptconvth, d_t, qx, d_qx, d_tr_dyn, zmasse, & flag_aerosol, flag_aerosol_strat, ok_cdnc) ELSE ! phys_output_write écrit des variables traceurs seulement si iflag_phytrac == 1 ! donc seulement dans ce cas on doit appeler phytrac_init() IF (iflag_phytrac == 1) THEN CALL phytrac_init() ENDIF CALL phys_output_write(itap, pdtphys, paprs, pphis, & pplay, lmax_th, aerosol_couple, & ok_ade, ok_aie, ok_volcan, ivap, iliq, isol, ibs, ok_sync, & ptconv, read_climoz, clevSTD, & ptconvth, d_u, d_t, qx, d_qx, zmasse, & flag_aerosol, flag_aerosol_strat, ok_cdnc, t, u1, v1) END IF IF (using_xios) THEN IF (is_omp_master) CALL xios_update_calendar(1) ENDIF IF(read_climoz>=1 .AND. create_etat0_limit) CALL regr_horiz_time_climoz(read_climoz, ok_daily_climoz) CALL create_etat0_limit_unstruct CALL phyetat0 ("startphy.nc", clesphy0, tabcntr0) !jyg< IF (iflag_pbl<=1) THEN ! No TKE for Standard Physics pbl_tke(:, :, :) = 0. ELSE IF (klon_glo==1) THEN pbl_tke(:, :, is_ave) = 0. pbl_eps(:, :, is_ave) = 0. DO nsrf = 1, nbsrf DO k = 1, klev + 1 pbl_tke(:, k, is_ave) = pbl_tke(:, k, is_ave) & + pctsrf(:, nsrf) * pbl_tke(:, k, nsrf) pbl_eps(:, k, is_ave) = pbl_eps(:, k, is_ave) & + pctsrf(:, nsrf) * pbl_eps(:, k, nsrf) ENDDO ENDDO ELSE pbl_tke(:, :, is_ave) = 0. !ym missing init : maybe must be initialized in the same way that for klon_glo==1 ?? !>jyg pbl_eps(:, :, is_ave) = 0. ENDIF !IM begin PRINT*, 'physiq: clwcon rnebcon ratqs', clwcon(1, 1), rnebcon(1, 1) & , ratqs(1, 1) !IM end ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! on remet le calendrier a zero IF (raz_date == 1) THEN itau_phy = 0 ENDIF ! IF (ABS(phys_tstep-pdtphys).GT.0.001) THEN ! WRITE(lunout,*) 'Pas physique n est pas correct',phys_tstep, & ! pdtphys ! abort_message='Pas physique n est pas correct ' ! ! CALL abort_physic(modname,abort_message,1) ! phys_tstep=pdtphys ! ENDIF IF (nlon /= klon) THEN WRITE(lunout, *)'nlon et klon ne sont pas coherents', nlon, & klon abort_message = 'nlon et klon ne sont pas coherents' CALL abort_physic(modname, abort_message, 1) ENDIF IF (nlev /= klev) THEN WRITE(lunout, *)'nlev et klev ne sont pas coherents', nlev, & klev abort_message = 'nlev et klev ne sont pas coherents' CALL abort_physic(modname, abort_message, 1) ENDIF IF (phys_tstep * REAL(radpas)>21600..AND.iflag_cycle_diurne>=1) THEN WRITE(lunout, *)'Nbre d appels au rayonnement insuffisant' WRITE(lunout, *)"Au minimum 4 appels par jour si cycle diurne" abort_message = 'Nbre d appels au rayonnement insuffisant' CALL abort_physic(modname, abort_message, 1) ENDIF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Initialisation pour la convection de K.E. et pour les poches froides !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! WRITE(lunout, *)"Clef pour la convection, iflag_con=", iflag_con WRITE(lunout, *)"Clef pour le driver de la convection, ok_cvl=", ok_cvl !KE43 ! Initialisation pour la convection de K.E. (sb): IF (iflag_con>=3) THEN WRITE(lunout, *)"*** Convection de Kerry Emanuel 4.3 " WRITE(lunout, *) & "On va utiliser le melange convectif des traceurs qui" WRITE(lunout, *)"est calcule dans convect4.3" WRITE(lunout, *)" !!! penser aux LOGICAL flags de phytrac" DO i = 1, klon ema_cbmf(i) = 0. ema_pcb(i) = 0. ema_pct(i) = 0. ! ema_workcbmf(i) = 0. ENDDO !IM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>BEG DO i = 1, klon ibas_con(i) = 1 itop_con(i) = 1 ENDDO !IM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>END !================================================================ !CR:04.12.07: initialisations poches froides ! Controle de ALE et ALP pour la fermeture convective (jyg) IF (iflag_wake>=1) THEN CALL ini_wake(0., 0., it_wape_prescr, wape_prescr, fip_prescr & , alp_bl_prescr, ale_bl_prescr) ! 11/09/06 rajout initialisation ALE et ALP du wake et PBL(YU) ! PRINT*,'apres ini_wake iflag_cld_th=', iflag_cld_th ! Initialize tendencies of wake state variables (for some flag values ! they are not computed). d_deltat_wk(:, :) = 0. d_deltaq_wk(:, :) = 0. d_deltat_wk_gw(:, :) = 0. d_deltaq_wk_gw(:, :) = 0. d_deltat_vdf(:, :) = 0. d_deltaq_vdf(:, :) = 0. d_deltat_the(:, :) = 0. d_deltaq_the(:, :) = 0. d_deltat_ajs_cv(:, :) = 0. d_deltaq_ajs_cv(:, :) = 0. d_s_wk(:) = 0. d_s_a_wk(:) = 0. d_dens_wk(:) = 0. d_dens_a_wk(:) = 0. ENDIF ! (iflag_wake>=1) ! do i = 1,klon ! Ale_bl(i)=0. ! Alp_bl(i)=0. ! enddo !ELSE ! ALLOCATE(tabijGCM(0)) ! ALLOCATE(lonGCM(0), latGCM(0)) ! ALLOCATE(iGCM(0), jGCM(0)) ENDIF ! (iflag_con.GE.3) DO i = 1, klon rugoro(i) = f_rugoro * MAX(1.0e-05, zstd(i) * zsig(i) / 2.0) ENDDO !34EK IF (ok_orodr) THEN ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! FH sans doute a enlever de finitivement ou, si on le ! garde, l'activer justement quand ok_orodr = false. ! ce rugoro est utilise par la couche limite et fait double emploi ! avec les param\'etrisations sp\'ecifiques de Francois Lott. ! DO i=1,klon ! rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0) ! ENDDO ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (ok_strato) THEN CALL SUGWD_strato(klon, klev, paprs, pplay) ELSE CALL SUGWD(klon, klev, paprs, pplay) ENDIF DO i = 1, klon zuthe(i) = 0. zvthe(i) = 0. IF (zstd(i)>10.) THEN zuthe(i) = (1. - zgam(i)) * cos(zthe(i)) zvthe(i) = (1. - zgam(i)) * sin(zthe(i)) ENDIF ENDDO ENDIF lmt_pas = NINT(86400. / phys_tstep * 1.0) ! tous les jours WRITE(lunout, *)'La frequence de lecture surface est de ', & lmt_pas capemaxcels = 't_max(X)' t2mincels = 't_min(X)' t2maxcels = 't_max(X)' tinst = 'inst(X)' tave = 'ave(X)' !IM cf. AM 081204 BEG WRITE(lunout, *)'AVANT HIST IFLAG_CON=', iflag_con !IM cf. AM 081204 END !============================================================= ! Initialisation des sorties !============================================================= IF (using_xios) THEN ! Get "missing_val" value from XML files (from temperature variable) IF (is_omp_master) CALL xios_get_field_attr("temp", default_value = missing_val) CALL bcast_omp(missing_val) ENDIF IF (using_xios) THEN ! Need to put this initialisation after phyetat0 as in the coupled model the XIOS context is only ! initialised at that moment ! Get "missing_val" value from XML files (from temperature variable) IF (is_omp_master) CALL xios_get_field_attr("temp", default_value = missing_val) CALL bcast_omp(missing_val) ! Now we activate some double radiation CALL flags only if some ! diagnostics are requested, otherwise there is no point in doing this IF (is_master) THEN !--setting up swaero_diag to TRUE in XIOS case IF (xios_field_is_active("topswad").OR.xios_field_is_active("topswad0").OR. & xios_field_is_active("solswad").OR.xios_field_is_active("solswad0").OR. & xios_field_is_active("topswai").OR.xios_field_is_active("solswai").OR. & (iflag_rrtm==1.AND.(xios_field_is_active("toplwad").OR.xios_field_is_active("toplwad0").OR. & xios_field_is_active("sollwad").OR.xios_field_is_active("sollwad0")))) & !!!--for now these fields are not in the XML files so they are omitted !!! xios_field_is_active("toplwai").OR.xios_field_is_active("sollwai") !))) & swaero_diag = .TRUE. !--setting up swaerofree_diag to TRUE in XIOS case IF (xios_field_is_active("SWdnSFCcleanclr").OR.xios_field_is_active("SWupSFCcleanclr").OR. & xios_field_is_active("SWupTOAcleanclr").OR.xios_field_is_active("rsucsaf").OR. & xios_field_is_active("rsdcsaf") .OR. xios_field_is_active("LWdnSFCcleanclr").OR. & xios_field_is_active("LWupTOAcleanclr")) & swaerofree_diag = .TRUE. !--setting up dryaod_diag to TRUE in XIOS case DO naero = 1, naero_tot - 1 IF (xios_field_is_active("dryod550_" // name_aero_tau(naero))) dryaod_diag = .TRUE. ENDDO !--setting up ok_4xCO2atm to TRUE in XIOS case IF (xios_field_is_active("rsut4co2").OR.xios_field_is_active("rlut4co2").OR. & xios_field_is_active("rsutcs4co2").OR.xios_field_is_active("rlutcs4co2").OR. & xios_field_is_active("rsu4co2").OR.xios_field_is_active("rsucs4co2").OR. & xios_field_is_active("rsd4co2").OR.xios_field_is_active("rsdcs4co2").OR. & xios_field_is_active("rlu4co2").OR.xios_field_is_active("rlucs4co2").OR. & xios_field_is_active("rld4co2").OR.xios_field_is_active("rldcs4co2")) & ok_4xCO2atm = .TRUE. ENDIF !$OMP BARRIER CALL bcast(swaero_diag) CALL bcast(swaerofree_diag) CALL bcast(dryaod_diag) CALL bcast(ok_4xCO2atm) ENDIF !using_xios CALL printflag(tabcntr0, radpas, ok_journe, & ok_instan, ok_region) ! Prescrire l'ozone dans l'atmosphere !c DO i = 1, klon !c DO k = 1, klev !c CALL o3cm (paprs(i,k)/100.,paprs(i,k+1)/100., wo(i,k),20) !c ENDDO !c ENDDO IF (ANY(type_trac == ['inca', 'inco'])) THEN ! ModThL CALL VTe(VTphysiq) CALL VTb(VTinca) calday = REAL(days_elapsed) + jH_cur WRITE(lunout, *) 'initial time chemini', days_elapsed, calday CALL init_const_lmdz(& ndays, nbsrf, is_oce, is_sic, is_ter, is_lic, calend, & config_inca) CALL init_inca_geometry(& longitude, latitude, & boundslon, boundslat, & cell_area, ind_cell_glo) IF (grid_type==unstructured) THEN CALL chemini(pplay, & nbp_lon, nbp_lat, & latitude_deg, & longitude_deg, & presnivs, & calday, & klon, & nqtot, & nqo + nqCO2, & pdtphys, & annee_ref, & year_cur, & day_ref, & day_ini, & start_time, & itau_phy, & date0, & chemistry_couple, & init_source, & init_tauinca, & init_pizinca, & init_cginca, & init_ccminca) ELSE CALL chemini(pplay, & nbp_lon, nbp_lat, & latitude_deg, & longitude_deg, & presnivs, & calday, & klon, & nqtot, & nqo + nqCO2, & pdtphys, & annee_ref, & year_cur, & day_ref, & day_ini, & start_time, & itau_phy, & date0, & chemistry_couple, & init_source, & init_tauinca, & init_pizinca, & init_cginca, & init_ccminca, & io_lon, & io_lat) ENDIF ! initialisation des variables depuis le restart de inca ccm(:, :, :) = init_ccminca tau_aero(:, :, :, :) = init_tauinca piz_aero(:, :, :, :) = init_pizinca cg_aero(:, :, :, :) = init_cginca CALL VTe(VTinca) CALL VTb(VTphysiq) ENDIF IF (type_trac == 'repr') THEN IF (CPPKEY_REPROBUS) THEN CALL chemini_rep(presnivs, pdtphys, annee_ref, day_ref, day_ini, start_time, itau_phy, io_lon, io_lat) END IF ENDIF !$omp single IF (read_climoz >= 1) CALL open_climoz(ncid_climoz, press_cen_climoz, & press_edg_climoz, time_climoz, ok_daily_climoz, adjust_tropopause) !$omp end single !IM betaCRF pfree = 70000. !Pa beta_pbl = 1. beta_free = 1. lon1_beta = -180. lon2_beta = +180. lat1_beta = 90. lat2_beta = -90. mskocean_beta = .FALSE. !albedo SB >>> SELECT CASE(nsw) CASE(2) SFRWL(1) = 0.45538747 SFRWL(2) = 0.54461211 CASE(4) SFRWL(1) = 0.45538747 SFRWL(2) = 0.32870591 SFRWL(3) = 0.18568763 SFRWL(4) = 3.02191470E-02 CASE(6) SFRWL(1) = 1.28432794E-03 SFRWL(2) = 0.12304168 SFRWL(3) = 0.33106142 SFRWL(4) = 0.32870591 SFRWL(5) = 0.18568763 SFRWL(6) = 3.02191470E-02 END SELECT !albedo SB <<< OPEN(99, file = 'beta_crf.data', status = 'old', & form = 'formatted', err = 9999) READ(99, *, end = 9998) pfree READ(99, *, end = 9998) beta_pbl READ(99, *, end = 9998) beta_free READ(99, *, end = 9998) lon1_beta READ(99, *, end = 9998) lon2_beta READ(99, *, end = 9998) lat1_beta READ(99, *, end = 9998) lat2_beta READ(99, *, end = 9998) mskocean_beta 9998 Continue CLOSE(99) 9999 Continue WRITE(*, *)'pfree=', pfree WRITE(*, *)'beta_pbl=', beta_pbl WRITE(*, *)'beta_free=', beta_free WRITE(*, *)'lon1_beta=', lon1_beta WRITE(*, *)'lon2_beta=', lon2_beta WRITE(*, *)'lat1_beta=', lat1_beta WRITE(*, *)'lat2_beta=', lat2_beta WRITE(*, *)'mskocean_beta=', mskocean_beta !lwoff=y : offset LW CRE for radiation code and other schemes !lwoff=y : betalwoff=1. betalwoff = 0. IF (ok_lwoff) THEN betalwoff = 1. ENDIF WRITE(*, *)'ok_lwoff=', ok_lwoff !lwoff=y to begin only sollw and sollwdown are set up to CS values sollw = sollw + betalwoff * (sollw0 - sollw) sollwdown(:) = sollwdown(:) + betalwoff * (-1. * ZFLDN0(:, 1) - & sollwdown(:)) !--Init for LSCP - condensation ratio_qi_qtot(:,:) = 0. ENDIF ! **************** Fin de IF ( debut ) *************** ! Incrementer le compteur de la physique itap = itap + 1 IF (is_master .OR. prt_level > 9) THEN IF (prt_level > 5 .OR. MOD(itap, 5) == 0) THEN WRITE(LUNOUT, *)'Entering physics elapsed seconds since start ', current_time WRITE(LUNOUT, 100)year_cur, mth_cur, day_cur, hour / 3600. 100 FORMAT('Date = ', i4.4, ' / ', i2.2, ' / ', i2.2, ' : ', f20.17) ENDIF ENDIF ! Update fraction of the sub-surfaces (pctsrf) and ! initialize, where a new fraction has appeared, all variables depending ! on the surface fraction. CALL change_srf_frac(itap, phys_tstep, days_elapsed + 1, & pctsrf, fevap, z0m, z0h, agesno, & falb_dir, falb_dif, ftsol, ustar, u10m, v10m, pbl_tke) ! Update time and other variables in Reprobus IF (type_trac == 'repr') THEN IF (CPPKEY_REPROBUS) THEN CALL Init_chem_rep_xjour(jD_cur - jD_ref + day_ref) PRINT*, 'xjour equivalent rjourvrai', jD_cur - jD_ref + day_ref CALL Rtime(debut) END IF ENDIF ! Tendances bidons pour les processus qui n'affectent pas certaines ! variables. du0(:, :) = 0. dv0(:, :) = 0. dt0 = 0. dq0(:, :) = 0. dql0(:, :) = 0. dqi0(:, :) = 0. dqbs0(:, :) = 0. dsig0(:) = 0. ddens0(:) = 0. wkoccur1(:) = 1 ! Mettre a zero des variables de sortie (pour securite) DO i = 1, klon d_ps(i) = 0.0 ENDDO DO k = 1, klev DO i = 1, klon d_t(i, k) = 0.0 d_u(i, k) = 0.0 d_v(i, k) = 0.0 ENDDO ENDDO DO iq = 1, nqtot DO k = 1, klev DO i = 1, klon d_qx(i, k, iq) = 0.0 ENDDO ENDDO ENDDO beta_prec_fisrt(:, :) = 0. beta_prec(:, :) = 0. ! Output variables from the convective scheme should not be set to 0 ! since convection is not always called at every time step. IF (ok_bug_cv_trac) THEN da(:, :) = 0. mp(:, :) = 0. phi(:, :, :) = 0. ! RomP >>> phi2(:, :, :) = 0. epmlmMm(:, :, :) = 0. eplaMm(:, :) = 0. d1a(:, :) = 0. dam(:, :) = 0. pmflxr(:, :) = 0. pmflxs(:, :) = 0. ! RomP <<< ENDIF ! Ne pas affecter les valeurs entrees de u, v, h, et q DO k = 1, klev DO i = 1, klon t_seri(i, k) = t(i, k) u_seri(i, k) = u(i, k) v_seri(i, k) = v(i, k) q_seri(i, k) = qx(i, k, ivap) ql_seri(i, k) = qx(i, k, iliq) qbs_seri(i, k) = 0. cf_seri(i, k) = 0. rvc_seri(i, k) = 0. !CR: ATTENTION, on rajoute la variable glace IF (nqo==2) THEN !--vapour and liquid only qs_seri(i, k) = 0. ELSE IF (nqo==3) THEN !--vapour, liquid and ice qs_seri(i, k) = qx(i, k, isol) ELSE IF (nqo>=4) THEN !--vapour, liquid, ice, blowing snow, cloud fraction and cloudy water vapor to total water vapor ratio qs_seri(i, k) = qx(i, k, isol) IF (ok_ice_supersat) THEN cf_seri(i, k) = qx(i, k, icf) rvc_seri(i, k) = qx(i, k, irvc) END IF IF (ok_bs) THEN qbs_seri(i, k) = qx(i, k, ibs) END IF END IF END DO END DO ! Lea Raillard qs_ini for cloud phase param. qs_ini(:, :) = qs_seri(:, :) !--OB water mass fixer IF (ok_water_mass_fixer) THEN !--store initial water burden qql1(:) = 0.0 DO k = 1, klev qql1(:) = qql1(:) + (q_seri(:, k) + ql_seri(:, k)) * zmasse(:, k) IF (nqo >= 3) THEN qql1(:) = qql1(:) + qs_seri(:, k) * zmasse(:, k) ENDIF IF (ok_bs) THEN qql1(:) = qql1(:) + qbs_seri(:, k) * zmasse(:, k) ENDIF ENDDO ENDIF !--fin mass fixer tke0(:, :) = pbl_tke(:, :, is_ave) IF (nqtot > nqo) THEN ! water isotopes are not included in tr_seri itr = 0 DO iq = 1, nqtot IF(.NOT.tracers(iq)%isInPhysics) CYCLE itr = itr + 1 DO k = 1, klev DO i = 1, klon tr_seri(i, k, itr) = qx(i, k, iq) ENDDO ENDDO ENDDO ELSE ! DC: make sure the final "1" index was meant for 1st H2O phase (vapor) !!! tr_seri(:, :, strIdx(tracers(:)%name, addPhase('H2O', 'g'))) = 0.0 ENDIF ! Temporary solutions adressing ticket #104 and the non initialisation of tr_ancien ! LF IF (debut) THEN WRITE(lunout, *)' WARNING: tr_ancien initialised to tr_seri' itr = 0 DO iq = 1, nqtot IF(.NOT.tracers(iq)%isInPhysics) CYCLE itr = itr + 1 tr_ancien(:, :, itr) = tr_seri(:, :, itr) enddo ENDIF DO i = 1, klon ztsol(i) = 0. ENDDO DO nsrf = 1, nbsrf DO i = 1, klon ztsol(i) = ztsol(i) + ftsol(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO ! Initialize variables used for diagnostic purpose IF (flag_inhib_tend /= 0) CALL init_cmp_seri ! Diagnostiquer la tendance dynamique IF (ancien_ok) THEN d_u_dyn(:, :) = (u_seri(:, :) - u_ancien(:, :)) / phys_tstep d_v_dyn(:, :) = (v_seri(:, :) - v_ancien(:, :)) / phys_tstep d_t_dyn(:, :) = (t_seri(:, :) - t_ancien(:, :)) / phys_tstep d_q_dyn(:, :) = (q_seri(:, :) - q_ancien(:, :)) / phys_tstep d_ql_dyn(:, :) = (ql_seri(:, :) - ql_ancien(:, :)) / phys_tstep d_qs_dyn(:, :) = (qs_seri(:, :) - qs_ancien(:, :)) / phys_tstep d_qbs_dyn(:, :) = (qbs_seri(:, :) - qbs_ancien(:, :)) / phys_tstep d_cf_dyn(:, :) = (cf_seri(:, :) - cf_ancien(:, :)) / phys_tstep d_rvc_dyn(:, :) = (rvc_seri(:, :) - rvc_ancien(:, :))/phys_tstep CALL water_int(klon, klev, q_seri, zmasse, zx_tmp_fi2d) d_q_dyn2d(:) = (zx_tmp_fi2d(:) - prw_ancien(:)) / phys_tstep CALL water_int(klon, klev, ql_seri, zmasse, zx_tmp_fi2d) d_ql_dyn2d(:) = (zx_tmp_fi2d(:) - prlw_ancien(:)) / phys_tstep CALL water_int(klon, klev, qs_seri, zmasse, zx_tmp_fi2d) d_qs_dyn2d(:) = (zx_tmp_fi2d(:) - prsw_ancien(:)) / phys_tstep CALL water_int(klon, klev, qbs_seri, zmasse, zx_tmp_fi2d) d_qbs_dyn2d(:) = (zx_tmp_fi2d(:) - prbsw_ancien(:)) / phys_tstep ! !! RomP >>> td dyn traceur IF (nqtot > nqo) d_tr_dyn(:, :, :) = (tr_seri(:, :, :) - tr_ancien(:, :, :)) / phys_tstep ! !! RomP <<< ELSE d_u_dyn(:, :) = 0.0 d_v_dyn(:, :) = 0.0 d_t_dyn(:, :) = 0.0 d_q_dyn(:, :) = 0.0 d_ql_dyn(:, :) = 0.0 d_qs_dyn(:, :) = 0.0 d_qbs_dyn(:, :) = 0.0 d_cf_dyn(:, :) = 0.0 d_rvc_dyn(:, :) = 0.0 d_q_dyn2d(:) = 0.0 d_ql_dyn2d(:) = 0.0 d_qs_dyn2d(:) = 0.0 d_qbs_dyn2d(:) = 0.0 ! !! RomP >>> td dyn traceur IF (nqtot > nqo) d_tr_dyn(:, :, :) = 0.0 ! !! RomP <<< ancien_ok = .TRUE. ENDIF ! Ajouter le geopotentiel du sol: DO k = 1, klev DO i = 1, klon zphi(i, k) = pphi(i, k) + pphis(i) ENDDO ENDDO ! Verifier les temperatures !IM BEG IF (check) THEN amn = MIN(ftsol(1, is_ter), 1000.) amx = MAX(ftsol(1, is_ter), -1000.) DO i = 2, klon amn = MIN(ftsol(i, is_ter), amn) amx = MAX(ftsol(i, is_ter), amx) ENDDO PRINT*, ' debut avant hgardfou min max ftsol', itap, amn, amx ENDIF !(check) THEN !IM END CALL hgardfou(t_seri, ftsol, 'debutphy', abortphy) IF (abortphy==1) Print*, 'ERROR ABORT hgardfou debutphy' !IM BEG IF (check) THEN amn = MIN(ftsol(1, is_ter), 1000.) amx = MAX(ftsol(1, is_ter), -1000.) DO i = 2, klon amn = MIN(ftsol(i, is_ter), amn) amx = MAX(ftsol(i, is_ter), amx) ENDDO PRINT*, ' debut apres hgardfou min max ftsol', itap, amn, amx ENDIF !(check) THEN !IM END ! Mettre en action les conditions aux limites (albedo, sst, etc.). ! Prescrire l'ozone et calculer l'albedo sur l'ocean. ! Update ozone if day change IF (MOD(itap - 1, lmt_pas) == 0) THEN IF (read_climoz <= 0) THEN ! Once per day, update ozone from Royer: IF (solarlong0<-999.) THEN ! Generic case with evolvoing season zzz = real(days_elapsed + 1) ELSE IF (abs(solarlong0 - 1000.)<1.e-4) THEN ! Particular case with annual mean insolation zzz = real(90) ! could be revisited IF (read_climoz/=-1) THEN abort_message = 'read_climoz=-1 is recommended when ' & // 'solarlong0=1000.' CALL abort_physic (modname, abort_message, 1) ENDIF ELSE ! Case where the season is imposed with solarlong0 zzz = real(90) ! could be revisited ENDIF wo(:, :, 1) = ozonecm(latitude_deg, paprs, read_climoz, rjour = zzz) IF (CPPKEY_REPROBUS) THEN ptrop = dyn_tropopause(t_seri, ztsol, paprs, pplay, rot) / 100. DO i = 1, klon Z1 = t_seri(i, itroprep(i) + 1) Z2 = t_seri(i, itroprep(i)) fac = (Z1 - Z2) / alog(pplay(i, itroprep(i) + 1) / pplay(i, itroprep(i))) B = Z2 - fac * alog(pplay(i, itroprep(i))) ttrop(i) = fac * alog(ptrop(i)) + B Z1 = 1.e-3 * (pphi(i, itroprep(i) + 1) + pphis(i)) / gravit Z2 = 1.e-3 * (pphi(i, itroprep(i)) + pphis(i)) / gravit fac = (Z1 - Z2) / alog(pplay(i, itroprep(i) + 1) / pplay(i, itroprep(i))) B = Z2 - fac * alog(pplay(i, itroprep(i))) ztrop(i) = fac * alog(ptrop(i)) + B ENDDO END IF ELSE !--- ro3i = elapsed days number since current year 1st january, 0h ro3i = days_elapsed + jh_cur - jh_1jan !--- scaling for old style files (360 records) IF(SIZE(time_climoz)==360.AND..NOT.ok_daily_climoz) ro3i = ro3i * 360. / year_len IF(adjust_tropopause) THEN CALL regr_pr_time_av(ncid_climoz, vars_climoz(1:read_climoz), & ro3i, 'C', press_cen_climoz, pplay, wo, paprs(:, 1), & time_climoz, longitude_deg, latitude_deg, & dyn_tropopause(t_seri, ztsol, paprs, pplay, rot)) ELSE CALL regr_pr_time_av(ncid_climoz, vars_climoz(1:read_climoz), & ro3i, 'C', press_cen_climoz, pplay, wo, paprs(:, 1), & time_climoz) ENDIF ! Convert from mole fraction of ozone to column density of ozone in a ! cell, in kDU: FORALL (l = 1:read_climoz) wo(:, :, l) = wo(:, :, l) * rmo3 / rmd & * zmasse / dobson_u / 1e3 ! (By regridding ozone values for LMDZ only once a day, we ! have already neglected the variation of pressure in one ! day. So do not recompute "wo" at each time step even if ! "zmasse" changes a little.) ENDIF ENDIF !-- Needed for LSCP - condensation and ice supersaturation IF (ok_ice_supersat) THEN DO k = 1, klev DO i = 1, klon IF ((q_seri(i, k) + ql_seri(i, k) + qs_seri(i, k)) > 0.) THEN ratio_qi_qtot(i, k) = qs_seri(i, k) / (q_seri(i, k) + ql_seri(i, k) + qs_seri(i, k)) rvc_seri(i, k) = rvc_seri(i, k) * q_seri(i, k) / (q_seri(i, k) + ql_seri(i, k) + qs_seri(i, k)) ELSE ratio_qi_qtot(i, k) = 0. rvc_seri(i, k) = 0. ENDIF ENDDO ENDDO ENDIF ! Re-evaporer l'eau liquide nuageuse CALL reevap (klon, klev, iflag_ice_thermo, t_seri, q_seri, ql_seri, qs_seri, & d_t_eva, d_q_eva, d_ql_eva, d_qi_eva) CALL add_phys_tend & (du0, dv0, d_t_eva, d_q_eva, d_ql_eva, d_qi_eva, dqbs0, paprs, & 'eva', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('eva', itap) !========================================================================= ! Calculs de l'orbite. ! Necessaires pour le rayonnement et la surface (calcul de l'albedo). ! doit donc etre plac\'e avant radlwsw et pbl_surface ! !! jyg 17 Sep 2010 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL ymds2ju(year_cur, mth_eq, day_eq, 0., jD_eq) day_since_equinox = (jD_cur + jH_cur) - jD_eq ! choix entre calcul de la longitude solaire vraie ou valeur fixee a ! solarlong0 IF (solarlong0<-999.) THEN IF (new_orbit) THEN ! calcul selon la routine utilisee pour les planetes CALL solarlong(day_since_equinox, zlongi, dist) ELSE ! calcul selon la routine utilisee pour l'AR4 CALL orbite(REAL(days_elapsed + 1), zlongi, dist) ENDIF ELSE zlongi = solarlong0 ! longitude solaire vraie dist = 1. ! distance au soleil / moyenne ENDIF IF (prt_level>=1) WRITE(lunout, *)'Longitude solaire ', zlongi, solarlong0, dist ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Calcul de l'ensoleillement : ! ============================ ! Pour une solarlong0=1000., on calcule un ensoleillement moyen sur ! l'annee a partir d'une formule analytique. ! Cet ensoleillement est sym\'etrique autour de l'\'equateur et ! non nul aux poles. IF (abs(solarlong0 - 1000.)<1.e-4) THEN CALL zenang_an(iflag_cycle_diurne>=1, jH_cur, & latitude_deg, longitude_deg, rmu0, fract) swradcorr(:) = 1.0 JrNt(:) = 1.0 zrmu0(:) = rmu0(:) ELSE ! recode par Olivier Boucher en sept 2015 SELECT CASE (iflag_cycle_diurne) CASE(0) ! Sans cycle diurne CALL angle(zlongi, latitude_deg, fract, rmu0) swradcorr = 1.0 JrNt = 1.0 zrmu0 = rmu0 CASE(1) ! Avec cycle diurne sans application des poids ! bit comparable a l ancienne formulation cycle_diurne=true ! on integre entre gmtime et gmtime+radpas zdtime = phys_tstep * REAL(radpas) ! pas de temps du rayonnement (s) CALL zenang(zlongi, jH_cur, 0.0, zdtime, & latitude_deg, longitude_deg, rmu0, fract) zrmu0 = rmu0 swradcorr = 1.0 ! Calcul du flag jour-nuit JrNt = 0.0 WHERE (fract>0.0) JrNt = 1.0 CASE(2) ! Avec cycle diurne sans application des poids ! On integre entre gmtime-pdtphys et gmtime+pdtphys*(radpas-1) ! Comme cette routine est appele a tous les pas de temps de ! la physique meme si le rayonnement n'est pas appele je ! remonte en arriere les radpas-1 pas de temps ! suivant. Petite ruse avec MOD pour prendre en compte le ! premier pas de temps de la physique pendant lequel ! itaprad=0 zdtime1 = phys_tstep * REAL(-MOD(itaprad, radpas) - 1) zdtime2 = phys_tstep * REAL(radpas - MOD(itaprad, radpas) - 1) CALL zenang(zlongi, jH_cur, zdtime1, zdtime2, & latitude_deg, longitude_deg, rmu0, fract) ! Calcul des poids zdtime1 = -phys_tstep !--on corrige le rayonnement pour representer le zdtime2 = 0.0 !--pas de temps de la physique qui se termine CALL zenang(zlongi, jH_cur, zdtime1, zdtime2, & latitude_deg, longitude_deg, zrmu0, zfract) swradcorr = 0.0 WHERE (rmu0>=1.e-10 .OR. fract>=1.e-10) & swradcorr = zfract / fract * zrmu0 / rmu0 ! Calcul du flag jour-nuit JrNt = 0.0 WHERE (zfract>0.0) JrNt = 1.0 END SELECT ENDIF sza_o = ACOS (rmu0) * 180. / pi IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ! Appel au pbl_surface : Planetary Boudary Layer et Surface ! Cela implique tous les interactions des sous-surfaces et la ! partie diffusion turbulent du couche limit. ! Certains varibales de sorties de pbl_surface sont utiliser que pour ! ecriture des fihiers hist_XXXX.nc, ces sont : ! qsol, zq2m, s_pblh, s_lcl, ! s_capCL, s_oliqCL, s_cteiCL,s_pblT, ! s_therm, s_trmb1, s_trmb2, s_trmb3, ! zu10m, zv10m, fder, ! zxqsurf, delta_qsurf, ! rh2m, zxfluxu, zxfluxv, ! frugs, agesno, fsollw, fsolsw, ! d_ts, fevap, fluxlat, t2m, ! wfbils, fluxt, fluxu, fluxv, ! Certains ne sont pas utiliser du tout : ! dsens, devap, zxsnow, zxfluxt, zxfluxq, q2m, fluxq ! Calcul de l'humidite de saturation au niveau du sol ! Tests Fredho, instensibilite au pas de temps ------------------------------- ! A detruire en 2024 une fois les tests documentes et les choix faits ! ! Conservation des variables avant l'appel à l a diffusion pour les tehrmic ! IF (iflag_thermals_tenv / 10 == 1) then ! DO k = 1, klev ! DO i = 1, klon ! t_env(i, k) = t_seri(i, k) ! q_env(i, k) = q_seri(i, k) ! enddo ! enddo ! ELSE IF (iflag_thermals_tenv / 10 == 2) then ! DO k = 1, klev ! DO i = 1, klon ! t_env(i, k) = t_seri(i, k) ! enddo ! enddo ! endif ! ! Tests Fredho, instensibilite au pas de temps ------------------------------- IF (iflag_pbl/=0) THEN !jyg+nrlmd< !!jyg IF (prt_level .ge. 2 .AND. mod(iflag_pbl_split,2) .EQ. 1) THEN IF (prt_level >= 2 .AND. mod(iflag_pbl_split, 10) >= 1) THEN PRINT *, 'debut du splitting de la PBL, wake_s = ', wake_s(:) PRINT *, 'debut du splitting de la PBL, wake_deltat = ', wake_deltat(:, 1) PRINT *, 'debut du splitting de la PBL, wake_deltaq = ', wake_deltaq(:, 1) ENDIF ! !! !>jyg+nrlmd !-------gustiness calculation-------! !ym : Warning gustiness non inialized for iflag_gusts=2 & iflag_gusts=3 gustiness = 0 !ym missing init IF (iflag_gusts==0) THEN gustiness(1:klon) = 0 ELSE IF (iflag_gusts==1) THEN gustiness(1:klon) = f_gust_bl * ale_bl(1:klon) + f_gust_wk * ale_wake(1:klon) ELSE IF (iflag_gusts==2) THEN gustiness(1:klon) = f_gust_bl * ale_bl_stat(1:klon) + f_gust_wk * ale_wake(1:klon) !!!! modif olivier torres ELSE IF (iflag_gusts==3) THEN w_et = wstar(1, 3) jlr_g_s = (0.65 * w_et)**2 pr_et = rain_con * 8640 jlr_g_c = (((19.8 * (pr_et(1:klon)**2)) / (1.5 + pr_et(1:klon) + pr_et(1:klon)**2))**(0.4))**2 gustiness(1:klon) = jlr_g_c + jlr_g_s !! WRITE(*,*) "rain ",pr_et !! WRITE(*,*) "jlr_g_c",jlr_g_c !! WRITE(*,*) "wstar",wstar(1,3) !! WRITE(*,*) "jlr_g_s",jlr_g_s ! ELSE IF (iflag_gusts==2) THEN ! do i = 1, klon ! gustiness(i)=f_gust_bl*ale_bl(i)+sigma_wk(i)*f_gust_wk& ! *ale_wake(i) !! need to make sigma_wk accessible here ! enddo ! ELSE IF (iflag_gusts==3) THEN ! do i = 1, klon ! gustiness(i)=f_gust_bl*alp_bl(i)+f_gust_wk*alp_wake(i) ! enddo ENDIF CALL pbl_surface(& phys_tstep, date0, itap, days_elapsed + 1, & debut, lafin, & longitude_deg, latitude_deg, rugoro, zrmu0, & sollwdown, cldt, & rain_fall, snow_fall, bs_fall, solsw, solswfdiff, sollw, & gustiness, & t_seri, q_seri, qbs_seri, u_seri, v_seri, & !nrlmd+jyg< wake_deltat, wake_deltaq, wake_cstar, wake_s, & !>nrlmd+jyg pplay, paprs, pctsrf, & ftsol, SFRWL, falb_dir, falb_dif, ustar, u10m, v10m, wstar, & !albedo SB <<< cdragh, cdragm, u1, v1, & beta_aridity, & !albedo SB >>> ! albsol1, albsol2, sens, evap, & albsol_dir, albsol_dif, sens, evap, snowerosion, & !albedo SB <<< albsol3_lic, runoff, snowhgt, qsnow, to_ice, sissnow, & zxtsol, zxfluxlat, zt2m, qsat2m, zn2mout, & d_t_vdf, d_q_vdf, d_qbs_vdf, d_u_vdf, d_v_vdf, d_t_diss, & !nrlmd< !jyg< d_t_vdf_w, d_q_vdf_w, & d_t_vdf_x, d_q_vdf_x, & sens_x, zxfluxlat_x, sens_w, zxfluxlat_w, & !>jyg delta_tsurf, wake_dens, & cdragh_x, cdragh_w, cdragm_x, cdragm_w, & kh, kh_x, kh_w, & !>nrlmd coefh(1:klon, 1:klev, 1:nbsrf + 1), coefm(1:klon, 1:klev, 1:nbsrf + 1), & slab_wfbils, & qsol, zq2m, s_pblh, s_lcl, & !jyg< s_pblh_x, s_lcl_x, s_pblh_w, s_lcl_w, & !>jyg s_capCL, s_oliqCL, s_cteiCL, s_pblT, & s_therm, s_trmb1, s_trmb2, s_trmb3, & zustar, zu10m, zv10m, fder, & zxqsurf, delta_qsurf, rh2m, zxfluxu, zxfluxv, & z0m, z0h, agesno, fsollw, fsolsw, & d_ts, fevap, fluxlat, t2m, & wfbils, wfevap, & fluxt, fluxu, fluxv, & dsens, devap, zxsnow, & zxfluxt, zxfluxq, zxfluxqbs, q2m, fluxq, fluxqbs, pbl_tke, pbl_eps, & !nrlmd+jyg< wake_delta_pbl_TKE, & !>nrlmd+jyg treedrg) !FC ! Add turbulent diffusion tendency to the wake difference variables !!jyg IF (mod(iflag_pbl_split,2) .NE. 0) THEN IF (mod(iflag_pbl_split, 10) /= 0) THEN !jyg< d_deltat_vdf(:, :) = d_t_vdf_w(:, :) - d_t_vdf_x(:, :) d_deltaq_vdf(:, :) = d_q_vdf_w(:, :) - d_q_vdf_x(:, :) CALL add_wake_tend & (d_deltat_vdf, d_deltaq_vdf, dsig0, dsig0, ddens0, ddens0, wkoccur1, 'vdf', abortphy) ELSE d_deltat_vdf(:, :) = 0. d_deltaq_vdf(:, :) = 0. !>jyg ENDIF !--------------------------------------------------------------------- ! ajout des tendances de la diffusion turbulente IF (klon_glo==1) THEN CALL add_pbl_tend & (d_u_vdf, d_v_vdf, d_t_vdf + d_t_diss, d_q_vdf, dql0, dqi0, d_qbs_vdf, paprs, & 'vdf', abortphy, flag_inhib_tend, itap) ELSE CALL add_phys_tend & (d_u_vdf, d_v_vdf, d_t_vdf + d_t_diss, d_q_vdf, dql0, dqi0, d_qbs_vdf, paprs, & 'vdf', abortphy, flag_inhib_tend, itap, 0) ENDIF CALL prt_enerbil('vdf', itap) !-------------------------------------------------------------------- IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF !albedo SB >>> albsol1 = 0. albsol2 = 0. falb1 = 0. falb2 = 0. SELECT CASE(nsw) CASE(2) albsol1 = albsol_dir(:, 1) albsol2 = albsol_dir(:, 2) falb1 = falb_dir(:, 1, :) falb2 = falb_dir(:, 2, :) CASE(4) albsol1 = albsol_dir(:, 1) albsol2 = albsol_dir(:, 2) * SFRWL(2) + albsol_dir(:, 3) * SFRWL(3) & + albsol_dir(:, 4) * SFRWL(4) albsol2 = albsol2 / (SFRWL(2) + SFRWL(3) + SFRWL(4)) falb1 = falb_dir(:, 1, :) falb2 = falb_dir(:, 2, :) * SFRWL(2) + falb_dir(:, 3, :) * SFRWL(3) & + falb_dir(:, 4, :) * SFRWL(4) falb2 = falb2 / (SFRWL(2) + SFRWL(3) + SFRWL(4)) CASE(6) albsol1 = albsol_dir(:, 1) * SFRWL(1) + albsol_dir(:, 2) * SFRWL(2) & + albsol_dir(:, 3) * SFRWL(3) albsol1 = albsol1 / (SFRWL(1) + SFRWL(2) + SFRWL(3)) albsol2 = albsol_dir(:, 4) * SFRWL(4) + albsol_dir(:, 5) * SFRWL(5) & + albsol_dir(:, 6) * SFRWL(6) albsol2 = albsol2 / (SFRWL(4) + SFRWL(5) + SFRWL(6)) falb1 = falb_dir(:, 1, :) * SFRWL(1) + falb_dir(:, 2, :) * SFRWL(2) & + falb_dir(:, 3, :) * SFRWL(3) falb1 = falb1 / (SFRWL(1) + SFRWL(2) + SFRWL(3)) falb2 = falb_dir(:, 4, :) * SFRWL(4) + falb_dir(:, 5, :) * SFRWL(5) & + falb_dir(:, 6, :) * SFRWL(6) falb2 = falb2 / (SFRWL(4) + SFRWL(5) + SFRWL(6)) END SELECt !albedo SB <<< CALL evappot(klon, nbsrf, ftsol, pplay(:, 1), cdragh, & t_seri(:, 1), q_seri(:, 1), u_seri(:, 1), v_seri(:, 1), evap_pot) ENDIF ! ================================================================== ! Blowing snow sublimation and sedimentation d_t_bsss(:, :) = 0. d_q_bsss(:, :) = 0. d_qbs_bsss(:, :) = 0. bsfl(:, :) = 0. bs_fall(:) = 0. IF (ok_bs) THEN CALL call_blowing_snow_sublim_sedim(klon, klev, phys_tstep, t_seri, q_seri, qbs_seri, pplay, paprs, & d_t_bsss, d_q_bsss, d_qbs_bsss, bsfl, bs_fall) CALL add_phys_tend & (du0, dv0, d_t_bsss, d_q_bsss, dql0, dqi0, d_qbs_bsss, paprs, & 'bsss', abortphy, flag_inhib_tend, itap, 0) ENDIF ! =================================================================== c ! Calcul de Qsat DO k = 1, klev DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN zdelta = MAX(0., SIGN(1., rtt - zx_t)) zx_qs = r2es * FOEEW(zx_t, zdelta) / pplay(i, k) zx_qs = MIN(0.5, zx_qs) zcor = 1. / (1. - retv * zx_qs) zx_qs = zx_qs * zcor ELSE !! IF (zx_t.LT.t_coup) THEN !jyg IF (zx_t=1) THEN WRITE(lunout, *) 'L qsat (g/kg) avant clouds_gno' WRITE(lunout, '(i4,f15.4)') (k, 1000. * zqsat(igout, k), k = 1, klev) ENDIF ! Appeler la convection (au choix) DO k = 1, klev DO i = 1, klon conv_q(i, k) = d_q_dyn(i, k) & + d_q_vdf(i, k) / phys_tstep conv_t(i, k) = d_t_dyn(i, k) & + d_t_vdf(i, k) / phys_tstep ENDDO ENDDO ! Calcule de vitesse verticale a partir de flux de masse verticale DO k = 1, klev DO i = 1, klon omega(i, k) = RG * flxmass_w(i, k) / cell_area(i) ENDDO ENDDO IF (prt_level>=1) WRITE(lunout, *) 'omega(igout, :) = ', & omega(igout, :) ! Appel de la convection tous les "cvpas" !!jyg IF (MOD(itapcv,cvpas).EQ.0) THEN !! PRINT *,' physiq : itapcv, cvpas, itap-1, cvpas_0 ', & !! itapcv, cvpas, itap-1, cvpas_0 IF (MOD(itapcv, cvpas)==0 .OR. MOD(itap - 1, cvpas_0)==0) THEN ! Mettre a zero des variables de sortie (pour securite) pmflxr(:, :) = 0. pmflxs(:, :) = 0. wdtrainA(:, :) = 0. wdtrainS(:, :) = 0. wdtrainM(:, :) = 0. upwd(:, :) = 0. dnwd(:, :) = 0. ep(:, :) = 0. da(:, :) = 0. mp(:, :) = 0. wght_cvfd(:, :) = 0. phi(:, :, :) = 0. phi2(:, :, :) = 0. epmlmMm(:, :, :) = 0. eplaMm(:, :) = 0. d1a(:, :) = 0. dam(:, :) = 0. elij(:, :, :) = 0. ev(:, :) = 0. qtaa(:, :) = 0. clw(:, :) = 0. sij(:, :, :) = 0. IF (iflag_con==1) THEN abort_message = 'reactiver le CALL conlmd dans physiq.F' CALL abort_physic (modname, abort_message, 1) ! CALL conlmd (phys_tstep, paprs, pplay, t_seri, q_seri, conv_q, ! . d_t_con, d_q_con, ! . rain_con, snow_con, ibas_con, itop_con) ELSE IF (iflag_con==2) THEN CALL conflx(phys_tstep, paprs, pplay, t_seri, q_seri, & conv_t, conv_q, -evap, omega, & d_t_con, d_q_con, rain_con, snow_con, & pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & kcbot, kctop, kdtop, pmflxr, pmflxs) d_u_con = 0. d_v_con = 0. WHERE (rain_con < 0.) rain_con = 0. WHERE (snow_con < 0.) snow_con = 0. DO i = 1, klon ibas_con(i) = klev + 1 - kcbot(i) itop_con(i) = klev + 1 - kctop(i) ENDDO ELSE IF (iflag_con>=3) THEN ! nb of tracers for the KE convection: ! MAF la partie traceurs est faite dans phytrac ! on met ntra=1 pour limiter les appels mais on peut ! supprimer les calculs / ftra. ntra = 1 !======================================================================= !ajout pour la parametrisation des poches froides: calcul de !t_w et t_x: si pas de poches froides, t_w=t_x=t_seri IF (iflag_wake>=1) THEN DO k = 1, klev DO i = 1, klon t_w(i, k) = t_seri(i, k) + (1 - wake_s(i)) * wake_deltat(i, k) q_w(i, k) = q_seri(i, k) + (1 - wake_s(i)) * wake_deltaq(i, k) t_x(i, k) = t_seri(i, k) - wake_s(i) * wake_deltat(i, k) q_x(i, k) = q_seri(i, k) - wake_s(i) * wake_deltaq(i, k) ENDDO ENDDO ELSE t_w(:, :) = t_seri(:, :) q_w(:, :) = q_seri(:, :) t_x(:, :) = t_seri(:, :) q_x(:, :) = q_seri(:, :) ENDIF !jyg< ! Perform dry adiabatic adjustment on wake profile ! The corresponding tendencies are added to the convective tendencies ! after the CALL to the convective scheme. IF (iflag_wake>=1) THEN IF (iflag_adjwk >= 1) THEN limbas(:) = 1 CALL ajsec(paprs, pplay, t_w, q_w, limbas, & d_t_adjwk, d_q_adjwk) DO k = 1, klev DO i = 1, klon IF (wake_s(i) > 1.e-3) THEN t_w(i, k) = t_w(i, k) + d_t_adjwk(i, k) q_w(i, k) = q_w(i, k) + d_q_adjwk(i, k) d_deltat_ajs_cv(i, k) = d_t_adjwk(i, k) d_deltaq_ajs_cv(i, k) = d_q_adjwk(i, k) ELSE d_deltat_ajs_cv(i, k) = 0. d_deltaq_ajs_cv(i, k) = 0. ENDIF ENDDO ENDDO IF (iflag_adjwk == 2 .AND. OK_bug_ajs_cv) THEN CALL add_wake_tend & (d_deltat_ajs_cv, d_deltaq_ajs_cv, dsig0, dsig0, ddens0, ddens0, wkoccur1, 'ajs_cv', abortphy) ENDIF ! (iflag_adjwk == 2 .AND. OK_bug_ajs_cv) ENDIF ! (iflag_adjwk >= 1) ENDIF ! (iflag_wake>=1) !>jyg !! PRINT *,'physiq. q_w(1,k), q_x(1,k) ', & !! (k, q_w(1,k), q_x(1,k),k=1,25) !jyg< CALL alpale(debut, itap, phys_tstep, paprs, omega, t_seri, & alp_offset, it_wape_prescr, wape_prescr, fip_prescr, & ale_bl_prescr, alp_bl_prescr, & wake_pe, wake_fip, & Ale_bl, Ale_bl_trig, Alp_bl, & Ale, Alp, Ale_wake, Alp_wake) !>jyg ! sb, oct02: ! Schema de convection modularise et vectorise: ! (driver commun aux versions 3 et 4) IF (ok_cvl) THEN ! new driver for convectL !jyg< ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Calculate the upmost level of deep convection loops: k_upper_cv ! (near 22 km) k_upper_cv = klev !izero = klon/2+1/klon !DO k = klev,1,-1 ! IF (pphi(izero,k) > 22.e4) k_upper_cv = k !ENDDO ! FH : nouveau calcul base sur un profil global sans quoi ! le modele etait sensible au decoupage de domaines DO k = klev, 1, -1 IF (-7 * log(presnivs(k) / presnivs(1)) > 25.) k_upper_cv = k ENDDO IF (prt_level >= 5) THEN Print *, 'upmost level of deep convection loops: k_upper_cv = ', & k_upper_cv ENDIF !>jyg IF (type_trac == 'repr') THEN nbtr_tmp = ntra ELSE nbtr_tmp = nbtr ENDIF !jyg iflag_con est dans clesphys !c CALL concvl (iflag_con,iflag_clos, CALL concvl (iflag_clos, & phys_tstep, paprs, pplay, k_upper_cv, t_x, q_x, & t_w, q_w, wake_s, & u_seri, v_seri, tr_seri, nbtr_tmp, & ALE, ALP, & sig1, w01, & d_t_con, d_q_con, fqcomp, d_u_con, d_v_con, d_tr, & rain_con, snow_con, ibas_con, itop_con, sigd, & ema_cbmf, plcl, plfc, wbeff, convoccur, upwd, dnwd, dnwd0, & Ma, mipsh, Vprecip, cape, cin, tvp, Tconv, iflagctrl, & pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, & ! RomP >>> !! . pmflxr,pmflxs,da,phi,mp, !! . ftd,fqd,lalim_conv,wght_th) pmflxr, pmflxs, da, phi, mp, phi2, d1a, dam, sij, qtaa, clw, elij, & ftd, fqd, lalim_conv, wght_th, & ev, ep, epmlmMm, eplaMm, & wdtrainA, wdtrainS, wdtrainM, wght_cvfd, qtc_cv, sigt_cv, detrain_cv, & tau_cld_cv, coefw_cld_cv, epmax_diag) ! RomP <<< !IM begin ! PRINT*,'physiq: cin pbase dnwd0 ftd fqd ',cin(1),pbase(1), ! .dnwd0(1,1),ftd(1,1),fqd(1,1) !IM end !IM cf. FH clwcon0 = qcondc pmfu(:, :) = upwd(:, :) + dnwd(:, :) fm_cv(:, :) = upwd(:, :) + dnwd(:, :) + dnwd0(:, :) !jyg< ! If convective tendencies are too large, then CALL convection ! every time step cvpas = cvpas_0 DO k = 1, k_upper_cv DO i = 1, klon IF (d_t_con(i, k) > 6.721 .AND. d_t_con(i, k) < 6.722 .AND.& d_q_con(i, k) > -.0002171 .AND. d_q_con(i, k) < -.0002170) THEN dtcon_multistep_max = 3. dqcon_multistep_max = 0.02 ENDIF ENDDO ENDDO DO k = 1, k_upper_cv DO i = 1, klon !! IF (abs(d_t_con(i,k)) > 0.24 .OR. & !! abs(d_q_con(i,k)) > 2.e-2) THEN IF (abs(d_t_con(i, k)) > dtcon_multistep_max .OR. & abs(d_q_con(i, k)) > dqcon_multistep_max) THEN cvpas = 1 !! PRINT *,'physiq1, i,k,d_t_con(i,k),d_q_con(i,k) ', & !! i,k,d_t_con(i,k),d_q_con(i,k) ENDIF ENDDO ENDDO !!! Ligne a ne surtout pas remettre sans avoir murement reflechi (jyg) !!! CALL bcast(cvpas) !!! ------------------------------------------------------------ !>jyg DO i = 1, klon IF (iflagctrl(i)<=1) itau_con(i) = itau_con(i) + cvpas ENDDO !jyg< ! Add the tendency due to the dry adjustment of the wake profile IF (iflag_wake>=1) THEN IF (iflag_adjwk == 2) THEN DO k = 1, klev DO i = 1, klon ftd(i, k) = ftd(i, k) + wake_s(i) * d_t_adjwk(i, k) / phys_tstep fqd(i, k) = fqd(i, k) + wake_s(i) * d_q_adjwk(i, k) / phys_tstep d_t_con(i, k) = d_t_con(i, k) + wake_s(i) * d_t_adjwk(i, k) d_q_con(i, k) = d_q_con(i, k) + wake_s(i) * d_q_adjwk(i, k) ENDDO ENDDO ENDIF ! (iflag_adjwk = 2) ENDIF ! (iflag_wake>=1) !>jyg ELSE ! ok_cvl ! MAF conema3 ne contient pas les traceurs CALL conema3 (phys_tstep, & paprs, pplay, t_seri, q_seri, & u_seri, v_seri, tr_seri, ntra, & sig1, w01, & d_t_con, d_q_con, d_u_con, d_v_con, d_tr, & rain_con, snow_con, ibas_con, itop_con, & upwd, dnwd, dnwd0, bas, top, & Ma, cape, tvp, rflag, & pbase & , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr & , clwcon0) ENDIF ! ok_cvl ! Correction precip rain_con = rain_con * cvl_corr snow_con = snow_con * cvl_corr IF (.NOT. ok_gust) THEN DO i = 1, klon wd(i) = 0.0 enddo ENDIF ! =================================================================== c ! Calcul des proprietes des nuages convectifs ! calcul des proprietes des nuages convectifs clwcon0(:, :) = fact_cldcon * clwcon0(:, :) IF (iflag_cld_cv == 0) THEN CALL clouds_gno & (klon, klev, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0) ELSE CALL clouds_bigauss & (klon, klev, q_seri, zqsat, qtc_cv, sigt_cv, ptconv, ratqsc, rnebcon0) ENDIF ! =================================================================== c DO i = 1, klon itop_con(i) = min(max(itop_con(i), 1), klev) ibas_con(i) = min(max(ibas_con(i), 1), itop_con(i)) ENDDO DO i = 1, klon ! C Risi modif: pour éviter pb de dépassement d'indice dans les cas ! où i n'est pas un point convectif et donc ibas_con(i)=0 ! c'est un pb indépendant des isotopes IF (ibas_con(i) > 0) THEN ema_pcb(i) = paprs(i, ibas_con(i)) else ema_pcb(i) = 0.0 endif ENDDO DO i = 1, klon ! L'idicage de itop_con peut cacher un pb potentiel ! FH sous la dictee de JYG, CR ema_pct(i) = paprs(i, itop_con(i) + 1) IF (itop_con(i)>klev - 3) THEN IF (prt_level >= 9) THEN WRITE(lunout, *)'La convection monte trop haut ' WRITE(lunout, *)'itop_con(,', i, ',)=', itop_con(i) ENDIF ENDIF ENDDO ELSE IF (iflag_con==0) THEN WRITE(lunout, *) 'On n appelle pas la convection' clwcon0 = 0. rnebcon0 = 0. d_t_con = 0. d_q_con = 0. d_u_con = 0. d_v_con = 0. rain_con = 0. snow_con = 0. bas = 1 top = 1 ELSE WRITE(lunout, *) "iflag_con non-prevu", iflag_con CALL abort_physic("physiq", "", 1) ENDIF !--saving d_q_con * zmass for next timestep if convection is not called every timestep IF (ok_conserv_d_q_con) THEN d_q_con_zmasse(:, :) = d_q_con(:, :) * zmasse(:, :) ENDIF ! CALL homogene(paprs, q_seri, d_q_con, u_seri,v_seri, ! . d_u_con, d_v_con) !jyg Reinitialize proba_notrig and itapcv when convection has been called proba_notrig(:) = 1. itapcv = 0 ENDIF ! (MOD(itapcv,cvpas).EQ.0 .OR. MOD(itapcv,cvpas_0).EQ.0) itapcv = itapcv + 1 ! Compter les steps ou cvpas=1 IF (cvpas == 1) THEN Ncvpaseq1 = Ncvpaseq1 + 1 ENDIF IF (mod(itap, 1000) == 0) THEN PRINT *, ' physiq, nombre de steps ou cvpas = 1 : ', Ncvpaseq1 ENDIF !!!jyg Appel diagnostique a add_phys_tend pour tester la conservation de !!! l'energie dans les courants satures. !! d_t_con_sat(:,:) = d_t_con(:,:) - ftd(:,:)*dtime !! d_q_con_sat(:,:) = d_q_con(:,:) - fqd(:,:)*dtime !! dql_sat(:,:) = (wdtrainA(:,:)+wdtrainM(:,:))*dtime/zmasse(:,:) !! CALL add_phys_tend(d_u_con, d_v_con, d_t_con_sat, d_q_con_sat, dql_sat, & !! dqi0, paprs, 'convection_sat', abortphy, flag_inhib_tend,& !! itap, 1) !! CALL prt_enerbil('convection_sat',itap) !! !! !--recompute d_q_con with zmasse from new timestep IF (ok_conserv_d_q_con) THEN d_q_con(:, :) = d_q_con_zmasse(:, :) / zmasse(:, :) ENDIF CALL add_phys_tend(d_u_con, d_v_con, d_t_con, d_q_con, dql0, dqi0, dqbs0, paprs, & 'convection', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('convection', itap) !------------------------------------------------------------------------- IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF !========================================================================== !RR:Evolution de la poche froide: on ne fait pas de separation wake/env !pour la couche limite diffuse pour l instant ! nrlmd le 22/03/2011---Si on met les poches hors des thermiques ! il faut rajouter cette tendance calcul\'ee hors des poches ! froides IF (iflag_wake>=1) THEN ! Call wakes every "wkpas" step IF (MOD(itapwk, wkpas)==0) THEN DO k = 1, klev DO i = 1, klon dt_dwn(i, k) = ftd(i, k) dq_dwn(i, k) = fqd(i, k) M_dwn(i, k) = dnwd0(i, k) M_up(i, k) = upwd(i, k) dt_a(i, k) = d_t_con(i, k) / phys_tstep - ftd(i, k) dq_a(i, k) = d_q_con(i, k) / phys_tstep - fqd(i, k) ENDDO ENDDO IF (iflag_wake==2) THEN ok_wk_lsp(:) = max(sign(1., wake_s(:) - wake_s_min_lsp), 0.) DO k = 1, klev dt_dwn(:, k) = dt_dwn(:, k) + & ok_wk_lsp(:) * (d_t_eva(:, k) + d_t_lsc(:, k)) / phys_tstep dq_dwn(:, k) = dq_dwn(:, k) + & ok_wk_lsp(:) * (d_q_eva(:, k) + d_q_lsc(:, k)) / phys_tstep ENDDO ELSEIF (iflag_wake==3) THEN ok_wk_lsp(:) = max(sign(1., wake_s(:) - wake_s_min_lsp), 0.) DO k = 1, klev DO i = 1, klon IF (rneb(i, k)==0.) THEN ! On ne tient compte des tendances qu'en dehors des ! nuages (c'est-\`a-dire a priri dans une region ou ! l'eau se reevapore). dt_dwn(i, k) = dt_dwn(i, k) + & ok_wk_lsp(i) * d_t_lsc(i, k) / phys_tstep dq_dwn(i, k) = dq_dwn(i, k) + & ok_wk_lsp(i) * d_q_lsc(i, k) / phys_tstep ENDIF ENDDO ENDDO ENDIF !calcul caracteristiques de la poche froide CALL calWAKE (iflag_wake_tend, paprs, pplay, phys_tstep, & t_seri, q_seri, omega, & dt_dwn, dq_dwn, M_dwn, M_up, & dt_a, dq_a, cv_gen, & sigd, cin, & wake_deltat, wake_deltaq, wake_s, awake_s, wake_dens, awake_dens, & wake_dth, wake_h, & !! wake_pe, wake_fip, wake_gfl, & wake_pe, wake_fip_0, wake_gfl, & !! jyg d_t_wake, d_q_wake, & wake_k, t_x, q_x, & wake_omgbdth, wake_dp_omgb, & wake_dtKE, wake_dqKE, & wake_omg, wake_dp_deltomg, & wake_spread, wake_Cstar, d_deltat_wk_gw, & d_deltat_wk, d_deltaq_wk, d_s_wk, d_s_a_wk, d_dens_wk, d_dens_a_wk) !jyg Reinitialize itapwk when wakes have been called itapwk = 0 ENDIF ! (MOD(itapwk,wkpas).EQ.0) itapwk = itapwk + 1 !----------------------------------------------------------------------- ! ajout des tendances des poches froides CALL add_phys_tend(du0, dv0, d_t_wake, d_q_wake, dql0, dqi0, dqbs0, paprs, 'wake', & abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('wake', itap) !------------------------------------------------------------------------ ! Increment Wake state variables IF (iflag_wake_tend > 0.) THEN CALL add_wake_tend & (d_deltat_wk, d_deltaq_wk, d_s_wk, d_s_a_wk, d_dens_wk, d_dens_a_wk, wake_k, & 'wake', abortphy) CALL prt_enerbil('wake', itap) ENDIF ! (iflag_wake_tend .GT. 0.) IF (prt_level >= 10) THEN PRINT *, ' physiq, after calwake, wake_s: ', wake_s(:) PRINT *, ' physiq, after calwake, wake_deltat: ', wake_deltat(:, 1) PRINT *, ' physiq, after calwake, wake_deltaq: ', wake_deltaq(:, 1) ENDIF IF (iflag_alp_wk_cond > 0.) THEN CALL alpale_wk(phys_tstep, cell_area, wake_k, wake_s, wake_dens, wake_fip_0, & wake_fip) ELSE wake_fip(:) = wake_fip_0(:) ENDIF ! (iflag_alp_wk_cond .GT. 0.) ENDIF ! (iflag_wake>=1) !=================================================================== ! Convection seche (thermiques ou ajustement) !=================================================================== CALL stratocu_if(klon, klev, pctsrf, paprs, pplay, t_seri & , seuil_inversion, weak_inversion, dthmin) d_t_ajsb(:, :) = 0. d_q_ajsb(:, :) = 0. d_t_ajs(:, :) = 0. d_u_ajs(:, :) = 0. d_v_ajs(:, :) = 0. d_q_ajs(:, :) = 0. clwcon0th(:, :) = 0. ! fm_therm(:,:)=0. ! entr_therm(:,:)=0. ! detr_therm(:,:)=0. IF (prt_level>9) WRITE(lunout, *) & 'AVANT LA CONVECTION SECHE , iflag_thermals=' & , iflag_thermals, ' nsplit_thermals=', nsplit_thermals IF (iflag_thermals<0) THEN ! Rien ! ==== IF (prt_level>9) WRITE(lunout, *)'pas de convection seche' WRITE(lunout, *) 'WARNING : running without dry convection. Somme intermediate variables are not properly defined in physiq_mod.F90' ! Reprendre proprement les initialisation ci dessouds si on veut vraiment utiliser l'option (FH) fraca(:, :) = 0. fm_therm(:, :) = 0. ztv(:, :) = t_seri(:, :) zqasc(:, :) = q_seri(:, :) ztla(:, :) = 0. zthl(:, :) = 0. zpspsk(:, :) = (pplay(:, :) / 100000.)**RKAPPA ELSE ! Thermiques ! ========== IF (prt_level>9) WRITE(lunout, *)'JUSTE AVANT , iflag_thermals=' & , iflag_thermals, ' nsplit_thermals=', nsplit_thermals !cc nrlmd le 10/04/2012 DO k = 1, klev + 1 DO i = 1, klon pbl_tke_input(i, k, is_oce) = pbl_tke(i, k, is_oce) pbl_tke_input(i, k, is_ter) = pbl_tke(i, k, is_ter) pbl_tke_input(i, k, is_lic) = pbl_tke(i, k, is_lic) pbl_tke_input(i, k, is_sic) = pbl_tke(i, k, is_sic) ENDDO ENDDO !cc fin nrlmd le 10/04/2012 IF (iflag_thermals>=1) THEN ! Tests Fredho, instensibilite au pas de temps ------------------------------- ! A detruire en 2024 une fois les tests documentes et les choix faits ! IF (iflag_thermals_tenv / 10 == 0) then ! DO k = 1, klev ! DO i = 1, klon ! t_env(i, k) = t_seri(i, k) ! q_env(i, k) = q_seri(i, k) ! enddo ! enddo ! ELSE IF (iflag_thermals_tenv / 10 == 2) then ! DO k = 1, klev ! DO i = 1, klon ! q_env(i, k) = q_seri(i, k) ! enddo ! enddo ! ELSE IF (iflag_thermals_tenv / 10 == 3) then ! DO k = 1, klev ! DO i = 1, klon ! t_env(i, k) = t(i, k) ! q_env(i, k) = qx(i, k, 1) ! enddo ! enddo ! endif ! ! Tests Fredho, instensibilite au pas de temps ------------------------------ !jyg< !! IF (mod(iflag_pbl_split/2,2) .EQ. 1) THEN IF (mod(iflag_pbl_split / 10, 10) >= 1) THEN ! Appel des thermiques avec les profils exterieurs aux poches DO k = 1, klev DO i = 1, klon t_therm(i, k) = t_seri(i, k) - wake_s(i) * wake_deltat(i, k) q_therm(i, k) = q_seri(i, k) - wake_s(i) * wake_deltaq(i, k) t_env(i, k) = t_env(i, k) - wake_s(i) * wake_deltat(i, k) q_env(i, k) = q_env(i, k) - wake_s(i) * wake_deltaq(i, k) u_therm(i, k) = u_seri(i, k) v_therm(i, k) = v_seri(i, k) ENDDO ENDDO ELSE ! Appel des thermiques avec les profils moyens DO k = 1, klev DO i = 1, klon t_therm(i, k) = t_seri(i, k) q_therm(i, k) = q_seri(i, k) u_therm(i, k) = u_seri(i, k) v_therm(i, k) = v_seri(i, k) ENDDO ENDDO ENDIF !>jyg CALL calltherm(pdtphys & , pplay, paprs, pphi, weak_inversion & ! ,u_seri,v_seri,t_seri,q_seri,zqsat,debut & !jyg , u_therm, v_therm, t_therm, q_therm, t_env, q_env, zqsat, debut & !jyg , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs & , fm_therm, entr_therm, detr_therm & , zqasc, clwcon0th, lmax_th, ratqscth & , ratqsdiff, zqsatth & !on rajoute ale et alp, et les !caracteristiques de la couche alim , Ale_bl, Alp_bl, lalim_conv, wght_th, zmax0, f0, zw2, fraca & , ztv, zpspsk, ztla, zthl & !cc nrlmd le 10/04/2012 , pbl_tke_input, pctsrf, omega, cell_area & , zlcl_th, fraca0, w0, w_conv, therm_tke_max0, env_tke_max0 & , n2, s2, strig, zcong, ale_bl_stat & , therm_tke_max, env_tke_max & , alp_bl_det, alp_bl_fluct_m, alp_bl_fluct_tke & , alp_bl_conv, alp_bl_stat & !cc fin nrlmd le 10/04/2012 , zqla, ztva) !jyg< !!jyg IF (mod(iflag_pbl_split/2,2) .EQ. 1) THEN IF (mod(iflag_pbl_split / 10, 10) >= 1) THEN ! Si les thermiques ne sont presents que hors des ! poches, la tendance moyenne associ\'ee doit etre ! multipliee par la fraction surfacique qu'ils couvrent. DO k = 1, klev DO i = 1, klon d_deltat_the(i, k) = - d_t_ajs(i, k) d_deltaq_the(i, k) = - d_q_ajs(i, k) d_u_ajs(i, k) = d_u_ajs(i, k) * (1. - wake_s(i)) d_v_ajs(i, k) = d_v_ajs(i, k) * (1. - wake_s(i)) d_t_ajs(i, k) = d_t_ajs(i, k) * (1. - wake_s(i)) d_q_ajs(i, k) = d_q_ajs(i, k) * (1. - wake_s(i)) ENDDO ENDDO IF (ok_bug_split_th) THEN CALL add_wake_tend & (d_deltat_the, d_deltaq_the, dsig0, dsig0, ddens0, ddens0, wkoccur1, 'the', abortphy) ELSE CALL add_wake_tend & (d_deltat_the, d_deltaq_the, dsig0, dsig0, ddens0, ddens0, wake_k, 'the', abortphy) ENDIF CALL prt_enerbil('the', itap) ENDIF ! (mod(iflag_pbl_split/10,10) .GE. 1) CALL add_phys_tend(d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, & dql0, dqi0, dqbs0, paprs, 'thermals', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('thermals', itap) CALL alpale_th(phys_tstep, lmax_th, t_seri, cell_area, & cin, s2, n2, strig, & ale_bl_trig, ale_bl_stat, ale_bl, & alp_bl, alp_bl_stat, & proba_notrig, random_notrig, cv_gen) !>jyg ! ------------------------------------------------------------------ ! Transport de la TKE par les panaches thermiques. ! FH : 2010/02/01 IF (iflag_thermcell_tke==1) THEN CALL thermcell_dtke(klon, klev, nbsrf, pdtphys, fm_therm, entr_therm, rg, paprs, pbl_tke) endif ! ------------------------------------------------------------------- DO i = 1, klon ! zmax_th(i)=pphi(i,lmax_th(i))/rg !CR:04/05/12:correction calcul zmax zmax_th(i) = zmax0(i) ENDDO ENDIF ! Ajustement sec ! ============== ! Dans le cas o\`u on active les thermiques, on fait partir l'ajustement ! a partir du sommet des thermiques. ! Dans le cas contraire, on demarre au niveau 1. IF (iflag_thermals>=13.OR.iflag_thermals<=0) THEN IF (iflag_thermals==0) THEN IF (prt_level>9) WRITE(lunout, *)'ajsec' limbas(:) = 1 ELSE limbas(:) = lmax_th(:) ENDIF ! Attention : le CALL ajsec_convV2 n'est maintenu que momentanneement ! pour des test de convergence numerique. ! Le nouveau ajsec est a priori mieux, meme pour le cas ! iflag_thermals = 0 (l'ancienne version peut faire des tendances ! non nulles numeriquement pour des mailles non concernees. IF (iflag_thermals==0) THEN ! Calling adjustment alone (but not the thermal plume model) CALL ajsec_convV2(paprs, pplay, t_seri, q_seri & , d_t_ajsb, d_q_ajsb) ELSE IF (iflag_thermals>0) THEN ! Calling adjustment above the top of thermal plumes CALL ajsec(paprs, pplay, t_seri, q_seri, limbas & , d_t_ajsb, d_q_ajsb) ENDIF !-------------------------------------------------------------------- ! ajout des tendances de l'ajustement sec ou des thermiques CALL add_phys_tend(du0, dv0, d_t_ajsb, d_q_ajsb, dql0, dqi0, dqbs0, paprs, & 'ajsb', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('ajsb', itap) d_t_ajs(:, :) = d_t_ajs(:, :) + d_t_ajsb(:, :) d_q_ajs(:, :) = d_q_ajs(:, :) + d_q_ajsb(:, :) !--------------------------------------------------------------------- ENDIF ENDIF !=================================================================== ! Computation of ratqs, the width (normalized) of the subrid scale ! water distribution l_mix_ave(:, :) = 0. wprime_ave(:, :) = 0. DO nsrf = 1, nbsrf DO i = 1, klon l_mix_ave(i, :) = l_mix_ave(i, :) + l_mix(i, :, nsrf) * pctsrf(i, nsrf) wprime_ave(i, :) = wprime_ave(i, :) + wprime(i, :, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO CALL ratqs_main(klon, klev, nbsrf, prt_level, lunout, & iflag_ratqs, iflag_con, iflag_cld_th, pdtphys, & ratqsbas, ratqshaut, ratqsp0, ratqsdp, & pctsrf, s_pblh, zstd, & tau_ratqs, fact_cldcon, wake_s, wake_deltaq, & ptconv, ptconvth, clwcon0th, rnebcon0th, & paprs, pplay, t_seri, q_seri, & qtc_cv, sigt_cv, detrain_cv, fm_cv, fqd, fqcomp, sigd, zqsat, & omega, pbl_tke(:, :, is_ave), pbl_eps(:, :, is_ave), l_mix_ave, wprime_ave, & t2m, q2m, fm_therm, entr_therm, detr_therm, cell_area, & ratqs, ratqsc, ratqs_inter_) ! Appeler le processus de condensation a grande echelle ! et le processus de precipitation !------------------------------------------------------------------------- IF (prt_level >=10) THEN PRINT *, 'itap, ->fisrtilp ', itap ENDIF picefra(:, :) = 0. IF (ok_new_lscp) THEN !--mise à jour de flight_m et flight_h2o dans leur module !IF (ok_plane_h2o .OR. ok_plane_contrail) THEN ! CALL airplane(debut,pphis,pplay,paprs,t_seri) !ENDIF CALL lscp(klon, klev, phys_tstep, missing_val, paprs, pplay, & t_seri, q_seri, qs_ini, ptconv, ratqs, & d_t_lsc, d_q_lsc, d_ql_lsc, d_qi_lsc, rneb, rneblsvol, & pfraclr, pfracld, cldfraliq, sigma2_icefracturb, mean_icefracturb, & radocond, picefra, rain_lsc, snow_lsc, & frac_impa, frac_nucl, beta_prec_fisrt, & prfl, psfl, rhcl, & zqasc, fraca, ztv, zpspsk, ztla, zthl, iflag_cld_th, & iflag_ice_thermo, distcltop, temp_cltop, & pbl_tke(:, :, is_ave), pbl_eps(:, :, is_ave), & cell_area, & cf_seri, rvc_seri, u_seri, v_seri, & qsub, qissr, qcld, subfra, issrfra, gamma_cond, ratio_qi_qtot, & dcf_sub, dcf_con, dcf_mix, dqi_adj, dqi_sub, dqi_con, dqi_mix, & dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, qsatliq, qsatice, & Tcontr, qcontr, qcontr2, fcontrN, fcontrP, & dcf_avi, dqi_avi, dqvc_avi, flight_dist, flight_h2o, & cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv, & qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, dqrcol, dqrmelt, & dqrfreez, dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez) ELSE CALL fisrtilp(klon, klev, phys_tstep, paprs, pplay, & t_seri, q_seri, ptconv, ratqs, & d_t_lsc, d_q_lsc, d_ql_lsc, d_qi_lsc, rneb, rneblsvol, radocond, & rain_lsc, snow_lsc, & pfrac_impa, pfrac_nucl, pfrac_1nucl, & frac_impa, frac_nucl, beta_prec_fisrt, & prfl, psfl, rhcl, & zqasc, fraca, ztv, zpspsk, ztla, zthl, iflag_cld_th, & iflag_ice_thermo, & cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) ENDIF WHERE (rain_lsc < 0) rain_lsc = 0. WHERE (snow_lsc < 0) snow_lsc = 0. !+JLD ! WRITE(*,9000) 'phys lsc',"enerbil: bil_q, bil_e,",rain_lsc+snow_lsc & ! & ,((rcw-rcpd)*rain_lsc + (rcs-rcpd)*snow_lsc)*t_seri(1,1)-rlvtt*rain_lsc+rlstt*snow_lsc & ! & ,rain_lsc,snow_lsc ! WRITE(*,9000) "rcpv","rcw",rcpv,rcw,rcs,t_seri(1,1) !-JLD CALL add_phys_tend(du0, dv0, d_t_lsc, d_q_lsc, d_ql_lsc, d_qi_lsc, dqbs0, paprs, & 'lsc', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('lsc', itap) rain_num(:) = 0. DO k = 1, klev DO i = 1, klon IF (ql_seri(i, k)>oliqmax) THEN rain_num(i) = rain_num(i) + (ql_seri(i, k) - oliqmax) * zmasse(i, k) / pdtphys ql_seri(i, k) = oliqmax ENDIF ENDDO ENDDO IF (nqo >= 3) THEN DO k = 1, klev DO i = 1, klon IF (qs_seri(i, k)>oicemax) THEN rain_num(i) = rain_num(i) + (qs_seri(i, k) - oicemax) * zmasse(i, k) / pdtphys qs_seri(i, k) = oicemax ENDIF ENDDO ENDDO ENDIF !--------------------------------------------------------------------------- DO k = 1, klev DO i = 1, klon cldfra(i, k) = rneb(i, k) !CR: a quoi ca sert? Faut-il ajouter qs_seri? !EV: en effet etrange, j'ajouterais aussi qs_seri ! plus largement, je nettoierais (enleverrais) ces lignes IF (.NOT.new_oliq) radocond(i, k) = ql_seri(i, k) ENDDO ENDDO ! Option to activate the radiative effect of blowing snow (ok_rad_bs) ! makes sense only if the new large scale condensation scheme is active ! with the ok_icefra_lscp flag active as well IF (ok_bs .AND. ok_rad_bs) THEN IF (ok_new_lscp .AND. ok_icefra_lscp) THEN DO k = 1, klev DO i = 1, klon radocond(i, k) = radocond(i, k) + qbs_seri(i, k) picefra(i, k) = (radocond(i, k) * picefra(i, k) + qbs_seri(i, k)) / (radocond(i, k)) qbsfra = min(qbs_seri(i, k) / qbst_bs, 1.0) cldfra(i, k) = max(cldfra(i, k), qbsfra) ENDDO ENDDO ELSE WRITE(lunout, *)"PAY ATTENTION, you try to activate the radiative effect of blowing snow" WRITE(lunout, *)"with ok_new_lscp=false and/or ok_icefra_lscp=false" abort_message = 'inconsistency in cloud phase for blowing snow' CALL abort_physic(modname, abort_message, 1) ENDIF ENDIF IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF !------------------------------------------------------------------- ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT !------------------------------------------------------------------- ! 1. NUAGES CONVECTIFS !IM cf FH ! IF (iflag_cld_th.EQ.-1) THEN ! seulement pour Tiedtke IF (iflag_cld_th<=-1) THEN ! seulement pour Tiedtke snow_tiedtke = 0. ! PRINT*,'avant calcul de la pseudo precip ' ! PRINT*,'iflag_cld_th',iflag_cld_th IF (iflag_cld_th==-1) THEN rain_tiedtke = rain_con ELSE ! PRINT*,'calcul de la pseudo precip ' rain_tiedtke = 0. ! PRINT*,'calcul de la pseudo precip 0' DO k = 1, klev DO i = 1, klon IF (d_q_con(i, k)<0.) THEN rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / pdtphys & * (paprs(i, k) - paprs(i, k + 1)) / rg ENDIF ENDDO ENDDO ENDIF ! CALL dump2d(iim,jjm,rain_tiedtke(2:klon-1),'PSEUDO PRECIP ') ! Nuages diagnostiques pour Tiedtke CALL diagcld1(paprs, pplay, & !IM cf FH. rain_con,snow_con,ibas_con,itop_con, rain_tiedtke, snow_tiedtke, ibas_con, itop_con, & diafra, dialiq) DO k = 1, klev DO i = 1, klon IF (diafra(i, k)>cldfra(i, k)) THEN radocond(i, k) = dialiq(i, k) cldfra(i, k) = diafra(i, k) ENDIF ENDDO ENDDO ELSE IF (iflag_cld_th>=3) THEN ! On prend pour les nuages convectifs le max du calcul de la ! convection et du calcul du pas de temps precedent diminue d'un facteur ! facttemps facteur = pdtphys * facttemps DO k = 1, klev DO i = 1, klon rnebcon(i, k) = rnebcon(i, k) * facteur IF (rnebcon0(i, k) * clwcon0(i, k)>rnebcon(i, k) * clwcon(i, k)) THEN rnebcon(i, k) = rnebcon0(i, k) clwcon(i, k) = clwcon0(i, k) ENDIF ENDDO ENDDO ! On prend la somme des fractions nuageuses et des contenus en eau IF (iflag_cld_th>=5) THEN DO k = 1, klev ptconvth(:, k) = fm_therm(:, k + 1)>0. ENDDO IF (iflag_coupl==4) THEN ! Dans le cas iflag_coupl==4, on prend la somme des convertures ! convectives et lsc dans la partie des thermiques ! Le controle par iflag_coupl est peut etre provisoire. DO k = 1, klev DO i = 1, klon IF (ptconv(i, k).AND.ptconvth(i, k)) THEN radocond(i, k) = radocond(i, k) + rnebcon(i, k) * clwcon(i, k) cldfra(i, k) = min(cldfra(i, k) + rnebcon(i, k), 1.) ELSE IF (ptconv(i, k)) THEN cldfra(i, k) = rnebcon(i, k) radocond(i, k) = rnebcon(i, k) * clwcon(i, k) ENDIF ENDDO ENDDO ELSE IF (iflag_coupl==5) THEN DO k = 1, klev DO i = 1, klon cldfra(i, k) = min(cldfra(i, k) + rnebcon(i, k), 1.) radocond(i, k) = radocond(i, k) + rnebcon(i, k) * clwcon(i, k) ENDDO ENDDO ELSE ! Si on est sur un point touche par la convection ! profonde et pas par les thermiques, on prend la ! couverture nuageuse et l'eau nuageuse de la convection ! profonde. !IM/FH: 2011/02/23 ! definition des points sur lesquels ls thermiques sont actifs DO k = 1, klev DO i = 1, klon IF (ptconv(i, k).AND. .NOT.ptconvth(i, k)) THEN cldfra(i, k) = rnebcon(i, k) radocond(i, k) = rnebcon(i, k) * clwcon(i, k) ENDIF ENDDO ENDDO ENDIF ELSE ! Ancienne version cldfra(:, :) = min(max(cldfra(:, :), rnebcon(:, :)), 1.) radocond(:, :) = radocond(:, :) + rnebcon(:, :) * clwcon(:, :) ENDIF ENDIF ! plulsc(:)=0. ! do k=1,klev,-1 ! do i=1,klon ! zzz=prfl(:,k)+psfl(:,k) ! if (.NOT.ptconvth.zzz.gt.0.) ! enddo prfl, psfl, ! enddo ! 2. NUAGES STARTIFORMES IF (ok_stratus) THEN CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq) DO k = 1, klev DO i = 1, klon IF (diafra(i, k)>cldfra(i, k)) THEN radocond(i, k) = dialiq(i, k) cldfra(i, k) = diafra(i, k) ENDIF ENDDO ENDDO ENDIF ! Precipitation totale DO i = 1, klon rain_fall(i) = rain_con(i) + rain_lsc(i) snow_fall(i) = snow_con(i) + snow_lsc(i) ENDDO ! Calculer l'humidite relative pour diagnostique DO k = 1, klev DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN !! if (iflag_ice_thermo.EQ.0) then !jyg zdelta = MAX(0., SIGN(1., rtt - zx_t)) !! else !jyg !! zdelta = MAX(0.,SIGN(1.,t_glace_min-zx_t)) !jyg !! endif !jyg zx_qs = r2es * FOEEW(zx_t, zdelta) / pplay(i, k) zx_qs = MIN(0.5, zx_qs) zcor = 1. / (1. - retv * zx_qs) zx_qs = zx_qs * zcor ELSE !! IF (zx_t.LT.t_coup) THEN !jyg IF (zx_t 0) THEN zx_rhl(i, k) = q_seri(i, k) / (qsatl(zx_t) / pplay(i, k)) zx_rhi(i, k) = q_seri(i, k) / (qsats(zx_t) / pplay(i, k)) ENDIF zqsat(i, k) = zx_qs ENDDO ENDDO !IM Calcul temp.potentielle a 2m (tpot) et temp. potentielle ! equivalente a 2m (tpote) pour diagnostique DO i = 1, klon tpot(i) = zt2m(i) * (100000. / paprs(i, 1))**RKAPPA IF (thermcep) THEN IF(zt2m(i) 0) THEN IF (iflag_rrtm == 0) THEN !--old radiation IF (.NOT. aerosol_couple) THEN CALL readaerosol_optic(& debut, flag_aerosol, itap, jD_cur - jD_ref, & pdtphys, pplay, paprs, t_seri, rhcl, presnivs, & mass_solu_aero, mass_solu_aero_pi, & tau_aero, piz_aero, cg_aero, & tausum_aero, tau3d_aero) ENDIF ELSE IF (iflag_rrtm ==1) THEN ! RRTM radiation IF (aerosol_couple .AND. config_inca == 'aero') THEN abort_message = 'config_inca=aero et rrtm=1 impossible' CALL abort_physic(modname, abort_message, 1) ELSE #ifdef CPP_RRTM IF (NSW.EQ.6) THEN !--new aerosol properties SW and LW IF (CPPKEY_DUST) THEN !--SPL aerosol model CALL splaerosol_optic_rrtm( ok_alw, pplay, paprs, t_seri, rhcl, & tr_seri, mass_solu_aero, mass_solu_aero_pi, & tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, & tausum_aero, tau3d_aero) ELSE !--climatologies or INCA aerosols CALL readaerosol_optic_rrtm( debut, aerosol_couple, ok_alw, ok_volcan, & flag_aerosol, flag_bc_internal_mixture, itap, jD_cur-jD_ref, & pdtphys, pplay, paprs, t_seri, rhcl, presnivs, & tr_seri, mass_solu_aero, mass_solu_aero_pi, & tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, & tausum_aero, drytausum_aero, tau3d_aero) END IF IF (flag_aerosol .EQ. 7) THEN CALL MACv2SP(pphis,pplay,paprs,longitude_deg,latitude_deg, & tau_aero_sw_rrtm,piz_aero_sw_rrtm,cg_aero_sw_rrtm) ENDIF ELSE IF (NSW.EQ.2) THEN !--for now we use the old aerosol properties CALL readaerosol_optic( & debut, flag_aerosol, itap, jD_cur-jD_ref, & pdtphys, pplay, paprs, t_seri, rhcl, presnivs, & mass_solu_aero, mass_solu_aero_pi, & tau_aero, piz_aero, cg_aero, & tausum_aero, tau3d_aero) !--natural aerosols tau_aero_sw_rrtm(:,:,1,:)=tau_aero(:,:,3,:) piz_aero_sw_rrtm(:,:,1,:)=piz_aero(:,:,3,:) cg_aero_sw_rrtm (:,:,1,:)=cg_aero (:,:,3,:) !--all aerosols tau_aero_sw_rrtm(:,:,2,:)=tau_aero(:,:,2,:) piz_aero_sw_rrtm(:,:,2,:)=piz_aero(:,:,2,:) cg_aero_sw_rrtm (:,:,2,:)=cg_aero (:,:,2,:) !--no LW optics tau_aero_lw_rrtm(:,:,:,:) = 1.e-15 ELSE abort_message='Only NSW=2 or 6 are possible with ' & // 'aerosols and iflag_rrtm=1' CALL abort_physic(modname,abort_message,1) ENDIF #else abort_message = 'You should compile with -rrtm if running ' & // 'with iflag_rrtm=1' CALL abort_physic(modname, abort_message, 1) #endif ENDIF ELSE IF (iflag_rrtm ==2) THEN ! ecrad RADIATION #ifdef CPP_ECRAD !--climatologies or INCA aerosols CALL readaerosol_optic_ecrad( debut, aerosol_couple, ok_alw, ok_volcan, & flag_aerosol, flag_bc_internal_mixture, itap, jD_cur-jD_ref, & pdtphys, pplay, paprs, t_seri, rhcl, presnivs, & tr_seri, mass_solu_aero, mass_solu_aero_pi, m_allaer) #else abort_message = 'You should compile with -rad ecrad if running with iflag_rrtm=2' CALL abort_physic(modname, abort_message, 1) #endif ENDIF ELSE !--flag_aerosol = 0 tausum_aero(:, :, :) = 0. drytausum_aero(:, :) = 0. mass_solu_aero(:, :) = 0. mass_solu_aero_pi(:, :) = 0. IF (iflag_rrtm == 0) THEN !--old radiation tau_aero(:, :, :, :) = 1.e-15 piz_aero(:, :, :, :) = 1. cg_aero(:, :, :, :) = 0. ELSE tau_aero_sw_rrtm(:, :, :, :) = 1.e-15 tau_aero_lw_rrtm(:, :, :, :) = 1.e-15 piz_aero_sw_rrtm(:, :, :, :) = 1.0 cg_aero_sw_rrtm(:, :, :, :) = 0.0 ENDIF ENDIF !--WMO criterion to determine tropopause CALL stratosphere_mask(missing_val, pphis, t_seri, pplay, latitude_deg) !--STRAT AEROSOL !--updates tausum_aero,tau_aero,piz_aero,cg_aero IF (flag_aerosol_strat>0) THEN IF (prt_level >=10) THEN PRINT *, 'appel a readaerosolstrat', mth_cur ENDIF IF (iflag_rrtm==0) THEN IF (flag_aerosol_strat==1) THEN CALL readaerosolstrato(debut) ELSE abort_message = 'flag_aerosol_strat must equal 1 for rrtm=0' CALL abort_physic(modname, abort_message, 1) ENDIF ELSE #ifdef CPP_RRTM IF (.NOT. CPPKEY_STRATAER) THEN !--prescribed strat aerosols !--only in the case of non-interactive strat aerosols IF (flag_aerosol_strat.EQ.1) THEN CALL readaerosolstrato1_rrtm(debut) ELSEIF (flag_aerosol_strat.EQ.2) THEN CALL readaerosolstrato2_rrtm(debut, ok_volcan) ELSE abort_message='flag_aerosol_strat must equal 1 or 2 for rrtm=1' CALL abort_physic(modname,abort_message,1) ENDIF END IF #else abort_message = 'You should compile with -rrtm if running ' & // 'with iflag_rrtm=1' CALL abort_physic(modname, abort_message, 1) #endif ENDIF ELSE tausum_aero(:, :, id_STRAT_phy) = 0. ENDIF #ifdef CPP_RRTM IF (CPPKEY_STRATAER) THEN !--compute stratospheric mask CALL stratosphere_mask(missing_val, pphis, t_seri, pplay, latitude_deg) !--interactive strat aerosols CALL calcaerosolstrato_rrtm(pplay,t_seri,paprs,debut) END IF #endif !--fin STRAT AEROSOL ! Calculer les parametres optiques des nuages et quelques ! parametres pour diagnostiques: IF (aerosol_couple.AND.config_inca=='aero') THEN mass_solu_aero(:, :) = ccm(:, :, 1) mass_solu_aero_pi(:, :) = ccm(:, :, 2) ENDIF !Rajout appel a interface calcul proprietes optiques des nuages CALL call_cloud_optics_prop(klon, klev, ok_newmicro, & paprs, pplay, t_seri, radocond, picefra, cldfra, & cldtau, cldemi, cldh, cldl, cldm, cldt, cldq, & flwp, fiwp, flwc, fiwc, ok_aie, & mass_solu_aero, mass_solu_aero_pi, & cldtaupi, distcltop, temp_cltop, re, fl, ref_liq, ref_ice, & ref_liq_pi, ref_ice_pi, scdnc, cldncl, reffclwtop, lcc, reffclws, & reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & zfice, dNovrN, ptconv, rnebcon, clwcon) !IM betaCRF cldtaurad = cldtau cldtaupirad = cldtaupi cldemirad = cldemi cldfrarad = cldfra IF (lon1_beta==-180..AND.lon2_beta==180..AND. & lat1_beta==90..AND.lat2_beta==-90.) THEN ! global !IM 251017 begin ! PRINT*,'physiq betaCRF global zdtime=',zdtime !IM 251017 end DO k = 1, klev DO i = 1, klon IF (pplay(i, k)>=pfree) THEN beta(i, k) = beta_pbl ELSE beta(i, k) = beta_free ENDIF IF (mskocean_beta) THEN beta(i, k) = beta(i, k) * pctsrf(i, is_oce) ENDIF cldtaurad(i, k) = cldtau(i, k) * beta(i, k) cldtaupirad(i, k) = cldtaupi(i, k) * beta(i, k) cldemirad(i, k) = cldemi(i, k) * beta(i, k) cldfrarad(i, k) = cldfra(i, k) * beta(i, k) ENDDO ENDDO ELSE ! regional DO k = 1, klev DO i = 1, klon IF (longitude_deg(i)>=lon1_beta.AND. & longitude_deg(i)<=lon2_beta.AND. & latitude_deg(i)<=lat1_beta.AND. & latitude_deg(i)>=lat2_beta) THEN IF (pplay(i, k)>=pfree) THEN beta(i, k) = beta_pbl ELSE beta(i, k) = beta_free ENDIF IF (mskocean_beta) THEN beta(i, k) = beta(i, k) * pctsrf(i, is_oce) ENDIF cldtaurad(i, k) = cldtau(i, k) * beta(i, k) cldtaupirad(i, k) = cldtaupi(i, k) * beta(i, k) cldemirad(i, k) = cldemi(i, k) * beta(i, k) cldfrarad(i, k) = cldfra(i, k) * beta(i, k) ENDIF ENDDO ENDDO ENDIF !lecture de la chlorophylle pour le nouvel albedo de Sunghye Baek IF (ok_chlorophyll) THEN PRINT*, "-- reading chlorophyll" CALL readchlorophyll(debut) ENDIF !--if ok_suntime_rrtm we use ancillay data for RSUN !--previous values are therefore overwritten !--this is needed for CMIP6 runs !--and only possible for new radiation scheme IF (iflag_rrtm==1.AND.ok_suntime_rrtm) THEN #ifdef CPP_RRTM CALL read_rsun_rrtm(debut) #endif ENDIF IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF !sonia : If Iflag_radia >=2, pertubation of some variables !input to radiation (DICE) IF (iflag_radia >= 2) THEN zsav_tsol (:) = zxtsol(:) CALL perturb_radlwsw(zxtsol, iflag_radia) ENDIF IF (aerosol_couple.AND.config_inca=='aero') THEN CALL radlwsw_inca & (chemistry_couple, kdlon, kflev, dist, rmu0, fract, solaire, & paprs, pplay, zxtsol, albsol1, albsol2, t_seri, q_seri, & size(wo, 3), wo, & cldfrarad, cldemirad, cldtaurad, & heat, heat0, cool, cool0, albpla, & topsw, toplw, solsw, sollw, & sollwdown, & topsw0, toplw0, solsw0, sollw0, & lwdn0, lwdn, lwup0, lwup, & swdn0, swdn, swup0, swup, & ok_ade, ok_aie, & tau_aero, piz_aero, cg_aero, & topswad_aero, solswad_aero, & topswad0_aero, solswad0_aero, & topsw_aero, topsw0_aero, & solsw_aero, solsw0_aero, & cldtaupirad, & topswai_aero, solswai_aero) ELSE !IM calcul radiatif pour le cas actuel RCO2 = RCO2_act RCH4 = RCH4_act RN2O = RN2O_act RCFC11 = RCFC11_act RCFC12 = RCFC12_act !--interactive CO2 in ppm from carbon cycle IF (carbon_cycle_rad) RCO2 = RCO2_glo IF (prt_level >=10) THEN PRINT *, ' ->radlwsw, number 1 ' ENDIF ! AI namelist utilise pour l appel principal de radlwsw (ecrad) namelist_ecrad_file = 'namelist_ecrad' CALL radlwsw & (debut, dist, rmu0, fract, & !albedo SB >>> ! paprs, pplay,zxtsol,albsol1, albsol2, & paprs, pplay, zxtsol, SFRWL, albsol_dir, albsol_dif, & !albedo SB <<< t_seri, q_seri, wo, & cldfrarad, cldemirad, cldtaurad, & ok_ade.OR.flag_aerosol_strat>0, ok_aie, ok_volcan, flag_volc_surfstrat, & flag_aerosol, flag_aerosol_strat, flag_aer_feedback, & tau_aero, piz_aero, cg_aero, & tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, & ! Rajoute par OB pour RRTM tau_aero_lw_rrtm, & cldtaupirad, m_allaer, & ! zqsat, flwcrad, fiwcrad, & zqsat, flwc, fiwc, & ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, & namelist_ecrad_file, & heat, heat0, cool, cool0, albpla, & heat_volc, cool_volc, & topsw, toplw, solsw, solswfdiff, sollw, & sollwdown, & topsw0, toplw0, solsw0, sollw0, & lwdnc0, lwdn0, lwdn, lwupc0, lwup0, lwup, & swdnc0, swdn0, swdn, swupc0, swup0, swup, & topswad_aero, solswad_aero, & topswai_aero, solswai_aero, & topswad0_aero, solswad0_aero, & topsw_aero, topsw0_aero, & solsw_aero, solsw0_aero, & topswcf_aero, solswcf_aero, & !-C. Kleinschmitt for LW diagnostics toplwad_aero, sollwad_aero, & toplwai_aero, sollwai_aero, & toplwad0_aero, sollwad0_aero, & !-end ZLWFT0_i, ZFLDN0, ZFLUP0, & ZSWFT0_i, ZFSDN0, ZFSUP0, & cloud_cover_sw) !lwoff=y, betalwoff=1. : offset LW CRE for radiation code and other !schemes toplw = toplw + betalwoff * (toplw0 - toplw) sollw = sollw + betalwoff * (sollw0 - sollw) lwdn = lwdn + betalwoff * (lwdn0 - lwdn) lwup = lwup + betalwoff * (lwup0 - lwup) sollwdown(:) = sollwdown(:) + betalwoff * (-1. * ZFLDN0(:, 1) - & sollwdown(:)) cool = cool + betalwoff * (cool0 - cool) IF (.NOT. using_xios) THEN !IM 2eme calcul radiatif pour le cas perturbe ou au moins un !IM des taux doit etre different du taux actuel !IM Par defaut on a les taux perturbes egaux aux taux actuels IF (RCO2_per/=RCO2_act.OR. & RCH4_per/=RCH4_act.OR. & RN2O_per/=RN2O_act.OR. & RCFC11_per/=RCFC11_act.OR. & RCFC12_per/=RCFC12_act) ok_4xCO2atm = .TRUE. ENDIF IF (ok_4xCO2atm) THEN RCO2 = RCO2_per RCH4 = RCH4_per RN2O = RN2O_per RCFC11 = RCFC11_per RCFC12 = RCFC12_per IF (prt_level >=10) THEN PRINT *, ' ->radlwsw, number 2 ' ENDIF namelist_ecrad_file = 'namelist_ecrad' CALL radlwsw & (debut, dist, rmu0, fract, & !albedo SB >>> ! paprs, pplay,zxtsol,albsol1, albsol2, & paprs, pplay, zxtsol, SFRWL, albsol_dir, albsol_dif, & !albedo SB <<< t_seri, q_seri, wo, & cldfrarad, cldemirad, cldtaurad, & ok_ade.OR.flag_aerosol_strat>0, ok_aie, ok_volcan, flag_volc_surfstrat, & flag_aerosol, flag_aerosol_strat, flag_aer_feedback, & tau_aero, piz_aero, cg_aero, & tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, & ! Rajoute par OB pour RRTM tau_aero_lw_rrtm, & cldtaupi, m_allaer, & ! zqsat, flwcrad, fiwcrad, & zqsat, flwc, fiwc, & ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, & namelist_ecrad_file, & heatp, heat0p, coolp, cool0p, albplap, & heat_volc, cool_volc, & topswp, toplwp, solswp, solswfdiffp, sollwp, & sollwdownp, & topsw0p, toplw0p, solsw0p, sollw0p, & lwdnc0p, lwdn0p, lwdnp, lwupc0p, lwup0p, lwupp, & swdnc0p, swdn0p, swdnp, swupc0p, swup0p, swupp, & topswad_aerop, solswad_aerop, & topswai_aerop, solswai_aerop, & topswad0_aerop, solswad0_aerop, & topsw_aerop, topsw0_aerop, & solsw_aerop, solsw0_aerop, & topswcf_aerop, solswcf_aerop, & !-C. Kleinschmitt for LW diagnostics toplwad_aerop, sollwad_aerop, & toplwai_aerop, sollwai_aerop, & toplwad0_aerop, sollwad0_aerop, & !-end ZLWFT0_i, ZFLDN0, ZFLUP0, & ZSWFT0_i, ZFSDN0, ZFSUP0, & cloud_cover_sw) ENDIF !ok_4xCO2atm ! A.I aout 2023 ! Effet 3D des nuages Ecrad ! a passer : nom du ficher namelist et cles ok_3Deffect ! a declarer comme iflag_rrtm et a lire dans physiq.def #ifdef CPP_ECRAD IF (ok_3Deffect) THEN ! PRINT*,'ok_3Deffect = ',ok_3Deffect namelist_ecrad_file='namelist_ecrad_s2' CALL radlwsw & (debut, dist, rmu0, fract, & paprs, pplay,zxtsol,SFRWL,albsol_dir, albsol_dif, & t_seri,q_seri,wo, & cldfrarad, cldemirad, cldtaurad, & ok_ade.OR.flag_aerosol_strat.GT.0, ok_aie, ok_volcan, flag_volc_surfstrat, & flag_aerosol, flag_aerosol_strat, flag_aer_feedback, & tau_aero, piz_aero, cg_aero, & tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, & tau_aero_lw_rrtm, & cldtaupi, m_allaer, & zqsat, flwc, fiwc, & ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, & namelist_ecrad_file, & ! A modifier heat_s2,heat0_s2,cool_s2,cool0_s2,albpla_s2, & heat_volc,cool_volc, & topsw_s2,toplw_s2,solsw_s2,solswfdiff_s2,sollw_s2, & sollwdown_s2, & topsw0_s2,toplw0_s2,solsw0_s2,sollw0_s2, & lwdnc0_s2, lwdn0_s2, lwdn_s2, lwupc0_s2, lwup0_s2, lwup_s2, & swdnc0_s2, swdn0_s2, swdn_s2, swupc0_s2, swup0_s2, swup_s2, & topswad_aero_s2, solswad_aero_s2, & topswai_aero_s2, solswai_aero_s2, & topswad0_aero_s2, solswad0_aero_s2, & topsw_aero_s2, topsw0_aero_s2, & solsw_aero_s2, solsw0_aero_s2, & topswcf_aero_s2, solswcf_aero_s2, & !-C. Kleinschmitt for LW diagnostics toplwad_aero_s2, sollwad_aero_s2,& toplwai_aero_s2, sollwai_aero_s2, & toplwad0_aero_s2, sollwad0_aero_s2,& !-end ZLWFT0_i, ZFLDN0, ZFLUP0, & ZSWFT0_i, ZFSDN0, ZFSUP0, & cloud_cover_sw_s2) ENDIF ! ok_3Deffect #endif ENDIF ! aerosol_couple itaprad = 0 ! If Iflag_radia >=2, reset pertubed variables IF (iflag_radia >= 2) THEN zxtsol(:) = zsav_tsol (:) ENDIF ENDIF ! MOD(itaprad,radpas) itaprad = itaprad + 1 IF (iflag_radia==0) THEN IF (prt_level>=9) THEN PRINT *, '--------------------------------------------------' PRINT *, '>>>> ATTENTION rayonnement desactive pour ce cas' PRINT *, '>>>> heat et cool mis a zero ' PRINT *, '--------------------------------------------------' ENDIF heat = 0. cool = 0. sollw = 0. ! MPL 01032011 solsw = 0. radsol = 0. swup = 0. ! MPL 27102011 pour les fichiers AMMA_profiles et AMMA_scalars swup0 = 0. lwup = 0. lwup0 = 0. lwdn = 0. lwdn0 = 0. ENDIF ! Calculer radsol a l'exterieur de radlwsw ! pour prendre en compte le cycle diurne ! recode par Olivier Boucher en sept 2015 radsol = solsw * swradcorr + sollw IF (ok_4xCO2atm) THEN radsolp = solswp * swradcorr + sollwp ENDIF ! Ajouter la tendance des rayonnements (tous les pas) ! avec une correction pour le cycle diurne dans le SW DO k = 1, klev d_t_swr(:, k) = swradcorr(:) * heat(:, k) * phys_tstep / RDAY d_t_sw0(:, k) = swradcorr(:) * heat0(:, k) * phys_tstep / RDAY d_t_lwr(:, k) = -cool(:, k) * phys_tstep / RDAY d_t_lw0(:, k) = -cool0(:, k) * phys_tstep / RDAY ENDDO CALL add_phys_tend(du0, dv0, d_t_swr, dq0, dql0, dqi0, dqbs0, paprs, 'SW', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('SW', itap) CALL add_phys_tend(du0, dv0, d_t_lwr, dq0, dql0, dqi0, dqbs0, paprs, 'LW', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('LW', itap) IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF ! Calculer l'hydrologie de la surface ! CALL hydrol(dtime,pctsrf,rain_fall, snow_fall, zxevap, ! . agesno, ftsol,fqsurf,fsnow, ruis) ! Calculer le bilan du sol et la derive de temperature (couplage) DO i = 1, klon ! bils(i) = radsol(i) - sens(i) - evap(i)*RLVTT ! a la demande de JLD bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO !moddeblott(jan95) ! Appeler le programme de parametrisation de l'orographie ! a l'echelle sous-maille: IF (prt_level >=10) THEN PRINT *, ' CALL orography ? ', ok_orodr ENDIF IF (ok_orodr) THEN ! selection des points pour lesquels le shema est actif: igwd = 0 DO i = 1, klon itest(i) = 0 zrel_oro(i) = zstd(i) / (max(zsig(i), 1.E-8) * sqrt(cell_area(i))) !zrel_oro: relative mountain height wrt relief explained by mean slope ! -> condition on zrel_oro can deactivate the drag on tilted planar terrains ! such as ice sheets (work by V. Wiener) ! zpmm_orodr_t and zstd_orodr_t are activation thresholds set by F. Lott to ! earn computation time but they are not physical. IF (((zpic(i) - zmea(i))>zpmm_orodr_t).AND.(zstd(i)>zstd_orodr_t).AND.(zrel_oro(i)<=zrel_oro_t)) THEN itest(i) = 1 igwd = igwd + 1 idx(igwd) = i ENDIF ENDDO ! igwdim=MAX(1,igwd) IF (ok_strato) THEN CALL drag_noro_strato(0, klon, klev, phys_tstep, paprs, pplay, & zmea, zstd, zsig, zgam, zthe, zpic, zval, & igwd, idx, itest, & t_seri, u_seri, v_seri, & zulow, zvlow, zustrdr, zvstrdr, & d_t_oro, d_u_oro, d_v_oro) ELSE CALL drag_noro(klon, klev, phys_tstep, paprs, pplay, & zmea, zstd, zsig, zgam, zthe, zpic, zval, & igwd, idx, itest, & t_seri, u_seri, v_seri, & zulow, zvlow, zustrdr, zvstrdr, & d_t_oro, d_u_oro, d_v_oro) ENDIF ! ajout des tendances !----------------------------------------------------------------------- ! ajout des tendances de la trainee de l'orographie CALL add_phys_tend(d_u_oro, d_v_oro, d_t_oro, dq0, dql0, dqi0, dqbs0, paprs, 'oro', & abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('oro', itap) !---------------------------------------------------------------------- ENDIF ! fin de test sur ok_orodr IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF IF (ok_orolf) THEN ! selection des points pour lesquels le shema est actif: igwd = 0 DO i = 1, klon itest(i) = 0 !zrel_oro: relative mountain height wrt relief explained by mean slope ! -> condition on zrel_oro can deactivate the lifting on tilted planar terrains ! such as ice sheets (work by V. Wiener) zrel_oro(i) = zstd(i) / (max(zsig(i), 1.E-8) * sqrt(cell_area(i))) IF (((zpic(i) - zmea(i))>zpmm_orolf_t).AND.(zrel_oro(i)<=zrel_oro_t)) THEN itest(i) = 1 igwd = igwd + 1 idx(igwd) = i ENDIF ENDDO ! igwdim=MAX(1,igwd) IF (ok_strato) THEN CALL lift_noro_strato(klon, klev, phys_tstep, paprs, pplay, & latitude_deg, zmea, zstd, zpic, zgam, zthe, zpic, zval, & igwd, idx, itest, & t_seri, u_seri, v_seri, & zulow, zvlow, zustrli, zvstrli, & d_t_lif, d_u_lif, d_v_lif) ELSE CALL lift_noro(klon, klev, phys_tstep, paprs, pplay, & latitude_deg, zmea, zstd, zpic, & itest, & t_seri, u_seri, v_seri, & zulow, zvlow, zustrli, zvstrli, & d_t_lif, d_u_lif, d_v_lif) ENDIF ! ajout des tendances de la portance de l'orographie CALL add_phys_tend(d_u_lif, d_v_lif, d_t_lif, dq0, dql0, dqi0, dqbs0, paprs, & 'lif', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('lif', itap) ENDIF ! fin de test sur ok_orolf IF (ok_hines) THEN ! HINES GWD PARAMETRIZATION east_gwstress = 0. west_gwstress = 0. du_gwd_hines = 0. dv_gwd_hines = 0. CALL hines_gwd(klon, klev, phys_tstep, paprs, pplay, latitude_deg, t_seri, & u_seri, v_seri, zustr_gwd_hines, zvstr_gwd_hines, d_t_hin, & du_gwd_hines, dv_gwd_hines) zustr_gwd_hines = 0. zvstr_gwd_hines = 0. DO k = 1, klev zustr_gwd_hines(:) = zustr_gwd_hines(:) + du_gwd_hines(:, k) / phys_tstep & * (paprs(:, k) - paprs(:, k + 1)) / rg zvstr_gwd_hines(:) = zvstr_gwd_hines(:) + dv_gwd_hines(:, k) / phys_tstep & * (paprs(:, k) - paprs(:, k + 1)) / rg ENDDO d_t_hin(:, :) = 0. CALL add_phys_tend(du_gwd_hines, dv_gwd_hines, d_t_hin, dq0, dql0, & dqi0, dqbs0, paprs, 'hin', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('hin', itap) ENDIF IF (.NOT. ok_hines .AND. ok_gwd_rando) THEN ! ym missing init for east_gwstress & west_gwstress -> added in phys_local_var_mod CALL acama_GWD_rando(PHYS_TSTEP, pplay, latitude_deg, t_seri, u_seri, & v_seri, rot, zustr_gwd_front, zvstr_gwd_front, du_gwd_front, & dv_gwd_front, east_gwstress, west_gwstress) zustr_gwd_front = 0. zvstr_gwd_front = 0. DO k = 1, klev zustr_gwd_front(:) = zustr_gwd_front(:) + du_gwd_front(:, k) / phys_tstep & * (paprs(:, k) - paprs(:, k + 1)) / rg zvstr_gwd_front(:) = zvstr_gwd_front(:) + dv_gwd_front(:, k) / phys_tstep & * (paprs(:, k) - paprs(:, k + 1)) / rg ENDDO CALL add_phys_tend(du_gwd_front, dv_gwd_front, dt0, dq0, dql0, dqi0, dqbs0, & paprs, 'front_gwd_rando', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('front_gwd_rando', itap) ENDIF IF (ok_gwd_rando) THEN CALL FLOTT_GWD_rando(PHYS_TSTEP, pplay, t_seri, u_seri, v_seri, & rain_fall + snow_fall, zustr_gwd_rando, zvstr_gwd_rando, & du_gwd_rando, dv_gwd_rando, east_gwstress, west_gwstress) CALL add_phys_tend(du_gwd_rando, dv_gwd_rando, dt0, dq0, dql0, dqi0, dqbs0, & paprs, 'flott_gwd_rando', abortphy, flag_inhib_tend, itap, 0) CALL prt_enerbil('flott_gwd_rando', itap) zustr_gwd_rando = 0. zvstr_gwd_rando = 0. DO k = 1, klev zustr_gwd_rando(:) = zustr_gwd_rando(:) + du_gwd_rando(:, k) / phys_tstep & * (paprs(:, k) - paprs(:, k + 1)) / rg zvstr_gwd_rando(:) = zvstr_gwd_rando(:) + dv_gwd_rando(:, k) / phys_tstep & * (paprs(:, k) - paprs(:, k + 1)) / rg ENDDO ENDIF ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF DO i = 1, klon zustrph(i) = 0. zvstrph(i) = 0. ENDDO DO k = 1, klev DO i = 1, klon zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / phys_tstep * & (paprs(i, k) - paprs(i, k + 1)) / rg zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / phys_tstep * & (paprs(i, k) - paprs(i, k + 1)) / rg ENDDO ENDDO !IM calcul composantes axiales du moment angulaire et couple des montagnes IF (is_sequential .AND. ok_orodr) THEN CALL aaam_bud (27, klon, klev, jD_cur - jD_ref, jH_cur, & ra, rg, romega, & latitude_deg, longitude_deg, pphis, & zustrdr, zustrli, zustrph, & zvstrdr, zvstrli, zvstrph, & paprs, u, v, & aam, torsfc) ENDIF !IM cf. FLott END !DC Calcul de la tendance due au methane IF (ok_qch4) THEN ! d_q_ch4: H2O source from CH4 in MMR/s (mass mixing ratio/s or kg H2O/kg air/s) IF (CPPKEY_STRATAER) THEN CALL stratH2O_methox(debut, paprs, d_q_ch4) ELSE ! ECMWF routine METHOX CALL METHOX(1, klon, klon, klev, q_seri, d_q_ch4, pplay) END IF ! add humidity tendency due to methane d_q_ch4_dtime(:, :) = d_q_ch4(:, :) * phys_tstep CALL add_phys_tend(du0, dv0, dt0, d_q_ch4_dtime, dql0, dqi0, dqbs0, paprs, & 'q_ch4', abortphy, flag_inhib_tend, itap, 0) d_q_ch4(:, :) = d_q_ch4_dtime(:, :) / phys_tstep ! update with H2O conserv done in add_phys_tend ENDIF IF (CPPKEY_STRATAER) THEN IF (ok_qemiss) THEN flh2o = 1 IF(flag_verbose_strataer) THEN PRINT *, 'IN physiq_mod: ok_qemiss =yes (', ok_qemiss, '), flh2o=', flh2o PRINT *, 'IN physiq_mod: flag_emit=', flag_emit, ', nErupt=', nErupt PRINT *, 'IN physiq_mod: nAerErupt=', nAerErupt ENDIF SELECT CASE(flag_emit) CASE(1) ! emission volc H2O in LMDZ DO ieru = 1, nErupt IF (year_cur==year_emit_vol(ieru).AND.& mth_cur==mth_emit_vol(ieru).AND.& day_cur>=day_emit_vol(ieru).AND.& day_cur<(day_emit_vol(ieru) + injdur)) THEN IF(flag_verbose_strataer) PRINT *, 'IN physiq_mod: date=', year_cur, mth_cur, day_cur ! initialisation of q tendency emission d_q_emiss(:, :) = 0. ! daily injection mass emission - NL m_H2O_emiss_vol_daily = m_H2O_emiss_vol(ieru) / (REAL(injdur)& * REAL(ponde_lonlat_vol(ieru))) CALL STRATEMIT(pdtphys, pdtphys, latitude_deg, longitude_deg, t_seri, & pplay, paprs, tr_seri, & m_H2O_emiss_vol_daily, & xlat_min_vol(ieru), xlat_max_vol(ieru), & xlon_min_vol(ieru), xlon_max_vol(ieru), & altemiss_vol(ieru), sigma_alt_vol(ieru), 1, 1., & nAerErupt + 1, 0) IF(flag_verbose_strataer) PRINT *, 'IN physiq_mod: min max d_q_emiss=', & minval(d_q_emiss), maxval(d_q_emiss) CALL add_phys_tend(du0, dv0, dt0, d_q_emiss, dql0, dqi0, dqbs0, paprs, & 'q_emiss', abortphy, flag_inhib_tend, itap, 0) IF (abortphy==1) Print*, 'ERROR ABORT TEND EMISS' ENDIF ENDDO flh2o = 0 END SELECT ! emission scenario (flag_emit) ENDIF END IF !=============================================================== ! Additional tendency of TKE due to orography !=============================================================== ! Inititialization !------------------ addtkeoro = 0 CALL getin_p('addtkeoro', addtkeoro) IF (prt_level>=5) & PRINT*, 'addtkeoro', addtkeoro alphatkeoro = 1. CALL getin_p('alphatkeoro', alphatkeoro) alphatkeoro = min(max(0., alphatkeoro), 1.) smallscales_tkeoro = .FALSE. CALL getin_p('smallscales_tkeoro', smallscales_tkeoro) dtadd(:, :) = 0. duadd(:, :) = 0. dvadd(:, :) = 0. ! Choices for addtkeoro: ! ** 0 no TKE tendency from orography ! ** 1 we include a fraction alphatkeoro of the whole tendency duoro ! ** 2 we include a fraction alphatkeoro of the gravity wave part of duoro IF (addtkeoro > 0 .AND. ok_orodr) THEN ! ------------------------------------------- ! selection des points pour lesquels le schema est actif: IF (addtkeoro == 1) THEN duadd(:, :) = alphatkeoro * d_u_oro(:, :) dvadd(:, :) = alphatkeoro * d_v_oro(:, :) ELSE IF (addtkeoro == 2) THEN IF (smallscales_tkeoro) THEN igwd = 0 DO i = 1, klon itest(i) = 0 ! Etienne: ici je prends en compte plus de relief que la routine drag_noro_strato ! car on peut s'attendre a ce que les petites echelles produisent aussi de la TKE ! Mais attention, cela ne va pas dans le sens de la conservation de l'energie! IF ((zstd(i)>1.0) .AND.(zrel_oro(i)<=zrel_oro_t)) THEN itest(i) = 1 igwd = igwd + 1 idx(igwd) = i ENDIF ENDDO ELSE igwd = 0 DO i = 1, klon itest(i) = 0 IF (((zpic(i) - zmea(i))>zpmm_orodr_t).AND.(zstd(i)>zstd_orodr_t).AND.(zrel_oro(i)<=zrel_oro_t)) THEN itest(i) = 1 igwd = igwd + 1 idx(igwd) = i ENDIF ENDDO ENDIF CALL drag_noro_strato(addtkeoro, klon, klev, phys_tstep, paprs, pplay, & zmea, zstd, zsig, zgam, zthe, zpic, zval, & igwd, idx, itest, & t_seri, u_seri, v_seri, & zulow, zvlow, zustrdr, zvstrdr, & d_t_oro_gw, d_u_oro_gw, d_v_oro_gw) zustrdr(:) = 0. zvstrdr(:) = 0. zulow(:) = 0. zvlow(:) = 0. duadd(:, :) = alphatkeoro * d_u_oro_gw(:, :) dvadd(:, :) = alphatkeoro * d_v_oro_gw(:, :) ENDIF ! TKE update from subgrid temperature and wind tendencies !---------------------------------------------------------- forall (k = 1:nbp_lev) exner(:, k) = (pplay(:, k) / paprs(:, 1))**RKAPPA CALL tend_to_tke(pdtphys, paprs, exner, t_seri, u_seri, v_seri, dtadd, duadd, dvadd, pctsrf, pbl_tke) ! Prevent pbl_tke_w from becoming negative wake_delta_pbl_tke(:, :, :) = max(wake_delta_pbl_tke(:, :, :), -pbl_tke(:, :, :)) ENDIF ! ----- !=============================================================== !==================================================================== ! Interface Simulateur COSP (Calipso, ISCCP, MISR, ..) !==================================================================== ! Abderrahmane 24.08.09 IF (ok_cosp) THEN IF (CPPKEY_COSP) THEN IF (itap==1.OR.MOD(itap, NINT(freq_cosp / phys_tstep))==0) THEN IF (prt_level >=10) THEN PRINT*, 'freq_cosp', freq_cosp ENDIF mr_ozone = wo(:, :, 1) * dobson_u * 1e3 / zmasse ! PRINT*,'Dans physiq.F avant appel cosp ref_liq,ref_ice=', ! s ref_liq,ref_ice CALL phys_cosp(itap, phys_tstep, freq_cosp, & ok_mensuelCOSP, ok_journeCOSP, ok_hfCOSP, & ecrit_mth, ecrit_day, ecrit_hf, ok_all_xml, missing_val, & klon, klev, longitude_deg, latitude_deg, presnivs, overlap, & JrNt, ref_liq, ref_ice, & pctsrf(:, is_ter) + pctsrf(:, is_lic), & zu10m, zv10m, pphis, & zphi, paprs(:, 1:klev), pplay, zxtsol, t_seri, & qx(:, :, ivap), zx_rh, cldfra, rnebcon, flwc, fiwc, & prfl(:, 1:klev), psfl(:, 1:klev), & pmflxr(:, 1:klev), pmflxs(:, 1:klev), & mr_ozone, cldtau, cldemi) ! L calipso2D,calipso3D,cfadlidar,parasolrefl,atb,betamol, ! L cfaddbze,clcalipso2,dbze,cltlidarradar, ! M clMISR, ! R clisccp2,boxtauisccp,boxptopisccp,tclisccp,ctpisccp, ! I tauisccp,albisccp,meantbisccp,meantbclrisccp) END IF END IF IF (CPPKEY_COSP2) THEN IF (itap==1.OR.MOD(itap, NINT(freq_cosp / phys_tstep))==0) THEN IF (prt_level >=10) THEN PRINT*, 'freq_cosp', freq_cosp ENDIF mr_ozone = wo(:, :, 1) * dobson_u * 1e3 / zmasse PRINT*, 'Dans physiq.F avant appel ' ! s ref_liq,ref_ice CALL phys_cosp2(itap, phys_tstep, freq_cosp, & ok_mensuelCOSP, ok_journeCOSP, ok_hfCOSP, & ecrit_mth, ecrit_day, ecrit_hf, ok_all_xml, missing_val, & klon, klev, longitude_deg, latitude_deg, presnivs, overlap, & JrNt, ref_liq, ref_ice, & pctsrf(:, is_ter) + pctsrf(:, is_lic), & zu10m, zv10m, pphis, & zphi, paprs(:, 1:klev), pplay, zxtsol, t_seri, & qx(:, :, ivap), zx_rh, cldfra, rnebcon, flwc, fiwc, & prfl(:, 1:klev), psfl(:, 1:klev), & pmflxr(:, 1:klev), pmflxs(:, 1:klev), & mr_ozone, cldtau, cldemi) END IF END IF IF (CPPKEY_COSPV2) THEN IF (itap==1.OR.MOD(itap, NINT(freq_cosp / phys_tstep))==0) THEN ! IF (MOD(itap,NINT(freq_cosp/phys_tstep)).EQ.0) THEN IF (prt_level >=10) THEN PRINT*, 'freq_cosp', freq_cosp ENDIF DO k = 1, klev DO i = 1, klon phicosp(i, k) = pphi(i, k) + pphis(i) ENDDO ENDDO mr_ozone = wo(:, :, 1) * dobson_u * 1e3 / zmasse PRINT*, 'Dans physiq.F avant appel ' ! s ref_liq,ref_ice CALL lmdz_cosp_interface(itap, phys_tstep, freq_cosp, & ok_mensuelCOSP, ok_journeCOSP, ok_hfCOSP, & ecrit_mth, ecrit_day, ecrit_hf, ok_all_xml, missing_val, & klon, klev, longitude_deg, latitude_deg, presnivs, overlap, & JrNt, ref_liq, ref_ice, & pctsrf(:, is_ter) + pctsrf(:, is_lic), & zu10m, zv10m, pphis, & zphi, paprs(:, 1:klev), pplay, zxtsol, t_seri, & qx(:, :, ivap), zx_rh, cldfra, rnebcon, flwc, fiwc, & prfl(:, 1:klev), psfl(:, 1:klev), & pmflxr(:, 1:klev), pmflxs(:, 1:klev), & mr_ozone, cldtau, cldemi) ENDIF END IF END IF !ok_cosp ! Marine IF (ok_airs) THEN IF (itap==1.OR.MOD(itap, NINT(freq_airs / phys_tstep))==0) THEN WRITE(*, *) 'je vais appeler simu_airs, ok_airs, freq_airs=', ok_airs, freq_airs CALL simu_airs(itap, rneb, t_seri, cldemi, fiwc, ref_ice, pphi, pplay, paprs, & map_prop_hc, map_prop_hist, & map_emis_hc, map_iwp_hc, map_deltaz_hc, map_pcld_hc, map_tcld_hc, & map_emis_Cb, map_pcld_Cb, map_tcld_Cb, & map_emis_ThCi, map_pcld_ThCi, map_tcld_ThCi, & map_emis_Anv, map_pcld_Anv, map_tcld_Anv, & map_emis_hist, map_iwp_hist, map_deltaz_hist, map_rad_hist, & map_ntot, map_hc, map_hist, & map_Cb, map_ThCi, map_Anv, & alt_tropo) ENDIF ENDIF ! ok_airs ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !AA !AA Installation de l'interface online-offline pour traceurs !AA !==================================================================== ! Calcul des tendances traceurs !==================================================================== IF (type_trac == 'repr') THEN !MM pas d'impact, car on recupere q_seri,tr_seri,t_seri via phys_local_var_mod !MM dans Reprobus sh_in(:, :) = q_seri(:, :) IF (CPPKEY_REPROBUS) THEN d_q_rep(:, :) = 0. d_ql_rep(:, :) = 0. d_qi_rep(:, :) = 0. END IF ELSE sh_in(:, :) = qx(:, :, ivap) IF (nqo >= 3) THEN ch_in(:, :) = qx(:, :, iliq) + qx(:, :, isol) ELSE ch_in(:, :) = qx(:, :, iliq) ENDIF ENDIF IF (CPPKEY_DUST) THEN ! Avec SPLA, iflag_phytrac est forcé =1 CALL phytracr_spl (debut, lafin, jD_cur, jH_cur, iflag_con, & ! I pdtphys, ftsol, & ! I t, q_seri, paprs, pplay, RHcl, & ! I pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & ! I coefh(1:klon, 1:klev, is_ave), cdragh, cdragm, u1, v1, & ! I u_seri, v_seri, latitude_deg, longitude_deg, & pphis, pctsrf, pmflxr, pmflxs, prfl, psfl, & ! I da, phi, phi2, d1a, dam, mp, ep, sigd, sij, clw, elij, & ! I epmlmMm, eplaMm, upwd, dnwd, itop_con, ibas_con, & ! I ev, wdtrainA, wdtrainM, wght_cvfd, & ! I fm_therm, entr_therm, rneb, & ! I beta_prec_fisrt, beta_prec, & !I zu10m, zv10m, wstar, ale_bl, ale_wake, & ! I d_tr_dyn, tr_seri) ELSE IF (iflag_phytrac == 1) THEN CALL phytrac (& itap, days_elapsed + 1, jH_cur, debut, & lafin, phys_tstep, u, v, t, & paprs, pplay, pmfu, pmfd, & pen_u, pde_u, pen_d, pde_d, & cdragh, coefh(1:klon, 1:klev, is_ave), fm_therm, entr_therm, & u1, v1, ftsol, pctsrf, & zustar, zu10m, zv10m, & wstar(:, is_ave), ale_bl, ale_wake, & latitude_deg, longitude_deg, & frac_impa, frac_nucl, beta_prec_fisrt, beta_prec, & presnivs, pphis, pphi, albsol1, & sh_in, ch_in, rhcl, cldfra, rneb, & diafra, radocond, itop_con, ibas_con, & pmflxr, pmflxs, prfl, psfl, & da, phi, mp, upwd, & phi2, d1a, dam, sij, wght_cvfd, & !<=9) & PRINT*, 'Attention on met a 0 les thermiques pour phystoke' CALL phystokenc (& nlon, klev, pdtphys, longitude_deg, latitude_deg, & t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & fm_therm, entr_therm, & cdragh, coefh(1:klon, 1:klev, is_ave), u1, v1, ftsol, pctsrf, & frac_impa, frac_nucl, & pphis, cell_area, phys_tstep, itap, & qx(:, :, ivap), da, phi, mp, upwd, dnwd) ENDIF ! Calculer le transport de l'eau et de l'energie (diagnostique) CALL transp (paprs, zxtsol, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, zphi, & ue, ve, uq, vq, uwat, vwat) !IM global posePB BEG IF(1==0) THEN CALL transp_lay (paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, & ve_lay, vq_lay, ue_lay, uq_lay) ENDIF !(1.EQ.0) THEN !IM global posePB END ! Accumuler les variables a stocker dans les fichiers histoire: !================================================================ ! Conversion of kinetic and potential energy into heat, for ! parameterisation of subgrid-scale motions !================================================================ d_t_ec(:, :) = 0. forall (k = 1:nbp_lev) exner(:, k) = (pplay(:, k) / paprs(:, 1))**RKAPPA CALL ener_conserv(klon, klev, pdtphys, u, v, t, qx, ivap, iliq, isol, & u_seri, v_seri, t_seri, q_seri, ql_seri, qs_seri, pbl_tke(:, :, is_ave) - tke0(:, :), & zmasse, exner, d_t_ec) t_seri(:, :) = t_seri(:, :) + d_t_ec(:, :) !================================================================== !--OB water mass fixer for the physics !--water profiles are corrected to force mass conservation of water !--currently flag is turned off !================================================================== IF (ok_water_mass_fixer) THEN qql2(:) = 0.0 DO k = 1, klev qql2(:) = qql2(:) + (q_seri(:, k) + ql_seri(:, k)) * zmasse(:, k) IF (nqo >= 3) THEN qql2(:) = qql2(:) + qs_seri(:, k) * zmasse(:, k) ENDIF IF (ok_bs) THEN qql2(:) = qql2(:) + qbs_seri(:, k) * zmasse(:, k) ENDIF ENDDO IF (CPPKEY_STRATAER) THEN IF (ok_qemiss) THEN DO k = 1, klev qql1(:) = qql1(:) + d_q_emiss(:, k) * zmasse(:, k) ENDDO ENDIF END IF IF (ok_qch4) THEN DO k = 1, klev qql1(:) = qql1(:) + d_q_ch4_dtime(:, k) * zmasse(:, k) ENDDO ENDIF DO i = 1, klon !--compute ratio of what q+ql should be with conservation to what it is IF (ok_bs) THEN corrqql = (qql1(i) + (evap(i) - rain_fall(i) - snow_fall(i) - bs_fall(i)) * pdtphys) / qql2(i) ELSE corrqql = (qql1(i) + (evap(i) - rain_fall(i) - snow_fall(i)) * pdtphys) / qql2(i) ENDIF DO k = 1, klev q_seri(i, k) = q_seri(i, k) * corrqql ql_seri(i, k) = ql_seri(i, k) * corrqql IF (nqo >= 3) THEN qs_seri(i, k) = qs_seri(i, k) * corrqql ENDIF IF (ok_bs) THEN qbs_seri(i, k) = qbs_seri(i, k) * corrqql ENDIF ENDDO ENDDO ENDIF !--fin mass fixer !cc prw = eau precipitable ! prlw = colonne eau liquide ! prlw = colonne eau solide ! prbsw = colonne neige soufflee ! water_budget = non-conservation residual from the LMDZ physics ! (should be equal to machine precision if mass fixer is activated) prw(:) = 0. prlw(:) = 0. prsw(:) = 0. prbsw(:) = 0. water_budget(:) = 0.0 DO k = 1, klev prw(:) = prw(:) + q_seri(:, k) * zmasse(:, k) prlw(:) = prlw(:) + ql_seri(:, k) * zmasse(:, k) water_budget(:) = water_budget(:) + (q_seri(:, k) - qx(:, k, ivap) + ql_seri(:, k) - qx(:, k, iliq)) * zmasse(:, k) IF (nqo >= 3) THEN prsw(:) = prsw(:) + qs_seri(:, k) * zmasse(:, k) water_budget(:) = water_budget(:) + (qs_seri(:, k) - qx(:, k, isol)) * zmasse(:, k) ENDIF IF (nqo >= 4 .AND. ok_bs) THEN prbsw(:) = prbsw(:) + qbs_seri(:, k) * zmasse(:, k) water_budget(:) = water_budget(:) + (qbs_seri(:, k) - qx(:, k, ibs)) * zmasse(:, k) ENDIF ENDDO water_budget(:) = water_budget(:) + (rain_fall(:) + snow_fall(:) - evap(:)) * pdtphys IF (ok_bs) THEN water_budget(:) = water_budget(:) + bs_fall(:) * pdtphys ENDIF !======================================================================= ! SORTIES !======================================================================= !IM initialisation + calculs divers diag AMIP2 CALL calcul_divers(itap, itapm1, un_jour) !IM Interpolation sur les niveaux de pression du NMC ! ------------------------------------------------- include "calcul_STDlev.h" ! slp sea level pressure derived from Arpege-IFS : CALL ctstar + CALL pppmer CALL diag_slp(klon, t_seri, paprs, pplay, pphis, ptstar, pt0, slp) IF (ANY(type_trac == ['inca', 'inco'])) THEN CALL VTe(VTphysiq) CALL VTb(VTinca) CALL chemhook_end (& phys_tstep, & pplay, & t_seri, & tr_seri(:, :, 1 + nqCO2:nbtr), & nbtr, & paprs, & q_seri, & cell_area, & pphi, & pphis, & zx_rh, & aps, bps, ap, bp, lafin) CALL VTe(VTinca) CALL VTb(VTphysiq) ENDIF IF (type_trac == 'repr') THEN IF (CPPKEY_REPROBUS) THEN CALL coord_hyb_rep(paprs, pplay, aps, bps, ap, bp, cell_area) END IF ENDIF ! Convertir les incrementations en tendances IF (prt_level >=10) THEN PRINT *, 'Convertir les incrementations en tendances ' ENDIF IF (mydebug) THEN CALL writefield_phy('u_seri', u_seri, nbp_lev) CALL writefield_phy('v_seri', v_seri, nbp_lev) CALL writefield_phy('t_seri', t_seri, nbp_lev) CALL writefield_phy('q_seri', q_seri, nbp_lev) ENDIF DO k = 1, klev DO i = 1, klon d_u(i, k) = (u_seri(i, k) - u(i, k)) / phys_tstep d_v(i, k) = (v_seri(i, k) - v(i, k)) / phys_tstep d_t(i, k) = (t_seri(i, k) - t(i, k)) / phys_tstep d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / phys_tstep d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / phys_tstep !CR: on ajoute le contenu en glace IF (nqo >= 3) THEN d_qx(i, k, isol) = (qs_seri(i, k) - qx(i, k, isol)) / phys_tstep ENDIF !--ice_supersat: nqo=5, we add cloud fraction and cloudy water vapor to total water vapor ratio IF (nqo>=5 .and. ok_ice_supersat) THEN d_qx(i, k, icf) = (cf_seri(i, k) - qx(i, k, icf)) / phys_tstep d_qx(i, k, irvc) = (rvc_seri(i, k) - qx(i, k, irvc)) / phys_tstep ENDIF IF (nqo>=4 .AND. ok_bs) THEN d_qx(i, k, ibs) = (qbs_seri(i, k) - qx(i, k, ibs)) / phys_tstep ENDIF ENDDO ENDDO ! DC: All iterations are cycled if nqtot==nqo, so no nqtot>nqo condition required itr = 0 DO iq = 1, nqtot IF(.NOT.tracers(iq)%isInPhysics) CYCLE itr = itr + 1 DO k = 1, klev DO i = 1, klon d_qx(i, k, iq) = (tr_seri(i, k, itr) - qx(i, k, iq)) / phys_tstep ENDDO ENDDO ENDDO !IM rajout diagnostiques bilan KP pour analyse MJO par Jun-Ichi Yano !IM global posePB include "write_bilKP_ins.h" !IM global posePB include "write_bilKP_ave.h" ! Sauvegarder les valeurs de t et q a la fin de la physique: u_ancien(:, :) = u_seri(:, :) v_ancien(:, :) = v_seri(:, :) t_ancien(:, :) = t_seri(:, :) q_ancien(:, :) = q_seri(:, :) ql_ancien(:, :) = ql_seri(:, :) qs_ancien(:, :) = qs_seri(:, :) qbs_ancien(:, :) = qbs_seri(:, :) cf_ancien(:, :) = cf_seri(:, :) rvc_ancien(:, :) = rvc_seri(:, :) CALL water_int(klon, klev, q_ancien, zmasse, prw_ancien) CALL water_int(klon, klev, ql_ancien, zmasse, prlw_ancien) CALL water_int(klon, klev, qs_ancien, zmasse, prsw_ancien) CALL water_int(klon, klev, qbs_ancien, zmasse, prbsw_ancien) ! !! RomP >>> IF (nqtot > nqo) tr_ancien(:, :, :) = tr_seri(:, :, :) ! !! RomP <<< !========================================================================== ! Sorties des tendances pour un point particulier ! a utiliser en 1D, avec igout=1 ou en 3D sur un point particulier ! pour le debug ! La valeur de igout est attribuee plus haut dans le programme !========================================================================== IF (prt_level>=1) THEN WRITE(lunout, *) 'FIN DE PHYSIQ !!!!!!!!!!!!!!!!!!!!' WRITE(lunout, *) & 'nlon,klev,nqtot,debut,lafin,jD_cur, jH_cur, pdtphys pct tlos' WRITE(lunout, *) & nlon, klev, nqtot, debut, lafin, jD_cur, jH_cur, pdtphys, & pctsrf(igout, is_ter), pctsrf(igout, is_lic), pctsrf(igout, is_oce), & pctsrf(igout, is_sic) WRITE(lunout, *) 'd_t_dyn,d_t_con,d_t_lsc,d_t_ajsb,d_t_ajs,d_t_eva' DO k = 1, klev WRITE(lunout, *) d_t_dyn(igout, k), d_t_con(igout, k), & d_t_lsc(igout, k), d_t_ajsb(igout, k), d_t_ajs(igout, k), & d_t_eva(igout, k) ENDDO WRITE(lunout, *) 'cool,heat' DO k = 1, klev WRITE(lunout, *) cool(igout, k), heat(igout, k) ENDDO !jyg< (En attendant de statuer sur le sort de d_t_oli) !jyg! WRITE(lunout,*) 'd_t_oli,d_t_vdf,d_t_oro,d_t_lif,d_t_ec' !jyg! do k=1,klev !jyg! WRITE(lunout,*) d_t_oli(igout,k),d_t_vdf(igout,k), & !jyg! d_t_oro(igout,k),d_t_lif(igout,k),d_t_ec(igout,k) !jyg! enddo WRITE(lunout, *) 'd_t_vdf,d_t_oro,d_t_lif,d_t_ec' DO k = 1, klev WRITE(lunout, *) d_t_vdf(igout, k), & d_t_oro(igout, k), d_t_lif(igout, k), d_t_ec(igout, k) ENDDO !>jyg WRITE(lunout, *) 'd_ps ', d_ps(igout) WRITE(lunout, *) 'd_u, d_v, d_t, d_qx1, d_qx2 ' DO k = 1, klev WRITE(lunout, *) d_u(igout, k), d_v(igout, k), d_t(igout, k), & d_qx(igout, k, 1), d_qx(igout, k, 2) ENDDO ENDIF !============================================================ ! Calcul de la temperature potentielle !============================================================ DO k = 1, klev DO i = 1, klon !JYG/IM theta en debut du pas de temps !JYG/IM theta(i,k)=t(i,k)*(100000./pplay(i,k))**(RD/RCPD) !JYG/IM theta en fin de pas de temps de physique theta(i, k) = t_seri(i, k) * (100000. / pplay(i, k))**(RD / RCPD) ! thetal: 2 lignes suivantes a decommenter si vous avez les fichiers ! MPL 20130625 ! fth_fonctions.F90 et parkind1.F90 ! sinon thetal=theta ! thetal(i,k)=fth_thetal(pplay(i,k),t_seri(i,k),q_seri(i,k), ! : ql_seri(i,k)) thetal(i, k) = theta(i, k) ENDDO ENDDO ! 22.03.04 BEG !============================================================= ! Ecriture des sorties !============================================================= ! Recupere des varibles calcule dans differents modules ! pour ecriture dans histxxx.nc ! Get some variables from module fonte_neige_mod CALL fonte_neige_get_vars(pctsrf, & zxfqcalving, zxfqfonte, zxffonte, zxrunofflic) !============================================================= ! Separation entre thermiques et non thermiques dans les sorties ! de fisrtilp !============================================================= IF (iflag_thermals>=1) THEN d_t_lscth = 0. d_t_lscst = 0. d_q_lscth = 0. d_q_lscst = 0. DO k = 1, klev DO i = 1, klon IF (ptconvth(i, k)) THEN d_t_lscth(i, k) = d_t_eva(i, k) + d_t_lsc(i, k) d_q_lscth(i, k) = d_q_eva(i, k) + d_q_lsc(i, k) ELSE d_t_lscst(i, k) = d_t_eva(i, k) + d_t_lsc(i, k) d_q_lscst(i, k) = d_q_eva(i, k) + d_q_lsc(i, k) ENDIF ENDDO ENDDO DO i = 1, klon plul_st(i) = prfl(i, lmax_th(i) + 1) + psfl(i, lmax_th(i) + 1) plul_th(i) = prfl(i, 1) + psfl(i, 1) ENDDO ENDIF !On effectue les sorties: IF (CPPKEY_DUST) THEN CALL phys_output_write_spl(itap, pdtphys, paprs, pphis, & pplay, lmax_th, aerosol_couple, & ok_ade, ok_aie, ivap, ok_sync, & ptconv, read_climoz, clevSTD, & ptconvth, d_t, qx, d_qx, d_tr_dyn, zmasse, & flag_aerosol, flag_aerosol_strat, ok_cdnc) ELSE CALL phys_output_write(itap, pdtphys, paprs, pphis, & pplay, lmax_th, aerosol_couple, & ok_ade, ok_aie, ok_volcan, ivap, iliq, isol, ibs, & ok_sync, ptconv, read_climoz, clevSTD, & ptconvth, d_u, d_t, qx, d_qx, zmasse, & flag_aerosol, flag_aerosol_strat, ok_cdnc, t, u1, v1) END IF IF (.NOT. using_xios) THEN CALL write_paramLMDZ_phy(itap, nid_ctesGCM, ok_sync) END IF ! Petit appelle de sorties pour accompagner le travail sur phyex IF (iflag_physiq == 1) THEN CALL output_physiqex(debut, jD_eq, pdtphys, presnivs, paprs, u, v, t, qx, cldfra, 0. * t, 0. * t, 0. * t, pbl_tke, theta) endif !==================================================================== ! Arret du modele apres hgardfou en cas de detection d'un ! plantage par hgardfou !==================================================================== IF (abortphy==1) THEN abort_message = 'Plantage hgardfou' CALL abort_physic (modname, abort_message, 1) ENDIF ! 22.03.04 END !==================================================================== ! Si c'est la fin, il faut conserver l'etat de redemarrage !==================================================================== ! Disabling calls to the prt_alerte function alert_first_call = .FALSE. IF (lafin) THEN itau_phy = itau_phy + itap CALL phyredem ("restartphy.nc") ! open(97,form="unformatted",file="finbin") ! WRITE(97) u_seri,v_seri,t_seri,q_seri ! close(97) IF (is_omp_master) THEN IF (read_climoz >= 1) THEN IF (is_mpi_root) CALL nf95_close(ncid_climoz) DEALLOCATE(press_edg_climoz) DEALLOCATE(press_cen_climoz) ENDIF ENDIF IF (using_xios) THEN IF (type_trac == 'inca') THEN IF (is_omp_master .AND. grid_type==unstructured) THEN CALL finalize_inca ENDIF END IF ! close xios physiq context (call LMDZ) IF (is_omp_master) CALL xios_context_finalize ENDIF WRITE(lunout, *) ' physiq fin, nombre de steps ou cvpas = 1 : ', Ncvpaseq1 ENDIF ! first=.FALSE. END SUBROUTINE physiq END MODULE physiq_mod